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Abstract

Uncontrolled bicycles are generally unstable at low speeds. We add an automatically controlled
steering motor to a consumer electric bicycle that stabilizes the riderless bicycle down to about 3 kmh−1

to assist a rider in balancing the vehicle. We hypothesize that a such a stabilized bicycle will reduce the
probability of falling. To test the system’s possible assistance during falls, we applied varying magnitude
external handlebar perturbations to twenty-six participants who rode on a treadmill with the balance
assist system both activated and deactivated. We show that the probability of recovering from a handlebar
perturbation significantly increases when the balance assist is activated at a travel speed of 6 kmh−1. This
positive effect is most prominent at and around the individual riders’ perturbation resistance threshold.
We conclude that use of a balance assist system in real world bicycling can reduce the number of falls
that occur near riders’ control authority limits.
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Highlights

• A bicycle steering motor with automatic roll rate feedback control can stabilize the bicycle-rider
system at speeds as low as 4.6 kmh−1.

• Every bicycle rider has their own perturbation resistance threshold when subjected to mechanical
handlebar perturbations.

• Automatic balance assistance reduces the probability of falling while riding at 6 kmh−1 when
mechanically perturbed.

• Balance assist technology can reduce natural single-actor falls around the limits of the rider’s control
authority.

1 Introduction

Single-actor bicycle crashes are associated with a surprisingly large percentage of reported serious in-
juries [1]. At low speeds, from start up to typical cruising speeds, bicycles are not self-stable and can be
challenging for the rider to balance. Low speed crashes may be reduced if the bicycle was self-stable at
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Figure 1: Balance assist bicycle prototype with electric motor in the steering column and data acquisition
and control electronics mounted in the rear rack first introduced in Alizadehsaravi and Moore [4].

these speeds by relieving the rider of some of their necessary control activity. Bicycles can be mechanically
modified to lower the speeds at which they are self-stable [2] and since the 1980s it has been known that
applying a motor actuated steering torque proportional to the vehicle’s roll angular rate 1 can stabilize a
single-track vehicle down to very low speeds [3]. If automatic control of steering can stabilize a bicycle, it
may reduce the control required from the rider to successfully manage balancing tasks much like natural
high speed self-stability already does. We have developed a balance-assisting bicycle, Figure 1, based on
these principles and hypothesize that it helps the rider in situations in which they are likely to fall.

Riders fall when their control authority is not able to maintain a stable vehicle state. There are many
real world scenarios that can put the vehicle into an uncontrollable state. External forces applied to the
vehicle or rider are one such scenario type and natural examples include wind gusts, handlebars colliding
with a neighbor’s, a bag swinging from the handlebar, or simply hitting a bump in the road. To assess
our balance assisting bicycle, we subject the rider to perturbations at the handlebar, which can easily
cause a rider to fall.

In this paper, we investigate whether an automatically controlled bicycle, that is stable in a large
low speed range for balance assist, is beneficial in helping to prevent the rider from falling. We test
this possible benefit by applying varying magnitude mechanical perturbations to the handlebars while
the rider is cycling on a treadmill. We assess the difference in the rider’s probability of falling with the
balance assist system on and off.

1.1 Technical Background

During the early years of developments in automatic control, Whipple [5] not only derived the correct
equations of motion of the bicycle [6] but realized and showed that roll motion feedback can stabilize
a bicycle. Much later, attempts at automatic roll stabilization of single-track vehicles began in earnest
after predictive motorcycle models were developed and refined throughout the 1970s. Van Zytveld [7]
was influenced by Whipple’s work and seems to be the first to attempt to robotically stabilize a small
motorbike with a controlled inverted pendulum that mimicked rider lean, but he was not successful in
demonstrating what his theoretic control model correctly predicted. In his model, he recognized that
feedback of the vehicle roll angle and angular rate was essential to stabilize the vehicle. It was not until
the early 1980s that Nagai [8] successfully demonstrated balancing a robotic bicycle on a treadmill with
both steering control and a laterally moving mass. Ruijs and Pacejka [3] followed this breakthrough by
demonstrating an automatically balanced motorcycle and they did so solely with a steering motor. Ruijs
and Pacejka showed that steer torque driven by roll angle feedback stabilizes the capsize mode, by roll
angular rate feedback stabilizes the weave mode, and by steer angular rate feedback stabilizes the wobble
mode. 2 They also showed how the control gains must change with respect to vehicle speed for favorable
control across all speeds. Thus roll motion feedback enables the simplest controller that can stabilize a

1Roll angular rate is defined herein as per the SAE J670 vehicle standards.
2These motorcycle (and bicycle) eigenmodes are defined in [9].
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single-track vehicle above a minimum speed when one is not concerned with wobble instabilities. But
Ruijs and Pacejka’s work was not particularly concerned with low speed stability and their vehicle was
fully automatic, i.e no human rider was involved.

Many more automatically balanced single-track vehicles have been demonstrated over the last 40
years, but none have demonstrated that increasing low speed stability can assist in human balancing and
what effect it may have towards single-actor falls. Most of these robotic bicycle and motorcycle designers
did not intend for a human rider to also control the stabilized vehicle. Nevertheless, an automatically
stabilized bicycle can be controlled by a human rider if the motor controlled steer torque and the rider
applied steer torque act in parallel. The effect of this automatic control gives the ability to effectively
change the human-controlled plant dynamics, up to some limits. In our prior study [4], we demonstrate
reduced motion during distractions and light perturbations due to the balance assist system but Hanakam,
Wehner, and Wrede [10] recently showed rider dissatisfaction with the stabilization of a similar vehicle so
the overall possible benefits are not yet definitively established.

The design of our balance assist system relies on the linear Carvallo-Whipple bicycle model [11, 5]
which is the simplest bicycle model that exhibits both the non-minimum phase behavior “countersteering”
and self-stability. The bicycle model is well suited for showing the effect of a roll motion feedback driven
steer motor on the dynamics. This model is equivalently valid for on-road or treadmill riding [12], which
have the same fundamental dynamics. The linear version of this model can be described by the fourth
order state space equations:

˙⃗x = Ax⃗+Bu⃗ where x⃗ =


ϕ

ϕ̇
δ

δ̇

 and u⃗ =

[
Tϕ

Tδ

]
. (1)

The states x⃗ are the roll angle ϕ and steer angle δ along with their time derivatives and the inputs u⃗ are
roll torque Tϕ and steer torque Tδ. The state matrix A is a function of the equilibrium forward speed v.
It and the input matrix B are otherwise populated with expressions that are functions of the geometric
and inertial parameters of the nonholonomic multibody system made up of four rigid bodies: two wheels,
front frame, and rear frame.

If the steer torque is the sum of the (h)uman applied torque and the (m)otor applied torque Tδ =

T h
δ + Tm

δ , B =
[
B⃗ϕ B⃗δ

]
, and the motor torque is a proportional feedback controller Tm

δ = −kϕ̇ϕ̇ then

the human-controlled plant takes the form:

˙⃗x =
(
A− B⃗δ

[
0 kϕ̇ 0 0

])
x⃗+B

[
Tϕ

T h
δ

]
. (2)

The state matrix A being a function of the equilibrium speed v means the control gain kϕ̇ can be

selected such that the eigenvalues of
(
A− B⃗δ

[
0 kϕ̇ 0 0

])
have negative real parts for vmin < v <

vcapsize where vmin is the lowest stable speed given kϕ̇ and vcapsize is the speed at which the uncontrolled
bicycle’s capsize mode goes unstable. By gain scheduling with respect to v, the speed range where
the bicycle is stable can be maximized within any physical actuator magnitude and bandwidth limits.
Schwab, Kooijman, and Meijaard [13] elaborate on some of the possibilities in scheduling the gains for
such a controller for a bicycle and shows that a linear scheduling with respect to speed can give satisfactory
stability for a low speed range. We use this simple feedback principle as the basis for our balance assist
controller.

2 Methods

2.1 Bicycle

We modified a Grenoble C8 HMB electric bicycle (Royal Dutch Gazelle, Dieren, The Netherlands) with
a custom motor in the steering assembly capable of applying up to 7 Nm of torque between the head
tube and steer tube, see Figure 1. A custom motor controller converts the commanded torque to applied
torque. We measure the speed of the rear wheel with a DF30 Speed Sensor (Bosch eBike Systems,
Reutlingen, Germany) and measure the body fixed roll rate of the bicycle with a VR IMU BN0086
MEMs rate gyroscope (Sparkfun, Niwot, USA). The balance assist control algorithm is implemented on
a Teensy microprocessor (PJRC, Sherwood, USA) and data from all sensors is logged with a CanEdge2
CAN bus (CSS Electronics, Aabyhøj, Denmark) at least 100 Hz.
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Figure 2: Uncontrolled (upper row) and controlled with κ = 10 (lower row) root locus of the eigenvalue
components (real: solid, imaginary: dashed) plotted versus speed for the linear Carvallo-Whipple bicycle
model without the inertial effect of a rigid rider (left) and with a rigid rider (right). Vertical dotted and
dotted-dashed lines indicate the two speeds we perform experiments at: 6 kmh−1 and 10 kmh−1. The
grey shaded region is the linear stable speed range. Geometric and inertial parameters for these plots were
estimated with the methods presented in Moore [14] and software packages BicycleParameters 1.1.1 [15] and
Yeadon 1.5.0 [16] and are shown in Appendix A.

2.2 Balance Assist Control

We use a forward speed v gain scheduled proportional roll angular rate feedback controller to stabilize
the bicycle. In the speed range tested, the commanded steer torque Tm

δ from the steer motor follows the
control law

Tm
δ = −kϕ̇ϕ̇ = κ(vstable − v)ϕ̇ (3)

where vstable = 4.7 m s−1 is approximately the average stable speed predicted from the open loop bicycle
rigid-rider dynamics. We use the gain factor κ = 8 (low) and κ = 10 (high) to tune the gain magnitude
during the experiments. Scaling the proportional feedback gain linearly with respect to speed stabilizes the
normally unstable weave mode of the bicycle down to 2.9 kmh−1 for the riderless bicycle and 4.6 kmh−1

for the ridden bicycle as shown in Figure 2.

2.3 Perturbations

We apply longitudinal forces to the ends of each handlebar from earth-fixed posts using an adapted
Bump’Em system [17] which we arrange with four EC-90 Flat motors (Maxon Group, Switzerland)
working in cooperation, Figure 3a. The four motors are programmed to apply a light force at all times
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(a) Top view diagram of bicycle handlebar per-
turbation system.

(b) A participant on the bicycle in the safety harness with the
Bump’Em motor lines attached to the ends of the handlebars.

Figure 3: Diagrams showing the Bump’Em system arranged to apply handlebar perturbations and the various
system components.

to keep the ropes taught and to track a commanded force profile using a PID controller running on an
Arduino Mega 2560 microprocessor (Arduino, Italy). We measure the force applied by each motor at the
handlebar via four inline S-style load cells (Bosche GmbH, Damme, Germany). All were rated for 250 N
except the left rear load cell which was rated for 500 N. The commanded force profiles are designed to
apply an external pulsive torque to the front frame at magnitudes varying from 16Nm to 160Nm. The
four motors are arranged at the four corners of a 1 m wide by 2 m long treadmill (Bonte Technology B.V.,
Zwolle, The Netherlands) that can reach speeds up to 18 kmh−1. The general design of this perturbation
system is described in detail in Van De Velde’s MSc thesis [18] and the physical arrangement is shown in
Figure 3b. Our modifications relative to Van De Velde’s design include simplifying the Bump’Em motor
controller with an inexpensive microcontroller and the use of a simpler non-active safety harness.

2.4 Protocol

We recruited 26 able-bodied young adults (20-36 years old) to participate in the experiments. The
participants were all confident in their cycling skills and had cycled at least once in the last month. All
participants consented to the experiment and could decline to continue at any time. The study was
approved by Delft University of Technology’s Human Research Ethics Council (record #3897).

The participants were divided into two groups. The first group of fifteen participants performed the
protocol at a belt speed of 10 kmh−1(2.8 m s−1) with the gain factor set to κ = 8 and two weeks later
the second group of eleven participants performed the protocol at a belt speed of 6 kmh−1 (1.7 m s−1)
with the gain factor set to κ = 10.

Participants wore a helmet and they were attached to the ceiling via a fall safety harness, Figure 3b.
The harness allowed natural free movement pre-fall. The participants practiced riding on the treadmill
until they indicated they were comfortable enough to have perturbations applied. For most, this was less
than a 10 min warm up. We then asked the rider to ride for 90 s, while attempting to maintain the location
of their front wheel on the center line of the treadmill as a baseline measure before the perturbations. We
then applied perturbations in random directions (clockwise or counter-clockwise), starting at 20 N and
increasing the magnitude by 30 N until the participants fell. We defined a “fall” on the treadmill by two
criteria: 1) the rider removes their foot from the pedal and places it on the ground or 2) the bicycle wheel
exceeds the width of the treadmill belt. Figure 4 shows an example resulting motion from a perturbation.
We logged the force magnitude that caused the first fall to characterize that participant’s perturbation
resistance threshold.

Following the initial threshold determination, we choose perturbation forces according to a random and
adaptive staircase procedure applying perturbations above and below the initial perturbation threshold,
while allowing small progression of the perturbation threshold to accommodate learning effects. Five
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(a) Before perturbation (b) During perturbation

(c) After perturbation (d) Recovery from perturbation

Figure 4: Video frames depicting the application of a perturbation and the rider’s response and recovery.
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Figure 5: Example of the externally applied perturbation torque alongside the resulting measured motion
and steer motor induced torque based on a 110 N counterclockwise applied force at a 6 kmh−1 travel speed.
The circles on the roll and steer angle plot show the angles ϕ0 and δ0 at the perturbation start.

possible perturbation forces are determined based on the initial perturbation threshold estimate: the
initial estimate itself, two perturbations lower than the initial estimate, and two perturbations higher
than the initial estimate. The five possible perturbations are separated by 10 N steps. For example, if the
initial estimate of the perturbation threshold of a participant is 80 N, the five possible perturbations are
60, 70, 80, 90 and 100 N. Which one of these five perturbations is chosen first is determined at random.
If the perturbation results in a fall, the estimate of the perturbation threshold is decreased by 10 N, and
vice versa if the perturbation did not result in a fall. Five new possible perturbation forces are determined
around the updated perturbation threshold, and a new perturbation is selected at random. This process
iterates until twenty perturbations are applied. The goal of this adaptive staircase procedure is to have
participants fall for approximately 50% of the time. After the first set of 20 perturbations, we let the
cyclist rest and then perform another 20 perturbations. We randomize whether the balance assist system
is on or off during the first or second set of 20 perturbations for each participant and the participants
were not told the order.

2.5 Measurements

We measure the time histories of the Bump’Em delivered perturbation forces and the bicycle’s steer angle
δ, roll angle ϕ, roll angular rate ϕ̇, and forward speed v. Figure 5 shows an example perturbation force
measurement compared to our Bump’Em controller command.

Based on findings from measuring riders without balance assist in [19], we calculate several variables
that we hypothesize may influence fall probability. We use the angular impulse L of the perturbation
forces over a 0.3 s duration to characterize the magnitude of delivered perturbation. The duration is
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Table 1: Raw measurements taken during each trial. “Fall Outcome” and “Perturbation Order Number” are
recorded per perturbation instance. The remaining measures are time varying during each trial.

Measure Variable Units Sensor

Balance Assist Gain Factor κ Ns2 NA
Bicycle Speed v ms−1 DF30 wheel encoder
Fall Outcome f boolean NA
Force left/right,front/rear Flf , Frf , Flr, Frr N inline load cell
Perturbation Order Number j integer NA
Roll Angle ϕ ◦ BN0086 Kalman estimate

Roll Angular Rate ϕ̇ ◦ s−1 BN0086 rate gyroscope
Steer Angle δ ◦ steer tube encoder

Table 2: Independent and dependent variables used in the statistical regression model.

Variable Causality Units Description

L independent Nms angular impulse of perturbation torque
δ0 independent ◦ steer angle at start of perturbation
ϕ0 independent ◦ roll angle at start of perturbation
f dependent boolean outcome: did not fall 0 or did fall 1
s independent boolean balance assist: off 0 or on 1
j independent integer order number of perturbation

selected based on the duration of the commanded perturbation force and is calculated as follows:

L =

∫ 0.3s

0s

l

2
(Fr + Fl) dt =

∫ 0.3s

0s

l

2
[(Frf − Frr) + (Flf − Flr)] dt (4)

where Fr and Fl is the total force applied on the right and left handlebar ends, respectively which are
the sum of the rear and front load cell readings Frr and Frf , for example. The handlebar length is given
as l in Equation 4. We use angular impulse instead of peak torque to normalize for the duration of the
applied perturbation to capture the total effect of the perturbation pulse.

We record the order number of each perturbation j, i.e. first, second, third, . . . , to measure how
many perturbations a rider is subjected to before the current perturbation. At the initiation of each
perturbation we log the instantaneous steer and roll angles, δ0 and ϕ0, to characterize the configuration
of the bicycle when perturbed. The gain factor setting on the balance assist controller indicates if the
assistance is off κ = 0 or on at two different levels: low κ = 8 or high κ = 10. As mentioned earlier, a
recovery from the perturbation is successful if the person neither places their foot down onto the treadmill
surface nor their wheel of the bicycle exits the width of the treadmill belt. We record this as a binary
variable f for “fall”. All measured variables are reported in Table 1.

2.6 Statistics

We test our hypothesis that the balance assist control will reduce the probability of falling when perturbed
externally at the handlebar. We have a single binary fall outcome variable f that is dependent on several
possible explanatory independent variables, one of which is the binary balance assist state (on or off).
See Table 2 for the statistical model variables.

Fall outcome fij is the binary outcome of perturbation j on participant i which follows a Bernoulli
distribution given the probability pij that a fall occurs:

fij |pij ∼ Bernoulli(pij). (5)

We evaluate our hypothesis using a multivariate logistic regression model that represents the probability
of this binary outcome. The log-odds of the probability is then a linear function of our independent
variables with β being the intercept and αk the linear coefficients to the K independent variables xk

ij , i.e.
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Table 3: Logistic regression intercept β and coefficient estimates αk at 6 kmh−1 and gain factor κ = 10
along with the standard error SE, p-value p, multiplicative change in odds eβ or eαk , and the 5% confidence
interval bounds.

Variable β / αk SE p eβ / eαk 2.5% 97.5%

Intercept β -0.29 0.17 0.09 0.75 0.53 1.05
Angular impulse L 1.69 0.27 0.00∗ 5.40 3.18 9.16
Perturbation order j -0.77 0.22 0.00∗ 0.46 0.30 0.72
Balance assist state s -0.64 0.27 0.02∗ 0.53 0.31 0.89
Roll angle ϕ0 -0.25 0.21 0.24 0.78 0.51 1.18
Steer angle δ0 -0.14 0.21 0.51 0.87 0.58 1.32
Balance assist state × roll angle 0.52 0.34 0.12 1.68 0.86 3.29
Balance assist state × steer angle -0.41 0.34 0.22 0.66 0.34 1.28
Balance assist state × angular impulse 0.41 0.41 0.32 1.51 0.67 3.38
Balance assist state × perturbation order -0.53 0.34 0.12 0.59 0.30 1.15

all variables in Table 2 except f .

log

(
pij

1− pij

)
= β +

K∑
k=0

αkx
k
ij (6)

Before fitting the model, we scale each independent variable xk
ij such that they have a mean of zero and

a standard deviation of one by cluster-mean centering, as recommended by Enders and Tofighi [20], with
clusters being an individual participant. The clusters are chosen as all data from an individual participant
because we are only interested in the association between the state of the balance assist system and the
outcome of the perturbation. We expected there to be a variation between participants in how well they
are able to resist the perturbation; however, this was not true. Cluster-mean centering showed there to
be no variation between participants. This fact allows us to utilize a simple single-level logistic regression
model, instead of a multilevel model. This left us with angular impulse, perturbation order, balance
assist state, and roll & steer angles at the time of perturbation as independent variables. We also include
interaction effects between the balance assist state and the other four variables. We divide the analysis
into two separate model evaluations, one for the 6 kmh−1, κ = 10 trials and one for the 10 kmh−1, κ = 8
trials and we evaluate our hypothesis for each set of data. Statistics were computed with the lme4 version
1.1 [21] package in R version 4.1.3 [22].

3 Results

The coefficient estimates for a single-level logistic regression for the data from the 6 kmh−1, gain factor
κ = 10 trials are shown in Table 3. The angular impulse, perturbation order, and balance assist state
are all statistically significant predictors with angular impulse having a dominant effect. Larger angular
impulse increases the probability to fall and both enduring more perturbations or having the balance
assist on, decrease the probability to fall. The associated multiplicative change in odds are also shown in
Table 3 and can be used to calculate the probability of falling.

The coefficient estimates for a single-level logistic regression at 10 kmh−1 with gain factor κ = 8 are
shown in Table 4. The angular impulse and perturbation order are statistically significant predictors with
angular impulse being the dominant effect. Larger angular impulse increases the probability to fall and
enduring more perturbations decreases the probability to fall. Unlike the 6 kmh−1 trials, the balance
assist state is not a significant predictor (p = 0.07) but the effect would be a reduction in the probability
to fall if it were. At both speeds, the angular impulse has about twice the magnitude in effect as the
perturbation order.

Turning the balance assist system on significantly (p = 0.02 < 0.05) reduces the odds that a per-
turbation results in a fall while cycling at a speed of 6 kmh−1. Figure 6a visualizes the probability of
falling as a function of the mean and centered angular impulse per participant for the balance assist state
on and off. This figure is created by setting all explanatory variables to their centered mean values and
calculating the probability from Equation 6 for only change in angular impulse given the estimates in
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Table 4: Logistic regression intercept β and coefficient estimates αk at 10 kmh−1 and gain factor κ = 8
along with the standard error SE, p-value p, multiplicative change in odds eβ or eαk , and the 5% confidence
interval bounds.

Variable β / αk SE p eβ / eαk 2.5% 97.5%

Intercept -0.24 0.16 0.13 0.78 0.57 1.07
Angular impulse L 2.39 0.29 0.00∗ 10.92 6.23 19.13
Perturbation order j -1.16 0.21 0.00∗ 0.31 0.21 0.48
Balance assist on s -0.44 0.24 0.07 0.64 0.40 1.03
Roll angle ϕ0 0.27 0.22 0.22 1.31 0.85 2.04
Steer angle δ0 -0.37 0.24 0.12 0.69 0.43 1.10
Balance assist state × roll angle -0.61 0.34 0.08 0.54 0.28 1.07
Balance assist state × steer angle 0.56 0.35 0.11 1.76 0.88 3.50
Balance assist state × angular impulse 0.46 0.44 0.29 1.59 0.68 3.74
Balance assist state × perturbation order -0.37 0.32 0.25 0.69 0.37 1.30

(a) Fall probability for the 6 kmh−1 trials. (b) Fall probability for the 10 kmh−1 trials.

Figure 6: Comparison of predicted fall probability for balance assist on (solid) or off (dashed) when all
other predictor variables are set to zero, except for the interaction effect between the balance assist and the
angular impulse. The abscissa is the standard deviation around the mean of all perturbations, centered per
participant.

Table 3. The table indicates that the balance assist system halves (0.53) the odds that a perturbation
results in a fall. This figure shows that for relatively large impulses the probability to fall is unity for both
states of balance assist on and off. And for relatively small impulses the probability to fall is null for both
states. But for impulses in the magnitude region (about -1 to 0.5 STD), i.e. around the mean-centered
perturbation resistance threshold, the probability of falling is significantly lowered with the balance assist
system on. The skewness of the probability curves arrives from the interaction effects. Figure 6b shows
the same result for the 10 kmh−1 trials which has a similar trend of reducing the probability to fall with
the balance assist system turned on, but the effect is not significant.

4 Discussion

We have shown that at a 6 kmh−1 riding speed the addition of balance assist control reduces the chance
that a rider will fall when perturbed around the limits of their control authority. But this effect diminishes
just below significance at the higher speed scenario of 10 kmh−1. We were only able to test these two
speed-gain scenarios for mostly homogeneous sets of riders within the resources of this research project, but
additional experimental work could help understand more completely the range and limits of the positive
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effect of the balance assist system. For example, it is possible that simply increasing the controller gain
factor at 10 kmh−1 also results in a significant positive effect. A longitudinal study of normal use of the
balance assist bicycle compared to a control group could provide the strongest evidence of any benefit we
have seen in this specific scenario.

4.1 Stability and Human Controlled Plant Dynamics

The linear Carvallo-Whipple model indicates that the steer controller stabilizes the bicycle-rider system,
but this model assumes the rider’s hands are not connected to the handlebars and that they clamp their
body as rigidly as possible to the rear frame. In reality, the system’s behavior is likely more akin to a
marginally stable or an easily controllable unstable system due to the various un-modeled effects. Our
system may not result in a definitely stable system, i.e. cannot fall, but having plant eigenvalues with
very small unstable eigenvalue real parts correlates to ease of control [23] which can be beneficial for
avoiding falls.

The controller design we utilize, Equation 3, also increases the weave mode frequency by a factor
of about three in a bandwidth of about 1 Hz. This bandwidth is still controllable by the human’s
neuromuscular system [24], but may feel unusual as it is more akin to what the steering would feel like
at in the 30 kmh−1 to 40 kmh−1 speed range for a normal bicycle. Hanakam, Wehner, and Wrede [10]
reported dissatisfaction in subjective rider feeling on their similar bicycle to ours and this high frequency
effect to the human-controlled plant dynamics could be an explanation to their findings.

4.2 Utility of the Logistic Model and Extrapolation to Natural Falls

The probability that a fall occurs depends on the values of all the independent variables in Table 2, but
we can visualize the effect of one or two variables (e.g. Figure 6) to gain some insight. To interpret the
results in Tables 3 and 4 it is important to understand the relationship between probability and odds.
The estimate in Table 3 shows that the balance assist system halves the odds that a perturbation results
in a fall: eαk = 0.53. This means if the odds are a 1000:1, turning on the balance assist system reduces
the odds to 500:1. However, in that case the probability that a fall occurs is only reduced from 0.999
to 0.998. If the odds that a fall occurs are smaller, halving the odds has a larger influence on the fall
probability. For example, if the odds that a fall occurs is two, halving it to one reduces the probability
from 0.66 to 0.50. This can be seen in Figure 6 which shows the fall probability as a function of the
magnitude of the normalized angular impulse for both speeds. The difference in probability between the
balance assist on/off case becomes insignificant outside of approximately ±1 standard deviation of the
average angular impulse the rider was subjected to. This means that the balance assist is most effective
for perturbations close to the participant’s perturbation resistance threshold and that large perturbations
will make you fall regardless of the balance assist system’s help.

To illustrate the effect of the balance assist system on fall probability, we will give an example of
how the data collected during the experiments is used to predict fall probability. We use Equation 6 and
the coefficients in Table 3. For simplicity’s sake, the interaction effects are not included. For example,
assuming that the mean angular impulse L̄ of all the perturbations applied to a participant is 100 N
and the standard deviation σL = 15. The centered and scaled angular impulse can be calculated by
subtracting L̄ from the applied angular impulse L, and dividing this by σL. The same applies for the
perturbation order j, initial roll angle ϕ0, and initial steer angle δ0. If we take the coefficients estimated
for cycling at 6 kmh−1 and example means, the log-odds of falling can be calculated as follows:

log

(
pij

1− pij

)
= β +

k=5∑
k=1

αk
xk
ij − x̄k

ij

σxk

=− 0.29 + 1.69 · 110 N− 100N

15N
− 0.77 · 10− 20

11.54

− 0.25 · −6◦ − 2◦

10◦
− 0.14 · 1

◦ + 3◦

5◦
− 0.64s

=1.59− 0.64s.

(7)

The state of the balance assist s is a binary variable. If the balance assist is turned on, the log-odds that
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a fall occurs are decreased by 0.64. The odds and probability can be calculated:

pij
1− pij

= e1.59−0.64s = e1.59 · e−0.64s = 4.90 · e−0.64s (8)

pij |s=0 =
4.90

1 + 4.90
= 0.83 (9)

pij |s=1 =
4.90 · 0.53

1 + 4.90 · 0.53 = 0.72 (10)

Turning on the balance assist system reduces the probability that the perturbation results in a fall from
83% to 72% in this case.

This illustration alludes to the difficulty needed to apply the model in way that could predict how
many falls may be averted in a natural setting if the balance assist system is used. Estimates of the
predictor variables extracted from the limited data collected from natural cycling would be needed to
populate the model.

The positive effect of the balance assist system is coupled to the assumptions and experimental sce-
narios we implemented and there is unfortunately no simple way to extrapolate our results to reductions
of single-actor crashes we may see if such a system were deployed widely to bicyclists. Although, our
results do indicate that we would see such a reduction, even if only in a class of single-actor crashes that
most resemble our experimental design. If there were more comprehensive and detailed natural data of
how people fall we could make estimates on the number of falls reduced if everyone rode a balance assist
bicycle.

4.3 Treadmill Width

Angular impulse magnitude has the largest significant effect for predicting fall probability as seen in both
Tables 3 and 4. An increase in angular impulse increases the fall probability both at 6 and 10 kmh−1.
At 10 kmh−1, the multiplicative change in odds is approximately twice as big as at 6 kmh−1. Thus,
angular impulse is a more important predictor at higher speeds compared to lower speeds. We posit that
this likely has to do with the width of the treadmill and that this could also be why the balance assist
system did not have a statistically significant effect at 10 kmh−1. As a bicycle travels at higher speeds,
the same perturbation magnitude causes larger lateral deviations. At 10 kmh−1 almost all falls were due
to the bicycle exiting the maximum width of the treadmill. If the same experiment was performed on
an infinitely wide plane, the riders may have recovered from more perturbations. At 6 kmh−1 the riders
could often recover in the allotted treadmill width due to the smaller lateral deviations. We believe our
results are very much dependent on the two modes of falling, i.e. exiting the treadmill width or placing
a foot on the belt. On the other hand, cycle paths are a similar width as the treadmill, so rider’s are
often limited in width when recovering from a fall thus exiting the treadmill width may be an appropriate
measure for indicating a fall. While the treadmill simulates narrow cycle paths, real-world paths may
offer more lateral recovery space, providing riders with additional opportunities to regain balance after
a perturbation. However, testing in such narrow conditions is still highly relevant, as system design and
validation should focus on extreme conditions like narrow paths, because even in wider paths, obstacles
such as parked cars or barriers can limit lateral space.

4.4 Rider Skill and Experience

Each individual participant had their own perturbation resistance threshold, i.e. the perturbation mag-
nitude defining whether they would fall 50% of the time. The value of this threshold is likely correlated
with the skill and experience of the participant at balancing a bicycle. With this study, we cannot answer
whether the balance assist system helps low skilled participants more than highly skilled participants
because that is simply a function of how often a perturbation in a natural setting exceeds an individual’s
threshold. But, we did find that the system can help regardless of a participant’s individual balance
performance. On average, the balance assist system pushes the perturbation resistance threshold up for
all participants. The vast majority of perturbations experienced in natural bicycling are below an indi-
vidual’s perturbation resistance threshold, otherwise we would observe bicyclists falling much more but
low skilled riders may experience more perturbations that exceed their threshold. Determining how often
certain perturbation types and magnitudes are experienced in natural bicycling is an open research need
and would help understand whether a balance assist intervention would have a strong effect when used
in the wild.
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4.5 Learning Effect

An increase in the number of perturbations that a participant already experienced, decreases the prob-
ability that a fall occurs. This is likely due to the participants learning how to better recover from the
perturbation over the duration of the experiment. This effect is significant at both 6 and 10 kmh−1, and
in the same order of magnitude. This suggests that the learning effect that occurs during the experiment
is not strongly dependent on the speed but that similar experiments should consider the learning effect.

4.6 Non-significant Predictors

Roll and steer angle at the initiation of a perturbation are not a significant predictor of fall probability at 6
or at 10 kmh−1. We expected these variables to have a significant effect based on the following reasoning.
If you are in a rolled and steered state that is far from the upright equilibrium, then a perturbation
that further pushes you from the equilibrium should have some additive or multiplicative effect on the
resulting motion trajectory and make it harder to recover from a fall, but our results did not confirm this
reasoning and we do not yet understand why.

None of the interaction effects are statistically significant. That means that whether the balance assist
system is on or off does not significantly change the effect that the roll angle, steer angle, angular impulse,
and perturbation order have on the probability that a fall will occur.

5 Conclusion

Automatically controlling a steering motor in a bicycle using roll rate feedback lowers the speed at which
the bicycle is stable. This makes the bicycle’s low speed dynamics more akin to its uncontrolled high
speed dynamics, which is easier for a rider to control in balance. Perturbation forces applied to the
handlebar can cause a rider to fall and every rider has a perturbation resistance threshold at which they
are more likely to fall than not. The probability of falling when mechanically perturbed is significantly
(p = 0.02) reduced when traveling at 6 kmh−1 when the balance assisting control is activated. This effect
is present when traveling at 10 kmh−1 and is very close to significance (p = 0.07) but more investigation
is needed to determine if the effect can be significant. The positive effect to balance is rider independent
and most effective in the regime of perturbations near the limits of the rider’s control authority. Given
that similar effects cause falls during bicycling, use of the balance assist system in real world use cases
will reduce the number of falls at low bicycling speeds.

Acknowledgements

This study follows and draws from experimental and analysis methods originally developed in unpublished
research by Marco Reijne. The authors acknowledge Felix Dauer, David Gabriel, Sierd Heida, Oliver
Maier, Maarten Pelgrim, Marco Reijne, and Arend Schwab for contributions to the development of the
balance assist bicycle. We acknowledge Shannon van de Velde and Marco Reijne’s development of the
bicycle perturbation system. Allen Downey provided useful insight in the statistical condsiderations.
We thank all of the assistants that helped run the experiments and the participants for their time an
enthusiasm. We thank Peter Stahlecker, Benjamin Gonzalez, and Riender Happee for valuable feedback
in early revisions. Lastly, we thank Frans van der Helm for the consistent encouragement to execute this
experiment and his early vision for obtaining the funding.

Funding

This study is funded by Dutch Research Council, Nederlandse Organisatie voor Wetenschappelijk On-
derzoek (NWO), under the Citius Altius Sanius Perspectief program and in collaboration with Bosch
eBike Systems and Royal Dutch Gazelle. The funders had no role in the data collection and analysis or
preparation of the manuscript.

Code and Data Availability

The data and code to reproduce the paper are available at:
https://github.com/mechmotum/fall-probability-paper

13



References

[1] F. Wegman and P. Schepers. “Safe System Approach for Cyclists in the Netherlands: To-
wards Zero Fatalities and Serious Injuries?” In: Accident Analysis & Prevention 195 (Feb. 1,
2024), p. 107396. issn: 0001-4575. doi: 10.1016/j.aap.2023.107396.
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A Physical Parameters

Physical parameters for the balance assist bicycle with and without a rider. These are found using
the measurement approach for geometric and inertial parameters for a bicycle explained in Moore [14].
The rider inertial parameters are derived from the 83.5 kg rider “Jason” available in BicycleParame-
ters 1.1.1 [15]. The variable names match the notation and definitions from the benchmark bicycle model
presented in Meijaard et al. [6].
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Table A.1: Physical parameters of the balance assist bicycle with and without the inertia effects of a rigid
rider.

Variable Unit Without Rider With Rider

c m 0.04 0.04
g ms−2 9.80665 9.80665
IBxx kgm2 1.12 19.7
IBxz kgm2 0.05 -3.5
IByy kgm2 3.16 22.7
IBzz kgm2 2.12 5.0
IFxx kgm2 0.0995 0.0995
IFyy kgm2 0.1902 0.1902
IHxx kgm2 0.298 0.298
IHxz kgm2 -0.038 -0.038
IHyy kgm2 0.257 0.257
IHzz kgm2 0.057 0.057
IRxx kgm2 0.1023 0.1023
IRyy kgm2 0.1887 0.1887
λ rad 0.25 0.25
mB kg 22.50 106.00
mF kg 2.23 2.23
mH kg 4.30 4.30
mR kg 4.08 4.08
rF m 0.3523 0.3523
rR m 0.3489 0.3489
w m 1.113 1.113
xB m 0.52 0.374
xH m 0.92 0.92
zB m -0.52 -1.009
zH m -0.860 -0.860
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