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Abstract:  

In traditional road construction monitoring, the methods commonly involve manual measurements 

and visual inspections, which are not only time-consuming but also prone to errors. To solve these 

problems, this study introduces an innovative method utilizing UAVs to capture high-resolution 

images of construction sites and a YOLO object detection model to identify different road layers 

from captured images. The drone-captured pictures help create detailed 3D maps, also known as 

dense point clouds. These maps are then used to measure the volume of the layers via four software 

applications to identify the most effective tool for UAV-based road layer analysis. The model is 

trained to identify different road layers from the images, allowing for precise segmentation. This 

new way of using drones and advanced software changes how road construction projects are 

managed. This method greatly improves how quickly and accurately we can monitor road 

construction, making it a big step forward in managing road projects. 
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1. Introduction 

The traditional methods used in identifying the layers in the construction of roads and volume 

computation have been time-consuming. In the past, inspectors relied on physical measurements 

to make the necessary readings using a ruler and a measuring tape to determine the thickness of 

various layers of a road. Visual inspections were also crucial, as inspectors relied on what they 

could physically see to detail the state and progress of construction. Volume calculation and 

progress assessments in road construction have relied mainly on manual methods that use GNSS 

receivers and total station equipment as the main surveying instruments [1]. Precision was 

achieved in the total station by electronic distance measurement (EDM) together with angular 

measurements. However, these methods require significant time and manpower to control and read 

data, as well as interpret the outcome. Modern road construction projects require the highest level 

of accuracy when identifying road layers and calculating volume. The inefficiencies and 

inaccuracies of these traditional methods often lead to arguments and the loss of resources, such 

as money, time, and productivity, due to human error. 

Technology advancements in recent years have demonstrated that they can increase the 

effectiveness and efficiency of construction operations. Artificial intelligence (AI) and 

photogrammetry are two technologies that have become significant tools with applications in 

various industries, including construction [2]. Using unmanned aerial vehicles (UAVs) on roads is 

a significant development. It allows for the capture of aerial photos to create high-resolution 3D 

models of construction sites, making volume calculations more efficient and precise compared to 

traditional surveying methods [3]. These photos make it easier to calculate the road layer volume 

precisely, enhancing construction quality. Furthermore, from extended training on various datasets 

from different sites, AI models improve detection accuracy, as demonstrated by the YOLO (you 

only look once) framework [4]. 

The YOLO framework has gained recognition in computer vision for its high accuracy and smaller 

model size[5]. It has seen several iterations over time, as seen in Figure 1, with each model 

improving in speed and accuracy. Many developers use YOLO models because they can be trained 

on a single GPU. Machine learning specialists can reasonably deploy these models on edge 

hardware or in the cloud [6]. YOLO’s architecture allows it to achieve high speed and efficiency, 

making it suitable for real-time processing applications, such as video surveillance [7]. YOLOv8, 

the most modern and sophisticated YOLO model, is appropriate for segmentation, object 

identification, and image classification [8]. Its architecture allows training on diverse datasets, 

ensuring remarkable performance across various scenarios [9]. The YOLOv8 model is anchor-

free, meaning that instead of estimating an object's distance from a known anchor box, it directly 

guesses the object's center. By reducing the number of box predictions, anchor-free detection 

expedites nonmaximum suppression (NMS), a laborious postprocessing step that selects possible 

detections after inference [10]. YOLOv8 provides five models for identification, segmentation, 

and classification (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x), with 

YOLOv8s being utilized for segmentation. 



 

Figure 1: Timeline of YOLO models 

Recent research has demonstrated the potential of UAVs and AI in infrastructure monitoring. The 

YOLOv5 target detection algorithm has demonstrated effectiveness in identifying road defects 

from UAV-captured images, showing significant potential in construction site monitoring [10]. 

Additionally, the combination of convolutional neural networks (CNNs) and Markov random 

fields (MRFs) has been employed to increase the accuracy of road defect detection by ensuring 

spatial consistency in feature extraction and classification [11]. UAVs equipped with LiDAR 

sensors have also been utilized to generate 3D point clouds, which are used for roadside object 

classification [12].  Moreover, several studies have focused on developing automatic point-cloud 

registration methods to improve quality control in construction projects [13] and on automatic 

progress monitoring, which can be improved by combining point-cloud maps with keymaps [14]. 

Change detection techniques using machine learning algorithms applied to UAV images have been 

developed to monitor the progress of road construction [15]. Semantic information for construction 

site monitoring can be combined with 3D change detection methods using UAV-based 

photogrammetric point clouds [16]. UAVs can also be used for earth calculations, and a method 

for measuring earth volumes, 3D modeling, and comparison measurements using vertical and 

oblique drone images has been proposed [17]. Transformed volumes, including 3D point clouds, 

have been investigated in many physical domains [18], especially in construction [19]. Finally, 

high-level data have been used for volume calculation via digital progress models [20], and semi-

automatic drone-based systems have been explored to predict world activities [21] accurately. 

Various deep learning models, such as ARD-Unet, have shown promise in detecting cracks and 

other defects at the pixel level, thereby increasing the accuracy of infrastructure assessments [22]. 

This study suggests a novel approach to use the YOLOv8 model for road layer detection using 

images from construction sites. In this case, the segmentation model YOLOv8s-seg is used and is 

trained to identify and distinguish the road layers based on photographs taken by a drone.  This is 

the first time that a YOLOv8 algorithm has been used for road layer segmentation. Additionally, 



dense point clouds are generated using the images captured to calculate the road layer volume 

using various software tools. By comparing the volumes obtained, the most effective approach is 

recommended. 

2. Methodology 

2.1 Detection Model 

The process of training a detection model consists of 3 steps: (1) Data Collection, (2) Data 

processing, which involves data annotation and conversion, and (3) Model training. 

2.1.1 Data Collection 

High-quality overlapping photos of the road layer were taken with a DJI Phantom 4 Pro drone 

during the data collection, as seen in Figure 2a – Figure 2d. These photos, which included 

approximately 80% overlap, were taken at the Military College of Engineering construction site 

before and after the subgrade, asphalt, and aggregate base layers of the road were poured. Because 

every photograph is georeferenced, it provides coordinates for latitude, longitude, and altitude. 

(a)      (b) 

   

(c)      (d) 

    

Figure 2: Data Collection 

 

 

 



   

2.1.2 Data processing 

The RGB images captured by the DJI Phantom 4 Pro were then processed in two steps to 

train the model. 

i. Annotation  

Annotation is a crucial step in the training of AI models, requiring precise labeling 

to guarantee that the models read data correctly. Accurate annotations are essential 

for building precise AI models. The images were annotated using the tool Labelme 

(see Figure 3). Over 1,000 images, including aerial views, front images, and side 

images of the road, were annotated to train the model. 

ii. Conversion  

The annotation procedure resulted in data saved in JSON files, which is 

incompatible with YOLO. Figure 4 illustrates the format that YOLO accepts. Using 

the tool labelme2yolo, the data was transformed into YOLO accepted format and 

was stored in text files. 

 

 

Figure 3: Annotation using labelme 

 

Figure 4: YOLO accepted format 

2.1.3 Model Training 

The YOLOv8 segmentation model was trained using annotated images after they were converted 

to a YOLO-compatible format. Google Colab was used for training, as it provides access to a GPU, 

making it easier to manage processing demands. The model was trained for 400 epochs using a 



1024 image size and a batch size 8. The dataset was split into 70%-training and 30%-validation to 

assess the model correctly. At the beginning of the training, the model showed high classification 

loss, segmentation loss, and box loss. This includes metrics for predicting the correct classes, 

object segmentations, and bounding box locations. However, as the training progressed, these 

losses gradually decreased with each epoch. This steady reduction in loss values demonstrated that 

the model was learning and improving its ability to interpret and segment the images accurately. 

Regular checkpoints were saved during training to monitor the model’s progress and prevent 

overfitting. Early stopping criteria were also set to halt training if the validation loss stopped 

improving. 

2.2 Volume Calculation 

The process of volume calculation consists of 3 steps. There is (1) Data Collection, (2) Dense point 

cloud generation, and (3) Volume calculation using four different software. 

2.2.1 Data Collection 

The RGB images captured by the drone for the YOLO model were also used for volume 

calculation. These images were explicitly taken with dual purposes in mind: layer detection and 

volume calculation. To ensure accuracy, ground control points (GCPs) which are visible in the 

images, were marked at the site. This step was necessary because the GPS coordinates embedded 

in the images were not sufficiently precise, and relying solely on them would have resulted in 

significant errors. The GCP can be seen in Figure 5 as a yellow mark. 

 

Figure 5: GCP marked in Yellow color 

2.2.2 Dense Point Cloud 

Using Agisoft Metashape, point clouds were generated from the RGB images of the site through 

photogrammetric reconstruction before and after the layer was laid. This process included 

aggregating images to create a model that depicted the road surface in 3D form. GCPs were also 

crucial for the proper orientation of the point cloud to the real-world coordinates; thus, they played 

a significant role in the georeferencing process. After achieving accurate georeferencing, the point 

cloud was again post-processed to create a dense point cloud. This gave a highly dense and 

comprehensive road surface point cloud map. Figure 6 illustrates the dense point cloud before the 

layers were laid, while Figure 7 illustrates the dense point cloud after laying the layers. 



 

Figure 6: Dense point cloud before construction 

 

Figure 7: Dense point cloud after construction 

2.2.3 Volume Calculation 

The dense point clouds created by Agisoft Metashape were used to determine the volume of the 

road layers. The software tools employed for volume calculation included Agisoft Metashape, 

CloudCompare, Civil 3D, and WebODM. 

2.2.3.1 Agisoft Metashape: 

In Agisoft Metashape, polygons were drawn around the boundaries of each road layer, the subgrade 

layer, the aggregate base, and the asphalt (see Figure 8a—Figure 8c). These boundaries were 

established to obtain the correct volume of each layer. After the layer boundaries were set, the 

software calculated the volume of each layer with regard to elevation variation within these 

polygons. This way, more accurate estimations of the volume of each layer were achieved with 

reference to the detailed 3D models obtained from the dense point clouds. 

 



 

Figure 8: Polygon Boundaries around Aggregate Base, Subgrade and Asphalt  

     

(a)      (b)     (c) 

2.2.3.2 CloudCompare: 

In CloudCompare, the volume calculation process involved cropping the area of interest (layer) 

from the dense point cloud obtained from Agisoft Metashape (see Figures 9a—9c). This approach 

allowed for an accurate measurement of the volume of materials used.  

Figure 9: Cropped Aggregate Base, Subgrade and Asphalt 

        

(a)      (b)     (c) 

2.2.3.3 Civil 3D: 

In Civil 3D software, the generated dense point clouds before and after construction were 

uploaded. By importing the point clouds, surfaces were created for the respective stages of the 

construction progression. This involved the generation of TIN (Triangular Irregular Network] 

surfaces by the elevation obtained from the point clouds. The pre and post-construction surfaces 

of similar layers were placed over each other to get a view of the changes that took place during 

the construction phase, see Figure 10a – 10c. The volumes of each layer of the pre and post-

construction, subgrade, aggregate base, and asphalt were determined. Any variation or difference 

in the volume ascertained the amount of material added or removed during construction. 

 



(a)        (b)             (c) 

    

Figure 10: Overlapped Surface of Aggregate Base, Subgrade and Asphalt before and after 

construction 

2.2.3.4 WebODM: 

WebODM (Web Open Drone Map) was employed to estimate the volume of road layers based on 

its highly efficient photogrammetry processing module. The following steps were involved in this 

process: 

• The different RGB images taken with the drone were then shared in WebODM, which 

converted the images into a 3D model of the construction site. This produced an orthophoto 

and a dense point cloud from the given images. 

• GCPs were used in the WebODM process to increase the accuracy of the 3D model. These 

points provided accurate geographical location, orienting the model according to actual 

coordinates so that the volumetric calculations are highly accurate. 

• Within WebODM, a cube or a curve was placed over the processed point cloud to define 

the boundaries of the road layers. The software then calculated the volume based on the 

elevation data within these defined boundaries. WebODM's usability also enabled 

navigation and the modification of cubes or curves in a very straightforward manner, 

allowing for accurate adjustment of road layer boundaries. 

 

3. Results and Discussion 
3.1 Detection Model 

When the model was trained for 400 epochs, a graph was created depicting the box, classification, 

and segmentation loss see Figure 11 below. The loss value for the trained model declined over the 

epochs, proving that the model was being trained effectively. Still, it was noted that the overall 

loss values were still quite high even after the training was completed. This could be because the 

points used during the annotation process were so numerous as required for the segmentation of 

the layers and might have added difficulty or complexity in modeling the segmentation boundaries. 



 

Figure 11: Training and validation Loss 

The trained model was subsequently used to predict on images of the site that were not included 

in the training set and were entirely unseen by the model. The detection responses for the subgrade 

and aggregate base are presented in Figure 12a – 12b, while the detection result for the asphalt is 

depicted in Figure 13a – 13b. The detection result for random images is shown in Figure 14a – 

14b. 

(a)            (b) 

  

Figure 12: Detection results of aggregate base and subgrade layer 

 

 

 

 

 

 

 

 

 

 

 



(a)       (b) 

   

Figure 13: Detection results of Asphalt layer 

(a)             (b) 

 

Figure 14: Detection results  

3.2 Volume Calculation 

To assess the accuracy and reliability of these software tools, the calculated subgrade volumes 

from Agisoft Metashape, CloudCompare, Civil 3D, and Web ODM were compared with the actual 

volume laid on the site (see Table 1). 

 



 

 

 

Table 1: Comparison of Subgrade Volume 

Software Calculated Volume 

(𝒎3) 

Actual Volume 

(𝒎3) 

 

% Accurate 

 

Agisoft  Metashape 4.731  

4.59 

96.93% 

Cloud Compare 4.636 98.99% 

Civil 3D 4.75 96.51% 

Web ODM 4.597 99.85% 

The calculated aggregate base volumes from Agisoft Metashape, CloudCompare, Civil 3D, and 

Web ODM were compared with the actual volume laid on the site to assess the accuracy and 

reliability of these software tools, see Table 2. 

Table 2: Comparison of Aggregate Base Volume 

Software Calculated Volume 

(𝒎3) 

Actual Volume 

(𝒎3) 

% Accurate 

 

Agisoft  Metashape 2.426  

2.26 

92.65% 

Cloud Compare 2.395 94.03% 

Civil 3D 2.63 83.62% 

Web ODM 2.262 99.9 % 

The calculated asphalt volumes from Agisoft Metashape, CloudCompare, Civil 3D, and Web 

ODM were compared with the actual volume laid on the site to assess the accuracy and reliability 

of these software tools, see Table 3. 

Table 3: Comparison of Asphalt Volume 

Software Calculated Volume 

(𝒎3) 

Actual Volume 

(𝒎3) 

% Accurate 

 

Agisoft  Metashape 8.083  

8.17 

98.93% 

Cloud Compare 8.916 90.86% 

Civil 3D 9.37 85.31% 

Web ODM 8.182 99.85% 

The comparison of calculated and actual volumes using different software tools highlights the 

varying degrees of accuracy achieved by each method. The evaluations indicated that WebODM 

was the most accurate, and Agisoft Metashape and CloudCompare were second most accurate 

compared to Civil 3D. These results also indicate that WebODM outperforms other methods in 

terms of volume calculations, suggesting its potential as a preferred tool for precise and reliable 

calculations in road construction projects using UAVs. 

 

 



4. Conclusion 

This research is a breakthrough in road construction and supervision using UAV Technologies and 

AI. The greatest finding of this work is that, through this study, a YOLOv8 model was trained and 

used to detect road layers on its own, which is the first in the field. The high-resolution images 

obtained via UAVs were helpful in generating dense point clouds, which in turn helped in the 

accurate computation of the volume of road layers. 

By employing four different software tools, including Agisoft Metashape, CloudCompare, Civil 

3D, and WebODM, we assessed the accuracy of volume calculations for subgrade, aggregate base, 

and asphalt layers. Our study observed that the overall accuracy given by WebODM was the 

highest among all layers tested, with an accuracy level of 99.85% for subgrade, 99.9% for 

aggregate base, and 99.85% for asphalt. This makes WebODM the most suitable tool for estimating 

road construction project volumes. The implications of this research are profound. The integration 

of UAVs and AI not only enhances the precision of road layer measurements but also significantly 

reduces the time and labor required for such tasks because the time spent on manual inspections 

and calculations will be reduced, as well as the number of surveyors on-site. This approach 

minimizes human error, enhances data security, and ensures consistent construction progress 

monitoring. As a result, adopting these technologies can lead to improved project management, 

cost savings, and better road construction quality. 

From this research emerge several additional questions and avenues for future investigation. 

Another area that needs further development is the existing YOLO model, which can be upgraded 

to detect and analyze even further aspects of road construction. Although in this paper we have 

presented and analyzed only three major layers: subgrade layer, aggregate base course, and asphalt 

course, road construction, in reality, involves more layers and can have a more elaborate structure. 

It should be noted that training to recognize and segment additional layers might improve the 

created model as a more comprehensive tool for monitoring. 

Moreover, with further research, a model or tool that would take images as input, generate dense 

point clouds, select the area of interest, and calculate the volume could be suggested. This 

advancement would reduce the number of applications used to carry out the process by combining 

them into one comprehensive application. Such a model holds the potential for high efficiency and 

effectiveness in handling larger construction projects without much interference from human 

operators. 
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