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Abstract8

In topology optimization, feature mapping approaches allow for maintaining9

the simplicity of density-based methods while incorporating explicit geometrical10

parametrization. Existing methods often rely on geometric primitives that have11

analytical signed distance functions (SDF), which may offer limited design free-12

dom or require costly numerical methods to approximate the SDF. This paper13

introduces a new type of general polygonal primitive that can be convex or14

non-convex, with an arbitrary number of vertices, the coordinates of which are15

assigned with design variables. As a result, the proposed parametrization is geo-16

metrically rich and explicit. Specifically, we present a new, differentiable, and17

efficient way to approximate the signed distance function of arbitrary polygons18

and develop a scheme that prevents self-intersection of polygons. The optimized19

designs with the proposed polygonal primitive are similar to classical results20

obtained with density-based methods, albeit with some minor sacrifice in per-21

formance due to the polygonal boundaries. The guaranteed straight lines of the22

optimized designs, however, are also beneficial in many cases, such as in rein-23

forced concrete structures where curved boundaries are difficult to manufacture.24

Moreover, the explicit parametrization and the direct shape control facilitate the25

convenient imposition of a wide range of geometrical constraints that are not26

trivial with existing primitives.27
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1 Introduction30

Feature mapping methods are class of methods for shape and topology optimization31

where the geometry is explicitly parameterized and projected on a fixed finite elements32

(FE) mesh for analysis [1]. Feature mapping methods thus offer a natural represen-33

tation for imposing geometrical constraints and exporting optimized designs, while34

keeping the numerical cost relatively low as re-meshing is not needed in most cases35

and the number of design variables is low [1]. Here we present a relatively brief litera-36

ture review of feature mapping approaches, focusing on the different parametrization37

methods. For a more extensive survey and background we refer the reader to a recent38

review by Wein et al. [1].39

A key component in feature mapping methods is an indicator function that indi-40

cates whether a point is within the boundaries of a given feature. The indicator41

functions are based on distances to the features, where best results a obtained when42

using the singed distance function (SDF) that has unit gradient value everywhere43

[2, 3]. Most existing studies consider simple geometrical features that have closed form44

and differentiable indicator functions, thereby allowing use of efficient gradient-based45

optimization algorithms.46

One class of features that is often used in the literature can be referred to as47

point-centered features and includes circles, ellipses, superelipses, and approximate48

rectangles, which have explicit analytical indicator functions. For example, in an early49

paper ellipses were projected onto a fixed background mesh and a polygonization tech-50

nique was used to represent the resulting implicit boundary [4]. Mei et al. [5] presented51

a general framework for feature mapping with simple primitives and Boolean oper-52

ations using R-functions, and provided examples with ellipse, rectangle and triangle53

features. A hybrid feature mapping method, where rectangular features were projected54

using super Gaussian functions along with density-based optimization design, was pro-55

posed by Qian and Ananthasuresh [6]. A hybrid feature mapping method combining56

level-set optimization with parametrized circular and rectangular features has also57

been proposed [7]. Therein, the rectangular features were projected by Boolean smooth58

union operation with R-functions, which were also used to create the overall hybrid59

design. A similar formulation using density-based optimization as the free-form opti-60

mization approach, rather than level sets, was presented in Xia et al. [8]. In a recent61

study, the present authors optimized the thickness distribution of concrete slabs using62

rectangle features that are parameterized with double supergaussian functions [9].63

Another class of features are skeleton features. These are parametrized by a skele-64

ton function and a thickness distribution along the stem. The simplest example is a65

rectangular bar feature that is parametrized by its location, length, orientation and66

thickness, which was suggested in Bell et al. [10]. The authors then extended their67

work in Norato et al. [11] and proposed a bar feature with rounded ends to simplify the68

feature projection and sensitivity analysis, and improve the numerical performance of69

the optimization method. Similar bar features with slightly different projection func-70

tion have also been proposed [12], and extended to allow for varying thickness [13],71

curved skeletons [14], and multi-material optimization [15]. Maximum length scale72

control for rounded bar elements has also been proposed where the basic idea was to73
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limit the void fraction within a predefined mask area of each bar [16], following a sim-74

ilar idea as in density-based topology optimization [17]. A richer skeleton feature was75

presented in a recent study where the authors construct a ’spaghetti’ feature with the76

aim obtaining continuous fiber reinforced structures [18]. The proposed feature has a77

piecewise linear skeleton with rounded corners and constant thickness, which allow for78

explicit signed distanced functions and their derivatives.79

In recent studies Bézier and B-spline curves were used as skeleton features, resulting80

in rich and smooth parametrizations [19–21]. Further enrichment of B-spline skeleton81

features was suggested by Zhu et al. [22], Zhou et al. [23], where the features with82

varying features are introduced. However, general Bézier and B-spline curves do not83

have a closed form singed distance function [18], and a minimum distance problem84

should be solved for every point of interest, which may be very expensive numerically.85

From the discussion above it is apparent that most existing feature mapping meth-86

ods use either point-centered features or skeleton features, for which closed-form SDF87

can be obtained, but that offer limited geometrical freedom. In cases where more88

elaborate features are used, that are based on Bézier curves, expensive solution of opti-89

mization sub-problems is needed. Thus, the existing features offer limited geometric90

freedom, or are expensive computationally.91

In this study we present a general polygonal primitive that can be both convex and92

non-convex and therefore results in rich geometrical representation and designs with93

straight line edges. Furthermore, we present a new and efficient method to compute94

an approximate SDF for arbitrary polygonal shapes.95

The remainder of this paper is arranged as follows. In the next section we present96

the proposed polygonal primitive and its approximate SDF. Thereafter in Section 3 we97

present the feature mapping optimization approach, including the sensitivity analysis.98

In Section 4 we present three numerical examples, followed by some concluding remarks99

in Section 5.100

2 Polygon Primitive101

In this section we present a general polygonal primitive (PP), that can be then pro-102

jected onto a fixed finite element (FE) mesh. The PP can have any number of vertices103

and can be both convex and non-convex, offering a fairly rich design representation.104

It is noted, however, that the PP cannot intersect itself and thus will require some105

regulation as will discussed in Section 2.5.106

2.1 Polygon geometry107

The proposed polygonal primitive is a 2D closed polygon with m vertices. Assuming108

without loss of generality that the polygon is on the x − y plane, the corresponding109

coordinates vector is110

p = (p1, . . . , pi, . . . , pm)
T

with pi =
(
xi, yi

)
,

where the vertices pi are arranged in a clockwise order. Since the polygon is closed it111

has also m edges, where the ith edge connects the ith and the (i + 1)th vertices, and112
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can be represented by a vector113

ei =

xi+1

yi+1

0

−

xi

yi
0

 with i = 1 . . .m. (1)

We note that all i indices in this manuscript are cyclic indices with respect to m.114

Thus, if i := m, then i + 1 := 1, and if i := 1 then i − 1 := m. As mentioned, a115

PP can be both convex and non-convex, hence we distinguish between so-called ear116

and mouth vertices, which have interior angle that is smaller and grater than 1800,117

respectively. Mathematically, we can sort the vertices to mouth and ear vertices by118

the cross product of the connected edge vectors to each vertex119

si =
ei × ei−1

|ei × ei−1|
·

0
0
1

 ,

where si = 1 indicates that the ith vertex is an ear vertex, and si = −1 indicates that120

it is a mouth vertex.121

2.2 Signed distance function122

The signed distance function (SDF) of an object returns the shortest distance from a123

point to the object, where points at the interior of the object and at the exterior have124

distances with opposite signs. The SDF are extensively used in many fields such as:125

computational graphics, [24], robotics [25], and navigation [26], as well as in level-set126

optimization methods [27].127

Some shapes, such as circles and ellipses, have analytical SDFs, while other shapes128

have analytical approximated SDFs, such as rectangles and rounded bars. However,129

for general shapes there is no analytical SDF and numerical methods are mostly used,130

where the object is usually implicitly defined, e.g. with pixel information. Traditional131

methods for computing the signed distance fields include for example the Fast March-132

ing Method [28] or flow methods [2, 29], where the Eikonal PDE is solved using133

different upwind finite differences schemes. More recently, artificial intelligence models134

were suggested to obtain a signed distance fields for a given body [30, 31].135

In this study we present an explicit SDF of arbitrary explicitly defined polygons.136

The proposed method is founded upon two key realizations. The first is that the137

SDF of a line, or for brevity the edge SDF, is simply an inclined plane with angle138

of 450 with respect to working plane, on which we define the distance. The second139

is that we can approximate the SDF of an arbitrary polygon using a set of Boolean140

operations on the SDF of its edge lines. In this regard we note that the exact SDF of141

an arbitrary polygon can be obtained by indentifing the loci of point that are closest142

to the polygon’s vertices and computing the SDF there accordingly. However, as will143

be discussed in Section 2.3, in the context of feature mapping we use the SDF to144

distinguish between the interior and the exterior of the polygon. Thus, we mostly care145
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(a) Edge SDFs (b) Min. envelope (c) Approximated SDF

Fig. 1. An SDF of a convex polygon is approximated by the min. envelope of its edge
SDFs

about the sign information of the SDF, and the edge SDFs are sufficient. Moreover,146

identification of the vertex loci is not trivial for general polygons.147

In this study we adopt a sign convention where interior points have positive dis-148

tance whereas exterior points have negative distance. Specifically, the SDF of any149

convex polygon can be approximated by the minimum of its edge SDFs150

z = min
i∈I

z̄i

where z is the SDF of the polygon, z̄i is the SDF of the ith edge, and I is a set of151

all edge indices that belong to the polygon. In Fig 1 we show an example of such a152

convex polygon, specifically a triangle, with its edge SDFs and the resultant SDF of153

the polygon shown.154

Mathematically, to obtain the SDF for an edge ei, that is defined by the vertices pi155

and pi+1, we find an auxiliary point o such that it belongs to the SDF plane of ei but156

not to the line defined by it. We may then construct the plane function that passes157

through all three points, i.e. pi, pi+1, and o. The distance of points pi and pi+1 to the158

edge is obviously zero, whereas the distance of point o is equal to the perpendicular159

distance to edge ei160

doi =
|ox + oy +B|√

A2 + 1
, with A = − yi − yi+1

xi − xi+1
, B = −Axi+1 − yi+1. (2)

We choose the point o to be pi−1, and therefore if vertex pi is an ear vertex then the161

signed distance of pi−1 is positive. If the vertex is a mouth vertex then the signed162

distance of pi−1 is negative. Thus, the sign of the translation in the out of plane163

direction of point o is conveniently defined by the normal direction of vertex pi, i.e. si164

oz = sidio

5



and the SDF of edge ei is165

z̄i(x, y) =

(
−a

c
x− b

c
y +

d

c

)
with


a = (yi+1 − yi) oz

b = (xi+1 − xi) oz

c = (xi−1 − xi)(yi−1 − yi+1)− (yi−1 − yi)(xi−1 − xi+1)

d = xi−1a+ yi−1b+ ozc.

(3)
In non-convex polygons, such as the polygon in Fig. 2a, using the minimum enve-166

lope of the edge SDFs is not sufficient because it convexifies the polygon by trimming167

it. Therefore, we first identify all concave segments in the non-convex polygon, which168

are consecutive sequences of edges that are connected with mouth vertices. In Fig. 2a169

the polygon has two concave segments: the first includes edges 3,4, and 5, and the170

second includes the edges 7 and 8. Next, for each concave segment we construct a sep-171

arate SDF by taking the maximum of all SDFs of edges, as presented in Fig. 2b. For172

a polygon with Nc concave segments, the SDF of the kth concave segment is then173

žk = max
i∈Ik

z̄i with k ∈ {1 . . . Nc} ,

where Ik is an index set that includes all edges that belong to the kth concave segment.174

In Fig. 2a the concave segments’ index sets are I1 = {2, 3, 4}, and I2 = {7, 8}. The SDF175

of the non-convex polygon is then obtained by the minimum of the concave segments’176

SDF and all the edge SDFs that are not associated with any of the concave segments,177

which we will refer to as convex edges178

z = min {z̄i, žk} with i ∈ I0 = I\ ∪ Ik, and k ∈ {1 . . . Nc} ,

where I0 is the set of convex edges, e.g. I0 = {1, 5, 6} in Fig. 2a.179

In practice, an optimization problem likely will have more than one polygon, in180

which case we will obtain the signed distance function by another max. operation,181

between the individual polygons. Thus the SDF of n polygons would be182

z = max
j

zj with j ∈ {1 . . . n} ,

where zj is the SDF of the jth PP. Finally, because we want the SDF to be differentiable183

we approximate the min. and max. operations with smooth p-norm functions. As184

the SDF values are both negative and positive, we shift the SDF such that it has only185

positive values for the p-norm approximation and then shift it back to obtain the real186

SDF values. Thus, the SDF of n polygons, each with m vertices, is approximated by187

z (x, y) =

(
n∑

j=1

(zj + |α|)q
)1/q

− |α| , with α = min
j

(min (zj)) (4)
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(a) Non-convex polygon (b) Concave segments’ SDF (c) All sub-SDFs

(d) min. envelope (e) Approximated SDF

Fig. 2. An SDF of a non-convex polygon is approximated by the min. envelope of its
free edge SDFs and the Concave segments SDFs.

and188

zj =

∑
i∈I0j

(z̄i + |αj |)−p
+

Ncj∑
k=1

ž−p
k

−1/p

− |αj | ,

with189

αj = min
i∈Ij

(min (z̄i)) , žk =

∑
i∈Ikj

(z̄i + |αj |)p
1/p

and I0j = Ij\ ∪k Ikj .

In the expression above, Ij , I0j ,and Ikj are index sets of all edges, convex edges, and190

those belonging to the kth concave segment of the jth PP respectively; Ncj is the191

number of concave segments at the jth PP.192
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2.3 Projection193

In feature mapping methods the design is explicitly parameterized through geometri-194

cal primitives, which are projected onto a background, fixed, finite element mesh for195

analysis. Thus, elements that are inside and outside the boundaries of the PP will196

generally have different projected material properties.197

For a given design with a SDF z, we can conveniently define the interior and198

exterior domains199

Ωin = {(x, y) |z (x, y) ≥ 0} , Ωout = {(x, y) |z (x, y) < 0} ,

where Ωin ∩ Ωout = ∅, Ωin ∪ Ωout = Ω, and Ω is the entire design domain. We define200

an indicator function that equals one for points that belong to Ωin, and zero other-201

wise. To make the projection operation differentiable we approximate the indicator202

function with a smooth Heaviside function [32, 33], with threshold η = 0, leading to203

the following expression204

ζ = hβ (z) =
1

2

(
1 +

tanh(βz)

tanh(β)

)
, (5)

where β controls the sharpness of the approximation.205

For the projection we adopt the pseudo density approach where the projected206

elemental properties are proportional to the pseudo density, which equals the elemental207

area fraction that is within the PP domains. Thus, the elemental pseudo densities208

can be obtained by integration of the indicator function over each element, calculated209

numerically using a Gauss quadrature rule210

ρℓ =

∫
Aℓ

ζdA ≈
Ngℓ∑
g=1

wgζg, (6)

where Aℓ is the elemental area, Ngℓ is the number of Gauss integration points in211

element ℓ, and ζg and wg are the indicator function at the gth Gauss point and the212

corresponding weight, respectively.213

It has been shown that the numerical performance is strongly related to the inte-214

gration accuracy, and usually rich quadrature rules are required for successful feature215

mapping optimization [1]. However, for elements that are far enough from the bound-216

aries of the design, ζ converges to zero or one, depending on the sign of z, and coarse217

integration may be sufficient. Moreover, even for elements that are close the bound-218

aries and require fine integration, the variation in ζ is caused only by PP that are219

close to those elements. In other words, for each individual PP, fine sampling of the220

SDF is necessary only at the vicinity of the boundaries of the PP - the transition zone.221

Beyond the transition zones the Heaviside projection reaches a plateau and its deriva-222

tive approaches zero. We use this property to identify the elements for which coarse223

sampling of the SDFs is sufficient with the aim to reduce the computational cost of224

the projection.225
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Fig. 3. Hierarchical numerical integration with richer Gauss quadrature at the vicinity
of the PP boundaries.

For each PP we perform a two stage process, where we first evaluate at the centroids226

of all elements the SDF, a local indicator function ζj = hβ (zj) and its derivatives with227

respect to the SDF, where the subscript j emphasized that the SDF and the indicator228

function are of a specific PP. Next, for elements with
∂ζj
∂zj

≥ 1 × 10−4 (ζj is mono-229

tonically increasing function) we evaluate the SDF at all Gauss points. Otherwise, we230

assign to all Gauss points the SDF that was evaluated at the centroid of the element.231

Here we use a 6 × 6 quadrature rule, as illustrated in Fig. 3 for sampling points of a232

non-convex PP. As will be discussed in Section 3.3, we implement a continuation on233

β, eventually resulting in fairly sharp projection with narrow transition zones, where234

most elements would have coarse integration, potentially impairing the numerical per-235

formance. Therefore, we define a minimum width of 0.1 times the minimal domain236

size where fine sampling is ensured.237

Once the pseudo densities of the elements are known, the elemental properties238

can be projected. Herein we choose to project the void phase. Thus, the modulus of239

elasticity of the ℓth element is240

Eℓ = Emax − (Emax − Emin) ρ
s
ℓ . with s = 3, (7)

where the reason for adding the power s will be discussed in Section 3.3. Once Eℓ241

is known, the elemental stiffness matrices, kℓ are computed and the global stiffness242

matrix, K, that correspond to current layout of the PP, is assembled.243

2.4 Numerical complexity244

In previous section we stated that accurate integration is necessary for successful245

convergence. Therefore, at every optimization iteration the indicator function and the246

SDF must be calculated for an order of 106 to 107 Gauss integration points, making the247

numerical complexity very important. From a computational perspective, the proposed248

method is composed of two main parts: computation of the edge SDF in Eq. (3), and249

the Boolean operations in Eq. (4). Both parts require evaluation of explicit functions250

and therefore linearly depend on the number of the Gauss integration points , N .251

Hence, the complexity of the proposed projection method is O (N).252
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Fig. 4. Numerical complexity.

In Figure 4 we plot the computational time spent on computing the SDF (and its253

derivatives as will presented in the next section) for different values of N , confirming254

the linear complexity. We note that for very large N , memory management becomes255

dominant and the numerical complexity becomes superlinear.256

Additional improvement in the computation time can be achieved by using a257

more sophisticated sampling strategy with more than two integration densities.258

Finally, we note that all operations are spatially local and therefore parallelization is259

straightforward, likely allowing for additional savings in compute time.260

2.5 Design parametrization and regularization261

In previous subsections we presented the SDF of an arbitrary polygon that is explicit262

both in x and y, as well as in the coordinates of the polygon. It is therefore natural to263

choose the coordinates of the PP as design variables. Considering a design space with264

n polygon primitives, each with m vertices, the vector of the design variables is265

X = (p1 . . .pj . . .pn) with pj = {pi |i ∈ Jj } ,

where Jj is an index set of all vertices that belong to the jth PP. This explicit266

parametrization is very rich since the vertices move independently and a PP with m267

sides span the entire m-gon family. For example, a four sided PP can equally be a rect-268

angle, trapezoid, rhombus, triangle or even an arrow-head. However, the movement of269

the vertices is not entirely free since each polygon must not intersect itself, requiring270

some restriction on the design space.271

Self intersection of a polygon means that the distance of at least one vertex to one272

of the edges is zero. Thus, at each iteration we limit the allowed movement range of273

the vertices such that the distance between all vertices and edges will remain positive.274

Looking at a vertex i in a polygon with m edges, the vertex can intersect any of the275

edges that do not share the vertex i. Additionally, it is possible that the edges that276

do share the vertex will ’hit’ one of the mouth vertices in the polygon, if they exist.277

Thus, for a vertex i in a polygon with m edges, and with a set of mouth vertices JM ,278

the distances that potentially limit the movement of vertex i are:279

di =
{
di1, . . . , di(i−2), dk(i−1), dki, di(i+1), . . . , dim

}
with k ∈ JM\ {i− 1, i, i+ 1} ,
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Fig. 5. Shape regulation.

where die is the perpendicular distance between vertex i to edge e, and is given in280

Eq. (2). In figure 5 we present again the non-convex polygon, with the limiting dis-281

tances of vertex p3, where the blue color marks distances to non-adjacent edges and282

the orange color indicates distances between the adjacent edges to mouth vertices (in283

this case only to vertex p8).284

A natural approach to define the move limits of the coordinates would be to limit285

the maximal change in the coordinate of vertex i based on the minimum limiting286

distance di. However, such an approach might lead vertices to become trapped in their287

location when any of the limiting distances approach zero. For example, the distance288

between vertex p3 to edge e8, i.e., d38 in Fig. 5, is very small and vertex p3 would289

have very restrictive move limits. However, d38 really limits the movement of vertex290

p3 only to the left and to the top, whereas p3 can move more freely to the right291

or to the bottom. Therefore, we sort the limiting distances based on the limit that292

they impose. Mathematically, we look at the derivatives of the limiting distances with293

respect to movement of vertex i and group the limiting distance based on the sign294

of the derivatives. For example, ∂die

∂xi
> 0 means that edge e limits the movement of295

vertex i from left, and similarly for ∂die

∂xi
< 0 and for derivatives with respect to yi.296

Thus, we structure the move limits of the vertices as follows:297

−min(dix−) ≤ ∆xi ≤ min(dix+) and−min(diy−) ≤ ∆yi ≤ min(diy+)

with298

dix+ =

{
di

∣∣∣∣∂di∂xi
< 0

}
, dix− =

{
di

∣∣∣∣∂di∂xi
> 0

}
,

diy+ =

{
di

∣∣∣∣∂di∂yi
< 0

}
, diy− =

{
di

∣∣∣∣∂di∂yi
> 0

}
,

2.6 Limitations299

The proposed formulation is theoretically general and can cope with polygons with300

arbitrary number of vertices and most of the possible layouts. However, despite the301
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Fig. 6. Trimming effect.

restriction schemes that are imposed, the proposed method has several limitations302

that need to be underscored.303

The main limitation is related to a case where a line defined by the immediate304

edge next to a concave segment intersects the polygon. In this case the polygon will305

be trimmed along this line, effectively convexifying the polygon, as can be seen in306

Figure 6. For this to happen at least four vertices should be approximately aligned, the307

likelihood of which increases with the number of vertices. Therefore, trimming can not308

happen in a polygon with 4 edges (or less) and, in our experience, has not happened309

in polygons with 6 edges or less. However, for polygons with 7 edges and greater,310

trimming may occur, and might lead to inferior results, as will be demonstrated in311

Section 4. It should be noted that the projection and its sensitivity analysis remain312

consistent even when trimming occurs. The challenge of the trimming affect will need313

to be addressed in future research.314

3 Optimization with Polygon primitives315

A key property of the PP is that it is an explicit and smooth function of the coordinates316

of its vertices. This enables to use efficient gradient based optimization algorithms,317

herein chosen as the Method of Moving Asymptotes (MMA) [34]. In this section we318

present the adopted problem formulation and the sensitivity analysis (SA) necessary319

to drive MMA.320

3.1 Problem formulation321

We focus on introducing the Polygonal Primitive in the context of the well-known322

minimum compliance problem, expressed as323

min
X

c

s.t. < v∗ (8)

with Ku = f ,
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where c = fTu is the structural compliance, v =
∑

ℓ ρℓ is the volume fraction, asterisk324

∗ indicates a target value, and u and f are the nodal displacement and force vectors,325

respectively.326

We also aim to demonstrate the ease with which geometrical constraints can be327

added, thanks to the explicit parametrization of PP. Therefore, in Section 4.3 we328

present and discuss three examples of such constraints.329

3.2 Sensitivity analysis330

The SA of the compliance objective function is an implicit function of the design vari-331

ables through the state equations. Following the adjoint approach [35], the derivative332

of the compliance with respect to the x coordinate (or the y coordinate) of the ith333

vertex is334

∂c

∂xi
= uT ∂K

∂xi
u with

∂K

∂xi
= Σℓ

∂kℓ

∂xi
.

where Σℓ is the elemental assembly operation. The derivative of the elemental stiffness335

matrices with respect to design variables can be expressed as336

∂kℓ

∂xi
=

∂kℓ

∂Eℓ

∂Eℓ

∂xi
with

∂Eℓ

∂xi
= − (Emax − Emin) sρ

s−1
ℓ

∂ρℓ
∂xi

.

The derivative of the pseudo density with respect to a vertex coordinate is obtained337

by differentiating Eq. (5) and substituting into Eq. (6)338

∂ρℓ
∂xi

=

Ngℓ∑
g=1

wg
1− (tanh (βzg))

2
β

tanh (β)

∂zg
∂xi

, (9)

where zg and
∂zg
∂xi

are the SDF and its derivative with respect to xi, evaluated at Gauss339

point g. To obtain ∂z
∂xi

we differentiate Eq.(4),340

∂z

∂xi
=

(
n∑

j=1

zqj

) 1
q−1 n∑

j=1

zq−1
j

∂zj
∂xi

,

where
∂zj
∂xi

= 0 if pi /∈ Jj , otherwise we keep in mind that change in xi affects only the341

SDFs of the adjacent edges, i.e., z̄i−1 and z̄i, and the derivative is therefore342

∂zj
∂xi

=

∑
t∈Ioj

z̄−p
t +

Ncj∑
k=1

ž−p
k

− 1
p−1(

Ci−1
∂z̄i−1

∂xi
+ Ci

∂z̄i
∂xi

)
,
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with343

Cθ =


z̄
−(p+1)
θ θ ∈ I0j∑
t∈Ijk

z̄pt

−2

z̄p−1
θ θ ∈ Ijk,

where both t and θ are utilitarian indices for this equation. Finally, the derivative of344

the edge SDFs with respect to the coordinates of the PP is calculated by differentiating345

Eq. (3), where one should keep in mind that for z̄i we chose the auxiliary point o to346

be pi−1.347

The sensitivity analysis of the volume constraint now becomes straightforward with348

∂v

∂xi
=
∑
ℓ

∂ρℓ
∂xi

,

where ∂ρℓ

∂xi
is given in Eq. (9). In fact, once we obtain the derivatives of the pseudo349

densities with respect to the PP coordinates, many other functionals can be added to350

formulation in a regular fashion.351

3.3 Implementation352

The proposed polygon projection method includes four main parameters that govern353

the projection. In this subsection we discuss their effect on the optimization and354

suggest appropriate values.355

The first two parameters, q and p, are related to the approximation of the SDF356

using p-norm functions. A characteristic feature of p-norm functions is that low power357

values soften the max. and min. approximations. Thus, as p and q decrease, the358

approximated max. and min. values are increasingly overestimated and underes-359

timated, respectively. In the context of the SDF approximations this means that360

reducing p and q smooths the corners of the polygon, shrinks the individual PP up361

to a point that they vanish, and merges adjacent PP, as can be seen in Figure 7 that362

shows the contour lines for different power values. Therefore, p and q should be chosen363

to be large enough to reasonably preserve the features of the projected PP, but not364

so large that p and q result in numerical instabilities associated with round-off errors.365

In our experience p = 70, and q = 200 results in good representation of the projected366

PP and does not lead to any numerical issues for the problems considered herein.367

The parameter β in Eq. (5) controls the sharpness of the projection, where clear368

designs require crisp projection with distinct phases of material and void. However,369

the sensitivity of the projection is important, where smoother projection allows the370

optimization to ’see’ further and enables smoother design changes. Therefore, we371

implement a continuation scheme on β. In the early stages of the optimization we372

facilitate design changes by having smooth projection with β = βi and βi being small.373

As the optimization progresses, we gradually increase the sharpness of the projection374

based on the convergence of the optimization to a final value of βf . A similar strat-375

egy has been used by many density-based projection methods, for example in [36–38].376

Specifically herein, each time that the change in the objective function is smaller than377
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Fig. 7. Contour lines with different values of p and q, where the dashed red line
indicates the zero contour line and hence the contour of the projected polygon. Low
values of p shrink the individual PP, while small values of q merge adjacent PP

1× 10−4 for five consecutive iterations we update β as follows378

βnew = min (1.5βold, βf ) .

The initial and final values of β are βi = 10, and βf = 1000.379

The smooth projection in the early optimization stages promotes designs with380

smoothly varying densities throughout the entire design domain, similar to a density381

distribution that is obtained with classical density-based topology optimization with-382

out penalization. At this early stage, the PP tend to cluster and partially overlap.383

As the projection sharpness increases, the PP struggle to separate, which eventually384

results in convergence to poor optimized designs. To resolve this we add the power s in385

Eq. (7) to penalize intermediate densities from the very beginning of the optimization,386

which steers the PP to improved locations and leads to better results.387
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1.0f 

(a) (b) cref = 0.599 (c) copt = 0.607

Fig. 8. (a) Problem setup for the Cantilever structure. (b) Density based optimized
design. (c) Optimized design with polygonal features

4 Numerical examples388

In this section we present three numerical examples that illustrate the richness of the389

proposed PP for feature mapping-based topology optimization. We will draw compar-390

isons to reference designs that are obtained using a density-based method and assess391

the structural performance ”cost” of having designs with straight lines. In all exam-392

ples the plane finite elements have side length of 1
128 , and the formulation includes393

only the volume constraint, unless it is stated otherwise.394

4.1 Cantilever structure395

The first example is a 1 × 2 cantilever that is supported along its left edge and is396

loaded with a vertical unit force that is distributed over 0.2 length units along its right397

edge, as can be seen in Figure 8a. We set the elastic modulus and the Poisson ratio to398

E = 100 and ν = 0.2, and the target volume fraction to v∗ = 0.5. The design space for399

the optimization is defined with eight PP (n = 8) and three sided polygons (m = 3),400

thus we expect to have simple optimized designs with no more than eight holes. The401

initial design is automatically set such that: the proportions of the PP grid are as close402

as possible to the proportions of the design domain (e.g. a 2 by 4 grid for n = 8); the403

volume constraint is satisfied; and all PP are regular polygons with the first vertex404

laying to the right of their centroid on the horizontal axis passing through it.405

Before optimizing with the proposed polygon projection method, we first establish406

a reference design found using the classical SIMP method [39, 40] with a filter radius407

of 0.11, which promotes designs with thick features and small amount of holes [36].408

The physical density is obtained using a regularized Heaviside function with η = 0.5409

and a continuation of the sharpness [33]. The density based optimization produces the410

reference design presented in Figure 8b, and has a compliance value of cref = 0.599.411

Next, we optimize using the proposed polygon projection method, resulting in412

optimized design that greatly resembles the reference design but is entirely made of413

straight lines, as can be seen in Figure 8c. The compliance value of the optimized414

design is copt = 0.607, which is slightly worse than the compliance of the reference415

design and reflects that the design space has been restricted to contain only straight416

lines. The optimization converges after 212 iterations and Figure 9 shows how the417

design evolves during the optimization. The top left figure depicts the initial design418

and the PP numbering, where the PP are sequentially numbered from bottom up and419
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Fig. 9. Design convergence of the cantilever optimization problem. The continuation
of β is evident with the increasing sharpness as the optimization progresses

then from left to right. Additionally, it can be seen in Figure 9 that the vertices of420

the polygons exit the FE mesh, illustrating the characteristic separation between the421

analysis and the design spaces.422

The design space can be enriched by increasing the number of vertices per polygon423

and/or by increasing the number of polygons. In both cases we expect the optimized424

design to approach the reference design as we enrich the design space.425

To demonstrate this, we first keep the number of polygons fixed, with n = 8,426

and vary the number of edges per polygon, with m = {3, 4, 5, 6, 7, 8}. The optimized427

designs are presented in Figure 10, where it is evident that the optimization converged428

to essentially identical solutions, with some minor non-convexity for m = 7 and m = 8.429

However, the compliance slightly improves in general as the number of edges increases,430

with the exception of m = 4, and m = 8 designs. In the case of m = 4, when we431

reoptimize with the initial orientation of the polygons rotated by 450 (i.e. PP edges432

aligned with the problem axes) the optimization converges to a similar design but433

with compliance value of c = 0.6054. This result fits well in the general trend but also434

illustrates the high non-convexity of the problem. In the case of m = 8, a possible435

explanation for the worse than expected compliance value is the trimming phenomena436

that was discussed in Section 2.6 and can be seen in the optimized design with m = 8,437

at the tip of the cantilever.438
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Fig. 10. Optimized designs found when using a different number of edges per polygon.

We now fix the number of vertices per polygon to m = 4, and consider different439

numbers of PP, with n = {8, 15, 24, 32, 60}. Some of the optimized results are plotted440

in the top row of Figure 11, where the optimization converges to similar designs in441

all cases. Interestingly, for n ≥ 24 the objective function gets slightly worse as the442

number of PP increases. This is quite surprising, as one would expect to generate more443

detailed designs with more members and lower compliance magnitudes as number of444

PP increases.445

This is likely caused by the low initial values of β. As discussed in Section 3.3, this446

facilitates exploration of the design space by smearing the projection but also encour-447

ages PP to merge. To demonstrate this, we present in the bottom row of Figure 11448

optimized designs that were obtained also with n = {8, 15, 24, 32} but with increased449

initial projection sharpness of βi = 100. As expected, the PP have less tendency to450

merge, resulting in designs with more complex topologies. However, since the design451

changes are driven only by the sensitivity information from the immediate vicinity to452

the PP, the optimization straggles to find good local optima and effectively is limited453

to local design changes. This is especially predominant when a small number of PP454

need to undergo significant design changes, as can be seen when comparing the designs455

with m = 8 in Figure 11. In fact, as the number of PP in the designs space increases,456

significant design changes globally can be obtained with small local design changes and457

therefore higher value of βi can be used, which also facilitate more complex topologies.458

It is also seen that some PP collapse to degenerate 1D shapes, where small voids might459

still be projected and impair solution performance. This could potentially be resolved460

by adding a topological design variable to each PP which will allow elimination of the461

PP without collapsing it, and will be included in a future research.462

4.2 Beam and L-bracket structures463

Here we present additional two benchmark examples of a simply-supported beam and464

an L-bracket. Figures 12a and 13a show the setup for both problems.465
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Fig. 11. Optimized design with different number of PP. Top row: optimized design
with smooth initial projection. Bottom row: optimized designs with sharp initial pro-
jection.

2.0

1.0

0.2

1.0f 

(a) (b) cref = 0.0097 (c) copt = 0.118

Fig. 12. (a) Problem setup for the beam structure. (b) Density based optimized
design. (c) Optimized design with polygonal features

For the beam structure we establish a reference design with filter radius of rmin =466

0.11, resulting in an optimized structure with six tension struts as presented in Figure467

12b, and reference compliance magnitude of cref = 0.097. The optimized design found468

using 10 PP with 5 sides each is presented in Figure 12c and has similar layout with469

slightly worse compliance of cref = 0.118. Here the optimized design exhibits distinct470

non-convex shapes of the PP at the top corners of the design domain, demonstrating471

a successful transition of convex shapes to non-convex shapes and their projection.472

The reference design for the L-bracket is obtained with filter radius of rmin =473

0.2, which results in a design with three tension struts (Figure 13b) and a reference474

compliance magnitude of cref = 0.849. The design generated using 16 PP with 6475

edges that are spread along the L-bracket in two ’layers’ features the same topology476

as the reference design with slightly different shape. The structure does not quite477

reach the bottom boundary of the design domain and the struts are somewhat thicker.478

Surprisingly, the compliance of the polygonal structure is marginally smaller than the479

compliance of the reference design, with copt = 0.844. This can be at least partially480

attributed to the non-convexity of the minimum compliance optimization problem,481
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(a) (b) cref = 0.849 (c) copt = 0.844

Fig. 13. (a) Problem setup for the L-bracket. (b) Density based optimized design. (c)
Optimized design with polygonal features

but is nevertheless surprising since the PP method restricts the design to have only482

straight edge features.483

4.3 Geometrical constraints484

In Section 2, we introduced the parametrization of the PP, assigning a distinct485

design variable to each coordinate of every vertex. This explicit shape parametriza-486

tion facilitates convenient imposition of geometrical constraints, which may pertain487

to manufacturing, assembly, service states or other considerations. In this subsec-488

tion, we illustrate the straightforward application of this idea by formulating three489

distinct constraints. Specifically, we will add explicit area and length constraints to490

the optimization formulation, and implicitly impose orientation constraints through491

manipulating the SA. We note that other techniques, such as dynamic move lim-492

its or the introduction of auxiliary design variables, may be also used to impose493

different geometrical constraints. Regardless of the approach employed, the explicit494

and comprehensive geometrical parametrization allows geometrical features to be495

naturally captured and, consequently, facilitates the application of geometrical con-496

straints. Finally, since these constraints are expressed as explicit functions of the design497

variables, their sensitivity analysis is notably straightforward and omitted here for498

brevity.499

4.3.1 Area constraint500

The first constraint we add to the formulation in Eq. (9) is an area constraint. We501

begin by calculating the area of an arbitrary polygon as a function of the coordinates502

of its vertices, i.e. the design variables. First, we triangulate the polygon using the503

ear-clipping triangulation method [41, 42], then we compute the area of all triangle504
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tiles, and finally sum these areas to get the area of the polygon505

Aj =
1

2

∑
t∈Tj

|vt1 × vt2| .

In the expression above, Aj is the area of the jth polygon, Tj is the set of all triangles506

that tile the jth polygon, and vt1 and vt2 are vectors of two of the sides of the507

tth triangle. Once the area of the polygons are known, we can formulate a variety508

of constraints. In particular, we require that a subset JA of the polygons will have509

a minimal area, for example to allow for enough light, ventilation, flow-rate, etc.510

Mathematically, instead of having an individual constraint for each polygon in JA, we511

aggregate the individual constraints to a single constraint on the minimal area of the512

polygons in JA, which is approximated using a p-norm function513

Ã =

 ∑
j=∈JA

A−r
j

−1/r

≥ Ã∗,

where r is an integer power value, and Ã∗ is a dynamically corrected target area for514

the polygons in JA. The dynamic update of the target area is essential to bridge over515

the p-norm approximation gap [43, 44]. Following the approach outlined in Zelickman516

and Amir [45], we update the threshold value every 5 iterations as follows:517

Ã∗
new =

Ã

min
j∈JA

(Aj)
A∗,

where A∗ is the actual target area value.518

The problem setup is consistent with Figure 8a, and the design space is defined with519

eight quadrilateral PP initially aligned with the domain axes. The reference design520

for assessing the area-constrained optimization is the design in the top center plot521

of Figure 10, and the reference compliance value is cref = 0.6068. At this reference522

design, the area of polygons 3 and 4 is measured as 0.0756 units, and consequently we523

set the target area for those polygons to A∗ = 0.13, anticipating the area constraint524

to be active.525

The optimized design with the area constraint is presented in Fig. 14a, where the526

optimizer stretched the area-constrained polygons in x direction to reach the target527

area A∗, while the area of the remaining polygons is reduced to utilize all available528

material, such that the volume constraint is also active. As expected, the optimized529

compliance increased to copt = 0.6173, reflecting the performance sacrifice due to the530

more restricted design space.531

4.3.2 Length constraint532

Next, we replace the area constraint with an edge-length constraint. Specifically, we533

fix the length of all edges belong to a subset of length-constrained edges, IL. The534
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constraint is formulated in terms of the relative length difference, where we aggre-535

gate again the individual length differences to a single edge length measure, which536

approximates the distance of the length ratio from 1.0537

λ̃ =

[∑
i∈IL

(λi − 1)
r

]1/r
+ 1, with λi =

∥ei∥
L∗ ,

where L∗ is the prescribed length, and r is an even number, to account both for shorter538

and longer length violations. The length constraint then becomes539

λ̃ ≤ λ̃∗,

where the target value of the length measure is updated similarly to the target area540

λ̃∗
new =

λ̃

max
i

(λi − 1) + 1
.

In the numerical example here, IL consists of 2 edges in polygons 3 and 4, and 3541

edges in polygons 5 and 6, as marked in Figure 14b. The length of those edges in the542

reference design vary in the range between 0.2546 and 0.7963, and therefore we set543

the target length to L∗ = 0.3.544

The optimized design is presented in Fig. 14b, where it is clear that design differs545

from the reference design and the optimized compliance value is increased by 13%546

and equals copt = 0.6841. The length constraints are mathematically satisfied with the547

lengths of all edges in IL very close to L∗. However, some pairs of edges are almost548

aligned, resulting in effective length that is greater than L∗. This can be prevented for549

example by limiting the angles of the polygon, which are also an explicit function of550

the coordinates of the vertices [45].551

4.3.3 Orientation constraint552

The explicit parametrization of PP allows for geometrical constraints to also be553

imposed implicitly. For example, we can enforce edges to maintain their orientation554

along the optimization by properly averaging the values of the SA. Conveniently, this555

averaging is mathematically obtained by multiplying the SA with a fixed averaging556

matrix. For example, the orientation-constrained SA of compliance is557 {
∂c

∂x

}
g

=
∂c

∂x
G,

where ∂c
∂x is a row vector with derivatives of the compliance with respect to all design558

variables,G is the geometrical constraint matrix, and the subscript g indicates geomet-559

rically constrained derivatives. Figure 14c presents the optimized design when fixing560

the orientation of edges to be horizontal or vertical, for the same edges as in the length561
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(a) (b) (c)

Fig. 14. Optimized design with geometrical constraints. a) Minimal area constraint,
copt = 0.6173. b) Fixed length constraint, copt = 0.6841. c) Fixed orientation con-
straint, copt = 0.6227.

constraint. Again, the ’geometrical constraints’ are satisfied with some sacrifice in the562

performance relative to the reference design, as copt = 0.623.563

5 Conclusions564

In this study we introduced a new polygonal primitive for feature mapping-based565

topology optimization. The polygon can have any number of sides, and can be convex566

or non-convex. In the kernel of the proposed polygonal primitive lies a new method567

for computing an approximate signed distance function of arbitrary polygons as well568

as a regulation scheme that prevents self intersection of the polygons during the opti-569

mization. The signed distance function is obtained by performing Boolean operations570

on planes and it has a complexity of O(n) and is therefore very efficient numerically.571

Moreover, since most of the operations are pointwise, the computation of the signed572

distance function can be easily parallelized.573

Over three benchmark problems we showed that the optimized designs with the574

proposed method generates designs that are very similar to optimized designs found575

using a classical density-based method, generally with some sacrifice in the perfor-576

mance due to the straight edges of structural features. In this regard, we note that577

because the designs are guaranteed to have only straight lines, the optimized designs578

can be easily implemented where such requirements exist, such as in reinforced concrete579

structures.580

The idea of imposing geometrical constraints through the proposed polygonal prim-581

itive was also demonstrated. Specifically, we introduced area, length and orientation582

constraints that are straightforward and computationally inexpensive to compute, in583

contrast to traditional point-centered or skeleton primitives where such constraints584

are likely more challenging to enforce in a mathematically consistent manner. Thus,585

the explicit and rich shape parametrization of the polygon primitives allows us to nat-586

urally capture shape features and therefore facilitate imposition of a wide range of587

geometrical constraints.588
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The main purpose of the current study is to introduce the polygonal primitive and589

its advantages, whereas there are some open question that need to be addressed in590

future research. First, when using polygons with 7 or more sides, we observed that591

trimming of the shape may occur, which reduces the control over the projected shape592

and may lead to inferior designs. Using a different sequence of Boolean operations593

may resolve this issue, and is worth exploring. Additionally, adding topological design594

variables to the formulation will allow the optimization to eliminate primitives without595

collapsing them to 1D elements, which will likely improve the numerical performance.596

Finally, length scale control is not guaranteed with the proposed formulation, which597

in the authors opinion should be included in future studies.598
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