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Abstract 9 

Building stock energy modeling (BSEM) has become an essential tool for policymakers aiming to achieve 10 

carbon-neutral built heritage and adapt to climate change. This study proposes a parameterized energy model 11 

developed using Rhino/Grasshopper/Ladybug software to create a BSEM set that accurately represents the 12 

current Chilean single-family housing stock. The methodology incorporates 29 different building archetypes 13 

and 27 stochastic variables, each defined by its probability distribution. The model is applied nationally and 14 

across each administrative region, resulting in the creation of 1,130 building energy models to ensure consistent 15 

results. Nationwide, space heating energy use is estimated to range from 11 to 850 kWh/m² (90% CI: 27-285 16 

kWh), while total energy use is estimated between 569 and 53,209 kWh/year (90% CI: 1,400-20,173 kWh/year), 17 

aligning well with empirical data. The most influential factors affecting space heating energy use include 18 

heating control variables, internal mass, and air permeability; these should be prioritized in future research and 19 

national energy surveys. In the near future, these BSEMs can be utilized to evaluate the impacts of various 20 

climate change scenarios and occupant behaviour on indoor thermal comfort, as well as to explore retrofitting 21 

strategies for transitioning the built heritage to a low-carbon building stock. 22 

Keywords: Latin Hypercube Sampling, EnergyPlus, Single-family building energy performance 23 

1 Introduction  24 

During the UN Climate Change Conference (COP21), almost all countries around the world reaffirmed their 25 

commitment to reducing greenhouse gas emissions to limit global warming to below 2ºC by 2050 compared to 26 

the pre-industrial period (1850-1900). According to the International Energy Agency's (IEA) report, the 27 

building sector accounted for 8% of global greenhouse gas (GHG) emissions in 2020 (2.9 GtCO2e out of a total 28 

of 33.9 GtCO2e) [1], with the majority being used for thermal comfort and domestic hot water. The common 29 

goal is to reach a carbon-neutral economy by 2050, aiming for a reduction of 1.2 Gt by 2030 and 0.3 Gt by 30 

2050[1]. To achieve this goal, countries are required to implement new energy efficiency policies in buildings, 31 

ensuring that reduced energy needs are met by renewable energy sources while maintaining a comfortable 32 

indoor environment. 33 

The first thermal regulation of building envelopes was the German standard DIN 4108 in 1952, which explicitly 34 

established thermal insulation requirements in terms of maximum U-values, the use of insulation materials, and 35 

window panels [2]. Since the first oil crisis in the 1970s, various countries have implemented thermal 36 

regulations for new buildings to improve their energy efficiency, such as France in 1974, Japan in 1979, and 37 

China in 1986. More recently, a new European Union directive [3] established that new buildings should ensure 38 

high energy efficiency to minimize energy use, and that the remaining energy needs should be covered by 39 

renewable sources, either from the grid (electricity or heat) or on-site. These buildings are called Net Zero 40 
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Energy Buildings (NZEBs). Thus, buildings must achieve enhanced thermal performance of the envelope, and 41 

incorporate innovative energy systems, while energy managers must ensure the proper functioning of these 42 

systems to maintain occupants' thermal comfort, all of which require a multidisciplinary approach [4]. 43 

Although NZEBs are considered a key element in achieving carbon neutrality for the building stock by 2050, 44 

existing buildings and historical structures must also be considered. Consequently, each country needs to 45 

establish a roadmap of energy programs to gradually improve the energy performance of both new and existing 46 

buildings over the next three decades. However, several studies highlight significant discrepancies between the 47 

predicted energy consumption calculated for new building programs and the actual energy use. For example, 48 

Burman et al. [5] compared the measured and predicted energy performance of a secondary school in England. 49 

Their analysis found that although their calibrated energy model deviated from the measured energy by only 50 

3.1%, the European calculation method (EPBD) standard initially estimated one-third of the actual energy use. 51 

Moreover, Kelly et al. [6] emphasized the inability of the British Standard Assessment Procedure (SAP) to 52 

accurately estimate the actual energy performance of the housing stock. Nevertheless, discrepancies between 53 

the measured and predicted performance have been significantly reduced by incorporating in-situ measurements 54 

of U-values and air permeability of the building envelope [7], as well as accounting for occupants' behaviour 55 

[8,9]. 56 

Studies on the impact of occupant behaviour on the variability of energy consumption have also shown that a 57 

minor increase in expenses to enhance occupant comfort can lead to higher energy use, a phenomenon known 58 

as the rebound effect which is often neglected by energy intervention programs. For example, some authors 59 

estimate an increase of 0-30% in the predicted energy use for space heating, 0-50% for space cooling, 10-40% 60 

for domestic hot water, and 5-12% for illumination [10]. These variations occur because the availability of 61 

energy at a lower price can encourage occupants to improve their environmental comfort by adjusting the space 62 

heating setpoint, taking longer showers, or increasing the number and size of luminaires and appliances [10]. 63 

Conversely, a prebound effect is observed in countries where households consume less energy than estimated 64 

by international models and standards [11]. Therefore, governments need decision-making support tools to 65 

identify key factors in their current energy use profiles and to assess the potential impacts of new regulations 66 

and policies on future energy use and GHG emissions. 67 

Consequently, modeling the existing building stock is crucial for achieving the stated objectives [12]. Langevin 68 

et al. [14] classify Building Stock Energy Modeling (BSEM) techniques into four categories based on their 69 

design (top-down or bottom-up) and their degree of transparency (white-box or black-box). In this 70 

classification, the use of a building energy simulation program, a physics-based approach, is categorized as a 71 

bottom-up white-box modeling technique. This approach can explicitly model the interaction between energy 72 

end-use and building characteristics and operations [13]. Conversely, statistical and machine learning models, 73 

which fall under top-down black-box modeling, are primarily based on historical data. As a result, they cannot 74 

assess the impact of unobserved input data, such as the implementation of new technology or new thermal 75 

regulations. 76 

Considering the diversity of buildings and user profiles on a national scale, several BSEM approaches have 77 

implemented the use of representative buildings or archetypes to represent a building stock. For example, 78 

Korolija et al. [14] defined four building geometries to represent the UK office building stock, parameterizing 79 

input variables such as envelope U-values, ventilation and infiltration flow rates, air conditioning setpoints, and 80 

thermal loads with associated schedules. Subsequently, the authors generated 1,000 Building Energy Models 81 

(BEMs) using Latin hypercube sampling (LHS), considering uniform distributions for each input parameter. 82 

This process allowed them to present the distribution of predicted space cooling and heating demands.. Mata et 83 

al. [15] developed a Matlab-Simulink script to calculate the energy use and CO2 emissions of the national 84 

building stock. They validated their model using the BESTEST protocol and by comparing empirical data from 85 

two actual buildings. In the USA, the ResStock project generated 550,000 residential and 350,000 commercial 86 

models to represent 133 million and 1.8 million buildings, respectively [16]. The authors used input data from 87 

different states and cities and calibrated their models using energy metering data. 88 
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In Chile, the residential sector represented 7.9% of the total energy consumption in 2019, amounting to 54.7 of 89 

692 TWh/year [17]. Chilean houses mainly use biomass or wood as an energy source (38%), followed by 90 

electricity (25%), liquefied petroleum gas (LPG) (23%), natural gas (12%), and coal (3%). Due to Chile's vast 91 

geographic extension from north to south, the country experiences a wide range of climate conditions. 92 

Consequently, national energy policies must consider this diversity in energy demand and thermal comfort 93 

requirements. 94 

This study aims to propose a modeling and simulation framework to generate multiple Building Energy Models 95 

(BEMs) that represent the energy performance of a national housing stock. The modeling framework is 96 

presented in Section 2, and the simulation results of the generated BEMs are presented and compared to national 97 

data in Section 3. Although this approach is applied to the Chilean residential stock, it can be used for other 98 

building types, countries, and scales (city, region, country) if data are available to generate the inputs. 99 

2 Method 100 

BEMs are generated using a parameterized model created in Rhino 6/Grasshopper and the Ladybug Tools 101 

plugin. EnergyPlus is an open-source, cross-platform energy simulation software that models the physics of 102 

buildings and associated energy systems. First, a set of input data is obtained using the Latin hypercube 103 

sampling method, following Molina et al. [24]. Once generated and exported to an EnergyPlus-compatible 104 

format [18], the set of BEMs can be simulated and analyzed. These results show the baseline of the building 105 

stock's current thermal and energy performance. 106 

 107 

2.1 Available input data 108 

Molina et al. [19] proposed 496 archetypes to represent the Chilean residential building stock, along with four 109 

thresholds of 2, 8, 29, and 90 archetypes, representing 13%, 35%, 70%, and 90%, respectively. The archetypes 110 

were defined mainly using building permits from 1990 to 2016 and 2002 census data. They provide information 111 

about primary construction materials, floor area, the number of rooms, bedrooms, and bathrooms, and the 112 

number of occupants; thus, they are appropriate for describing the stock in this study. 113 

The archetypes include two construction periods: pre- and post-thermal regulation of 2007, which defined 114 

maximum U-values for exterior walls, roofs, overhang floors, and window-to-wall ratios[20]. Given the 115 

reported discrepancy between prescribed and actual U-values [21,22], a probability density function for this 116 

parameter is implemented based on the literature; see Table 1. 117 

The air permeability of the envelope of each house is described following Molina et al. [23] which provides 118 

two sets of normalized leakage (NL) distributions—one for each construction period or age of the building. A 119 

value of NL is sampled from the corresponding distribution according to the age, region number, and climate 120 

zone of the modeled house. The envelope leakage values are calculated by converting the NL values to Q50 121 

values [m³ h⁻¹ m⁻²], following Sherman & Dickerhoff [24]. 122 

The national energy survey of Chilean households was conducted by the Corporación de Desarrollo 123 

Tecnológico (CDT) [25] and sponsored by the Ministry of Energy and the energy trade associations of 124 

electricity, natural gas, and liquefied petroleum gas suppliers. The survey comprised 160 questions and was 125 

applied to 3,500 households nationwide. The questionnaire focused on energy use habits, house characteristics, 126 

and socioeconomic status. Each household's energy use is broken down using historical energy records and 127 

statistical analysis, although the consultant does not provide further details. The results of this energy survey 128 

are used to define the distributions of the following inputs: 1) internal heat gains, 2) fuel for cooking, space 129 

heating, and domestic hot water, and 3) hours and months of space heating; see Table 1. The default entries 130 

include a floor height of 2.4 m and a roof angle of 25°. 131 
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Table 1: Input data of the energy model 132 

Input Unit Range Referen

ce 

Permeability Q50 eCDF[0.001; 7] [26] 

Heating setpoint °C U[18; 22] -  

Months of heating - eCDF[0; 12] [27] 

Hours of heating -  eCDF[0; 24] [27] 

ΔUWall W/m2K U[-0.15; 0.43] [21,22] 

ΔURoof W/m2K U[-0.15; 0.27] [21] 

Uwindows W/m2K eCDF[2.8; 5.8] [28] 

ΔUwindows W/m2K U[0.03; 0.08] [21,22] 

Lighting loads kWh/m2year eCDF[0.15; 38] [27] 

Appliance loads W/m2 eCDF[1.2; 185] [27] 

Domestic hot water by fuel 

type (4 types) 

W/m2 eCDF[1.3; 194] [27] 

Kitchen by fuel type (4 

types) 

W/m2 eCDF[0.39; 69] [27] 

Form factor - U[1; 2] - 

Orientation ° U[0; 179] - 

Glazing ratio % U[5; 32] [20] 

Thermal mass kg/m2 U[10; 100] [29] 

Flooring material - eCDF[carpet, cement tile, 

ceramic tile, vinyl, wood 

deck] 

[30] 

Wall material - eCDF[reinforced concrete, 

brick, concrete blocks, 

wood frame] 

[30] 

Roofing material - eCDF[Zinc, fiber cement 

board] 

[30] 

eCDF: empirical cumulative distribution function and min-max range. U: Uniform distribution and min-max 133 

range. 134 

2.2 Stochastic generation of model inputs 135 
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Several sets of input data, including the archetypes' ID and physical properties of the buildings, were generated 136 

stochastically using Latin hypercube sampling (LHS) and the optimumLHS function in R, following the method 137 

described in Molina et al. [26]. This method is preferred over random sampling due to its optimized distribution 138 

of parameter values within a hypergrid, which requires a reduced number of simulations. Simulations are added 139 

until the convergence criteria are met; see Section 2.5. In this study, the parameter values are described using a 140 

known cumulative distribution function, computed using empirical data, or a value within a range according to 141 

the literature or the national building code, as appropriate; seee Table 1. 142 

2.3 Generation of Building energy model 143 

BEM house models are parametrically generated using Rhino 6/Grasshopper [31] and the Ladybug Tools plugin 144 

[32]; see Figure 1. First, the generated matrix of input data is imported into the software. Figure 1 shows the 145 

Grasshopper workspace used to generate the BEM models based on the input data.  146 

 147 
Figure 1: Screenshot of the Grasshopper workspace used to generate BEM models from input data. 148 

 149 

For each observation, the U-values of the construction elements are adjusted according to the construction 150 

period, climatic zone, and associated variability. To fit the input U-value, the thickness of either the insulation 151 

or the structural material is modified. For glazing properties, the simple glazing material component is used, 152 

considering the input U-values (with an upper threshold of 5.8 W/m²K, defined by EnergyPlus [18]) and a 153 

default solar heat gain coefficient of 0.65.  154 

The 3D geometry of the house is automatically generated in a rectangular floor plan based on the input data on 155 

floor area, form factor, and the number of storeys; see Figure 2. The geometry surfaces are then divided to 156 

assign the boundary conditions and construction materials. One or two walls are considered adiabatic for mid-157 

terrace and terrace houses, respectively; see the green surface in Figure 2b. Although Molina et al. [19] proposed 158 

a number of rooms for each archetype, for simplicity, the present thermal models do not consider internal wall 159 

partitions. Once the boundary conditions and construction materials are assigned to each surface, they are 160 

grouped into thermal zones. The models consist of two types of thermal zones: living spaces and the attic. The 161 

attic is uninsulated, with no internal heat gain and a ventilation rate of 3 air changes per hour (ACH). For the 162 

living space, a thermal zone is assigned to each storey.  163 
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Additionally, thermal loads, air leakage, and thermal mass are included according to the input data. For thermal 164 

loads, electric equipment, gas equipment, and lighting are considered from the input data, with load fractions 165 

of 0.83, 0.5, and 1, respectively, as defined by Hendron and Engebrecht [33]. The number of occupants is an 166 

input of the archetypes, each having a default metabolic rate of 126 W/person [34]. Due to the lack of national 167 

data on hourly load schedules, they are defined following Hendron and Engebrecht [33]. 168 

Finally, the BEM models are exported and stored as .idf files using the simulation software EnergyPlus. The 169 

simulations are then run using parallel processing computers to reduce computational time. 170 

   171 
  (a) (b) 172 

Figure 2: 3D representations of the building energy model using Rhino6/Grasshopper/Honeybee. a) One-storey detached 173 
house ID6.idf b) two-storeys mid-terrace house ID10.idf 174 

 175 

2.4 Climatic data and zones 176 

The generation of models was organized by the Chilean administrative and political regions. This level of 177 

resolution enables national and regional governments to use the results to inform direct region-specific public 178 

policies or energy programs. Furthermore, Molina et al. [19] provide the archetypes for each of these regions, 179 

allowing for the estimation of energy consumption and associated GHG emissions of residential buildings at a 180 

regional scale. Table 2 shows the 15 regions1, their associated climate zones, and the national regulatory 181 

maximum U values for walls, roofs, and overhang floors [28]. The current Chilean building code divides the 182 

territory into seven thermal zones based on the annual heating degree days (HDD), considering a base 183 

temperature of 15 °C. Custom weather files were extracted from Meteonorm v7.2 (1990-2010) for each 184 

region[35]. 185 

Table 2: Chilean administrative regions from north to south and climate zones with associated regulatory U-values  186 

Region 

N-S 

City Koppen 

Climate 

classification 

[36] 

Climate 

zones 

U-values [W/m2 K] 

Walls Roofs Overhang 

floors 

15 Arica BWn 1 4.00 0.84 3.57 

1 Iquique BWn 

 
1 A 16th region, the Ñuble region, was created in 2018 from the division of Biobío Region. This region is not 

considered for this study because it is not included in any of the existing databases used in this study, and so 

the 8th region is applicable to it. 
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2 Antofagasta BWn 

3 Copiapó BWk 

4 La Serena BWn 

5 Valparaíso Csbn 2 3.03 0.6 0.87 

13 Santiago Csb 3 1.89 0.47 0.7 

6 Rancagua Csb 

7 Talca Csb 4 1.69 0.38 0.6 

8 Concepción Csbn's 

9 Temuco Cfb 5 1.59 0.33 0.5 

14 Valdivia Cfb 

10 Puerto Montt Cfbs 6 1.1 0.28 0.39 

11 Coyhaique Cfc 7 0.6 0.25 0.32 

12 Punta Arenas BSk's 

2.5 Input data generation and simulations 187 

 Multiple sets of inputs are generated for each region number. Each iteration generates ten LHS numbers, values 188 

between 0 and 1, to obtain the 27 parameters for each region, resulting in ten different BEMs per iteration. As 189 

each of the LHS numbers corresponds to the quantile of the corresponding parameter distribution, an optimized 190 

combination of both physical and categorical parameters is obtained (see Supplementary material). The batch 191 

simulations are carried out using the statistical software R and the eplusr package [37]. The number of 192 

simulations is increased by adding a new set of ten BEMs until a stopping criterion is met (here, the difference 193 

in the mean energy use is less than 0.5% between one set of samples and the previous one used). 194 

2.6 Model outputs and post-processing of the simulations results 195 

The space heating and energy use intensity results from each BEM are retained and analyzed regionally. 196 

Comparing the simulation indoor temperature distribution to public data on the thermal behavior of the 197 

residential stock is relevant for this study. This is carried out using data from the National Monitoring Network 198 

of Houses (RENAM), a crowdsourcing program from the Chilean Ministry of Housing that collects and 199 

anonymously broadcasts the hourly measurements of indoor environment quality variables from 294 houses 200 

distributed across five cities (Antofagasta, Valparaíso, Santiago, Temuco, and Coyhaique) [38]. The sensors 201 

measure air temperature, relative humidity, noise, and carbon dioxide concentrations in one room of each house. 202 

For the comparison, apartments are discarded because only detached and semi-detached houses are present in 203 

the top 29 archetypes selected by Molina et al. [19]. The five cities studied by The RENAM are used to compare 204 

indoor temperature simulation results by season. To compare with measured indoor temperatures, simulations 205 

were carried out using historical weather files representing the years 2017 and 2018, data extracted from 206 

Metenorm v7.2, and meteorological data from the national meteorological office repository [39], which provide 207 

monthly data on global radiation, temperature, relative humidity, and wind speed. 208 
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This verification process will allow us to discuss ways to improve the modelling method and reduce the 209 

uncertainty of the model inputs. To compare the agreement between both datasets, the Wasserstein distance is 210 

used[40,41], which measures the dissimilarity between two probability distributions. The Wasserstein distance 211 

also known as the earth mover’s distance quantify the mass transportation required to transform one distribution 212 

into the other.  213 

2.7 Sensitivity analyses 214 

The influence of the input data variability on the space heating and temperature statistics is analysed as a 215 

guideline for improving the BEM model. A statistical test is used to identify the input parameters that need 216 

prioritization in future energy studies. Here, the Spearman's ρ correlation coefficient is reported to show how 217 

strongly related the two datasets are (for each input-output combination), as it tests for the strength of linear 218 

and monotonic association, giving a correlation coefficient between -1 and 1; weakening the strengths as it 219 

approaches zero. Moreover, Spearman's ρ can also be applied to ordinal data, and because it is based on the 220 

ranking of variables, it is less sensitive to outliers. Finally, the magnitudes of the test coefficients are used to 221 

rank the relative importance of each input to the output. For simplicity, three thermal zones are selected for this 222 

comparison: zones 1, 3, and 7. 223 

3 Results and discussion 224 

3.1 Simulation results 225 

Around 75 sets of input data were needed for each region, ranging between 30 for geographical region 10, and 226 

150 for region 1. The convergence analysis on space heating energy use establishes a total of 1,130 archetypes 227 

nationwide. Considering a total of 5,167,728 single-family houses occupied in Chile, the BSEM set has a ratio 228 

of one building energy model for 4,573 houses. Compared to the ResStock program [16], which established 1 229 

model for 241 houses, this ratio appears reasonable for computational time. Indeed, the BSEM set was simulated 230 

in 55 minutes on a virtual machine installed in a calculation server (Xeon(R) CPU E5-2640 v4 @ 2.40GHz) 231 

with 64 GB allocated Ram. 232 

Figure 3  shows the energy breakdown by energy source and energy intensity for each end-use by administrative 233 

region. Space heating is the only energy-use output from the BEM simulation analyzed here. The other end 234 

uses, such as lighting, electric equipment, domestic hot water, and kitchen, are generated by the LHS algorithm. 235 

Liquefied petroleum gas (LPG) is the country's most widely used energy source for heating, domestic hot water, 236 

and cooking. However, firewood and natural gas are popular alternatives in southern regions. The use of 237 

firewood increases in southern regions 7, 8, 9, 10, and 14, which have a more developed agroforestry industry 238 

[42].  239 

As expected, the regional median energy use intensity varies from 48 kWh/m².year in the more northerly region 240 

(15th) to 275 kWh/m².year in the more southerly region (12th). Space heating is the primary driver of this 241 

variation, in line with Chilean climate variability, ranging from Hot Desert (BW), where 63% of the stock uses 242 

less than 10% of the total energy for heating, to Cold Semi-arid (BS) climates, where the median energy use 243 

for heating is 75% (mean=71%; SD=20%). The energy use intensities for space heating are lower than those 244 

simulated by Rouault et al. [43] who estimated space heating demands varying from 20 to 600 kWh/m².year 245 

using a simplified hourly model based on the ISO 17930 standard. This difference may suggest that Chilean 246 

households consume less energy than international models can predict, which can indicate a prebound effect or 247 

that they are energy poor. This is an important phenomenon for future research involving the social sciences, 248 

building physics, and economics.  249 

Figure 3 also compares the simulation results with the national energy balance [17] provided by the Chilean 250 

Ministry of Energy. Although the energy source breakdown (Figure 3a) shows that regions from 5 to 11 have 251 

the same energy sources as the national energy balance, they are in slightly different proportions. The 252 
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simulation, which is based on the national energy survey, discarded firewood as an energy source in regions 15, 253 

1, and 2 and significantly underestimated it in regions 3, 4, 11, and 12. On the other hand, the simulation 254 

overestimates the use of oil in most regions. Despite these differences in the energy breakdown, the simulated 255 

total energy use by region (Figure 3b) shows good agreement with the national energy balance. 256 

Space cooling is not considered in this study because this energy use has been deemed negligible, according to 257 

the national energy survey, in which only 79 of 3,500 (2%) respondents reported owning an air conditioning 258 

unit. However, Chile has a young and expanding residential air conditioning market. The national energy 259 

surveys found that air cooling in the metropolitan area (Region 13) has climbed from 1% in 2009 to 4.5% in 260 

2018 [44,45]. Additionally, the market saturation in Chile is estimated to be 35% of the residential stock. 261 

Furthermore, the market saturation might reach at least 60% by 2050 if the projected GDP per capita is USD 262 

$31,500 [46] and the average household size decreases to 2.85 people, as determined by linear regression. 263 

Consequently, space cooling should be considered in future work, particularly under these economic and 264 

demographic scenarios. 265 

 266 
Figure 3: Distribution of energy source and energy end uses by region  267 
 268 

3.2 Thermal behaviour  269 

Figure 4 compares the density distributions of indoor dry bulb temperature in the RENAM houses with the 270 

simulation results of the BEMs generated for these five cities. The analyses are separated into two periods: 271 
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winter (May to October) and summer (November to April). Although the indoor temperature distributions 272 

measured by RENAM in 2017 and 2018 differ, the weather variations between these two years have a negligible 273 

impact on the distribution of simulated indoor temperatures; see Figure 4.  274 

  275 
Figure 4:Density  distributions of indoor dry bulb temperature measured by RENAM (in red) and simulated (in blue) in 276 

2017 (solid lines) and 2018 (dashed lines). 277 
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Figure 4 indicates that the simulated mean indoor temperatures are slightly lower than the measured 278 

temperatures across all regions during the winter period. This difference is particularly pronounced in extreme 279 

climate regions, such as Antofagasta (Region 2), one of the warmest regions, and Temuco (Region 9), one of 280 

the coldest. This discrepancy may stem from an underestimation of the number of heating hours or the space 281 

heating temperature setpoint, which requires verification with empirical data. Interestingly, this discrepancy is 282 

not observed in Region 11. However, the measured interior temperatures in Region 11 are lower than in other 283 

regions, indicating a potential risk of energy poverty. 284 

Table 3 summarizes the results using the Wasserstein distance. For example, a distribution that deviates by 1°C 285 

from the mean of the reference distribution (mean = 23°C, standard deviation = 3°C) results in a Wasserstein 286 

distance of 2.13× 10-5 whereas a 1°C deviation in the standard deviation yields a Wasserstein distance of 1.57× 287 

10-3. The results show that Regions 2 and 11 exhibit the best agreement with the measured data, indicated by 288 

low Wasserstein distances, while Region 2 has the largest distance overall. Although the findings demonstrate 289 

a relatively good alignment with the available national data on indoor temperatures, there is potential for further 290 

calibration of the energy models through enhanced characterization of household activity data. 291 

Table 3: Results of Wasserstein distance between the density distributions of indoor temperatures measured by RENAM 292 
monitoring network and simulation results of this study. 293 

Region 

N-S 
City 

Number of 

monitored 

houses, 

RENAM 

EMD 

2017 2018 

Winter Summer Winter Summer 

2 Antofagasta 18 7.93 × 10-3 4.39 × 10-3 6.81 × 10-3 7.62 × 10-3 

5 Valparaíso 34 3.14 × 10-4 1.68 × 10-3 4.61 × 10-5 6.68 × 10-4 

13 Santiago 84 6.94 × 10-4 1.87 × 10-3 1,40 × 10-3 2.21 × 10-3 

9 Temuco 41 1.75 × 10-3 3.09 × 10-3 1.90 × 10-3 3.36 × 10-3 

11 Coyhaique 10 3.49 × 10-4 3.72 × 10-4 1.04 × 10-3 4.21 × 10-4 

 294 

3.3 Influential variables 295 

Figure 5 presents Spearman's correlation coefficients between the input variables and selected output variables: 296 

(1) energy use intensity (EUI), (2) mean indoor air temperature (T), and (3) standard deviation of indoor air 297 

temperatures (σ). The analysis focuses on three climate zones: 1, 3, and 7. 298 

Among the input variables, those related to space heating—specifically, hours of heating, heating setpoint, and 299 

months of heating—exhibit the highest correlation coefficients with EUI for space heating and indoor air 300 

temperature during winter (see the bottom-left corner of Figure 5). This indicates that they are the most 301 

influential factors affecting the outputs in the Chilean residential stock. 302 

In contrast, building envelope parameters, such as air permeability, glazing ratio, heat transfer coefficients, and 303 

material types, show a moderate influence on both EUI for space heating and indoor temperatures during 304 

summer and winter. Lastly, internal heat gains from lighting, gas, and electric equipment have a negligible 305 

impact on space heating and indoor temperatures compared to the other parameters.  306 
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 307 
Figure 5: Spearman's correlation coefficient shows the magnitude and direction of the relationships between the input 308 
variables and the outputs (the space heating EUI and the mean and standard deviation of indoor temperature for both 309 

summer and winter. 310 
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Some variables, such as air permeability, wall and flooring materials, and the number of storeys, exhibit 311 

correlation coefficients higher than 0.2, indicating they are relatively well defined. Conversely, variables with 312 

the highest correlation coefficients, like internal mass and heating setpoint, require better characterization. 313 

Given that space heating control variables are the most influential factors on energy use for space heating, their 314 

accurate characterization is essential for developing future energy-saving roadmaps, particularly due to the 315 

potential rebound effect. According to the latest national energy survey, half of the respondents heat their homes 316 

for less than 5 hours per day. In the coldest climatic zone (ZT 7), half of the respondents reported heating their 317 

homes for 6 hours or less. Therefore, enhancing the efficiency of dwellings could lead to improved thermal 318 

comfort for occupants while mitigating potential health risks, surpassing mere energy savings and potentially 319 

manifesting as a rebound effect. Policymakers should consider this scenario alongside a thorough causal 320 

analysis when determining regulatory requirements or subsidies aimed at achieving GHG emission reduction 321 

objectives. 322 

The proposed BSEM, serving as a baseline or current scenario, can now be utilized to explore various potential 323 

scenarios, such as modifying the empirical cumulative distribution function of heating hours as an input. 324 

Figure 5 also illustrates that, apart from U-values for walls and roofs, the choice of building materials has a 325 

moderate impact on indoor temperature conditions. Regarding the indoor temperature spread (σ(T)), clay bricks 326 

and concrete blocks as wall materials moderately reduce temperature variability in ZT3 and ZT7. Both of these 327 

heavyweight materials meet current U-value requirements in various climate zones without the need for 328 

additional insulation. In contrast, wood frame construction and concrete blocks can increase temperature 329 

variability. While reinforced concrete requires insulation to meet efficiency standards, installing it on the 330 

interior can diminish the benefits of the concrete's thermal mass. 331 

Additionally, flooring material types can moderately affect both the mean and standard deviation of indoor 332 

temperatures during the summer. Vinyl and ceramic tiles, which possess low thermal resistance, enable the 333 

ground to function as a heat sink, especially in conjunction with uninsulated slab-on-grade floors, a common 334 

feature in most Chilean single-family homes. 335 

4 Conclusion  336 

In this study, a set of 1,130 building energy models (BEMs) was generated to represent the single-family 337 

housing stock across the 15 geographic and administrative regions of Chile. This flexible model can be 338 

simulated under various future scenarios, including changes in public policies, integration of new technologies, 339 

and the impacts of climate change. Unlike the statistical analyses used in the recent national energy survey, the 340 

BEM allows for disaggregation of heat transfer, providing deeper insights into the energy needs for space 341 

heating. Additionally, it facilitates a detailed examination of indoor thermal comfort during both winter and 342 

summer periods, considering current and future climate scenarios. 343 

 344 

The following conclusions can be drawn from this study:  345 

● Methodology: The proposed method of generating BEMs using parametric modeling in 346 

Rhino/Grasshopper software, combined with Latin hypercube sampling for input generation, resulted in a 347 

BSEM set of 1,130 models. This represents a ratio of one model for every 4,573 houses, allowing for 348 

efficient simulations within a limited computational timeframe. 349 

● Indoor Temperature Distribution: The indoor temperature distributions in temperate climate cities, such 350 

as Valparaíso and Santiago, show the best agreement with measurements from the RENAM network. 351 

● Correlation Analysis: The correlation analysis identified the most influential variables affecting space 352 

heating energy use and indoor temperature distribution. Some variables, such as internal mass and space 353 

heating setpoints, were assigned uniform distributions due to a lack of available data. Conversely, variables 354 

like heating hours and months, provided in the national survey, require better characterization given their 355 

significant impact on space heating energy use. 356 
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 357 

The current BSEM set is limited to simulating the thermal behavior and space heating energy use of single-358 

family homes. While space heating is the primary energy consumption source in temperate and cold climates 359 

(from regions 13 to 12), domestic hot water also constitutes a significant portion of energy use. Future models 360 

should incorporate a domestic hot water component to enhance the BSEM set. 361 

Future work should focus on two key aspects to improve the proposed energy model set. First, the set should 362 

integrate other building types—such as multi-family residences, commercial buildings, and offices—to provide 363 

a comprehensive representation of the current building stock. Second, the input data must be enriched with 364 

direct measurements, particularly for the most influential variables, including space heating setpoints, internal 365 

mass, and permeability. Finally, future research should utilize this BSEM set to assess the adaptability of built 366 

heritage in mitigating climate change scenarios and to draft a roadmap for achieving net-zero carbon built 367 

heritage by 2050, incorporating retrofitting solutions and renewable energy sources. 368 
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