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Abstract

Generative artificial intelligence has transformed the generation of synthetic data, providing innovative solutions to challenges like
data scarcity and privacy, which are particularly critical in fields such as medicine. However, the effective use of this synthetic
data to train high-performance models remains a significant challenge. This paper addresses this issue by introducing Knowledge
Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers. At
the heart of this pipeline is Generative Knowledge Distillation, the proposed technique that significantly improves the quality and
usefulness of the information provided to classifiers through a synthetic dataset regeneration and soft labelling mechanism. The
KR pipeline has been tested on a variety of datasets, with a focus on six highly heterogeneous medical image datasets, ranging
from retinal images to organ scans. The results show a significant reduction in the performance gap between models trained on
real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases. Furthermore,
the resulting models show almost complete immunity to Membership Inference Attacks, manifesting privacy properties missing in
models trained with conventional techniques.
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1. Introduction

The advent of generative deep learning has marked a fundamen-
tal technological breakthrough that is rapidly permeating every
aspect of society and profoundly affecting the daily lives of ev-
ery individual. Thanks to this technology, it is now extremely
easy to create and interact with high-quality synthetic data, be
it images, text, audio or video. This ease of access to artificially
generated content makes it increasingly difficult to distinguish
between human and algorithmic production. Meanwhile, the
applications and innovations of generative models are expand-
ing at a rapid pace, revolutionising many sectors. The implica-
tions of this development are profound: on the one hand, new
opportunities are opening up, and on the other, ethical and so-
cial challenges are emerging in relation to the use and misuse
of such technologies.
Today, this technological progress raises problems related to
the circulation of images or text documents generated by algo-
rithms and presented as the fruit of human labour. However,
it also opens the door to a dual use with immense virtuous po-
tential. It is precisely the difficulty of distinguishing between
human and algorithmic production that has led to the use of
generative models to enrich real data sets and, more recently, to
attempts at total replacement to obtain entire synthetic datasets.
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However, the creation of entirely synthetic datasets is a complex
task that requires models capable of generating large amounts
of data in a reasonable amount of time, while carefully bal-
ancing the quality and variety of the data generated. Indeed,
it is known that training models based solely on synthetic data
tends to degrade performance compared to those trained on real
data [19]. In addition to these aspects, it is crucial to consider
an area of growing importance, that of data privacy, both before
and after the data has been learned by the models. This is par-
ticularly critical especially in the context of medical data, where
the protection of privacy is essential to preserve the relationship
of trust between experts and patients. In this scenario, genera-
tive technology offers unexploited potential for the secure use
of medical data, opening up new opportunities for healthcare
research and innovation.
This paper presents the Knowledge Recycling (KR) strategy,
a pipeline that aims to improve the generation of synthetic
datasets and the training of downstream classifiers using only
synthetic images. First, the generator and an auxiliary classifier,
named Teacher Classifier, are trained. The optimal checkpoint
of the Generator is determined by training a Student Classifier
for each checkpoint. These trainings use the proposed tech-
nique of Generative Knowledge Distillation, where the Teacher
Classifier generates soft labels for the synthetic images, allow-
ing the Student Classifier to learn about uncertainties and class
correlations, thus improving its accuracy in predicting both syn-
thetic and real images. After identifying the best checkpoint,
the generation parameters are optimised by adjusting the size
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of the synthetic dataset, the frequency of dataset regeneration
during Student Classifier training, and the standard deviation of
the Generator. Once the optimal Student Classifier training is
completed, its resistance to a Membership Inference Attack is
evaluated and compared with the one achieved by the Teacher
Classifier [35].
This work aims to demonstrate the possibility of obtaining clas-
sifiers trained on synthetic data with comparable performance
to those trained on real data, while providing superior resistance
to Membership Inference Attacks. The main contributions of
this research are:

• The introduction of Knowledge Recycling, a novel
pipeline for optimised generation and use of synthetic data
in the context of classifier training.

• The development of Generative Knowledge Distillation, a
technique that improves the quality of information trans-
ferred from synthetic data to classifiers, thereby reducing
the performance gap with models trained on real data.

• Demonstrate the effectiveness of the proposed pipeline in
producing models that are nearly immune to Membership
Inference Attacks, resulting in a positive trade-off between
performance and resistance to this category of privacy at-
tacks.

2. Related Works

The state of the art in image generation is currently contested
between the Generative Adversarial Networks (GAN) family
and the Denoising Diffusion Probabilistic Models (DDPM) [12,
15]. Although using different mechanisms, both families of
models are in fact capable of producing and manipulating im-
ages with very high resolution by being conditioned in a variety
of ways [17, 28]. In parallel to this line of research, which aims
to produce high quality single images, a second line of research
has been developed with the aim of exploiting this generative
power to create fully synthetic datasets or to enrich existing
ones.
The first attempts in this direction concerned contexts where it
is very complex and time-consuming to collect and label new
data, such as in the medical field. Frid-Adar et al. used GANs
to generate synthetic images of liver lesions. This work showed
that adding synthetic images to the source dataset improved the
performance of classification models for diagnosing liver le-
sions [11]. Subsequently, Sedigh et al. and Islam et al. also
used GAN models to generate synthetic images of skin can-
cer and brain PET, respectively. In both cases, enriching the
dataset with real images led to improved classification perfor-
mance [34, 16].
In addition, studies have been undertaken not to enrich exist-
ing image datasets, but to generate entiraly new ones and eval-
uate their properties via downstream machine learning prob-
lems [22, 8, 32]. From early work, it has become clear that
the semantic information contained in synthetic data is not in
itself sufficient for a model trained on such data to perform well
when making inferences on real data [30]. Techniques have

been developed to make the most of the information that can
be extracted from generative models, as well as the potentially
unlimited number of images that can be generated. It has been
shown that both recycling the synthetic dataset in the training
phase and creating synthetic datasets with higher cardinality
than the dataset used to train the generator are very beneficial to
performance [4, 23]. Filtering techniques were also proposed to
discard synthetic images that were classified incorrectly or with
low confidence by an auxiliary classifier [9]. This also allowed
sampling from sparser distributions, further enriching the infor-
mation of the synthetic datasets [19].

2.1. Privacy Threats and Countermeasures
As research on new models and techniques continues and their
applications increase, the attack surface on such models and the
importance of privacy protection continue to grow. Among the
most common and popular attacks are the families of Member-
ship Inference Attacks (MIAs), Model Inversion, Model Ex-
traction, and Data Poisoning, which can be applied depending
on the context and the ability to access and interact with the
attacked model [35, 10, 37, 5]. MIAs are the easiest family of
attacks to use, as they can be executed in black-box contexts and
from logits alone. Their purpose is to guess whether the sam-
ple given as input to the model to be attacked was present in its
training set or not. From this attack, and thus once the presence
of a particular sample learned by the attacked model is known,
it is possible, for example, to refine Model Inversion or Model
Extraction attacks, or to proceed with inference attacks aimed
at extracting more refined information. Recently, the Likeli-
hood Ratio Attack (LiRA) [7] has emerged as a state-of-the-
art approach for membership inference, achieving significantly
better results at low false-positive rates compared to previous
methods. LiRA works by training shadow models to estimate
per-example distributions of model confidences and performing
a careful likelihood ratio test, making it particularly effective at
confidently identifying training set members while maintaining
low false positive rates.
Many defensive mechanisms have been developed to deal with
this threat, many of which rely on relaxed forms of Differen-
tial Privacy [1]. Although such mechanisms are very effec-
tive in preventing MIAs, they often require very long train-
ing times and lead to performance degradation of the protected
model [24]. Recently, however, in addition to empirical metrics
to measure the trade-off between performance and resistance
to MIAs, alternative techniques have been proposed to pro-
tect models by adversarial training or individual private training
steps instead of the entire training [21, 36].

3. Method

This section presents the Knowledge Recycling (KR) pipeline
for the creation of synthetic datasets and their subsequent use
for training downstream classifiers. The pipeline starts with a
preliminary step where an auxiliary classifier, called Teacher
Classifier, and a data generator, called Generator, are trained
on the same real dataset. The first proper step, called Check-
point Optimisation, aims at identifying the best checkpoint of

2



the Generator. During this step, a classifier is trained for each
checkpoint of the Generator. These classifiers, called Student
Classifiers, have the same architecture as the Teacher Clas-
sifier and are trained using the same training technique. For
each checkpoint, the generation of the synthetic datasets is per-
formed using the proposed technique called Generative Knowl-
edge Distillation (GKD), which is explained in detail in the
Subsection 3.4. Once the optimal checkpoint is identified, the
Tuning step follows, in which the generation parameters are
optimised and the final Student Classifier is trained. Finally,
the last step, called Membership Inference Attack, tests the
robustness of the Student Classifier against the homonymous
privacy attack.

3.1. Teacher Classifier

The Teacher Classifier plays a key role in the KR pipeline,
as it is not only the core of the GKD technique, but also the
benchmark against which the Student Classifiers can be com-
pared in terms of accuracy performance and resistance to pri-
vacy attacks. In order to have a fair and robust comparison,
the architecture and training technique of the Teacher Classi-
fier is also replicated for the Student Classifiers. Having to
balance performance and training speed, since each checkpoint
requires a whole one, the chosen architecture is a ResNet14
model [13]. Training is done in Mixed Precision for 500 epochs
with SGD optimiser, initial learning rate of 0.5, cosine anneal-
ing scheduler and TrivialAugment and MixUp as main augmen-
tation [25, 27, 40]. For more details see Section B of Supple-
mentary Materials.

3.2. Generator

In the field of image generation, Generative Adversarial Net-
works (GAN) and Denoising Diffusion Probabilistic Models
(DDPM) currently represent the state of the art [12, 15]. Al-
though they differ significantly in their operation, both ap-
proaches offer high and comparable performance in generat-
ing different types of media content that can be conditioned in
different ways. GANs are known for their fast inference, but
suffer from instability during training. DDPMs, on the other
hand, offer more stable training but require longer generation
times. Despite recent developments, DDPM models can drasti-
cally reduce the number of denoising steps, but their generation
times are still too long to compete with GANs in generating
large amounts of data [33].
For this work, a GAN-based approach was chosen, which
favours the speed of inference. In particular, a modified version
of BigGAN-Deep was chosen, a model that represents a mile-
stone in the development of GAN [6] models. Indeed, BigGAN
introduced several important innovations, including the use of
conditional batch normalisation, the use of a truncation trick
to control the trade-off between quality and generation diver-
sity, combined with advanced optimisation techniques to han-
dle large networks, such as spectral normalisation [26]. The
proposed implementation modifies the original BigGAN-Deep
model in several aspects. The hinge loss is replaced by a lo-
gistic loss, and the tanh activation is replaced by a sigmoid.

In addition, regularisation techniques such as label smoothing
have been introduced to improve the quality of the discrimina-
tor, and the AdamW optimiser with a weight decay of 0.0005
has been adopted. These changes aim at improving the stabil-
ity of the training and the quality of the generated images. The
model was trained for 500 epochs, with a 4:1 ratio between dis-
criminator and generator updates. To ensure the robustness of
the model, we implemented a system of saving checkpoints at
regular intervals of 5 epochs. A detailed description of the im-
plementation and a comparison between the vanilla model and
our modified version can be found in Section A of Supplemen-
tary Materials.

3.3. Evaluation Metrics

In the evaluation of image generators, the most widely used
metrics in the literature are the Inception Score (IS) and the
Fréchet Inception Distance (FID) [31, 14]. The IS aims to
quantify the quality of the distribution generated by assessing
both the clarity and diversity of the images produced. The FID,
on the other hand, provides a more comprehensive measure by
comparing the generated distribution with the actual distribu-
tion used to train the Generator, thus capturing both the quality
and fidelity of the synthetic images.
However, recent studies have highlighted the limitations of us-
ing these metrics to assess the usefulness of generated images
in downstream learning contexts. A lack of correlation was ob-
served between IS and FID and the effectiveness of the gener-
ated data for subsequent classification tasks [19]. Furthermore,
a trade-off between the quality of individual images and the
diversity of the generated distribution was identified [2]. The
maximisation of IS and FID tends to favour the quality of the
generated images at the expense of the variety, which is crucial
for the creation of synthetic datasets that favour the generalisa-
tion of the models trained on them.
In this study, the Classification Accuracy Score (CAS) is
adopted as the main metric. The CAS measures the valida-
tion accuracy on real data of a classifier trained on synthetic
datasets [29]. This metric helps to identify the training epoch
that produces the most effective synthetic dataset and, like IS
and FID, helps to prevent the mode collapse of the Generator.

3.4. Checkpoint Optimisation

Once both the Teacher Classifier and the Generator have been
defined, trained on real training data and frozen, it is possible to
proceed to the Checkpoint Optimisation step. The goal of this
first step is to identify the optimal checkpoint to maximise the
performance of the downstream Student Classifier models. For
each Generator checkpoint, a Student Classifier is trained using
a strategy similar to that of the Teacher Classifier, but with a
reduced number of epochs – 100 instead of 500 – for efficiency
reasons. At the beginning of each training session, a synthetic
dataset of the same cardinality as the real one is generated us-
ing the current checkpoint. The input noise is sampled from a
multivariate Gaussian distribution with a standard deviation of
1.0. To maintain data diversity, the synthetic data set is fully
regenerated every 10 epochs during training.
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Previous studies have demonstrated the effectiveness of filter-
ing the generated data to improve CAS. Dat et al. used a model
similar to the Teacher Classifier to exclude images with incon-
sistent predictions [9], while Lampis et al. introduced an ad-
ditional filtering step based on the confidence of the predic-
tions [19].
In the KR pipeline, the technique of Generative Knowledge
Distillation (GKD) is proposed and adopted. In contrast to fil-
tering methods, the Teacher Classifier is used to evaluate the
generated images and produce soft labels for the Student Clas-
sifier. These probability labels are more informative than bi-
nary ones, as they capture uncertainties and correlations be-
tween classes, leading to a significant improvement in CAS,
as detailed in Section D of Supplementary Materials. This ap-
proach optimises both the quality of the information passed to
the Student Classifier and the efficiency of the synthetic dataset
generation process, allowing the desired dataset cardinality to
be achieved faster than with filter-based techniques.

3.5. Tuning
After the identification of the optimal checkpoint with respect
to the CAS metric, it is possible to proceed with the Tuning
step to optimise also the generation parameters. These parame-
ters, held constant during the Checkpoint Optimisation step, are
now re-computed to further improve Student Classifiers perfor-
mance. The parameters being optimised are:

• The regeneration rate of the synthetic dataset: previously
fixed at 10 epochs, is now varied between 1 and 10 epochs.

• The scale of the cardinality of the generated dataset: pre-
viously set at 1, is now made to vary between 1 and 10.

• The standard deviation used during sampling from the
multivariate Gaussian distribution: previously equal to 1.0,
is now made to vary between 1.0 and 2.5.

It has been shown in previous works that regenerating the
dataset more frequently and creating more numerous datasets
contributes to the improvement of CAS [19, 23]. With regard
to standard deviation, this approach, in the opposite direction to
the Truncation Trick implemented in the BigGAN-Deep vanilla
model, aims to favour a more varied generation, even at the ex-
pense of the perceptual quality of the generated data [6, 19].
The Tuning step is carried on via a Tree-structured Parzen Esti-
mator associated with a Hyperband pruning mechanism [3, 20].
The optimisation proceeds for 50 iterations. In each iteration,
a Student Classifier is trained with the same procedure used in
Checkpoint Optimisation but using the data generated with the
current parameter configuration, with the aim of maximising
CAS. At the end of the search, the optimal parameter configu-
ration is used to train the final Student Classifier for 500 epochs.

3.6. Membership Inference Attack
The final step in the KR pipeline involves a resistance test for
the Student Classifier against a Membership Inference Attack
(MIA). This type of attack aims to compromise privacy by iden-
tifying the training data stored within the attacked model. In the

context of this study, sensitive training data is never directly ex-
posed to the Student Classifier, but is only used for training the
Generator and Teacher Classifier. The objective of this step is
therefore to assess the effectiveness of the MIA in identifying
the data used to train the Generator via the Student Classifier
and to compare this effectiveness with that of the same attack
carried out against the Teacher Classifier. To perform the MIA,
the Likelihood Ratio Attack (LiRA) proposed by Carlini et al.
is adopted [7]. This state-of-the-art approach frames member-
ship inference as a hypothesis testing problem, where the goal is
to distinguish between two distributions: one where the model
was trained on the target example, and one where it was not.
The implementation involves:

1. Creation of 256 shadow models, identical in architecture
and training technique to the Teacher Classifier.

2. Utilisation of the validation dataset with 50/10/40 splits
to obtain training, validation and test sets for the shadow
models, with different splits for each model.

3. For each example (x, y), collection of model confidences
in logit scale:

ϕ(p) = log
(

p
1 − p

)
, where p = f (x)y

4. Estimation of Gaussian distributions Q̃in and Q̃out for each
example, representing the distribution of logit-scaled con-
fidences when the example is included or excluded from
training, respectively.

5. Implementation of both online and offline variants:

• Online: estimating means (µin, µout) and variances
(σ2

in, σ2
out) for both distributions

• Offline: estimating only µout andσ2
out to perform one-

sided hypothesis testing

6. Application of both global and per-example variance esti-
mation, selecting the most effective approach for each at-
tack scenario.

The attack computes the likelihood ratio between these dis-
tributions to determine membership, with the final score given
by:

Λ =
p(ϕ( f (x)y)|N(µin, σ

2
in))

p(ϕ( f (x)y)|N(µout, σ
2
out))

This approach is applied to both the Teacher Classifier and
the Student Classifier, leveraging the enhanced ability of LiRA
to achieve high true-positive rates at very low false-positive
rates, making it particularly effective for privacy auditing.

The evaluation of resistance to MIAs is based on two metrics:
the AUC, typically used to evaluate this type of attack, and the
Accuracy Over Privacy (AOP), which provides an estimate of
the trade-off between performance – measured as test accuracy
– and resistance to MIAs [21]. The objective of this step is to
examine whether the proposed training from synthetic data may
constitute an additional layer of privacy, making the attack less
effective.
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Figure 1: The Classification Accuracy Score (CAS) of the validation calcu-
lated for each checkpoint of the Generator for the considered datasets. The
continuous blue line represents the CAS obtained during the Checkpoint Opti-
misation step using the Generative Knowledge Distillation technique. The best
checkpoint is marked with a blue star. The dashed grey line represents the best
validation Accuracy obtained with the Teacher Classifier. The red star indicates
the optimal checkpoint CAS of the validation after training with Generative
Knowledge Distillation with parameters found during the Tuning step.

4. Experiments and Results

The experiments were performed on nine image datasets, all
rescaled to 32x32.

CIFAR10, CIFAR100 and FashionMNIST were used both
for the final comparisons and to calibrate and test the Knowl-
edge Recycling (KR) pipeline, as described in detail in Sec-
tion A and Section D of Supplementary Materials [18, 38]. The
six medical datasets - BloodMNIST, DermaMNIST, OrganCM-

NIST, OrganSMNIST, PneumoniaMNIST and RetinaMNIST -
contain real images from the MedMNIST v2 benchmark [39].
These medical datasets represent the primary field of applica-
tion for the proposed technique. The KR pipeline, having been
calibrated on the three aforementioned datasets, is subsequently
applied to these medical datasets without further specific adap-
tations. This approach allows for the evaluation of the tech-
nique’s effectiveness and robustness in a more specialised and
complex context, distinct from that on which it was initially
calibrated.

Further details of all the datasets used can be found in Section
C of Supplementary Materials. Experiments were run on four
NVIDIA Quadro RTX 6000 GPUs.
The Figure 1 illustrates the results of the Checkpoint Optimi-
sation and Tuning phases, expressed as Classification Accu-
racy Score (CAS) on the respective validation sets, compared
with the optimal Accuracy performance of the Teacher Clas-
sifier on the same set. The importance of the selection of the
optimal checkpoint and its evaluation via CAS is evident both
for Generators with more stable checkpoints (e.g. DermaM-
NIST, RetinaMNIST) and for those subject to mode collapse
and consequent drop in performance (e.g. BloodMNIST, Or-
ganSMNIST). The application of the Generative Knowledge
Distillation (GKD) technique alone demonstrates to be suffi-
cient to obtain results close to those of the Teacher Classifier.
In the case of the RetinaMNIST dataset, a more accurate model
is even obtained from the synthetic data alone. The Tuning step
turns out to be beneficial overall, increasing the validation CAS
from a minimum of 0.85% for FashionMNIST to a maximum of
4.03% for BloodMNIST, as reported in Table 1. This improve-
ment is due to two factors. The first is the increased availability
of information due to the higher cardinality of the generated
datasets and their higher recycling frequency. The second is
the increased diversity of data due to sampling with a larger
standard deviation, which, in combination with the GKD tech-
nique, also makes it possible to exploit images that would be
uninformative if associated with the hard label used to generate
them. These images would likely be filtered out and discarded
if coupled with another training technique from synthetic data.
The Table 2 presents the results of the final comparison be-
tween Teacher Classifier and Student Classifier. The testing
CAS of the Student Classifiers approaches the testing Accu-
racy of the Teacher Classifiers on average, exceeding it in the
cases of PneumoniaMNIST and RetinaMNIST. With regard to
resilience to Membership Inference Attacks (MIA), the Student
Classifiers demonstrate significantly greater resilience, with at-
tack performance close to random guessing, despite the use of
a more powerful state-of-the-art attack method [7]. In con-
trast, the attacks on the Teacher Classifiers are much more
effective, resulting in a larger gap in AUCMIA between the
two approaches. The Min, Mean, and Max improvements in
AUCMIA between the Teacher and Student Classifiers have
significantly increased, with the Mean Improvement reaching -
11.17% and the Max Improvement reaching -28.18%, as shown
in Table 2. This highlights the substantial increase in privacy
protection provided by the Student Classifiers under the more
powerful attack.
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The Accuracy Over Privacy (AOP) metric, which measures
the trade-off between performance and resilience to MIAs,
shows that Student Classifiers consistently outperform Teacher
Classifiers, with an average improvement of 28.60%. This im-
plies that the slight margin of loss in CAS on thest set is posi-
tively compensated by the increased and almost total resilience
to MIAs.

5. Discussion and Limitations

The Knowledge Recycling (KR) technique proposed in this
study has been shown to be effective in creating Student
Classifiers with comparable performance to the corresponding
Teacher Classifiers, while maintaining considerable resistance
to Membership Inference Attacks (MIA). This approach, ini-
tially calibrated on standard datasets such as CIFAR10, CI-
FAR100 and FashionMNIST, and subsequently applied to six
medical image datasets from the MedMNIST v2 benchmark,
establishes a new state-of-the-art in this field.
The average performance gap between Teacher Classifiers and
Student Classifiers was reduced to -1.24% in terms of the Clas-
sification Accuracy Score (CAS) over the test sets, a significant
improvement on previous results. This progress is particularly
remarkable considering the use of a single Generator, in con-
trast to previous works. Dat et al. had achieved an average
gap of -10.08% with a single Generator and -5.81% with six,
while Lampis et al. had achieved -3.87% with a single Gener-
ator and -2.63% with six [19]. The approach proposed in this
study exceeds these results, suggesting potential for improve-
ment through the use of multiple Generators in parallel.
The inclusion of a metric to empirically measure one of the
privacy-related aspects, such as resistance to MIAs, proved to
be crucial for a richer and more multifaceted evaluation of the
proposed method, especially if the data under analysis are med-
ical images with potential sensitivities to violations of their pri-
vacy. Under the stronger, state-of-the-art attack method pro-
posed by Carlini et al. [7], the Teacher Classifiers, despite be-
ing trained with regularization and augmentation techniques,
showed increased vulnerability to MIAs. In contrast, the Stu-
dent Classifiers maintained almost complete resistance to these
attacks, with attack performances close to random guessing.
This significant increase in the gap of AUCMIA between Teacher
and Student Classifiers reinforces the privacy advantage of the
proposed approach.
The main limitations of this study concern the small size of the
images used (32x32 pixels) and the choice of models that are
efficient but not comparable in performance with the current
state of the art in their respective tasks. These decisions were
dictated by computational efficiency considerations, given the
onerous nature of the KR pipeline. The use of higher resolu-
tion images and more complex models, both for the Classifier
(ResNet14) and the Generator (BigGAN-Deep), could lead to
further performance improvements. In particular, upgrading the
Generator model could further reduce the performance gap be-
tween Teacher and Student Classifiers, potentially outperform-
ing the Teacher. The scalability of the proposed approach, both
in terms of the number of Generators and the cardinality and

frequency of generation, offers exciting prospects for future de-
velopments. With continued hardware advancement, it is plau-
sible that in the near future it will be possible to apply this tech-
nique with more complex models and on larger datasets, open-
ing up new possibilities in the field of private learning and the
generation of high-quality synthetic data.

6. Conclusions

In this paper, the Knowledge Recycling pipeline was presented,
demonstrating how synthetic data can be generated and used
to train downstream classifiers. It has been shown how the
Generative Knowledge Distillation technique, used within the
pipeline, improves the quality of information transferable to
such downstream classifiers compared to techniques previously
proposed in the literature. It was possible to simultaneously
reduce the gap between the performance obtainable from real
data alone and that obtainable from generated data, setting a
new state of the art, as well as to obtain models from synthetic
data that manifest privacy properties such that Membership In-
ference Attacks are ineffective. This was tested on real medical
image datasets, demonstrating how it is possible to simultane-
ously preserve performance and reduce privacy attack surfaces.
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Table 1: The optimum generation parameters identified after the Tuning step for each dataset under consideration. The ∆ CAS column represents the improvement
of the validation Classification Accuracy Score compared to the performance obtained from the default generation parameters.

Hyperparameter Standard Deviation Regeneration Rate Cardinality Scale ∆ CAS

CIFAR10 1.40 9 8 +2.02
CIFAR100 1.44 7 9 +3.67
FashionMNIST 1.58 1 6 +0.85

BloodMNIST 2.23 1 10 +4.03
DermaMNIST 1.23 10 8 +2.69
OrganCMNIST 2.33 2 10 +1.42
OrganSMNIST 2.42 7 10 +1.22
PneumoniaMNIST 2.15 3 5 +1.53
RetinaMNIST 1.61 2 7 +2.50

Table 2: The comparison of Accuracy, AUCMIA and AOP performance between Teacher Classifier and Student Classifier calculated on the test set – for the Student
Classifier the Accuracy is intended as Classification Accuracy Score. The best score is highlighted with bold.

Accuracy ↑ AUCMIA ↓ AOP ↑

Model Teacher Classifier Student Classifier Teacher Classifier Student Classifier Teacher Classifier Student Classifier

CIFAR10 96.24 95.83 63.10 51.98 60.42 88.80
CIFAR100 77.65 74.92 80.76 55.46 29.76 60.90
FashionMNIST 95.94 95.21 57.80 51.20 71.72 90.81

BloodMNIST 97.49 96.26 56.31 50.99 76.81 92.59
DermaMNIST 79.50 76.46 79.75 51.57 31.25 71.91
OrganCMNIST 93.16 90.23 69.99 59.29 47.54 64.13
OrganSMNIST 79.78 78.76 66.19 58.18 45.52 58.10
PneumoniaMNIST 86.54 86.70 58.88 57.36 62.49 65.90
RetinaMNIST 54.25 55.00 56.13 52.33 43.02 50.22

Min Imp - -3.04 - -1.52 - 12.58
Mean Imp - -1.24 - -11.17 - 28.60
Max Imp - 0.75 - -28.18 - 40.66

[10] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that
exploit confidence information and basic countermeasures. In Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications
Security, 2015.

[11] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and
H. Greenspan. Gan-based synthetic medical image augmentation for in-
creased cnn performance in liver lesion classification. Neurocomputing,
2018.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks.
Advances in Neural Information Processing Systems, 2014.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2016.

[14] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash
equilibrium. Advances in Neural Information Processing Systems, 2017.

[15] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 2020.

[16] J. Islam and Y. Zhang. Gan-based synthetic brain pet image generation.
Brain informatics, 2020.

[17] M. Kang, J.-Y. Zhu, R. Zhang, J. Park, E. Shechtman, S. Paris, and
T. Park. Scaling up gans for text-to-image synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023.

[18] A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images. Technical Report of Toronto University, 2009.

[19] A. Lampis, E. Lomurno, and M. Matteucci. Bridging the gap: Enhanc-
ing the utility of synthetic data via post-processing techniques. British
Machine Vision Conference, 2023.

[20] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research, 2018.

[21] E. Lomurno, A. Archetti, F. Ausonio, and M. Matteucci. Discriminative

adversarial privacy: Balancing accuracy and membership privacy in neu-
ral networks. British Machine Vision Conference, 2023.

[22] E. Lomurno, A. Archetti, L. Cazzella, S. Samele, L. Di Perna, and
M. Matteucci. Sgde: Secure generative data exchange for cross-silo fed-
erated learning. In International Conference on Artificial Intelligence and
Pattern Recognition, 2022.

[23] E. Lomurno, M. D’Oria, and M. Matteucci. Stable diffusion
dataset generation for downstream classification tasks. arXiv preprint
arXiv:2405.02698, 2024.

[24] E. Lomurno and M. Matteucci. On the utility and protection of optimiza-
tion with differential privacy and classic regularization techniques. In
International Conference on Machine Learning, Optimization, and Data
Science, 2022.

[25] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm
restarts. In International Conference on Learning Representations, 2022.

[26] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normaliza-
tion for generative adversarial networks. In International Conference on
Learning Representations, 2018.

[27] S. G. Müller and F. Hutter. Trivialaugment: Tuning-free yet state-of-
the-art data augmentation. In Proceedings of the IEEE/CVF international
conference on computer vision, 2021.

[28] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller,
J. Penna, and R. Rombach. Sdxl: Improving latent diffusion models for
high-resolution image synthesis. In International Conference on Learning
Representations, 2024.

[29] S. Ravuri and O. Vinyals. Classification accuracy score for conditional
generative models. Advances in Neural Information Processing Systems,
2019.

[30] S. Ravuri and O. Vinyals. Seeing is not necessarily believing: Limitations
of biggans for data augmentation. International Conference on Learning
Representations, 2019.

[31] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen. Improved techniques for training gans. Advances in Neural
Information Processing Systems, 2016.

7



[32] M. B. Sarıyıldız, K. Alahari, D. Larlus, and Y. Kalantidis. Fake it till you
make it: Learning transferable representations from synthetic imagenet
clones. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023.

[33] A. Sauer, F. Boesel, T. Dockhorn, A. Blattmann, P. Esser, and R. Rom-
bach. Fast high-resolution image synthesis with latent adversarial diffu-
sion distillation. arXiv preprint arXiv:2403.12015, 2024.

[34] P. Sedigh, R. Sadeghian, and M. T. Masouleh. Generating synthetic med-
ical images by using gan to improve cnn performance in skin cancer clas-
sification. In International Conference on Robotics and Mechatronics,
2019.

[35] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference
attacks against machine learning models. In Symposium on Security and
Privacy, 2017.

[36] T. Steinke, M. Nasr, and M. Jagielski. Privacy auditing with one (1) train-
ing run. Advances in Neural Information Processing Systems, 2024.
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