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Abstract6

This paper investigates the impact of microinertia on plastic localization, void growth, and coalescence in ductile7

porous materials subjected to high strain rates. For that purpose, we have performed finite element calculations on a flat8

double-notched specimen subjected to dynamic plane strain tension. The simulations employ three distinct approaches9

to model the mechanical behavior of the porous aggregate: (1) discrete voids within a matrix material governed by von10

Mises plasticity; (2) homogenized porosity represented using standard quasi-static Gurson-Tvergaard plasticity; and (3)11

homogenized porosity described with Gurson-Tvergaard plasticity extended by Molinari and Mercier (2001) to account12

for microinertia effects. The porous microstructures used in the simulations are representative of additive manufactured13

metals, featuring initial void volume fractions varying between 0.5% and 4%, and pore diameters ranging from 30 µm to14

150 µm (Marvi-Mashhadi et al., 2021; Nieto-Fuentes et al., 2023). The applied tensile velocities ranged from 100 m/s to15

1000 m/s, producing strain rates between 105 s−1 and 106 s−1, and stress triaxiality values spanning from 4 to 30. The16

simulations with discrete voids validate the calculations performed using homogenized porosity and microinertia effects,17

demonstrating that higher strain rates and larger pore sizes lead to slower void growth and a delayed, regularized plastic18

localization. Conversely, the standard Gurson-Tvergaard model shows notable mesh sensitivity and fails to describe19

the influence of the loading rate on plastic localization. Ultimately, the comparison between finite element models20

with discrete voids and those with homogenized porosity illustrates the stabilizing effects of porous microstructure and21

multiscale inertia on dynamic plastic flow, while also highlighting the strengths of the constitutive model introduced22

by Molinari and Mercier (2001) for simulating engineering problems involving porous ductile materials subjected to23

high-velocity impacts.24
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1. Introduction27

Ductile fracture is a prevalent mode of failure observed in materials that have the capacity for substantial plastic28

deformation, shear banding, or necking before eventually undergoing cracking or complete fracture (Needleman, 1972;29

Needleman and Rice, 1978; Needleman and Tvergaard, 1984; Tekoğlu et al., 2015; Vaz-Romero et al., 2016). The30

pioneering experimental studies by Rogers (1960), Beachem (1963), and Gurland and Plateau (1963) were the first31
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to document that this type of fracture occurs due to the nucleation, growth, and eventual coalescence of voids. In32

structural metals deformed at room temperature, voids usually form through secondary-phase particle decohesion or33

particle fracture. These voids then grow due to plastic deformation of the surrounding matrix. Void coalescence can34

occur through matrix material narrowing between adjacent voids or localized shearing between widely spaced voids35

(see introductory section in Benzerga et al. (2016)). Over the last half-century, the experimental investigation on36

ductile fracture has extensively relied on postmortem observations and interrupted-tests examinations of specimens with37

varying shapes, which were tested under different loading conditions. For example, one of the primary objectives of38

the experimental campaigns of Hancock and Mackenzie (1976), Johnson and Cook (1985), Bao and Wierzbicki (2004),39

Barsoum and Faleskog (2007) and Beese et al. (2010) was to identify the effects of triaxiality and Lode parameter40

on failure mechanisms. The prevailing idea is that the failure strain follows a monotonically decreasing trend with41

increasing stress triaxiality, whereas it demonstrates a minimum for Lode parameter corresponding to generalized shear42

(Ghahremaninezhad and Ravi-Chandar, 2013; Scales et al., 2016; Morin et al., 2018). Recently, techniques such as43

metallography, fractography and in-situ microscopy have been utilized to identify the initiation and progression of damage44

mechanisms throughout the process of deformation, plastic localization and eventual failure, and allowed estimation of45

local fracture strain levels based on change in grain size (Ghahremaninezhad and Ravi-Chandar, 2012; Haltom et al.,46

2013; Gross and Ravi-Chandar, 2016). The measurements performed at the length scale of the grains were notably47

higher than the strain-to-failure obtained from macroscale strain readings based on characteristic specimen dimensions,48

underscoring the importance highlighted by Ghahremaninezhad and Ravi-Chandar (2011, 2013) to assess the fracture49

strain at the microstructural level. In recent years, progress in X-ray micro-tomography techniques, alongside related50

synchrotron imaging methods, has facilitated time-resolved in-situ volumetric observations of damage development at the51

sub-micrometer scale, leading to a comprehensive understanding of fracture micro-mechanisms evolution during loading52

(Morgeneyer and Besson, 2011; Morgeneyer et al., 2016; Roth et al., 2018; Kong et al., 2022). For instance, Ueda et al.53

(2014) monitored the evolution of individual voids during the ductile tearing of aluminum 2139-T3 flat-notched specimens54

subjected to mode I fracture. They quantified the evolution of void volume and rotation at positions with distinct stress55

and strain histories on both flat and slant cracks. As another example, Tancogne-Dejean et al. (2021) observed and56

statistically tracked intermetallic particles and pre-existing voids in an aluminium 2024-T3 smiley shear specimen tested57

at low triaxiality. The study revealed that intermetallic particles fractured with cracks oriented perpendicular to the58

major principal stress direction, while pre-existing voids exhibited rotational motion and closure.59

60

Expanding upon the foundational micromechanical studies of void growth developed by McClintock (1968) and Rice61

and Tracey (1969), a significant body of research has evolved over the last five decades, with the goal of modeling ductile62

fracture in metals and alloys. Notably, Gurson (1977) formulated what is arguably the most popular and widely utilized63

micromechanical yield criterion for porous solids containing spherical or cylindrical voids. The Gurson (1977) model64

was developed by conducting a limit-analysis on a finite-radius hollow sphere or cylinder surrounded by matrix material65
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characterized using the von Mises (1928) criterion, subjected to a uniform boundary strain rate under quasi-static loading66

conditions. The limitations of the Gurson (1977) model in considering spherical or cylindrical voids and elastic perfectly-67

plastic isotropic materials have spurred numerous extensions of this yield criterion over recent decades, encompassing68

void nucleation (Chu and Needleman, 1980), void coalescence (Tvergaard and Needleman, 1984), effects of void shape69

and size (Thomason, 1985; Gologanu et al., 1997; Jackiewicz, 2011; Wen et al., 2005; Monchiet and Bonnet, 2013), and70

distinct features of the matrix material’s constitutive model, such as strain hardening (Leblond et al., 1995), strain rate71

hardening (Duva, 1986; Gărăjeu et al., 2000), and plastic anisotropy (Benzerga and Besson, 2001; Stewart and Cazacu,72

2011). Additionally, some efforts have aimed to integrate the Lode angle into the Gurson model, exploring the role of73

the third stress invariant in ductile fracture (Nahshon and Hutchinson, 2008; Benallal et al., 2014; Vadillo et al., 2016).74

However, none of these Gurson-type yield criteria consider the influence of inertia on the mechanical behavior of porous75

aggregates under dynamic deformations.76

77

A robust and physically grounded constitutive framework for describing the macromechanical response of porous78

metals subjected to high strain rate impacts was pioneered by Molinari and Mercier (2001). Specifically, by building79

upon previous studies conducted by Carroll and Holt (1972), Klöcker and Montheillet (1991) and Wang (1994a,b, 1997),80

among others, Molinari and Mercier (2001) developed a micromechanical yield criterion for porous aggregates utilizing81

a dynamic homogenization approach which considers the influence of local acceleration fields that emerge around voids82

during high loading rate conditions (Ortiz and Molinari, 1992; Wright and Ramesh, 2008). This criterion assumes the total83

stress to be additively decomposed into static and dynamic components (Wang and Jiang, 1997). The static contribution84

is computed using any Gurson-type flow potential (outlined in the preceding paragraph), whereas the dynamic component85

is obtained from the solution governing the dynamic expansion of spherical voids within a finite medium (e.g., see Glennie86

(1972) and Tong and Ravichandran (1993, 1995)). The dynamic stress, often denoted as microinertia, highlights that the87

the initial void size serves as an inherent length scale governing the overall dynamic behavior of the material (Czarnota88

et al., 2006, 2008; Jacques et al., 2015). This essential feature is unaccounted for in the quasi-static formulations of89

the Gurson-type damage models, where porosity serves solely as the damage parameter, without taking into account90

the influence of void size. Czarnota et al. (2006) extended the formulation presented in Molinari and Mercier (2001) by91

introducing a tailored void nucleation model which presupposes a material initially devoid of pores, wherein voids arise92

from pre-existing sites once a critical cavitation pressure threshold is exceeded. To characterize the distribution of critical93

cavitation pressure among potential nucleation sites, a Weibull probability distribution was applied, while the influence94

of void interaction during damage evolution was modeled through the introduction of an effective interplay distance95

between voids. The theoretical predictions of Czarnota et al. (2006) accurately reproduced the phenomenon of direct96

impingement between adjacent voids observed in postmortem analyses of spall fractures resulting from plate-impact97

experiments on high-purity grade tantalum conducted by Roy (2003). Subsequently, Czarnota et al. (2008) expanded98

the void nucleation and growth model initially proposed by Czarnota et al. (2006) to consider an elastic–viscoplastic99
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material response and integrated it into ABAQUS/Explicit to perform numerical simulations of the plate-impact tests100

carried out by Roy (2003). The model’s predictions were validated against experimental free-surface velocity profiles,101

revealing a notable increase in maximum stress within the spall plane as the impact velocity increased, consistent with102

the experimental evidence reported in the literature (Romanchenko and Stepanov, 1980; Kanel et al., 1984; Kanel, 2010).103

Shortly after, Jacques et al. (2010) enriched the model of Czarnota et al. (2008) through the incorporation of a nonlinear104

elastic response formulation based on the Mie-Grüneisen equation of state, alongside a void nucleation law where the105

density of cavitation sites per unit initial volume is influenced by the applied pressure, the critical cavitation pressure, and106

a set of material microstructure-related parameters. The model developed by Jacques et al. (2010) was implemented into107

the ABAQUS/Explicit utilizing an integration algorithm closely resembling the approach developed by Czarnota et al.108

(2008). The resulting numerical simulations showed a robust correlation with a variety of post-mortem experimental109

measurements of spall fractures derived from the tests conducted by Roy (2003), encompassing mean void radius at110

varying impact velocities and spatial distribution of porosity near the spall plane. The numerical results were clearly111

affected by the stabilizing influence of microinertia, causing a reduction in the average void size at higher impact velocities112

due to its constraining effect on void growth.113

114

The impact of microinertia on the ductile failure of materials under high strain rates has been investigated in recent115

papers using the dynamic homogenization approach of Molinari and Mercier (2001) to address problems other than116

spall fracture in plate-impact experiments. For instance, the effect of microinertia on the propagation of shock waves117

in porous ductile metals was examined in the studies of Czarnota et al. (2017, 2020). At low shock pressures, the118

shock structure was shown to be primarily governed by material strain rate sensitivity and initial void volume fraction.119

Nevertheless, the increase in shock amplitude was demonstrated to enhance the influence of microinertia, resulting in the120

initial void size shaping the shock front. Furthermore, the heightened acceleration fields around void boundaries have121

been shown to contribute to shock mitigation, reducing strain rate levels and slowing down the collapse rate of voids. As122

another example, Jacques et al. (2012a) investigated the role of microinertia in dynamic ductile crack growth in porous123

ductile materials. Finite element calculations on notched bars and edge-cracked specimens subjected to dynamic tension124

revealed that microinertia effects slows down void growth, leading to a delay in the strain localization process that125

precedes fracture, reducing crack speed, and increasing fracture toughness. Furthermore, the reduction in void growth126

rate naturally enlarges the size of the plastic localization zone near the crack, serving as an inherent regularization127

mechanism that mitigates pathological mesh sensitivity. Microstructural inertia effects were also found to influence void128

coalescence in porous materials (Jacques et al., 2012c; Molinari et al., 2015).129

130

The papers discussed in the preceding two paragraphs highlight that the constitutive framework proposed by Molinari131

and Mercier (2001) predicts a notable influence of microinertia effects on the localization and fracture processes of ductile132

porous materials subjected to high strain rates and high stress triaxialities. However, the microinertia-based approach133
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has not yet been validated against simulations replicating the underlying porous microstructure, particularly concerning134

the temporal evolution of specific micro-mechanical features such as void volume fraction and the development of plastic135

localization. This is precisely the objective of this paper in which finite element calculations performed with the dynamic136

homogenization model developed by Molinari and Mercier (2001) and implemented in ABAQUS/Explicit by Jacques137

et al. (2012a) are compared with simulations in which spherical pores are explicitly included in the finite element model.138

The problem addressed is a flat double-notched specimen subjected to dynamic plane strain tension. The calculations139

are performed with the initial void volume fraction in the notched section varying from 0.5% to 4%, and spherical pore140

diameters ranging from 30 µm to 150 µm. The applied tensile velocities span from 100 m/s to 1000 m/s, yielding141

maximum strain rates between 105 s−1 and 106 s−1, and stress triaxiality values from 4 to 30. The initial void volume142

fractions and void sizes investigated are based on experimental measurements of additive manufactured metals (Marvi-143

Mashhadi et al., 2021; Nieto-Fuentes et al., 2023), while the range of strain rates are observed in dynamic fragmentation144

and plate-impact experiments (Kanel, 2010; Czarnota et al., 2017). The manuscript is organized as follows: Section145

2 describes the fundamental aspects of the constitutive framework for porous materials subjected to dynamic loading146

formulated by Molinari and Mercier (2001), Section 3 details the finite element models created to investigate the effect147

of microstructural inertia on plastic localization and void growth, Section 4 presents the simulation results for various148

loading velocities, void sizes, and void volume fractions, and the main conclusions of this research are summarized in149

Section 5.150

2. Constitutive framework151

This section outlines the primary features of the constitutive framework for porous materials under high strain rate152

loading developed by Molinari and Mercier (2001), while a comprehensive description of the formulation can be found153

in the works of Czarnota et al. (2008) and Jacques et al. (2012a, 2015). Note that neither pore nucleation nor material154

fracture is taken into account in the present work. Additionally, all voids are initially uniform in size and shape (spherical).155

While these assumptions may seem restrictive, as they are not representative of most materials and applications, they156

align effectively with the purpose of this paper: investigating the influence of microinertia on void growth and plastic157

localization. Note that assuming all voids initially have the same size and shape is consistent with the simulations158

involving discrete pores presented in Section 4. The representative volume element of the porous material is modeled as159

a unit cell consisting of a hollow sphere with a central spherical void. Note that incorporating inertia effects into the160

modeling of a hollow sphere response causes the effective void size to influence the mechanical behavior of the unit cell.161

Therefore, the use of a single hollow sphere as the representative volume element under dynamic loading conditions is162

appropriate only when all voids are identical in size, as assumed in this work. The extension of the constitutive model to163

account for voids with varying initial sizes, using a two-step homogenization approach, can be found in Czarnota et al.164

(2008) and Jacques et al. (2012a, 2015).165

166
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The homogenized stress tensor at the level of the unit cell Σ is defined as:167

Σ = Σsta +Σdyn (1)

where the static Cauchy stress tensor Σsta is derived from the constitutive behavior of the matrix material, representing168

the response of the porous aggregate in the absence of microinertia effects, and Σdyn is the dynamic Cauchy stress tensor169

arising from the local acceleration of the material within the hollow sphere.170

171

The static stress is derived from an associated plastic flow rule:172

Dp = λ̇
∂Φ

∂Σsta
(2)

with Dp being the plastic strain rate tensor, λ̇ the rate of plastic multiplier and Φ the Gurson-Tvergaard flow potential173

(Gurson, 1977; Tvergaard, 1982):174

Φ =

(
Σsta
eq

σY

)2

+ 2q1fcosh

(
3q2Σ

sta
m

2σY

)
− 1− (q1f)

2 (3)

where Σsta
eq =

√
3
2 Ssta : Ssta is the effective stress, with Ssta = Σsta−Σsta

m 1 being the deviatoric part of the static Cauchy175

stress tensor, and Σsta
m =

1

3
Σsta : 1 is the hydrostatic stress, with 1 being the second-order identity tensor. Moreover, q1176

and q2 are material parameters, f =
a3

b3
is the porosity in the unit cell, with a and b being the inner and outer radii of177

the hollow sphere, respectively, and σY is the flow strength of the matrix material, defined by the following relationship:178

σY = σ0
Y + σK (ε̄p)n

(
˙̄εp

ε̇ref

)m(
T

Tref

)µ

(4)

where σ0
Y represents the initial flow strength, σK is the plastic modulus, n is the strain hardening exponent, m and µ are179

the strain rate and temperature sensitivity parameters, and ε̇ref and Tref are the reference strain rate and temperature,180

respectively. The effective plastic strain of the matrix material is ε̄p =

∫ t

0

˙̄εpdτ where ˙̄εp is the effective plastic strain181

rate. Moreover, T is the current temperature.182

183

The dynamic stress is expressed as:184

Σdyn = Pdyn1 (5)

where the dynamic pressure Pdyn is derived assuming that the voids remain spherical during loading (i.e., the constitutive185

model is valid for high triaxialities):186
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Pdyn = ρa2
[
Ḋ

p
m

(
f−1 − f−2/3

)
+ (Dp

m)
2

(
3f−1 − 5

2
f−2/3 − 1

2
f−2

)]
(6)

where Dp
m =

1

3
Dp : 1 and ρ is the density of the matrix material (this expression relies on the assumption that the187

matrix material is incompressible, see Molinari and Mercier (2001)). Note that the dynamic stress depends on both the188

strain rate Dp
m and its time derivative Ḋ

p
m.189

190

The formulation is completed with the Kuhn–Tucker loading–unloading conditions:191

λ̇ ≥ 0, Φ ≤ 0, λ̇Φ = 0 (7)

2.1. Elastic behaviour192

The strain rate tensor D is assumed to be the sum of an elastic part De and a plastic part Dp:193

D = De +Dp (8)

where the plastic part was defined in equation (2), and the elastic part is related to the rate of the stress by the following194

linear hypo-elastic law:195

▽
Σ = L : De (9)

where
▽
Σ is an objective derivative of the Cauchy stress tensor, and L is the tensor of isotropic elastic moduli given by:196

L =
E

1 + ν
I′ +

E

3(1− 2ν)
1⊗ 1 (10)

with E being the Young’s modulus, ν the Poisson’s ratio, 1 the unit second-order tensor (as mentioned before) and I′197

the unit deviatoric fourth-order tensor.198

2.2. Evolution of the internal state variables199

Assuming that the change in volume of the representative volume element is attributed solely to void growth (void200

nucleation is neglected), the evolution of porosity is as follows:201

ḟ = 3 (1− f)Dp
m (11)
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with the evolution of the radius of the voids being:202

ȧ = a
Dp

m

f
(12)

203

Moreover, the effective plastic strain rate in the matrix material is obtained assuming that the rate of plastic work204

in the representative volume element is equal to the rate of effective plastic work in the matrix material:205

˙̄εp =
Σsta : Dp

(1− f)σY
(13)

Assuming adiabatic conditions of deformation (no heat flux) and considering that plastic work is the only source of206

heat, the evolution of the temperature is given by:207

Ṫ = β
σY ˙̄εp

ρCp
(14)

where ρ is the density of the matrix material, Cp is the heat capacity of the matrix material and β is the Taylor-Quinney208

coefficient.209

2.3. Material parameters210

The material parameters utilized in the finite element simulations presented in Section 4 are outlined in Table 1.211

The numerical values of mass density, specific heat, elastic constants and parameters of the flow strength of the matrix212

material correspond to AISI 430 steel (Vaz-Romero et al., 2015). The parameters β, q1, and q2 are assigned standard213

values commonly found in the literature. The constitutive framework has been implemented in ABAQUS/Explicit (2019)214

through a user subroutine VUMAT using the integration algorithm developed by Jacques et al. (2012a).215

216

3. Finite element model217

The problem addressed is that of a flat double-notched specimen subjected to dynamic plane strain tension, see Fig.218

1. The sample has initial length of L0 = 20 mm and initial width of W 0 = 18 mm. Different values of the initial219

thickness within the range 0.566 mm ≤ H0 ≤ 5.656 mm are considered depending on the initial void volume fraction220

and void size, with the aim of including eight layers of voids throughout the specimen’s thickness (refer to subsequent221

paragraphs for detailed information regarding the dimensions of the voids and the corresponding void volume fractions222

analyzed). The U-shaped notch, centrally located along the specimen’s length, has a depth of S0 = 4 mm and a width223

of F 0 = 4 mm. This specimen design is chosen due to the development of elevated stress triaxiality within the notched224

region (see Section 4), which fosters the growth of voids. Moreover, in order to decrease the computational time of the225

calculations, we have modeled only one-eight of the sample and implemented symmetry boundary conditions. Material226
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Symbol Property and units Value

ρ Mass density (kg/m3), Eq. (14) 7740
Cp Specific heat (J/kg K), Eq. (14) 460
E Young’s modulus (GPa), Eq. (10) 200
ν Poisson’s ratio, Eq. (10) 0.3

σ0
Y Initial yield strenght (MPa), Eq. (4) 175.67

σK Strain hardening modulus (MPa), Eq. (4) 530.13
n Strain hardening exponent, Eq. (4) 0.167

ε̇ref Reference strain rate (s−1), Eq. (4) 0.01
m Strain rate sensitivity exponent, Eq. (4) 0.0118
Tref Reference temperature (K), Eq. (4) 300
µ Temperature sensitivity exponent, Eq. (4) −0.51

q1 Material parameter, Eq. (3) 1.25
q2 Material parameter, Eq. (3) 1

β Taylor-Quinney coefficient, Eq. (14) 0.9

Table 1: Material parameters utilized in the finite element simulations reported in Section 4. The numerical values of initial density, elastic
constants and parameters of the flow strength of the matrix material correspond to AISI 430 steel (Vaz-Romero et al., 2015). The parameters
β, q1 and q2 take standard values used in the literature.

points are referred to using a Lagrangian Cartesian coordinate system (X,Y, Z) with origin located at the bottom left227

corner of the finite element model (i.e., at the center of mass of the specimen if no symmetry boundary conditions are228

applied). The sample is under plane strain constraint in the Z-direction (therefore, we could have included a single229

layer of voids throughout the thickness of the sample; however, the aim was to observe the direct interaction between230

voids). The finite element calculations are performed with ABAQUS/Explicit (2019) under the following imposed initial231

conditions:232

VY (X,Y, Z, 0) = ε̇0Y Y Y, for 0 ≤ Y ≤ F 0

2

VY (X,Y, Z, 0) = ε̇0Y Y

F 0

2
= V, for

F 0

2
≤ Y ≤ L0

2

T (X,Y, Z, 0) = T 0 = Tref

(15)

and boundary conditions:233

UX (0, Y, Z, t) = 0

UY (X, 0, Z, t) = 0

UZ (X,Y, 0, t) = UZ

(
X,Y,−H0

2
, t

)
= 0

VY

(
X,

L0

2
, Z, t

)
= ε̇0Y Y

F 0

2
= V

(16)

with ε̇0Y Y being the imposed initial strain rate and V the corresponding imposed loading velocity, see Fig. 1. In the234
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calculations presented in Section 4, the applied velocities are changed across a range from 100 m/s to 1000 m/s, which235

correspond to average strain rates in the gauge section spanning between 105 s−1 and 106 s−1, leading to values of236

the stress triaxiality in the notched section ranging from 4 to 30 (see Section 4). The calculations are performed for237

the initial void volume fraction varying in the notched section from 0.5% to 4%, with pores of diameter ranging from238

30 µm to 150 µm (the specimen features porosity within the notched region while being fully dense outside this area).239

The initial void volume fractions and void sizes considered are representative of 3D printed metals (Marvi-Mashhadi240

et al., 2021; Nieto-Fuentes et al., 2023), while the selection of strain rates corresponds to dynamic fragmentation and241

plate-impact experiments (Kanel, 2010; Czarnota et al., 2017). Moreover, the applied initial conditions serve to mitigate242

the propagation of stress waves within the specimen resulting from the sudden motion of the strip at t = 0. Without243

these conditions, the waves generated by the velocity boundary condition could trigger immediate plastic localization at244

the specimen surface where the loading velocity is applied (Needleman, 1991; Xue et al., 2008).245

Figure 1: Schematic of the geometry and boundary conditions of the problem addressed: a double-notched specimen subjected to dynamic
plane strain tension. The sample has initial length of L0 = 20 mm, initial width of W 0 = 18 mm, and initial thickness of H0 = 1.188 mm. The
U-shaped notch, centrally located along the specimen’s length, has a depth of S0 = 4 mm and a width of F 0 = 4 mm. The model consists of
one-eight of the sample with symmetry boundary conditions. Material points are referred to using a Lagrangian Cartesian coordinate system
(X,Y, Z) with origin located at the bottom left corner of the finite element model (i.e., at the center of mass of the specimen if no symmetry

boundary conditions were applied). The velocity loading condition is VY

(
X, L0

2
, Z, t

)
= ε̇0Y Y

F0

2
. The sample is under plane strain constraint

in the Z-direction.

246

Note that Jacques et al. (2012a, 2015) employed an asymmetric finite element model of a notched specimen with247
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circular cross-section and subjected to dynamic tension to study plastic localization and fracture of porous materials.248

However, in this paper, we have opted for a 3D specimen with a rectangular cross-section subjected to plane strain249

tension. This allows for an explicit description of the material’s porous microstructure to be incorporated into the finite250

element model.251

3.1. Actual porosity252

The finite element model includes discrete voids in the notched area –see Fig. 2– following the methodology put forth253

by Marvi-Mashhadi et al. (2021) and later adopted by Nieto-Fuentes et al. (2022) and Vishnu et al. (2022a,b) to study254

the role of actual porous microstructures on the formation of necks and shear bands under dynamic loading (our previous255

research involving dynamic simulations that incorporate actual pores did not investigate the influence of microinertia256

on void growth and plastic localization). Recall that the specimen only features porosity within the notched region257

while being fully dense outside this area. The mechanical behavior of the material is modeled using von Mises plasticity,258

associated flow rule and isotropic hardening defined by equation (4), i.e., we consider the material to be described by259

the constitutive framework given in Section 2 imposing that f = 0. The incorporation of actual voids within the finite260

element model ensures that the effect of microinertia is inherently considered in the simulations. The pores are assumed261

to be initially spherical, consistent with findings from X-ray tomography measurements of additive manufactured metals262

conducted by Nieto-Fuentes et al. (2023), and all are considered to have the same size. Note that for this range of263

pore diameters, 30 µm ≤ ϕ ≤ 150 µm, microinertia is expected to play a significant role in void dynamics (Wilkerson264

and Ramesh, 2014; Wilkerson, 2017). The number of voids in the model is contingent on the pores’ diameter and the265

void volume fraction, which also determine the specimen thickness. The simulations represent a periodic microstructure266

comprising an array of unit cells with the same initial void volume fraction. The number of voids included in these267

calculations, along with the voids dimensions and the corresponding initial void volume fraction and specimen thickness,268

are presented in Table 2. We have imposed four layers of voids across half of the sample thickness.269

Initial void volume fraction, f0 (%) 0.5 2 4
Voids diameter, ϕ (µm) 30 50 150 30 50 150 30 50 150

Number of voids, N total (num.) 2332 832 88 5620 2056 248 8928 3116 364
Initial specimen thickness, H0 (mm) 1.132 1.886 5.656 0.712 1.188 3.564 0.566 0.942 2.828

Table 2: Porous microstructures investigated in the finite element calculations with discrete voids. Initial void volume fraction,
(
f0

)
, voids

diameter (ϕ), number of voids
(
N total

)
and initial specimen thickness

(
H0

)
.

270

The specimen has been discretized using ten-node quadratic tetrahedral elements, referred to as C3D10 in ABAQUS271

notation. The total number of elements varies between 1415765 and 5782312, depending on the number and the size of272

voids included in the model. The smallest elements near the voids have a characteristic length of approximately 3 µm (for273

the simulations containing voids of 30 µm diameter). We conducted a mesh sensitivity analysis by increasing the number274

of elements and confirmed that the numerical results in Section 4 are hardly affected by the discretization. Note that275
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Figure 2: Finite element model developed in ABAQUS/Explicit (2019) to investigate the effect of microinertia on plastic localization and
dynamic void growth in a double-notched specimen subjected to plane strain tension. The model consists of one-eighth of the sample with
symmetry boundary conditions, see Fig. 1. The specimen features actual pores within the notched region while being fully dense outside this
area. The sample has initial thickness of H0 = 3.564 mm, with initial void volume fraction in the notched region of f0 = 2% and initial voids
size of ϕ = 150 µm. All the pores have the same size. Four layers of voids are included across half of the sample thickness. Cross-section
view at Z = −0.223 mm. The mechanical behavior of the material is modeled utilizing the constitutive framework given in Section 2 imposing
that f = 0 (i.e., the mechanical behavior of the material is described using von Mises plasticity, associated flow rule and isotropic hardening
defined by equation (4)). The model is meshed using ten-node tetrahedron elements with hourglass control (C3D10 in ABAQUS/Explicit
(2019) notation). The characteristic length of the smallest elements within the notched section is ≈ 3 µm. Note the close-up view of the mesh
in the notched region illustrating the size of the elements near the void.
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inertia, strain rate sensitivity and the explicit description of the porous microstructure serve as effective regularization276

factors that mitigate the impact of discretization in the numerical simulations. The computations were performed on a277

workstation with an AMD Epyc 7413 processor running at 2.75 GHz with 48 cores. The computational time for each278

simulation presented in this paper ranged from 5 to 30 days, depending on the specific porous microstructure and applied279

velocity boundary conditions.280

281

The calculation of void volume fraction evolution within the notch during loading follows the two-step methodology282

introduced by Vishnu et al. (2022b, 2023):283

� The volume of the matrix material at each time step (MMV ) is derived by summing the volumes of the individual284

elemental components (EV OL):285

MMV =

nelem∑
n=1

EV OLn (17)

where nelem is the total number of elements in the model.286

� The coordinates of the nodal points on the outer surfaces of the notch are exported to MATLAB® at each time287

step. Subsequently, the convhull function is utilized to determine the total volume of the notch (TV N).288

Afterwards, the void volume fraction at each time step (f) is calculated as follows:289

f =
TV N −MMV

TV N
(18)

Furthermore, we have examined the evolution of individual void volumes using the Quickhull algorithm (Barber et al.,290

1996) available within MATLAB®, which calculates the smallest convex set that encompasses the nodal coordinates of291

the void surface at each time step.292

3.2. Homogenized porosity293

The finite element model does not contain explicitly resolved voids, see Fig. 3. The mechanical behavior of the294

material is modeled with the dynamic homogenization approach presented in Section 2. The specimen features porosity295

within the notched region while being fully dense outside this area. We performed computations with voids of uniform296

size that can be directly compared with the simulations of actual porosity. Recall that despite the voids are not explicitly297

represented, the diameter of the pores is an input parameter to be defined in the dynamic homogenization model. The298

void dimensions, initial void volume fraction, and specimen thickness are the same as those used in the calculations with299

discrete pores.300
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Figure 3: Finite element model developed in ABAQUS/Explicit (2019) to investigate the effect of microinertia on plastic localization and
dynamic void growth in a double-notched specimen subjected to plane strain tension. The model consists of one-eighth of the sample with
symmetry boundary conditions. The sample has initial thickness of H0 = 3.564 mm, with initial void volume fraction in the notched region of
f0 = 2% and initial voids size of ϕ = 150 µm. Cross-section view at Z = −0.223 mm. The mechanical behavior of the material is modeled
with the dynamic homogenization approach presented in Section 2. The specimen features porosity within the notched region while being fully
dense outside this area. The model is meshed using eight-node linear brick elements with reduced integration and hourglass control (C3D8R
in ABAQUS/Explicit (2019) notation). The characteristic length of the smallest elements within the notched section is ≈ 60 µm. Note the
close-up views of the mesh in various sections of the notched region illustrating the evolving aspect ratio of the elements.
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301

The specimen has been discretized using eight-node linear brick elements with reduced integration and hourglass302

control, referred to as C3D8R in ABAQUS notation. The total number of elements ranges from 229019 to 1864869,303

depending on the initial void volume fraction and the size of the voids included in the model (i.e., depending on the initial304

thickness of the sample). The smallest elements within the notched region have a characteristic length of approximately305

60 µm. The shape and size of the elements varies in different zones of the notched section, see Fig. 3. We have performed306

a mesh sensitivity analysis increasing the number of elements, and checked that the numerical results presented in Section307

4 including microinertia are hardly dependent on the discretization for most of the loading velocities investigated (for308

the lowest loading velocity of 100 m/s, the effect of microinertia is small, leading to the formation of a localization band309

confined within a single layer of elements, see Section 4.2). Microstructural inertia serves as an effective regularization310

factor, mitigating the effects of discretization in numerical simulations (Czarnota et al., 2008; Jacques et al., 2012a;311

Versino and Bronkhorst, 2018). In contrast, the calculations performed with the standard Gurson-Tvergaard model312

without microinertia show pathological mesh dependency, see Section 4. The computations were performed using a laptop313

computer with processor Intel(R) Core(TM) i9 − 9900U CPU running at 3.10 GHz with 8 cores. The computational314

time for each simulation ranged from 10 minutes to 9 hours, depending on the specific porous microstructure considered315

and the applied velocity boundary conditions. Note that these calculations are significantly faster than the simulations316

with the explicitly resolved pores.317

4. Results318

The presentation of results is divided into four parts. Section 4.1 describes the methodology developed to compare319

void growth and plastic localization from calculations involving: (i) actual pores and material modeled using von Mises320

plasticity, (ii) homogenized porosity and material modeled using Gurson-Tvergaard plasticity including microinertia321

effects, and (iii) homogenized porosity and material modeled using Gurson-Tvergaard plasticity without microinertia322

effects (removing the contribution of dynamic stresses from the formulation described in Section 2 to recover the quasi-323

static Gurson-Tvergaard model). Moreover, Sections 4.2, 4.3 and 4.4 include simulations for various loading rates, void324

sizes and void volume fractions to investigate the influence of microinertia on the collective behavior of voids under high325

strain rates.326

4.1. Salient features327

Figure 4 shows contours of effective plastic strain ε̄p for different imposed displacement values: (a)-(a’)-(a”) UY =328

0.05 mm, (b)-(b’)-(b”) UY = 0.125 mm, (c)-(c’)-(c”) UY = 0.25 mm, (d)-(d’)-(d”) UY = 0.375 mm, and (e)-(e’)-(e”)329

UY = 0.5 mm. The plots correspond to a cross-sectional view at Z = −0.074 mm, see the Lagrangian coordinate system330

in Fig. 1. The color coding of the isocontours maps effective plastic strains from 0 to 2 on a blue-to-red scale, with strains331

above 2 remaining red (note that the same color scale has been consistently applied across all contour plots presented332
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in this paper, see Figs. 11, 14, 17, 24, 27, 34 and 36). The imposed loading velocity is V = 500 m/s, the initial void333

volume fraction in the notched region is f0 = 2% and the initial diameter of the voids is ϕ = 50 µm. This combination334

of applied velocity, initial porosity, and void size is used as the reference configuration for the analysis. Higher and lower335

values of V , ϕ and f0 will be used in the calculations presented in Sections 4.2, 4.3 and 4.4, respectively.336

Subplots 4(a), ..., (e) correspond to a simulation with actual pores and material modeled with von Mises plasticity.337

The contours show the central section of a layer of pores (this is the reason for displaying a cross-sectional view at338

Z = −0.074 mm). For UY = 0.05 mm, greater plastic deformation is observed on the surface of the pores compared339

to the matrix material (the material between the pores), which remains practically undeformed. The pores maintain340

their initial spherical shape (further elaboration on this matter will be provided later in the text). The deformation is341

relatively uniform across all pores, except for those in the layers closer to the free surface and farther from the central342

section of the notch –see green arrows in 4(a)–, where lower hydrostatic stress slows their growth. For a larger imposed343

displacement of 0.125 mm, the effective plastic strain on the surface of the voids approaches 1, which is approximately344

ten times greater than in the intervoid material. The voids develop an ellipsoidal shape, elongated in the direction345

perpendicular to the applied load (more detailed discussion on this topic will be included later in this paragraph). The346

deformation of all pores is relatively uniform, with exceptions in layers closer to the free surface and farther from the347

center of the notch. The observation that void layers nearer to the free surface and further from the center of the348

notch are less deformed holds consistently across all calculations involving actual voids presented in this paper, and349

will not be reiterated in the manuscript to avoid redundancy. When the imposed displacement reaches 0.25 mm, the350

pores develop a markedly elongated shape perpendicular to the loading direction, driven by tensile stresses along the351

X-direction opposing the reduction of the notched cross-section. Note that we have observed similar behavior of the352

voids when examining specimen cross-sections at X = constant: the pores elongate along the Z-direction due to tensile353

stresses induced by the plane strain constraint (the results are not shown for the sake of brevity). For UY = 0.375 mm,354

the elongation of the pores along the X-direction has significantly reduced the intervoid ligaments stretching parallel to355

the loading direction, resulting in substantial plastic deformation along rows of pores located at planes Y = constant. In356

addition, the variability in pore growth is significant, with considerable differences in size among individual voids. The357

distribution of void sizes is accompanied by heterogeneous patterns of effective plastic strain, with some voids exhibiting358

high strain values exceeding 2 on their surface. For UY = 0.5 mm some pores have been observed to continue growing,359

developing nearly square cross-sections due to the coalescence of adjacent voids caused by the narrowing of the intervoid360

ligament (no actual pore union has occurred as no fracture criterion has been applied), while others have unloaded,361

maintaining the same shape and size as in previous loading stages. Coalescence resulting from internal necking of the362

intervoid ligament is commonly observed in ductile fracture process (Benzerga and Leblond, 2010). It will be shown in363

Section 4.2 that a different coalescence mechanism –direct impingement– occurs for higher applied velocities. The growth364

of pores generates localization bands along planes where Y = constant, with the thickness of these bands determined365

by the current size of the voids. The pores regularize the localization process, which is largely insensitive to the mesh366
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but strongly influenced by the porous microstructure. Among all the pores, those situated in the third row furthest367

from the central section of the notch exhibit the most significant growth (recall that the central section of the notch368

corresponds to the plane Y = 0). Plastic deformations exceed 4 on the surface of these voids and reach 3 in the intervoid369

ligaments. A more detailed illustration of the evolution of the size and shape of the pores during loading is provided in370

Figs. 5 and 6, which present 3D reconstructions of the surfaces of voids 1 and 2, respectively, as indicated in subplot371

4(a). The void geometry is visualized by displaying the convex hull encompassing the void’s surface. The origin of372

the Cartesian coordinate system (X ′, Y ′, Z ′) is located at the center of the void, with X ′, Y ′ and Z ′ being parallel to373

the loading axes X, Y and Z. Voids 1 and 2 exhibit similar growth up to an imposed displacement of 0.25 mm. The374

initially spherical pores elongate along the X ′ and Z ′ axes, developing an ellipsoidal morphology flattened in the loading375

direction. However, as the imposed displacement increases beyond 0.25 mm, void 2 demonstrates a more rapid growth376

rate, adopting a prismatic-like configuration with quasi-planar faces, while void 1 retains its ellipsoidal shape. Figs. 7(a)377

and 7(b) show the evolution of the ratios b
a and c

a with the imposed displacement for the voids shown in Figs. 5 and378

6, respectively, where a, b, and c represent the distances between material points on the surface of the voids connected379

along the X ′, Y ′, and Z ′ axes, respectively. The yellow markers represent the imposed displacement values used in380

the 3D reconstructions shown in Figs. 5 and 6. The results for void 1 shown in Fig. 7(a) illustrate that the ratio c
a381

remains roughly 1 throughout the entire loading process, indicating uniform growth in the X ′ and Z ′ directions. In382

contrast, the ratio b
a exhibits a nonlinear evolution with the imposed displacement. Initially, b

a decreases until stabilizing383

at approximately 0.72 for displacements exceeding 0.25 mm, when the void stops growing. The results presented in Fig.384

7(b) show that for void 2, the ratio c
a also remains constant at 1 throughout the entire loading process. However, unlike385

for void 1, the proportion b
a reaches a minimum of 0.72 at a displacement of 0.3 mm, and then increases. This increase386

of b
a indicates that the void has coalesced with adjacent pores along the X ′ and Z ′ directions and is now growing faster387

along the Y ′ direction, consistent with the observations in subplots 4(a), ..., (e) and Fig. 6.388

Subplots 4(a’), ..., (e’) correspond to a calculation with homogenized porosity and material modeled with Gurson-389

Tvergaard plasticity and microinertia effects. For UY = 0.05 mm, the plastic deformation in the specimen reaches390

approximately 0.052 (the contours of plastic deformation appear slightly lighter blue in the notched section). In the391

absence of discrete pores, deformation remains uniform across the entire notch. The stress triaxiality within the notch392

reaches 4 (although triaxiality contours are not shown, the stress triaxiality value is provided for completeness). Increasing393

the imposed displacement to 0.125 mm raises the effective plastic strain to 0.12. Recall that for the same imposed394

displacement, in the calculation with actual voids the plastic strain on the surface of the pores is nearly ten times395

greater. This occurs because, in simulations incorporating homogenized porosity, plastic strain is a macroscopic measure396

that represents the average value at the unit cell scale. In contrast, simulations with discrete voids allow direct observation397

of the microscopic plastic deformation field surrounding individual voids (a detailed comparison between the macroscopic398

plastic strain fields obtained from simulations with discrete voids and those with homogenized porosity is presented later399

in this section). Further increases in the imposed displacement to 0.25 mm and 0.375 mm result in incipient heterogeneity400
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in the plastic strain field of the notched section. Near the free surface, the plastic strain is reduced (see green arrow in401

subplot (c’)), while a localized deformation band, illustrated by a light bluish color, appears at the same location where402

the largest void growth was observed in the calculation with discrete voids. The plastic localization band has a finite403

width due to the regularization effect of microinertia (further elaboration on this matter will be provided later in the404

text). The band extends across several elements of the finite element grid. For UY = 0.5 mm, the effective plastic strain405

and the stress triaxiality within the localized band reach 0.6 and 15, respectively. While this value of plastic strain is406

approximately 7 times smaller than the largest plastic strain attained on the pores surface in the calculation involving407

discrete voids (see previous paragraph), it should be noted that the distributions of plastic deformation within the notch408

in simulations with explicit pores, and with homogenized porosity accounting for microinertia, are qualitatively similar409

(compare subplots (e) and (e’)).410

Subplots 4(a”), ..., (e”) correspond to a simulation with homogenized porosity and material modeled with Gurson-411

Tvergaard plasticity and without microinertia effects. Recall that the standard Gurson-Tvergaard model predicts that412

the mechanical behavior of the material is independent of void size. For an imposed displacement of 0.05 mm, the413

effective plastic strain contours in the notched section are uniform, showing a plastic strain of 0.047, slightly smaller414

than the result obtained with microinertia. An increase in the imposed displacement to 0.125 mm results in the effective415

plastic strain in the notched section increasing to 0.12 (the same value reached in the simulation with microinertia).416

For 0.25 mm, a narrow localization band appears at the same position observed in the microinertia calculation (where417

the largest void growth occurred in the discrete pores simulation). The maximum plastic strain within the band is418

approximately 1, and unlike in the calculation with microinertia, the band width consists of only 1 element, indicating419

that neglecting microinertia leads to mesh-sensitive results for localization predictions. Further increase in the imposed420

displacement to 0.375 mm demonstrate the spurious development of the localization band, which shows a zigzag irregular421

path as it jumps from one row of elements to another. For a displacement of 0.5 mm, the maximum strain within the422

band exceeds 1.5, three times higher than in the simulation with microinertia.423

424

Further analysis of the impact of the actual porous microstructure and microinertia on plastic strain development425

within the specimen is presented in Fig. 8, which illustrates the evolution of the effective plastic strain ε̄p along the426

Lagrangian coordinate Y for the same simulations shown in Fig. 4. The results from the calculation with actual427

pores represent the volume-averaged effective plastic strain in unit cells with centers located at X = 0.074 mm and428

Z = −0.074 mm (there are 14 unit cells along the notch in the Y direction). The volume-averaged plastic strain is429

obtained by weighting the local plastic strain of each grid element by its volume and integrating over the entire unit cell.430

The results from the homogenized porosity calculations are obtained from elements along the path defined by X = Z = 0.431

Note that the plastic strains outside the notched region are nearly zero.432

Subplot 8(a) corresponds to an imposed displacement of 0.05 mm —see 4(a)-(a’)-(a”). The calculations using both433

actual voids and homogenized porosity yield qualitatively similar results, with the effective plastic strain within the notch434
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Figure 4: Finite element calculations for an imposed loading velocity V = 500 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Contours of effective plastic strain ε̄p for different imposed displacement values: (a)-(a’)-(a”)
UY = 0.05 mm, (b)-(b’)-(b”) UY = 0.125 mm, (c)-(c’)-(c”) UY = 0.25 mm, (d)-(d’)-(d”) UY = 0.375 mm and (e)-(e’)-(e”) UY = 0.5 mm.
Cross-section view at Z = −0.074 mm. Subplots (a), ..., (e) correspond to calculation with actual pores and material modeled with von
Mises plasticity. Subplots (a’), ..., (e’) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard
plasticity and microinertia effects. Subplots (a”), ..., (e”) correspond to calculation with homogenized porosity and material modeled with
Gurson-Tvergaard plasticity and without microinertia effects. For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.



20

(a) (b) (c) (d) (e)

Figure 5: Finite element calculations for an imposed loading velocity V = 500 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with von Mises
plasticity. 3D reconstructions of the surface of void 1 indicated in Fig. 4(a) for different imposed displacement values: (a) UY = 0.05 mm, (b)
UY = 0.125 mm, (c) UY = 0.25 mm, (d) UY = 0.375 mm and (e) UY = 0.5 mm. The origin of the Cartesian coordinate system (X ′, Y ′, Z′) is
located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.

(a) (b) (c) (d) (e)

Figure 6: Finite element calculations for an imposed loading velocity V = 500 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with von Mises
plasticity. 3D reconstructions of the surface of void 2 indicated in Fig. 4(a) for different imposed displacement values: (a) UY = 0.05 mm, (b)
UY = 0.125 mm, (c) UY = 0.25 mm, (d) UY = 0.375 mm and (e) UY = 0.5 mm. The origin of the Cartesian coordinate system (X ′, Y ′, Z′) is
located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.

(a) (b)

Figure 7: Finite element calculations for an imposed loading velocity V = 500 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with von Mises
plasticity. Evolution of the void ratios, b

a
and c

a
, with the imposed displacement UY . (a) Void 1 indicated in Fig. 4(a). (b) Void 2 indicated in

Fig. 4(a). The yellow markers represent the imposed displacement values used in the 3D reconstructions of the pores shown in Figs. 5 and 6.
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remaining relatively constant. However, the homogenized porosity model with microinertia effects produces slightly higher435

plastic strain values, approximately 10% larger than those obtained from the discrete void model and the quasi-static436

Gurson-Tvergaard framework.437

Subplot 8(b) corresponds to an imposed displacement of 0.25 mm —see 4(c)-(c’)-(c”). In the calculation with discrete438

voids, the effective plastic strain within the notch ranges from 0.17 to 0.26, reflecting variations in plastic deformation439

across different unit cells, which become significant at higher imposed displacements due to increased heterogeneity440

in void growth (compare 4(a) and 4(c)). The average plastic deformation within the notch for the calculation with441

discrete pores is slightly smaller than that observed in simulations where the material is modeled with homogenized442

porosity. The calculation performed using Gurson-Tvergaard plasticity and microinertia effects predicts that the plastic443

strain remains approximately constant at ≈ 0.22 within the notch, with a slight increase occurring at 1.7 mm from444

the center of the specimen due to the onset of the localization band indicated in 4(c’) —refer to the enlarged image of445

the localization band. The calculation performed with the standard (quasi-static) Gurson-Tvergaard model produces446

results qualitatively similar to those from the simulation incorporating microinertia effects, with plastic strain remaining447

relatively constant within the notch, except for the localization band that develops at 1.7 mm from the specimen center.448

Note that disregarding microinertia effects leads to a significant increase in plastic strain within the localization band,449

which reaches a peak of nearly 0.4 —refer to the enlarged image of the localization band. Furthermore, the plastic450

localization is confined to a narrow region defined by a single layer of elements. These results clearly indicate that451

microinertia slows down and regularizes plastic localization.452

Subplot 8(c) presents results for an imposed displacement of 0.5 mm —see 4(e)-(e’)-(e”). Note that in the calculation453

with discrete pores, the oscillations in the average effective plastic strain across the cells become increasingly pronounced454

at higher displacements due to greater heterogeneity in void growth as the load progresses. The plastic strain variation455

ranges from 0.17 to 0.52, with the unit cell exhibiting the lower average effective plastic strain retaining the same value as456

observed at the lower displacement of 0.25 mm, indicating that it has unloaded. Furthermore, the average plastic strain457

in the voided cells is slightly smaller than that observed in simulations using both the standard Gurson-Tvergaard model458

and the dynamic homogenization approach introduced by Molinari and Mercier (2001). The calculation conducted using459

Gurson-Tvergaard plasticity and microinertia effects predicts that the plastic strain remains approximately constant at460

around 0.38, except for a surge at Y = 1.7 mm, caused by the formation of the plastic localization band indicated461

in 4(e’). Note that the band exhibits a finite thickness as a result of the regularizing effect of microinertia on plastic462

localization, with a peak strain of 0.61 —refer to the enlarged image of the localization band. The results obtained from463

the calculation using the standard version of the Gurson-Tvergaard model indicate that excluding microinertia effects464

causes the thickness of the plastic localization band to narrow to a single layer of elements –illustrating the occurrence465

of spurious localization– while the peak strain within the band increases to 0.74 (this value is lower than the peak strain466

within the band reported in the discussion of Fig. 4, which referred to the entire notch). Note also the difference467

in localization patterns between the calculations using homogenized porosity and the one incorporating discrete voids.468
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While homogenized porosity models predict a single, concentrated band of localized deformation, the explicitly resolved469

void calculations reveal pronounced oscillations in the Y direction (as mentioned before). These oscillations stem from470

a more diffuse localization process in the discrete void simulations, where multiple layers of voids continue to grow471

throughout the loading process, see Fig. 4(a)-(e).472

(a) (b)

(c)

Figure 8: Finite element calculations for an imposed loading velocity V = 500 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Evolution of the macroscopic effective plastic strain ε̄p with the Lagrangian coordinate Y .
Comparison of results obtained with actual pores and material modeled with von Mises plasticity (red solid line), homogenized porosity
and material modeled with Gurson-Tvergaard plasticity and microinertia effects (green dashed line) and homogenized porosity and material
modeled with Gurson-Tvergaard plasticity and without microinertia effects (orange dotted line). The results from the calculation with actual
pores represent the volume-averaged effective plastic strain in unit cells with centers located at X = 0.074 mm and Z = −0.074 mm. The
results from the calculations with homogenized porosity correspond to a path along X = Z = 0. Data for different values of the imposed
displacement: (a) UY = 0.05 mm (b) UY = 0.25 mm and (c) UY = 0.5 mm.

473

Figure 9(a) shows the evolution of the axial force FY versus the imposed axial displacement UY for the three calcu-474

lations shown in Fig. 4. The force is measured on the Y = 0 surface of the specimen. The results obtained with actual475
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pores, with homogenized porosity including microinertia effects, and with homogenized porosity without microinertia476

effects are represented by the red solid line, green dashed line, and orange dotted line, respectively (the same color477

coding used in Fig. 8). The force initially increases due to the strain hardening of the material. After reaching a478

peak at an imposed displacement of approximately 0.03 mm, the force begins to decrease. This reduction is caused by479

a combination of material softening, resulting from thermal effects and porosity growth, and geometric softening due480

to the thinning of the specimen (in the X direction). The oscillations observed in the FY -UY curves for simulations481

incorporating both actual pores and homogenized porosity with microinertia arise from the dynamic effects introduced482

by the porous microstructure (Jacques et al., 2012b). Following the attenuation of oscillations, the force in the simu-483

lation including microinertia matches the calculation employing the quasi-static Gurson-Tvergaard plasticity model. In484

contrast, the simulation incorporating actual pores exhibits a more rapid decline in force, indicative of an accelerated485

loss in load-bearing capacity.486

Figure 9(b) displays the global normalized void volume fraction in the notch, fnotch/f0, plotted against the imposed487

axial displacement UY . The results correspond to the calculations shown in Fig. 9(a), represented by the same color-488

coded solid, dashed, and dotted lines. The yellow markers indicate the axial displacements of the contour plots of Fig.489

4. The simulations using the Gurson-Tvergaard plasticity model with and without microinertia yield different results490

only for values of UY greater than 0.25 mm. For UY = 0.125 mm, the values of fnotch/f0 in the simulations using491

homogenized porosity with microinertia and without microinertia are 3.17 and 3.15, respectively. Microinertia leads to a492

minor 0.63% increase in porosity. In contrast, for UY = 0.5 mm, the corresponding values of fnotch/f0 are 8.60 and 7.67,493

respectively, indicating a significant increase of 12.12% in average porosity in the notch when including microinertia.494

Moreover, the increased void volume fraction observed in the calculation incorporating discrete pores across all imposed495

displacement values contributes to greater material softening, which accelerates the decrease in force illustrated in Fig.496

9(a) for large values of the imposed displacement. For instance, at UY = 0.5 mm the global porosity in the calculation497

with actual voids is 50% greater than in the simulation with homogenized porosity and without microinertia. Notably,498

the regularization effect of microinertia and discrete voids, which spreads plastic deformation throughout the notch,499

contributes to an increase in the global void volume fraction.500

501

Figure 10 presents the local normalized void volume fraction, f local
A,B /f0, as a function of the imposed axial displacement,502

UY . For the simulation with discrete voids f local
A,B is measured within an individual unit cell of the notched region. In503

contrast, for the simulations employing homogenized porosity, f local
A,B is computed within a single finite element. This504

applies both to the case where Gurson-Tvergaard plasticity with microinertia effects is used, as well as to the case505

without microinertia effects. The subscripts A and B correspond to measurements taken outside and inside the plastic506

localization band that forms in the notch (see Fig. 4). The results correspond to the same calculations analyzed in Fig.507

9, which are identified with identical colored solid, dashed, and dotted lines. The yellow markers represent the imposed508

displacement values used in the contour plots of Fig. 4.509
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(a) (b)

Figure 9: Finite element calculations for an imposed loading velocity V = 500 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Comparison of results obtained with actual pores and material modeled with von Mises plasticity
(red solid line), homogenized porosity and material modeled with Gurson-Tvergaard plasticity and microinertia effects (green dashed line) and
homogenized porosity and material modeled with Gurson-Tvergaard plasticity and without microinertia effects (orange dotted line). (a) Axial
force FY versus imposed axial displacement UY . The force is measured on the Y = 0 surface of the specimen. (b) Global normalized void
volume fraction in the notch fnotch/f0 versus imposed axial displacement UY . The yellow markers represent the imposed displacement values
used in the contour plots of Fig. 4. For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.

The data in Fig. 10(a) pertain to a unit cell located outside the void layer with the fastest growth, as indicated in510

Fig. 4(e), and outside the plastic localization band shown in Figs. 4(e’) and 4(e”). The center of the unit cell in the511

simulation with discrete voids is located at coordinates X = 1.114 mm, Y = 1.559 mm, and Z = −0.074 mm, while the512

finite element selected in the calculations with homogenized porosity is at coordinates X = 1.147 mm, Y = 1.626 mm,513

and Z = −0.074 mm. The measurements in the calculations with discrete voids and with homogenized porosity were514

taken at nearly the same location. At the onset of loading, the local void volume fraction increases nearly linearly515

with the imposed axial displacement, and for displacements below 0.2, the value of f local
A is virtually the same for the516

calculation with discrete voids and the simulations with homogenized porosity. However, the value of f local
A eventually517

ceases to increase in all three simulations. Saturation of the local normalized void volume fraction first occurs in the518

Gurson-Tvergaard model without microinertia effects, reaching a value of 5.4, followed by the calculation with discrete519

voids at 6.5, and lastly in the Gurson-Tvergaard model with microinertia effects at 9.95. The saturation marks the520

onset of elastic unloading, with earlier saturation indicating an earlier onset of plastic localization, occurring first when521

microstructural inertia is neglected.522

Figure 10(b) presents results for a unit cell located immediately above the unit cell included in Fig. 10(a), which523

lies within the void layer exhibiting the fastest growth, as indicated in Fig. 4(e), and inside the plastic localization524

band shown in Figs. 4(e’) and 4(e”). The center of the unit cell in the calculation with discrete voids is located at525

coordinates X = 1.114 mm, Y = 1.708 mm, and Z = −0.074 mm, while the finite element selected in the calculations526

with homogenized porosity is at coordinates X = 1.128 mm, Y = 1.730 mm, and Z = −0.074 mm. The local void527
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volume fraction increases monotonically throughout the entire loading process in all three calculations, and the results528

are quantitatively very similar for values of UY below 0.13. For larger imposed axial displacements, the local void volume529

fraction increases rapidly in the simulation performed with the standard Gurson-Tvergaard model without microinertia530

effects, indicating a rapid development of plastic deformation. In contrast, the value of f local
B in the localization band531

increases at a significantly slower rate in calculations utilizing discrete voids and the Gurson-Tvergaard model with532

microinertia effects, highlighting the stabilizing influence of microstructural inertia on plastic flow, consistent with the533

observations made from the contour plots in Fig. 4. The porosity evolution predicted by the homogenized model with534

microinertia shows good agreement with the results from simulations considering actual porosity. The comparison with535

Fig. 9(b) demonstrates that microstructural inertia increases global porosity within the notch by spreading plastic536

deformation, while simultaneously reducing local deformation within the localization band.537

(a) (b)

Figure 10: Finite element calculations for an imposed loading velocity V = 500 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Local normalized void volume fraction f local

A,B /f0 versus imposed axial displacement UY . The
subscripts A and B correspond to measurements taken outside and inside the plastic localization band that forms within the notch. Comparison
of results obtained with actual pores and material modeled with von Mises plasticity (red solid line), homogenized porosity and material modeled
with Gurson-Tvergaard plasticity and microinertia effects (green dashed line) and homogenized porosity and material modeled with Gurson-
Tvergaard plasticity and without microinertia effects (orange dotted line). (a) The center of the unit cell in the calculation with discrete voids
is located at coordinates X = 1.114 mm, Y = 1.559 mm, and Z = −0.074 mm, while the finite element selected in the calculations with
homogenized porosity is at coordinates X = 1.147 mm, Y = 1.626 mm, and Z = −0.074 mm. (b) The center of the unit cell in the calculation
with discrete voids is located at coordinates X = 1.114 mm, Y = 1.708 mm, and Z = −0.074 mm, while the finite element selected in the
calculations with homogenized porosity is at coordinates X = 1.128 mm, Y = 1.730 mm, and Z = −0.074 mm. The yellow markers represent
the imposed displacement values used in the contour plots of Fig. 4. For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.

4.2. The effect of loading rate538

Figure 11 shows contours of effective plastic strain for different imposed displacement values: (a)-(a’)-(a”) UY =539

0.05 mm, (b)-(b’)-(b”) UY = 0.1 mm, (c)-(c’)-(c”) UY = 0.15 mm, and (d)-(d’)-(d”) UY = 0.2 mm. The initial void540

volume fraction in the notched region is f0 = 2% and the initial diameter of the voids is ϕ = 50 µm. The difference541

from Fig. 4 is that the loading velocity has been reduced by a factor of five to V = 100 m/s. The color coding of the542
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isocontours is the same used in Fig. 4. The plots display a cross-sectional view at Z = −0.074 mm, see the Lagrangian543

coordinate system in Fig. 1.544

Subplots 11(a), ..., (d) correspond to a calculation involving actual pores. For an imposed displacement of UY =545

0.05 mm, the pores retain their initial spherical shape, but exhibit heterogeneous growth with a gradient of increasing546

plastic deformation towards the center of the specimen. The maximum effective plastic strain at the surface of the void547

nearest the origin of the Lagrangian coordinate system —see Fig. 1— exceeds 0.5. Increasing the imposed displacement548

to 0.1 mm causes some voids to develop an ellipsoidal shape, elongated perpendicular to the loading direction, with549

reduced intervoid ligaments stretching parallel to the loading direction. Compared to the calculation shown in Fig.550

4(a), ..., (e), decreasing the applied velocity to 100 m/s leads to earlier voids interaction. For a greater displacement of551

UY = 0.15 mm, some pores display a square-like cross-section due to intervoid ligament necking and coalescence with552

neighboring voids in the same Y = constant plane, reaching plastic deformations exceeding 2.5 (e.g., void 1 in Fig. 11(a)).553

Meanwhile, other voids remain much smaller in size, are unloaded, and maintain their initially spherical shape, with a554

maximum plastic deformation of 0.8 (e.g., void 2 in Fig. 11(a)), indicating that the porosity evolution has (already)555

localized. For UY = 0.2 mm, large plastic deformation is shown by only a few voids from different Y = constant planes.556

A more detailed depiction of the evolution in size and shape of the pores during loading is shown in Figs. 12 and 13.557

These figures present 3D reconstructions of the surfaces of voids 1 and 2, respectively, as indicated in Fig. 11(a). Fig.558

12 illustrates that void 1 exhibits a continuous increase in volume with loading. The pore transitions from a spherical to559

an ellipsoidal form at a displacement of 0.1 mm. As the loading process continues to UY = 0.15 mm, the void develops a560

prismatic-like shape with flattened faces due to interaction with adjacent pores. For a displacement of 0.2 mm, the void561

can no longer stretch along the X ′ and Z ′ directions, instead elongating parallel to the loading direction. Moreover, Fig.562

13 demonstrates that void 2 only shows mild deformation at the beginning of loading, developing an ellipsoidal shape563

for imposed displacements less than 0.15 mm. Further increases in loading up to 0.2 mm do not change the size and564

shape of the pore, indicating that the void is unloaded. The distinctly different behaviors of voids 1 and 2 underscore565

the heterogeneous deformation field in the notched sample. Compared to the simulation at 500 m/s depicted in Fig.566

4(a), ..., (e), the spatial distribution of plastic deformation within the notch in Fig. 11(a), ..., (e) is less uniform (due567

to the non-uniform spatial distribution of voids growth). The concentration of plastic deformation in specific pores at568

various locations indicates a less regularized localization process due to reduced inertia effects. For the same imposed569

displacement of 0.2 mm, pores in the calculation performed at 500 m/s were smaller and exhibited less plastic strain on570

their surfaces —see Figs. 4 (a), ..., (e). This highlights the stabilizing effect of inertia which delays plastic localization571

and constrains void growth.572

Subplots 11(a’), ..., (d’) correspond to a calculation with homogenized porosity and microinertia effects. For UY =573

0.05 mm, the deformation field in the specimen remains uniform, with the plastic strain not exceeding 0.05. The stress574

triaxiality within the notch reaches 4. Increasing the imposed displacement to 0.1 mm leads to heterogeneity in the575

strain field, triggering the onset of plastic deformation in a narrow strip (which corresponds to the light blue thin band576
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indicated with a green arrow). The plastic strain within the band reaches 0.12, while in the notched section outside the577

band the plastic strain is 0.1. The stress triaxiality within the localization band reaches 5. At an imposed displacement578

of 0.15 mm, plastic localization and porosity growth concentrate within a single layer of elements (for the selected mesh579

size), as the reduced applied velocity —compared to the 500 m/s case in Fig. 4— weakens the regularizing effect of580

microinertia. For a displacement of 0.2 mm, the deformation in the band reaches 1.1, sharply dropping to 0.15 in the581

grid elements immediately adjacent.582

Subplots 11(a”), ..., (d”) correspond to a calculation with homogenized porosity without microinertia effects. The583

plastic deformation contours show plastic strain concentrating within a single layer of elements for low values of the584

imposed displacement. This highlights the pathological mesh dependence of the localization process in calculations using585

standard (quasi-static) Gurson-Tvergaard plasticity. Note that for UY = 0.1 mm, the plastic deformation inside the main586

localization band, indicated by a green arrow, reaches 0.17, which is 30% higher than in the case including microinertia.587

Adjacent to this localization band, the plastic strain drops to 0.1, representing a 70% variation in plastic strain within588

a single layer of grid elements. Further increasing the imposed displacement to 0.15 mm and 0.2 mm results in a large589

rise in plastic strain within the band, while the rest of the notch remains virtually unloaded.590

591

Figure 14 provides contours of effective plastic strain for different values of the imposed displacement UY , obtained592

from calculations with an initial void volume fraction of f0 = 2% and an initial void diameter of ϕ = 50 µm. The loading593

velocity has been increased by a factor of 2.5 compared to Fig. 11, reaching V = 250 m/s. The color coding of the594

isocontours is the same used in Fig. 11. The plots display a cross-sectional view at Z = −0.074 mm.595

Subplots 14(a), ..., (e) correspond to a calculation involving discrete voids. For an imposed displacement of UY =596

0.05 mm, the pores grow homogeneously throughout the notched region while maintaining their initial spherical shape.597

Increasing the imposed displacement to 0.1 mm results in the pores adopting an ellipsoidal form, elongated perpendicular598

to the loading direction. The heterogeneity in pore shape and size becomes noticeable at an imposed displacement of599

0.2 mm. Some voids have developed more pronounced elliptical shapes than others, with effective plastic strains reaching600

a maximum of 2.2. However, the heterogeneity in void growth is less pronounced compared to the calculation at 100 m/s601

(see subplots 11(d) and 14(c)), demonstrating that the increase in inertia effects with loading velocity leads to more602

uniform pore growth and delays localization (i.e., increasing loading velocity leads to greater microstructural inertia).603

A further increase in the imposed displacement to 0.3 mm results in a broad range of void sizes and shapes within the604

notched region, see subplot (d). Some pores exhibit a square-like cross-section due to coalescence with neighboring voids605

in the same Y = constant plane, while others remain significantly smaller, unloaded, and retain the elliptical shape606

observed at lower displacements. For UY = 0.35 mm, significant plastic deformation is evident across various arrays of607

square-like cross-section voids from different Y = constant planes, connected through plastic localization bands parallel608

to the loading direction. A detailed representation of the evolution in pore size and shape during loading is provided in609

Figs. 15 and 16 which show 3D reconstruction of voids 1 and 2 indicated in subplot 14(a) —these are the same voids610
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Figure 11: Finite element calculations for an imposed loading velocity V = 100 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 50 µm. Contours of effective plastic strain ε̄p for different imposed displacement values:
(a)-(a’)-(a”) UY = 0.05 mm, (b)-(b’)-(b”) UY = 0.1 mm, (c)-(c’)-(c”) UY = 0.15 mm, and (d)-(d’)-(d”) UY = 0.2 mm. Cross-section view at
Z = −0.074 mm. Subplots (a), ..., (d) correspond to calculation with actual pores and material modeled with von Mises plasticity. Subplots
(a’), ..., (d’) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity and microinertia
effects. Subplots (a”), ..., (d”) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity
and without microinertia effects. For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.
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(a) (b) (c) (d)

Figure 12: Finite element calculations for an imposed loading velocity V = 100 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with von Mises
plasticity. 3D reconstructions of the surfaces of void 1 indicated in Fig. 11(a) for different imposed displacement values: (a) UY = 0.05 mm,
(b) UY = 0.1 mm, (c) UY = 0.15 mm and (d) UY = 0.2 mm. The origin of the Cartesian coordinate system (X ′, Y ′, Z′) is located at the center
of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.

(a) (b) (c) (d)

Figure 13: Finite element calculations for an imposed loading velocity V = 100 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with von Mises
plasticity. 3D reconstructions of the surfaces of void 2 indicated in Fig. 11(a) for different imposed displacement values: (a) UY = 0.05 mm,
(b) UY = 0.1 mm, (c) UY = 0.15 mm and (d) UY = 0.2 mm. The origin of the Cartesian coordinate system (X ′, Y ′, Z′) is located at the center
of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.
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shown in Figs. 12 and 13 for a calculation with lower imposed velocity of 100 m/s. Notice that the shape evolution of611

both voids is consistent with that observed at the loading rate of 100 m/s —see Figs. 15 and 16, and compare with Figs.612

12 and 13. Void 1 transitions from a spherical to an ellipsoidal shape, eventually adopting a prismatic-like form at large613

displacements. In contrast, void 2 deforms into an ellipsoidal shape at intermediate displacements and maintains this614

configuration upon unloading for values of UY exceeding 0.2. The primary difference in void evolution between 100 m/s615

and 250 m/s pertains to size; increasing the loading velocity results in a reduction of void size for a given imposed616

displacement, attributed to the inertial effects that slows down void growth and plastic localization.617

Subplots 14(a’), ..., (d’) correspond to a calculation where the material is modeled using homogenized porosity and618

microinertia effects. For UY = 0.05 mm and 0.1 mm, the deformation field in the specimen remains uniform, with the619

plastic strain not exceeding 0.1. The maximum value of the stress triaxiality within the notch is approximately 5. An620

increase in the imposed displacement to 0.2 mm leads to the formation of a plastic localization band, indicated by the621

light blue region marked with a green arrow. At the same imposed displacement, but with a lower loading rate of 100 m/s,622

the plastic deformation band was more developed and confined to a single layer of elements –see subplots 11(d’) and623

14(c’). The effect of microinertia at elevated loading rates delays localization and causes plastic deformation to spread624

along the notch. The contour plots for larger imposed displacements of 0.3 mm and 0.35 mm, shown in subplots 14(d’)625

and 14(e’), illustrate the gradual development of the plastic localization band, which has a finite width extending across626

several layers of elements within the grid due to the regularizing effect of the microstructural inertia. The maximum627

effective plastic strain reached for UY = 0.35 mm is approximately 0.7.628

Subplots 14(a”), ..., (d”) correspond to a calculation with homogenized porosity without considering microinertia629

effects. For an imposed displacement of 0.05 mm, the plastic deformation reaches a value of 0.045, which remains630

relatively constant throughout the notch, see subplot (a”). Further increase of UY to 0.1 mm triggers the onset of a631

localization band at the same position observed in the calculation with homogenized porosity and microinertia effects.632

The comparison of subplots 14(b’) and 14(b”) indicates that neglecting microstructural inertia causes the band to appear633

earlier in the loading process. Furthermore, neglecting microstructural inertia also accelerates the development of the634

plastic deformation band, which occupies a single row of elements, resulting in a spurious localization pattern that was635

not observed in the simulation conducted at the same speed using the dynamic homogenization model by Molinari and636

Mercier (2001) –compare subplots 14(c’)-(d’)-(e’) and 14(c”)-(d”)-(e”). For an imposed displacement of 0.35 mm, the637

maximum plastic deformation within the band is approximately 1.4, which is double that observed in the simulation638

with homogenized porosity and microinertia effects.639

640

Figure 17 includes contours of effective plastic strain corresponding to simulations with discrete pores, homogenized641

porosity including microinertia effects, and homogenized porosity without microinertia effects. The distinction between642

Figs. 11 and 14 lies in the loading velocity, which has been increased tenfold and fourfold, respectively, to 1000 m/s.643

Subplots (a), ..., (e) correspond to a calculation involving actual pores. The imposed displacements are 0.05, 0.125,644
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Figure 14: Finite element calculations for an imposed loading velocity V = 250 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Contours of effective plastic strain ε̄p for different imposed displacement values: (a)-(a’)-(a”)
UY = 0.05 mm, (b)-(b’)-(b”) UY = 0.1 mm, (c)-(c’)-(c”) UY = 0.2 mm, (d)-(d’)-(d”) UY = 0.3 mm and (e)-(e’)-(e”) UY = 0.35 mm.
Cross-section view at Z = −0.074 mm. Subplots (a), ..., (d) correspond to calculation with actual pores and material modeled with von
Mises plasticity. Subplots (a’), ..., (d’) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard
plasticity and microinertia effects. Subplots (a”), ..., (d”) correspond to calculation with homogenized porosity and material modeled with
Gurson-Tvergaard plasticity and without microinertia effects. For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.
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(a) (b) (c) (d) (e)

Figure 15: Finite element calculations for an imposed loading velocity V = 250 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with von Mises
plasticity. 3D reconstructions of the surfaces of void 1 indicated in Fig. 14(a) for different imposed displacement values: (a) UY = 0.05 mm,
(b) UY = 0.1 mm, (c) UY = 0.2 mm, (d) UY = 0.3 mm and (e) UY = 0.35 mm. The origin of the Cartesian coordinate system (X ′, Y ′, Z′) is
located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.

(a) (b) (c) (d) (e)

Figure 16: Finite element calculations for an imposed loading velocity V = 250 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with von Mises
plasticity. 3D reconstructions of the surfaces of void 2 indicated in Fig. 14(a) for different imposed displacement values: (a) UY = 0.05 mm,
(b) UY = 0.1 mm, (c) UY = 0.2 mm, (d) UY = 0.3 mm and (e) UY = 0.35 mm. The origin of the Cartesian coordinate system (X ′, Y ′, Z′) is
located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.
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0.25, 0.375 and 0.5 mm, respectively. All voids grow uniformly, showing similar levels of plastic strain across all imposed645

displacement values. This contrasts with the findings presented in the contour plots 11(a), ..., (d) for 100 m/s, where646

the distribution of void sizes and plastic strains varies significantly starting from an imposed displacement of 0.1 mm.647

The uniform growth of pores at 1000 m/s is due to inertia, which slows down void expansion and homogenizes the648

distribution of plastic deformations. The comparison of subplots 11(a), ..., (d), 14(a), ..., (e) and 17(a), ..., (e) reveals649

that, for any given imposed displacement, there are (some) larger voids in the simulations conducted with an applied650

velocity of 100 m/s and 250 m/s. Figs. 18 and 19 present 3D reconstructions of the surfaces of voids 1 and 2, respectively,651

as indicated in Fig. 17(a). Note that these are the same pores analyzed in Figs. 12-13 and 15-16 for the lower imposed652

velocities of 100 m/s and 250 m/s. The shape and size of the two voids evolve similarly, with both adopting an ellipsoidal653

form compressed along the loading direction. Void coalescence appears to result from direct impingement rather than654

ligament necking (Jacques et al., 2012c), as the voids do not exhibit the flat faces characteristic of plastic localization in655

the intervoid ligament, as observed at lower loading velocities, see Figs. 12-13 and 15-16. The evolution of the ratios b
a656

and c
a with the imposed displacement, as shown in Figs. 20(a) and 20(b), is quantitatively the same for voids 1 and 2.657

These results contrast with the size and shape evolution of these two voids at a lower velocities of 100 m/s and 250 m/s658

(see Figs. 12-13, and Figs. 15-16), where pore 1 grew much faster and eventually developed a prism-like shape, while659

pore 2 remained slightly ellipsoidal and was ultimately unloaded.660

Subplots (a’), ..., (e’) show contour plots for a calculation with homogenized porosity and microinertia effects. The661

results correspond to the same imposed displacements considered for the calculation with discrete pores. Plastic defor-662

mation uniformly increases along the notch section of the specimen under loading. No plastic localization occurs for the663

displacements investigated. Compared to the calculations at lower loading velocities of 100 m/s and 250 m/s shown in664

11(a’) ..., (d’) and 14(a’) ..., (e’), increasing the loading rate enhances the effect of microinertia, stabilizing plastic flow665

and preventing localization, thereby distributing plastic deformation more uniformly. The maximum plastic deformation666

in the notch for UY = 0.5 mm is slightly smaller than 0.4. Moreover, the stress triaxiality in the notch for an imposed667

displacement of 0.5 mm reaches a value of 16. The comparison of the results obtained using the dynamic homogenization668

approach by Molinari and Mercier (2001) for loading rates of 100, 250, 500 m/s and 1000 m/s in the contour plots of669

Figs. 11, 14, 4 and 17 clearly illustrates the transition from spurious localization confined to a single layer of elements670

to diffuse plastic straining within the notch, attributed to the stabilizing effect of microinertia on plastic localization.671

Subplots (a”), ..., (e”) include contour plots for a calculation with homogenized porosity without microinertia effects.672

The formation of a thin band with large strains is noticeable for an imposed displacement of 0.25 mm. This band consists673

of only a single layer of elements, highlighting that neglecting microinertia results in spurious plastic localization across674

all investigated loading rates (increasing the loading rate enhances macroinertia effects, but this alone is insufficient to675

regularize plastic localization for the problem addressed in this paper). At a displacement of 0.375 mm, the maximum676

deformation within the band reaches 1.18, whereas in adjacent elements of the mesh, it drops to 0.31. As displacement677

increases to 0.5 mm, the difference in plastic strain between the inside and outside of the band widens. The maximum678
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deformation inside the band rises to 1.55, while outside the band, the plastic strain has (only) increased to 0.38.679

Figure 17: Contours of effective plastic strain ε̄p for different imposed displacement values: (a)-(a’)-(a”) UY = 0.05 mm, (b)-(b’)-(b”) UY =
0.125 mm, (c)-(c’)-(c”) UY = 0.25 mm, (d)-(d’)-(d”) UY = 0.375 mm and (e)-(e’)-(e”) UY = 0.5 mm. Cross-section view at Z = −0.074 mm.
The imposed loading velocity is V = 1000 m/s, the initial void volume fraction in the notched region is f0 = 2% and the initial diameter of the
voids is ϕ = 50 µm. Subplots (a), ..., (e) correspond to calculation with actual pores and material modeled with von Mises plasticity. Subplots
(a’), ..., (e’) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity and microinertia
effects. Subplots (a”), ..., (e”) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity
and without microinertia effects. For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.

680

Figure 21 shows the evolution of the global normalized void volume fraction in the notch fnotch/f0 with the imposed681

axial displacement UY for calculations performed with discrete pores (red lines), homogenized porosity and microinertia682

effects (green lines), and homogenized porosity without microinertia effects (orange lines). Comparison of data from683

simulations carried out with imposed loading velocities of 100 m/s (solid lines) and 1000 m/s (dashed lines). The results684

correspond to the calculations shown in Figs. 11 and 17. The global porosity increases more rapidly with higher applied685

velocities due to inertia effects, which distribute plastic deformation within the notch and promote porosity growth686
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(a) (b) (c) (d) (e)

Figure 18: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with
von Mises plasticity. 3D reconstructions of the surfaces of void 1 indicated in Fig. 17(a) for different imposed displacement values: (a)
UY = 0.05 mm, (b) UY = 0.125 mm, (c) UY = 0.25 mm, (d) UY = 0.375 mm and (e) UY = 0.5 mm. The origin of the Cartesian coordinate
system (X ′, Y ′, Z′) is located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.

(a) (b) (c) (d) (e)

Figure 19: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with
von Mises plasticity. 3D reconstructions of the surfaces of void 2 indicated in Fig. 17(a) for different imposed displacement values: (a)
UY = 0.05 mm, (b) UY = 0.125 mm, (c) UY = 0.25 mm, (d) UY = 0.375 mm and (e) UY = 0.5 mm. The origin of the Cartesian coordinate
system (X ′, Y ′, Z′) is located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.

(a) (b)

Figure 20: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 50 µm. Results obtained from simulation with actual pores and material modeled with von
Mises plasticity. Evolution of the void ratios, b

a
and c

a
, with the imposed displacement UY . (a) Void 1 indicated in Fig. 17(a). (b) Void 2

indicated in Fig. 17(a). The yellow markers represent the imposed displacement values used in the 3D reconstructions of the pores shown in
Figs. 18 and 19.
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throughout the entire region. Similarly, the porosity in the notch increases more rapidly in simulations with discrete687

voids compared to those with homogenized porosity across all considered loading velocities (see also Fig. 9(b)). This is due688

to the regularization effect of the explicit representation of the porous microstructure, which promotes the development689

of more uniform plastic deformation fields (at the macroscale) and facilitates the growth of (all) pores. Moreover, at a690

loading velocity of 1000 m/s, the porosity in the notch grows slightly faster for the simulation with microinertia (at large691

strains) compared to the calculation with the quasi-static Gurson-Tvergaard model, similar to the results obtained for692

500 m/s in Fig. 9(b). Microinertia effects spread plastic deformation within the notch and promote the growth of more693

voids (in the same way that discrete pores do). In contrast, at 100 m/s, the trend is the opposite, and the simulation694

with the quasi-static Gurson-Tvergaard model predicts faster global porosity growth. For low velocities, microinertia695

effects are small, and plastic localization is confined within a single localization band that grows more rapidly in the case696

of the quasi-static Gurson-Tvergaard model, promoting faster porosity growth (see Fig. 11).697

Figure 21: Comparison of results obtained with actual pores and material modeled with von Mises plasticity (red lines), homogenized porosity
and material modeled with Gurson-Tvergaard plasticity and microinertia effects (green lines), and homogenized porosity and material modeled
with Gurson-Tvergaard plasticity and without microinertia effects (orange lines). The initial void volume fraction in the notched region is
f0 = 2% and the initial diameter of the voids is ϕ = 50 µm. Global normalized void volume fraction in the notch fnotch/f0 versus imposed
axial displacement UY . Results corresponding to imposed loading velocities of 100 m/s (solid lines) and 1000 m/s (dashed lines). The yellow
markers represent the imposed displacement values used in the contour plots of Figs. 11 and 17. For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.

698

Figure 22 shows the local normalized void volume fraction f local
A,B /f0, as a function of the imposed axial displacement,699

UY , for calculations performed with loading velocity of 100 m/s. Recall from Section 4.1 that for the simulations with700

discrete voids, f local
A,B is measured within an individual unit cell of the notched region. In contrast, for the simulations701
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employing homogenized porosity, f local
A,B is computed within a single finite element.702

The data in Fig. 22(a) correspond to a unit cell located outside (just below) the void layer with the fastest growth,703

as indicated in Fig. 11(d), and to a finite element outside (just below) the plastic localization band shown in Figs. 11(d’)704

and 11(d”). The measurements in the calculations with discrete voids and with homogenized porosity were taken at705

similar location. At the onset of loading, the local void volume fraction increases nearly linearly with the imposed axial706

displacement, and for displacements below 0.075, the value of f local
A is very similar for the calculation with discrete voids707

and the simulations with homogenized porosity. However, the value of f local
A eventually ceases to increase in all three708

calculations. Saturation of the local normalized void volume fraction occurs earlier in the simulation with discrete voids,709

reaching a value of 2.4, followed by the calculation with the standard (quasi-static) Gurson-Tvergaard model at 2.9, and710

by the Gurson-Tvergaard model with microinertia effects at 5.35. Note that the specific values of saturation porosity711

are (highly) dependent on the unit cell and finite element used for measurement, due to the heterogeneous distribution712

of porosity in the notch resulting from reduced inertia effects. However, irrespective of the selected unit cell and finite713

element, we observed that the saturation of local porosity outside the localization band occurs for a lower displacement714

than in the case of 500 m/s (shown in Fig. 10(a)), as reduced inertia effects lead to earlier plastic localization.715

The data in Fig. 22(b) pertain to a unit cell situated inside the void layer with the fastest growth in Fig. 11(d), and to716

a finite element inside the plastic localization band depicted in Figs. 11(d’) and 11(d”). The void volume fraction increases717

monotonically in all three calculations across the entire range of imposed displacements. Initially, the growth is faster in718

the simulation with discrete voids compared to the calculations with homogenized porosity. However, the f local
B /f0−UY719

curves intersect at intermediate displacement values, and subsequently, the porosity within the localization band increases720

more rapidly in the case of the standard (quasi-static) Gurson-Tvergaard model. Neglecting microstructural inertia effects721

leads to more rapid localization across all loading velocities considered (Fig. 10(b) indicates that at 500 m/s, the porosity722

within the localization band also increases more rapidly in the Gurson-Tvergaard model without microinertia effects).723

Nevertheless, it is important to note that at 100 m/s, the differences in the porosity growth within the band between the724

calculations with and without microstructural inertia effects are smaller than at 500 m/s.725

726

Figure 23 shows the local normalized void volume fraction f local
A,B /f0, as a function of the imposed axial displacement,727

UY , for calculations performed with loading velocity of 1000 m/s. The difference compared to the results presented in728

Fig. 22 is that the loading velocity is an order of magnitude greater.729

The data in Fig. 23(a) are taken adjacent (outside) to the plastic localization band depicted in Fig. 17(e”). The730

measurements in the calculations involving discrete voids and homogenized porosity were obtained from similar locations.731

The void volume fraction f local
A for the calculations conducted with discrete pores and with the Gurson-Tvergaard model732

which includes microinertia effects, exhibits a quasi-linear increase with the imposed displacement, reflecting sustained733

loading that does not result in plastic localization, see Figs. 17(e) and 17(e’). On the other hand, the simulation with the734

quasi-static Gurson-Tvergaard model predicts saturation of the porosity at a displacement of 0.3 due to the formation735
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(a) (b)

Figure 22: Finite element calculations for an imposed loading velocity V = 100 m/s, initial void volume fraction in the notched region f0 = 2%
and initial diameter of the voids ϕ = 50 µm. Local normalized void volume fraction f local

A,B /f0 versus imposed axial displacement UY . The
subscripts A and B correspond to measurements taken outside and inside the plastic localization band that forms within the notch. Comparison
of results obtained with actual pores and material modeled with von Mises plasticity (red solid line), homogenized porosity and material modeled
with Gurson-Tvergaard plasticity and microinertia effects (green dashed line) and homogenized porosity and material modeled with Gurson-
Tvergaard plasticity and without microinertia effects (orange dotted line). (a) The center of the unit cell in the calculation with discrete voids
is located at coordinates X = 0.817 mm, Y = 0.668 mm, and Z = −0.074 mm, while the finite element selected in the calculations with
homogenized porosity is at coordinates X = 0.956 mm, Y = 1.011 mm, and Z = −0.074 mm. (b) The center of the unit cell in the calculation
with discrete voids is located at coordinates X = 0.817 mm, Y = 0.817 mm, and Z = −0.074 mm, while the finite element selected in the
calculations with homogenized porosity is at coordinates X = 0.963 mm, Y = 1.051 mm, and Z = −0.074 mm. The yellow markers represent
the imposed displacement values used in the contour plots shown in Fig. 11. For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.
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of a plastic localization band, see Fig. 17(e”).736

The data in Fig. 23(b) are taken inside the plastic localization band depicted in Fig. 17(e”). The measurements737

in the simulations involving discrete voids and homogenized porosity were obtained from similar locations. In the738

calculations utilizing discrete pores and the Gurson-Tvergaard model with microinertia effects, the void volume fraction739

f local
B demonstrates a quasi-linear increase with the imposed displacement, which indicates sustained loading that does not740

induce plastic localization, see Figs. 17(e) and 17(e’) —the results are virtually quantitatively the same as those presented741

in 23(a) due to the homogeneous distribution of plastic strains within the notch. However, the calculation performed742

with the Gurson-Tvergaard model, excluding microinertia effects, predicts a significantly faster increase in porosity,743

characterized by a nonlinear concave-upward shape that indicates plastic localization, see Fig. 17(e”). At 1000 m/s, the744

differences in the porosity growth within the band between the calculations with and without microstructural inertia745

effects are larger compared to the calculations carried out for 100 m/s and 500 m/s —compare subplots 10(b), 22(b) and746

23(b).747

The results presented in Figs. 21, 22, and 23 indicate that, although the global porosity in the notch may be higher748

in the calculations involving discrete voids and homogenized porosity with microinertia effects, the local porosity within749

the localization band is greater in the calculations using the quasi-static Gurson-Tvergaard model across the entire range750

of loading velocities considered because neglecting microstructural inertia leads to faster plastic localization.751

(a) (b)

Figure 23: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 50 µm. Local normalized void volume fraction f local

A,B /f0 versus imposed axial displacement
UY . The subscripts A and B correspond to measurements taken outside and inside the plastic localization band that forms within the notch.
Comparison of results obtained with actual pores and material modeled with von Mises plasticity (red solid line), homogenized porosity and
material modeled with Gurson-Tvergaard plasticity and microinertia effects (green dashed line) and homogenized porosity and material modeled
with Gurson-Tvergaard plasticity and without microinertia effects (orange dotted line). (a) The center of the unit cell in the calculation with
discrete voids is located at coordinates X = 1.114 mm, Y = 1.856 mm, and Z = −0.074 mm, while the finite element selected in the calculations
with homogenized porosity is at coordinates X = 1.096 mm, Y = 1.7980 mm, and Z = −0.074 mm. (b) The center of the unit cell in the
calculation with discrete voids is located at coordinates X = 1.114 mm, Y = 1.708 mm, and Z = −0.074 mm, while the finite element selected
in the calculations with homogenized porosity is at coordinates X = 1.126 mm, Y = 1.900 mm, and Z = −0.074 mm. The yellow markers
represent the imposed displacement values used in the contour plots shown in Fig. 17. For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.
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4.3. The effect of void size752

Figure 24 includes contours of effective plastic strain corresponding to simulations with discrete pores, homogenized753

porosity including microinertia effects, and homogenized porosity without microinertia effects. The difference compared754

to Fig. 17 is that the void diameter has been reduced to 30 µm while maintaining the same void volume fraction of 2%.755

Subplots 24(a), ..., (e) correspond to a calculation involving actual pores. The imposed displacements are 0.125, 0.25,756

0.5, 0.75 and 0.9 mm, respectively. For UY = 0.125 mm, all the voids have virtually the same size and plastic strain.757

However, increasing the imposed displacement to 0.25 mm leads to noticeable heterogeneity in the plastic strain field,758

causing varying growth rates among different voids. This results in a distribution of void sizes that becomes evident at a759

displacement of 0.5 mm. There are small ellipsoidal pores elongated perpendicular to the loading direction that remain760

unloaded (see white arrow), while larger spherical voids are nearing coalescence (see yellow arrow). For displacements of761

0.75 and 0.9 mm, the larger pores have started to grow parallel to the loading direction due to coalescence of adjacent762

voids located at planes Y = constant (the intervoid ligament cannot longer stretch along the X and Z directions).763

Figs. 25 and 26 include 3D reconstructions of the surfaces of voids 1 and 2, respectively, as indicated in subplot 24(a).764

Void 1 expands and deforms into an ellipsoidal shape at a displacement of 0.5 mm, and upon further displacement,765

it unloads while preserving the same shape and size. In contrast, void 2 grows continuously throughout the loading766

process, transitioning from an initial spherical shape to an ellipsoidal shape, and eventually adopting a prismatic form767

due to coalescence with adjacent voids. Notice that the simulation corresponding to larger pores of ϕ = 50 µm shown768

in Fig. 17 displayed a more uniform distribution of void sizes (e.g., compare 17(e) and 24(c)). This is attributed to the769

inertial resistance to grow of the porous microstructure, which increases with pore size. Increasing/decreasing the voids770

size results in a more/less consistent growth rate among all voids within the microstructure and thereby producing a771

more/less uniform plastic deformation field.772

Subplots 24(a’), ..., (e’) correspond to a calculation using the Gurson-Tvergaard model, including microinertia effects.773

The deformation field becomes noticeable in the specimen under an imposed displacement of 0.25 mm, showing the774

development of a localization band (enclosed within a dashed green box) accompanied by lower plastic strains in the775

notched section. At a displacement of 0.5 mm, the maximum plastic strain in the band is 0.47, while in the adjacent776

elements it is 0.38. The maximum stress triaxiality inside the band for this value of the imposed displacement reaches777

a value of 30. The deformation band spans several grid elements and the distribution of plastic strains within the band778

exhibits smooth profile due to the regularization effect of microinertia which stabilizes plastic flow. Nevertheless, the779

contrast between the deformation in the band and the deformation outside it is greater than in the simulation performed780

with the same applied velocity and greater voids of 50 µm (compare 17(e’) and 24(c’)). Decreasing the pore size diminishes781

the effect of microinertia —see equation (6)— and facilitates localization, consistent with the results shown in subplots782

17(a), ..., (e) and subplots 24(a), ..., (e) for simulations with discrete pores. For instance, the maximum value of plastic783

deformation inside the band reaches 0.71 and 0.84 for imposed displacements of 0.75 mm and 0.9 mm, respectively, while784

in the adjacent elements the strain is significantly lower 0.51 and 0.55. The continuous increase in the difference in plastic785
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deformation inside and outside the band illustrates the progressive localization of deformation favored by the small pores786

size.787

Subplots 24(a”), ..., (e”) correspond to a calculation using homogenized porosity excluding microinertia effects. Recall788

that the Gurson-Tvergaard model does not account for the effect of void size on the constitutive behavior of the material,789

as porosity is represented by a single scalar variable. Thus, the results in subplots 17(a”), ..., (e”) and 24(a”), ..., (e”)790

are virtually the same. The difference is that in 24(a”), ..., (e”) the specimen thickness has been reduced 60% to match791

the sample dimensions used in the calculations performed with discrete voids and homogenized porosity accounting for792

microinertia effects. Plastic deformations concentrate early in the deformation process within a single layer of elements,793

which soon become heavily distorted, highlighting the mesh dependency of the localization process.794

795

Figure 27 displays contours of effective plastic strain for simulations with discrete pores, homogenized porosity796

including microinertia effects, and homogenized porosity excluding microinertia effects. Compared to Fig. 24, the797

diameter of the voids has been increased fivefold to 150 µm, while maintaining the same void volume fraction of 2%.798

Subplots 27(a), ..., (e) correspond to a calculation involving actual pores, with imposed displacements matching those799

in 24(a), ..., (e) to facilitate comparison between the two simulations differing solely in the size of the voids. Compared800

to Fig. 24, as the pores are larger, there are fewer pores, and the intervoid ligament is initially greater. Increasing the801

initial diameter of the voids enhances the inertial resistance of the porous microstructure. This results in the plastic802

deformation extending uniformly along the notch, causing all the pores to deform and grow similarly (notice the contrast803

with the heterogeneous growth of pores depicted in 24(a), ..., (e), where the initial diameter of the voids was five times804

smaller). For example, Figs. 28 and 29 show 3D reconstructions of the surfaces of voids 1 and 2, respectively, which805

are enclosed within a dashed white circle in Fig. 27(a). The shape and size of both pores remain very similar across806

all imposed displacement values. The pores initially elongate into an ellipsoidal shape in the direction of the load and807

eventually develop a rhombohedral form, characterized by flattened faces resulting from the coalescence of pores situated808

in planes where Y = constant. Figs. 30(a) and 30(b) show the evolution of the ratios b
a and c

a with imposed displacement809

for voids 1 and 2, respectively. The results for the two pores are almost the same. The ratio b
a monotonically increases810

with the loading, showing that the pores elongate parallel to the loading direction, and the ratio c
a is nearly 1, showing811

that the grow of the voids along the X ′ and Z ′ directions is the same. These results contrast with the calculations812

performed for smaller voids (see Figs. 7 and 20) where the pores elongated along the X ′ direction at the beginning of813

loading, and only showed an increase along Y ′ relative to X ′ if coalescence occurred. These findings highlight that the814

size of the voids and the distance between them significantly affect the evolution of the shape of the voids during loading.815

Subplots 27(a’), ..., (e’) correspond to a calculation performed with the Gurson-Tvergaard model accounting for816

microinertia effects. Plastic deformation extends uniformly across the entire notch section due to the increased inertia of817

the microstructure with large pores. In contrast to the results obtained for a pore diameter of 30 µm shown in subplots818

24(a’), ..., (e’), no localization band formation is observed. The maximum plastic deformation in the notch for imposed819
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Figure 24: Contours of effective plastic strain ε̄p for different imposed displacement values: (a)-(a’)-(a”) UY = 0.125 mm, (b)-(b’)-(b”)
UY = 0.25 mm, (c)-(c’)-(c”) UY = 0.5 mm, (d)-(d’) UY = 0.75 mm and (e)-(e’) UY = 1 mm. Cross-section view at Z = −0.044 mm. The
imposed loading velocity is V = 1000 m/s, the initial void volume fraction in the notched region is f0 = 2% and the initial diameter of the
voids is ϕ = 30 µm. Subplots (a), ..., (e) correspond to calculation with actual pores and material modeled with von Mises plasticity. Subplots
(a’), ..., (e’) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity and microinertia
effects. Subplots (a”), ..., (e”) correspond to calculation with homogenized porosity and material modeled with Gurson plasticity and without
microinertia effects. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.
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(a) (b) (c) (d) (e)

Figure 25: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 30 µm. Results obtained from simulation with actual pores and material modeled with
von Mises plasticity. 3D reconstructions of the surfaces of void 1 indicated in Fig. 24(a) for different imposed displacement values: (a)
UY = 0.125 mm, (b) UY = 0.25 mm, (c) UY = 0.5 mm, (d) UY = 0.75 mm and (e) UY = 0.9 mm. The origin of the Cartesian coordinate
system (X ′, Y ′, Z′) is located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.

(a) (b) (c) (d) (e)

Figure 26: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 30 µm. Results obtained from simulation with actual pores and material modeled with
von Mises plasticity. 3D reconstructions of the surfaces of void 2 indicated in Fig. 24(a) for different imposed displacement values: (a)
UY = 0.125 mm, (b) UY = 0.25 mm, (c) UY = 0.5 mm, (d) UY = 0.75 mm and (e) UY = 0.9 mm. The origin of the Cartesian coordinate
system (X ′, Y ′, Z′) is located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.
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displacements of 0.5 mm, 0.75 mm, and 0.9 mm is 0.43, 0.56, and 0.63, respectively. In all cases, these values are lower820

than those recorded for the simulation with 30 µm voids. Moreover, the maximum stress triaxiality within the notch for821

the same three values of the imposed displacement is 12, 7 and 5, respectively. Notice that incorporating microinertia into822

the Gurson-Tvergaard model captures the effect of pore size on the development of uniform deformation fields, consistent823

with the observations derived from calculations with discrete voids. The differences between the calculations with actual824

pores and those with homogeneous porosity and microinertia are mostly quantitative rather than qualitative. Specifically,825

modeling discrete pores results in higher maximum plastic strain values due to strain concentrations from void shapes,826

as calculations with actual voids and with homogenized porosity reflect different spatial scales of the material.827

Subplots 27(a”), ..., (e”) correspond to a calculation using homogenized porosity which does not include microinertia828

effects. The only difference from the calculation reported in 24(a”), ..., (c”) is that the specimen thickness is increased by829

a factor of five to match the sample dimensions used in the simulations performed with discrete voids and homogenized830

porosity accounting for microinertia effects. The plastic strain fields are nearly identical in 24(a”), ..., (e”) and 27(a”),831

..., (e”). The analysis of results is the same for the two calculations (refer to the discussion of 24(a”), ..., (e”) for detailed832

information).833

834

Figure 31 shows the evolution of the global normalized void volume fraction in the notch fnotch/f0 with the imposed835

axial displacement UY for calculations performed with discrete pores (red lines), homogenized porosity and microinertia836

effects (green lines), and homogenized porosity without microinertia effects (orange lines). Subplots 31(a) and 31(b)837

display the results obtained for initial void diameters of 30 µm and 150 µm, respectively, based on the calculations838

shown in Figs. 24 and 27. The results for both initial void sizes are very similar: the void diameter has little impact,839

both qualitatively and quantitatively, on the global porosity measurement within the notch (however, the void size has840

a greater impact on the local porosity within the plastic localization band, as discussed in the following paragraphs).841

The value of fnotch/f0 increases more rapidly in simulations with discrete voids compared to those with homogenized842

porosity and microinertia effects, while the lowest rate of porosity growth is predicted by calculations using the quasi-843

static Gurson-Tvergaard model. Note the oscillations in porosity evolution in calculations for ϕ = 150 µm, observed in844

both the actual porosity model and the homogenized porosity model incorporating microinertia, which reflect the impact845

of microinertia on void evolution dynamics.846

847

Figure 32 presents the evolution of the local normalized void volume fraction, f local
A,B /f0, as a function of the imposed848

axial displacement, UY , for the set of calculations presented in Fig. 24, where the initial pore diameter was 30 µm.849

The data in Fig. 32(a) correspond to a unit cell located outside (just below) the void layer with the fastest growth,850

indicated in Fig. 24(e) with a white arrow, and to a finite element outside (just below) the plastic localization band851

observed in Figs. 24(e’) and 24(e”). The local void volume fraction f local
A initially increases nearly linearly with the852

imposed axial displacement and subsequently saturates due to plastic deformation localization within the notch, see853
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Figure 27: Contours of effective plastic strain ε̄p for different imposed displacement values: (a)-(a’)-(a”) UY = 0.125 mm, (b)-(b’)-(b”)
UY = 0.25 mm, (c)-(c’)-(c”) UY = 0.5 mm, (d)-(d’) UY = 0.75 mm and (e)-(e’) UY = 1 mm. Cross-section view at Z = −0.223 mm. The
imposed loading velocity is V = 1000 m/s, the initial void volume fraction in the notched region is f0 = 2% and the initial diameter of the
voids is ϕ = 150 µm. Subplots (a), ..., (e) correspond to calculation with actual pores and material modeled with von Mises plasticity. Subplots
(a’), ..., (e’) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity and microinertia
effects. Subplots (a”), ..., (e”) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity
and without microinertia effects. For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.



46

(a) (b) (c) (d) (e)

Figure 28: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 150 µm. Results obtained from simulation with actual pores and material modeled with
von Mises plasticity. 3D reconstructions of the surfaces of void 1 indicated in Fig. 27(a) for different imposed displacement values: (a)
UY = 0.125 mm, (b) UY = 0.25 mm, (c) UY = 0.5 mm, (d) UY = 0.75 mm and (e) UY = 0.9 mm. The origin of the Cartesian coordinate
system (X ′, Y ′, Z′) is located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.

(a) (b) (c) (d) (e)

Figure 29: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 150 µm. Results obtained from simulation with actual pores and material modeled with
von Mises plasticity. 3D reconstructions of the surfaces of void 2 indicated in Fig. 27(a) for different imposed displacement values: (a)
UY = 0.125 mm, (b) UY = 0.25 mm, (c) UY = 0.5 mm, (d) UY = 0.75 mm and (e) UY = 0.9 mm. The origin of the Cartesian coordinate
system (X ′, Y ′, Z′) is located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.

(a) (b)

Figure 30: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 150 µm. Results obtained from simulation with actual pores and material modeled with von
Mises plasticity. Evolution of the void ratios, b

a
and c

a
, with the imposed displacement UY . (a) Void 1 indicated in Fig. 27(a). (b) Void 2

indicated in Fig. 27(a). The yellow markers represent the imposed displacement values used in the 3D reconstructions of the pores shown in
Figs. 28 and 29.
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(a) (b)

Figure 31: Comparison of results obtained with actual pores and material modeled with von Mises plasticity (red solid line), homogenized
porosity and material modeled with Gurson-Tvergaard plasticity and microinertia effects (green dashed line) and homogenized porosity and
material modeled with Gurson-Tvergaard plasticity and without microinertia effects (orange dotted line). The initial void volume fraction
in the notched region is f0 = 2% and the imposed loading velocity is V = 1000 m/s. Global normalized void volume fraction in the notch
fnotch/f0 versus imposed axial displacement UY . The initial diameter of the voids is: (a) ϕ = 30 µm and (b) ϕ = 150 µm. The yellow markers
represent the imposed displacement values used in the contour plots of Figs. 24 and 27. For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.

contours of plastic strain 24(e)-(e’)-(e”). The saturation of porosity outside the localization band occurs first in the854

simulation with discrete voids, followed by the standard (quasi-static) Gurson-Tvergaard model, and ultimately in the855

Gurson-Tvergaard model that incorporates microinertia effects.856

The data in Fig. 32(b) correspond to a unit cell located inside the void layer with the fastest growth, indicated in857

Fig. 24(e) with a yellow arrow, and to a finite element inside the plastic localization band shown in Figs. 24(e’) and858

24(e”). The fastest porosity growth rate within the band is associated with the quasi-static Gurson-Tvergaard model (as859

in Fig. 23(b)). However, the differences in the results obtained for the void volume fraction f local
B from the simulations860

with discrete voids, quasi-static Gurson-Tvergaard model, and homogenized porosity with microinertia are smaller than861

those obtained from the calculations with a void diameter of 50 µm in Fig. 23(b), as reducing the voids size favors rapid862

localization in the simulations with discrete voids and homogenized porosity incorporating microinertia.863

864

Figure 33 shows the evolution of the local normalized void volume fraction, f local
A,B /f0, as a function of the imposed865

axial displacement, UY , for the set of calculations presented in Fig. 27. The difference from the data shown in Fig. 32866

lies in the void diameter, which is five times larger ϕ = 150 µm.867

The results in Fig. 33(a) were obtained adjacent to (outside) the plastic localization band shown in Fig. 27(e”).868

Measurements for the simulations with discrete voids and homogenized porosity were taken from nearby locations. The869

calculation using the quasi-static Gurson-Tvergaard model predicts saturation of the void volume fraction f local
A /f0 due870
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(a) (b)

Figure 32: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 30 µm. Local normalized void volume fraction f local

A,B /f0 versus imposed axial displacement
UY . The subscripts A and B correspond to measurements taken outside and inside the plastic localization band that forms within the notch.
Comparison of results obtained with actual pores and material modeled with von Mises plasticity (red solid line), homogenized porosity and
material modeled with Gurson-Tvergaard plasticity and microinertia effects (green dashed line) and homogenized porosity and material modeled
with Gurson-Tvergaard plasticity and without microinertia effects (orange dotted line). (a) The center of the unit cell in the calculation with
discrete voids is located at coordinates X = 0.401 mm, Y = 0.579 mm, and Z = −0.044 mm, while the finite element selected in the calculations
with homogenized porosity is at coordinates X = 2.102 mm, Y = 1.768 mm, and Z = −0.044 mm. (b) The center of the unit cell in the
calculation with discrete voids is located at coordinates X = 0.401 mm, Y = 0.668 mm, and Z = −0.044 mm, while the finite element selected
in the calculations with homogenized porosity is at coordinates X = 2.160 mm, Y = 1.850 mm, and Z = −0.044 mm. The yellow markers
represent the imposed displacement values used in the contour plots shown in Fig. 24. For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.
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to plastic deformation localization within the notch. The results are similar to those presented in 32(a), as the predictions871

of the quasi-static Gurson-Tvergaard model are independent of void size. In contrast, the void volume fraction computed872

in simulations with discrete voids and with the Gurson-Tvergaard model incorporating microinertia effects shows a873

monotonic increase with the imposed displacement: in comparison to the results in 32(a), the increase in void size has874

prevented plastic flow localization in calculations accounting for microstructural inertia, see Fig. 27(a), ... (e) and 27(a’),875

... (e’).876

The results in Fig. 33(b) were obtained inside the plastic localization band shown in Fig. 27(e”). Measurements877

for the simulations involving discrete voids and homogenized porosity were obtained from similar locations. The results878

obtained with quasi-static Gurson-Tvergaard plasticity closely resemble those shown in Fig. 32(b), as the predictions of879

the model do not depend on the voids size (notice the different scale used in Figs. 32(b) and 33(b)). In contrast, the880

rate of growth of the void volume fraction obtained from calculations with discrete voids and with homogenized porosity881

incorporating microinertia effects has significantly decreased with the increase in void size —compare Figs. 32(b) and882

33(b). Additionally, the f local
B /f0 −UY curves obtained from calculations with actual pores and with Gurson-Tvergaard883

plasticity accounting for microinertia effects are similar to the results presented in 33(a), as the increase in microstructural884

inertia with void size leads to uniform rise in porosity throughout the (whole) notch.885

(a) (b)

Figure 33: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 2% and initial diameter of the voids ϕ = 150 µm. Local normalized void volume fraction f local

A,B /f0 versus imposed axial displacement
UY . The subscripts A and B correspond to measurements taken outside and inside the plastic localization band that forms within the notch.
Comparison of results obtained with actual pores and material modeled with von Mises plasticity (red solid line), homogenized porosity and
material modeled with Gurson-Tvergaard plasticity and microinertia effects (green dashed line) and homogenized porosity and material modeled
with Gurson-Tvergaard plasticity and without microinertia effects (orange dotted line). (a) The center of the unit cell in the calculation with
discrete voids is located at coordinates X = 1.559 mm, Y = 1.113 mm, and Z = −0.223 mm, while the finite element selected in the calculations
with homogenized porosity is at coordinates X = 1.528 mm, Y = 1.843 mm, and Z = −0.223 mm. (b) The center of the unit cell in the
calculation with discrete voids is located at coordinates X = 1.559 mm, Y = 1.559 mm, and Z = −0.223 mm, while the finite element selected
in the calculations with homogenized porosity is at coordinates X = 1.556 mm, Y = 1.907 mm, and Z = −0.223 mm. The yellow markers
represent the imposed displacement values used in the contour plots shown in Fig. 27. For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.
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886

The results presented in Figs. 31, 32, and 33 indicate that, although the global void volume fraction within the887

notch may be greater for calculations performed with actual pores across the entire range of void diameters investigated888

(for the loading velocity 1000 m/s), increasing the void size enhances microstructural inertia, which slows down the889

development of plastic localization and reduces the local void volume fraction within the plastic localization band. In890

addition, increasing void size leads to greater discrepancies between the predictions of porosity growth within the plastic891

localization band derived from calculations that account for microstructural inertia and those obtained from simulations892

utilizing the quasi-static Gurson-Tvergaard model.893

4.4. The effect of void volume fraction894

Figure 34 shows contours of effective plastic strain from simulations with discrete pores and homogenized porosity895

including microinertia effects. The difference compared to Fig. 27 is that the void volume fraction has been reduced to896

0.5%, while maintaining a void size of 150 µm. For the sake of brevity, the results for homogenized porosity without897

microinertia effects are not included.898

Subplots 34(a), ..., (e) correspond to a calculation involving actual pores. The imposed displacements are 0.1, 0.2,899

0.4, 0.6 and 0.75 mm, respectively. Compared to Fig. 27, as the void volume fraction is less, there are fewer pores, and900

the intervoid ligament is initially greater. All pores expand at a consistent rate and display nearly identical changes in901

shape and size as loading progresses. The significant inertia effects due to the large pore size and high applied velocity902

result in a uniform void growth within the notch. Fig. 35 presents the 3D reconstruction of void 1, which is enclosed903

within a dashed white line in subplot 34(a). The pore elongates in the loading direction, adopting an ellipsoidal shape.904

Fig. 38(a) shows the evolution of the ratios b
a and c

a with the imposed displacement. Note that c
a remains approximately905

1 throughout the entire loading process, showcasing uniform growth in both the X ′ and Z ′ directions. On the other906

hand, the ratio b
a shows a continuous increase upon loading, similar to the calculation with initial void volume fraction907

of 2%, as seen in Fig. 30. This contrasts with the simulations shown in Figs. 17 and 24, where smaller pore sizes and908

larger void volume fractions resulted in more rapid initial growth of the voids perpendicular to the loading direction.909

These results underscore the impact of void spacing on the evolution of pore shape and size during loading.910

Subplots 34(a’), ..., (e’) include contour plots for a simulation performed with homogenized porosity and microinertia911

effects. Consistent with the results obtained from the calculation with discrete voids, the important inertia effects912

resulting from the large pore size and high applied velocity produce a uniform plastic strain field within the notch. No913

plastic localization is observed over the range of imposed displacements investigated.914

915

Figure 36 shows contours of effective plastic strain from simulations with discrete pores and homogenized porosity916

including microinertia effects. The sole difference from Fig. 34 is the fourfold increase in void volume fraction to 4%,917

resulting in a significant reduction in the distance between pores.918
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Figure 34: Contours of effective plastic strain ε̄p for different imposed displacement values: (a)-(a’)-(a”) UY = 0.1 mm, (b)-(b’)-(b”) UY =
0.2 mm, (c)-(c’)-(c”) UY = 0.4 mm, (d)-(d’)-(d”) UY = 0.6 mm and (e)-(e’)-(e”) UY = 0.75 mm. Cross-section view at Z = −0.353 mm. The
imposed loading velocity is V = 1000 m/s, the initial void volume fraction in the notched region is f0 = 0.5% and the initial diameter of the
voids is ϕ = 150 µm. Subplots (a), ..., (e) correspond to calculation with actual pores and material modeled with von Mises plasticity. Subplots
(a’), ..., (e’) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity and microinertia
effects. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.

(a) (b) (c) (d) (e)

Figure 35: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 0.5% and initial diameter of the voids ϕ = 150 µm. Results obtained from simulation with actual pores and material modeled with
von Mises plasticity. 3D reconstructions of the surfaces of void 1 indicated in Fig. 34(a) for different imposed displacement values: (a)
UY = 0.1 mm, (b) UY = 0.2 mm, (c) UY = 0.4 mm, (d) UY = 0.6 mm and (e) UY = 0.75 mm. The origin of the Cartesian coordinate system
(X ′, Y ′, Z′) is located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.
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Subplots 36(a), ..., (e) correspond to the calculation with discrete voids. Similar to the simulations with initial919

porosities of 0.5% and 2% shown in Figs. 34 and 27 (where the applied velocity and pore size are the same), the large920

size of the pores and the high loading velocity enhance inertial effects, resulting in a uniform void growth within the921

notch, with all pores maintaining the same shape. The difference compared to the calculations involving lower void922

volume fractions is that pores grow more slowly and coalesce earlier due to their closer spatial proximity. Fig. 37923

presents the 3D reconstruction of void 1, which is enclosed within a dashed white circle in subplot 36(a). The evolution924

of the void shape is similar to that of the pores shown in Figs. 28 and 29 for f0 = 2%. Initially, the void elongates into925

an slightly ellipsoidal shape in the direction of the load, eventually developing a rhombohedral form characterized by926

flattened faces, resulting from the coalescence of pores located in planes where Y = constant. The difference compared927

to simulations with void volume fractions of 0.5% and 2%, as shown in Figs. 35 and 28–29, is that for 4% void volume928

fraction, the pores exhibit reduced growth and a more distinct rhombohedral shape due to earlier coalescence. Fig. 38(b)929

shows the evolution of the ratios b
a and c

a with the imposed displacement. The ratio c
a is nearly 1, showing that the grow930

of the voids along the X ′ and Z ′ directions is the same. The ratio b
a also remains nearly constant at 1 throughout the931

entire deformation. The comparison with Figs. 30 and 38(a) illustrates that as the void volume fraction increases, pores932

expand less along the loading direction, resulting in a more pronounced rhombohedral shape. In contrast, decreasing the933

void volume fraction allows voids to deform more freely, leading to shapes elongated parallel to the loading direction and934

forming an ellipsoidal shape.935

Subplots 36(a’), ..., (e’) present contour plots for a simulation performed with homogenized porosity and microinertia936

effects. The plastic strain distribution within the notch is relatively uniform; however, for imposed displacements ex-937

ceeding 0.5 mm, a diffuse localization band indicated with a white arrow in 36(a’), ..., (c’) begins to form. In comparison938

to the results shown in 34(a’), ..., (c’), these findings indicate that an increased void volume fraction promotes plastic939

localization in simulations with homogenized porosity.940

5. Summary and conclusions941

This study analyzed the impact of microinertia on plastic localization, void growth, and coalescence in ductile porous942

materials subjected high strain rates. Finite element simulations were conducted on a flat, double-notched specimen943

under dynamic plane strain tension, employing three distinct modeling approaches: (1) discrete porosity within a matrix944

material described by von Mises plasticity; (2) homogenized porosity using standard quasi-static Gurson-Tvergaard945

plasticity and (3) homogenized porosity using Gurson-Tvergaard plasticity extended by Molinari and Mercier (2001)946

to account for microinertia effects. The porous microstructures used in the simulations were representative of additive947

manufactured metals, with initial void volume fractions between 0.5% and 4% and pore diameters from 30 µm to 150 µm.948

All calculations were performed under considering uniform void size distributions. The applied tensile velocities ranged949

from 100 m/s to 1000 m/s, resulting in strain rates between 105 s−1 and 106 s−1, and stress triaxiality values from 4 to950

30. The primary conclusions drawn from this research are as follows:951
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Figure 36: Contours of effective plastic strain ε̄p for different imposed displacement values: (a)-(a’)-(a”) UY = 0.1 mm, (b)-(b’)-(b”) UY =
0.2 mm, (c)-(c’)-(c”) UY = 0.4 mm, (d)-(d’)-(d”) UY = 0.6 mm and (e)-(e’)-(e”) UY = 0.75 mm. Cross-section view at Z = −0.177 mm. The
imposed loading velocity is V = 1000 m/s, the initial void volume fraction in the notched region is f0 = 4% and the initial diameter of the
voids is ϕ = 150 µm. Subplots (a), ..., (e) correspond to calculation with actual pores and material modeled with von Mises plasticity. Subplots
(a’), ..., (e’) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity and microinertia
effects. Subplots (a”), ..., (e”) correspond to calculation with homogenized porosity and material modeled with Gurson-Tvergaard plasticity
and without microinertia effects. For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.

(a) (b) (c) (d) (e)

Figure 37: Finite element calculations for an imposed loading velocity V = 1000 m/s, initial void volume fraction in the notched region
f0 = 4% and initial diameter of the voids ϕ = 150 µm. Results obtained from simulation with actual pores and material modeled with von
Mises plasticity. 3D reconstructions of the surfaces of void 1 indicated in Fig. 36(a) for different imposed displacement values: (a) UY = 0.1 mm,
(b) UY = 0.2 mm, (c) UY = 0.4 mm, (d) UY = 0.5 mm and (e) UY = 0.75 mm. The origin of the Cartesian coordinate system (X ′, Y ′, Z′) is
located at the center of the void, with X ′, Y ′ and Z′ being parallel to the X, Y and Z axes, respectively.
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(a) (b)

Figure 38: Finite element calculations for an imposed loading velocity V = 1000 m/s and initial diameter of the voids ϕ = 150 µm. Results
obtained from simulation with actual pores and material modeled with von Mises plasticity. Evolution of the void ratios, b

a
and c

a
, with the

imposed displacement UY . (a) Void 1 indicated in Fig. 34(a) which corresponds to a calculation with initial void volume fraction in the notched
region f0 = 0.5%. (b) Void 1 indicated in Fig. 36(a) which corresponds to a calculation with initial void volume fraction in the notched region
f0 = 4%. The yellow markers represent the imposed displacement values used in the 3D reconstructions of the pores shown in Figs. 35 and 37.

� The explicit modeling of the porous microstructure regularizes plastic localization, eliminating mesh sensitivity in952

the finite element results by controlling localization size through void dimensions across the entire range of loading953

velocities examined.954

� The calculations performed using the standard quasi-static Gurson-Tvergaard plasticity model result in spurious955

plastic behavior throughout the full spectrum of loading rates investigated, due to the formation of a localization956

band confined to a single layer of elements within the mesh discretization.957

� The simulations employing the dynamic homogenization model proposed by Molinari and Mercier (2001) demon-958

strate the regularizing effect of microinertia, mitigating discretization sensitivity and producing mesh independent959

results for plastic localization (except for the lowest applied loading velocity).960

� The computations incorporating discrete pores indicate that increasing loading rate and void size delays and961

slows down the formation and development of plastic localization. The same trend is observed using the dynamic962

homogenization approach of Molinari and Mercier (2001). In contrast, the simulations employing standard Gurson-963

Tvergaard plasticity do not account for the influence of void size on plastic localization and exhibit limited sensitivity964

to loading rate.965

� In the simulations with discrete voids and homogenized porosity accounting for microinertia effects, plastic defor-966

mation is spread throughout the notch, resulting in a global porosity that exceeds that observed in analyses using967

the standard Gurson-Tvergaard model. In contrast, the earlier and more rapid localization observed in simulations968

employing standard Gurson-Tvergaard plasticity leads to higher local porosity values within the plastic localization969

band.970
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� The increased porosity growth within the localization band observed in the simulations using the standard Gurson-971

Tvergaard model becomes more pronounced compared to the results obtained with discrete voids and homogenized972

porosity accounting for microinertia effects as the loading rate and void size increase.973

� The analysis of discrete pore simulations reveals that increases in loading rate and void size reduce the rate of974

void growth, resulting in uniform expansion and consistent shape evolution across all voids within the notch,975

in agreement with the predictions of the dynamic homogenization approach proposed by Molinari and Mercier976

(2001). Furthermore, decreases in loading rate and void size in the calculations involving discrete pores lead to977

heterogeneous distributions of void growth, along with variations in void shape and size, which contribute to earlier978

coalescence.979

� In the calculations involving discrete pores, an increase in the initial void volume fraction decreases the distance980

between voids, restricting their growth and promoting coalescence for smaller values of the imposed displacement.981

This behavior consistent with the results obtained from the dynamic homogenization approach proposed by Molinari982

and Mercier (2001), which predicts that a higher initial void volume fraction promotes plastic localization.983

The systematic comparison of calculations performed with explicitly resolved porosity and homogenized porosity984

demonstrates that accounting for microstructural inertia is critical for accurately capturing the influence of loading985

rate and void size on void growth and plastic localization in porous materials subjected to high strain rates. This986

underscores the effectiveness and advantages of the constitutive model introduced by Molinari and Mercier (2001) for987

simulating engineering problems involving porous ductile materials subjected to high velocity impacts. However, the988

dynamic homogenization approach used in this work does not account for coalescence, which presents an opportunity for989

improvement in the model of Molinari and Mercier (2001) to effectively capture the transition from ligament necking to990

direct impingement observed in discrete void calculations as the loading rate increases. Future computational research991

should also focus on investigating porous microstructures with varying void sizes, while also conducting experimental992

validation of the effects of microinertia on plastic localization and dynamic fracture using additive manufactured materials993

with characterized / controlled porous microstructures. These research efforts are currently underway.994
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Vaz-Romero, A., Rodŕıguez-Mart́ınez, J.A., Arias, A., 2015. The deterministic nature of the fracture location in the1162

dynamic tensile testing of steel sheets. International Journal of Impact Engineering 86, 318–335.1163
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