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Abstract: 

To limit the impacts of climate change, the carbon dioxide CO2 emissions (CE) correlated with the 

energy sector must be decreased. Reduction of CE will have a positive effect on the atmosphere 

by avoiding the adverse impact of global warming. To attain an eco-environment, the initial energy 

resource needs to move from traditional fossil fuels to unpolluted renewable energy (RE). Thus, 

enhancing the utilization of RE actively decreases air pollution and adds secure sustainable energy 

allocation to ensure future energy needs. Integrating sources of RE not only drops CE but also 

decreases fuel consumption, leading to significant economic savings. This paper presents the 

transition of global energy that will have a largely positive impact on the growth and future stability 

of economies with cost-effective and more sustainable all over the world. Significant reductions 

can be accomplished by using applicable policies and technologies. In the context of current 

discussions about climate change and the reduction of CE, this paper critically analyses some 

policies, technologies, and commonly discussed solutions. Technologies like digital twin (DT), 

transfer learning (TL), Edge Computing (EC), Distributed Computing (DC), and some other 

technologies with their work for the reduction of CE are discussed thoroughly in this paper. The 

given techniques in this survey paper present the best optimal solutions for CE reduction. 

Keywords: CO2 emissions; Renewable Energy Integration; Edge Computing; Transfer Learning; 

Distributed Computing. 

Nomenclature: 

CE Carbon Emission 

RES Renewable Energy Supply 

TTL Task Transfer Learning 

SDGs Sustainable Development Goals  
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RMSE Root Mean Square Error 

GDP Gross Domestic Product  

LCOE levelized Costs of Electricity  

GHG Green House Gas 

IoT Internet of Things 

NREAPs National Renewable Energy Action Plans  

CCS carbon capture and storage 

OECD Economic Cooperation and Development  

NPC Net Present Cost  

EKC Environmental Kuznets Curve  

MFHC Multi-Family Housing Complexes  

ML Machine Learning 

 

I. Introduction: 

A special article of the IPCC is presented on global warming of 1.5°C, expressing that climate 

change (CC) has a worse impact than projected [1], [2], [3]. Warming human-induced went higher 

than levels of pre-industrial at 1°C approximately, indicating severe effects of climate change [4]. 

The warmest years are recorded from the last two decades [5], [6], [7]. Weather incidents are 

becoming more extreme. In [8], [9], [10], [11], [12], the survey shows that the public is very 

disappointed about climate change as they face a challenge of intensity and enhancing the number 

of phenomena such as sea level increase or storms, fires, droughts, and floods. Climate change is 

assumed to be worse than many different types of diseases. It is human-caused, and the major 

reason is the fossil fuel enhancing combustion to cross the energy growth requirement [13], [14], 

[15], [16]. 

Several choices are present for the removal of CO2. CO2 emission (CE) can be acquired at point 

bases such as non-energetic regions like cement plants or traditional plants that eject flue gases. 

However, a few plants are ancient and cannot be retrofitted. Further, the removal system of CO2 is 

present in some plants and does not capture the whole emissions just the average rate of 50-94% 

range [17], [18]. In contrast, directly acquiring the emission of CO2 is not possible by marine 

transport and aviation of long-distance. A huge number of minor emitters, like transport regions, 

interpret 50% of emissions of global GHG, as just difficult to neutralize by traditional applications 

capture of CO2 [17]. These proofs are undeniably required to find extra clarifications capable of 

acquiring CO2 free from location and origin. 

Another mitigation of the CC technique is acquiring CO2 clearly from the air. Hitherto, some plants 

are naturally doing it. Nonetheless, they did not continue to enhance the emission of anthropogenic  

[19], [20], [21], [22]. Afforestation, bioenergy with acquisition of carbon and storage, and 

improved weathering were present to decrease the dilution of CO2 in the atmosphere [23]. 

However, it limits their commercial feasibility, and all these calculations are linked to risks [24]. 

Climate change's recent development and enhanced emission of carbon dioxide (CO2) worldwide 

reveals that, even though the renewable energy (RE) contribution to the main energy source is 



extending, all countries must enhance their struggles considerably to decarbonize the energy zones 

in the upcoming years [25]. 

Some significant literature on energy networks evaluates the justification of CC with a fall in the 

intensity of carbon emissions through all economic regions usually called “deep decarbonization”. 

Currently, literature also highlights the requirement for the ‘emission of net-negative’ or ‘net-zero’ 

energy network that decarbonizes the total economy, concealing energy demand and supply, with 

other emission sources comprising forestry, land use, agriculture, and industrial processes. The 

decarbonization level relies on the scientific group results that reduce unalterable destruction from 

CC, concentration of GHG would not be beaten, e.g., a goal of 450 parts per million (ppm) of CO2 

[26]. 

The decarbonization (DB) of energy zones has been the focus of research for many years, and just 

gained high attention. It is usually conceded that the maximum noticeable way to accomplish 

decarbonization is the RE use. Therefore, several countries previously used an unceasingly 

enhancing share of renewable resources, like hydro, geothermal, solar, or wind to produce 

electricity and several countries have now gained very huge contributions of RE for the generation 

of electricity due to hydropower, like Costa Rica (93%), Norway (97%), and Paraguay (99%) [16]. 

USA and China had the largest wind energy installation and capacity of solar photovoltaics 

worldwide in 2019 [27]. 

RE integration is still a challenging dare usually divided into social issues, economic, and 

technological. The supreme problem is to confirm that the selection of technology is accessible at 

a suitable cost and the required scale, especially for zones that are hard to decarbonize, such as 

transport or industry [28], [29], [30]. [31] reported that Sustainable Development Goals (SDGs) 

focus on risks created by the CC impact in reversing and eroding decades of development on 

SDGs, food protection, and inequality. In this framework, a global energy network change is of 

extreme significance as the use of energy is accountable for the majority of emissions of global 

greenhouse gas (GHG) [32]. Transition concerns the huge contribution of RE will abridge gaining 

a universal approach to affordable and clean energy, reducing water scarcity, and decreasing 

emission of GHG by excluding the usage of freshwater in thermal electricity plants [33]. This 

transition has previously happened with the availability of RE higher than 27% of the generation 

of global electricity in the last of 2019 [34], adding the production of RE technologies to almost 

11%, mainly solar photovoltaics (PV) and wind turbines. Focused on the reduction of cost, RE is 

huge cost modest with traditional thermal electricity plants, in some RE zones budget is less than 

the running budget of existing nuclear and fossil power plants [35], and solar has appeared as the 

source of the least minimum cost of generation of electricity in mankind's history [36], [34]. 

The flow of this survey is given in Figure 1. 



 

Figure 1. The flowchart of this survey paper. 



 

A. Contributions: 

A complete study of energy evolution regarding decarbonization with background history and CO2 

status has been explained in section II. The goals of energy unions for higher sustainability with 

significant issues and particular risks are described in section III. Section IV and Section V define 

the significance of CE reduction and precautions to take to limit CO2. The environmental Kuznets 

Curve is explained in section VI with their benefit of carbon emission reduction. The economic 

benefits of using RE are given in section VII. Section IX explains the architecture of controlling 

Low-carbon by driven digital twin Job-shop manufacturing with decision and optimization 

variables. The optimal combination and the best technique of modeling data mining techniques 

with the formation and validation of MFHC clusters are described in section X. Principles for 

designing less carbon emission with computing and communication footprint by using federated 

learning are explained in section XI. Blockchain technology with challenges and solutions of 

carbon trading are described in section XIII. Monitoring systems of IoT and green IoT with ICT 

applications for decreasing CE and their drawbacks are given in section XIV. Metaverse Green 

efforts with different layers are explained in section XV. The roles of edge computing and 

distributed computing are explained in sections VII and VIII. Section VIX explains the economic 

benefits of the generation of RE with policy scenarios and the global creation of jobs. Conclusion 

and future research are given in section VX. Various technique's roles in the reduction of CE and 

their major contributions are given in Table 1. 

Table 1. Main contributions of this paper. 

Reference Year Contribution 

[37] 2020 Discuss the decarbonization challenges in the energy sector. 

[38] 2021 Evaluate the blockchain system for CE trading utilizing the smart contract 

and blockchain of things. 

[39] 2022 Discuss directions and ongoing efforts of carbon neutrality meet with the 

metaverse.  

[40] 2021 Discuss the optimization of reducing CE with cutting parameters by using 

digital twins. 

[41] 2023 Evaluate the task transfer learning for the prediction of total hydrocarbon 

emissions.  

[42] 2022 Evaluate the technique of new hybrid data mining to forecast the GHG. 

[43] 2023 Discuss the reduction of carbon and energy footprint Analysis of 

Distributed and Federated Learning. 

[44] 2019 Evaluate the Job creation towards 100% RE by 2050 during the global 

energy transition. 

[45] 2020 Discussed the role of AI in attaining the goals of sustainable development.  

[46] 2021 Evaluate the investigation of energy sustainability by using reliable RE to 

reduce CE in a high-potential area. 

[47] 2014 Discuss the IoT and BOM-based life cycle assessment of CE decreases 

and energy-saving of products. 



[48] 2024 Evaluate the algorithm of distributed computing for the electricity flow of 

CE and intensity of CE. 

Our 

Survey 

2024 Thoroughly analyze the different techniques and algorithms for reducing 

carbon emissions towards renewable energy. 

 

II. Evolution of Energy concerning decarbonization (DB): 

A. Behind the history: 

The first casual effort worldwide to stabilize and control the deliberation of GHG in the 

environment occurred in 1992 in Rio De Janeiro at the Earth Summit, where several countries 

decided to the United Nations Framework Convention on Climate Change (UNFCCC) [49]. The 

crucial aim of this agreement is to “attain a concentration of greenhouse gas stabilization in the 

environment at a rank that would stop dangerous interference of anthropogenic with the climate 

network” [50]. This rank is attained within “a sufficient time frame to permit the ecosystem to 

familiarize itself naturally in the climate alteration, to confirm that production of food is not 

vulnerable and to permit the development of the economy to continue sustainably” [50]. 

The United Nations described three procedures that assist some countries with devotions under the 

procedure of Kyoto in extending their drop of target emissions cost-effectively [51], [52]: 

1. Trading of emissions: 

The organizations have limitations on emissions, which are stated as allowances of emissions. The 

allowances for emissions can be operated among organizations that are below or above their 

objectives. 

2. Mechanisms of Clean Development (MCD): 

Organizations can execute projects of emissions reduction in emerging countries and receive 

certified saleable credits for emission reduction (CER).   

3. Implementations of Joint (IJ):  

This method allows organizations to earn a reduction of emission units from the removal or 

reduction of emission units project with another organization. 

The goal of Sustainable Development 7 has the scale to “confirm the universal way to modern, 

sustainable, reliable and affordable services of energy by 2030” [53]. Agreed success indicators 

are the portion of the population with primary and electricity reliance contact on technologies and 

fuels, the share of RE in the ending total use of energy, and the intensity of energy calculated about 

gross domestic product (GDP) and primary energy. 

B. Status of CO2 global emissions: 



Plenty of certificates have been completed on friendly climate investments that are not 

economically attractive. The profit is built through schemes of emission dealing that are not 

devoted to research or technology of low carbon, which caused a deficiency of struggle to attain 

decarbonization. ETSs did not include the agriculture sector, buildings, or transport because 

extreme emissions exist in them. For IJ and MCD, there was no enticement for security caused by 

less emission-certified decreases. Overall, there was a reduction of monitor and no evaluation of 

sustainability in the state for each methodology, which made it tough to display the development. 

Since 1990, the population of the world has been increasing steadily, almost reaching 8 billion in 

2022. It is predicted in 2060 to touch 10 billion. However, the number of people without electricity 

retrieve has been reducing since 1990 and dropped by less than one billion in 2015 for the first 

time and we expect that this number will further decline. This growth indicates that the energy 

demand will further increase. In [54], [55] predict an enhancement in the providing efficiency and 

utilize the energy of ‘end-use’, which would respond to the demand enhancing from the rising 

population. To classify the maximum potential for reducing the emission of CO2, the emissions 

from the end-use and secondary sectors of energy are inspected. The maximum emissions are 

linked with the generation of heat and electricity, and considering industry in all areas of the world, 

see Figure 2 [56]. The emission in the world per sector region presents that the emission of CO2 in 

Asia from the generation of heat and electricity is huge. Emissions in Asia from the industry and 

building sectors are also very high compared to other sectors and transport did not add in 

international aviation and marine [57]. 

 

Figure 2. maximum emissions in all areas of the world. 

III. Energy Union Goals for Greater Sustainability: 



The European Commission (EU) has implemented a scheme of framework to determine an Energy 

Union with goals to contribute to alteration towards economic competitiveness, energy security, 

and higher sustainability [58]. The union's attention to forming cooperation between the Member 

States and higher solidarity to diversify and pool energy resources. It would add participation of 

energy markets and strengthen the interconnectedness of transmission where compulsory to ‘build 

the EU number one in RE in the whole world and win the battle verses to the global warming’ 

[58], [59]. 

A. Significant problems: 

Energy union faces two significant problems that have appeared associated with governance. The 

first matter is the time frame and overall objective of the union. Specifically admonished that to 

accomplish the aim of the Paris Contact, a ‘red line’ of attaining GHG net-zero emissions by 2050 

was required to prevent liabilities for the generation. Considering some state's members presented 

unwillingness to indicate specific data [60]. The second important concern is the interconnection 

level that would be required to attain such aims. Hanger and Lilliestam [61] define the conflicting 

opinions of the two associations that support 100% RE futures for DESERTEC [62], 

EUROSOLAR [63], and Europe. On the other side, EUROSOLAR supports energy 

decentralization and the disempowerment of the structures and actors that have generated an 

undemocratic and unsustainable energy organization [64].  

If we consider DESERTEC, it imagines an extremely regulated and centralized network of export 

and import wind and solar systems throughout Europe [65]. Moreover, the third selection is 

possible. Battaglini et al. [66] support a methodology for Europe that merges the centralized super 

grid and decentralized smart grid to generate a vision of a super smart grid, contending that “the 

two ideas are matching and must be present to assure an evolution to a decarbonized economy”. 

In ref [67], Adnan et al suggested optimal scheduling strategies for smart home energy networks. 

1. Problems of Attaining Renewable energy: 

The RE 100% transition required political aid. It also required novelty, not only policy strategies 

but also efficient governance, technological, and smart measures. Adnan et al. [68] proposed the 

super smart grid unleashing the energy-efficient integration of RE. To accomplish these goals, 

many countries have to reread their strategies for energy transition, governance, and procedures to 

add financial encouragement for the transition. Thanks to previous instruments and measures to 

stimulate RE, the RE cost has been substantially less market diffusion and technological learning, 

and improved scale of economics. There are united EU aims explained to enhance the RE share. 

The general policy needed the EU to achieve 20% at least of its consumption of whole energy from 

RE by 2020. Also, EU all countries must confirm that 10% of their fuels are required for the 

transportation of RE resources by 2020 in National Renewable Energy Action Plans (NREAPs). 

From 2007 to 2017 time period, the RE capacity installed by Europe grew from 258 GW to 512 

GW [69]. As shown in Figure 3, progress mainly comes from bioenergy (94% plus), onshore wind 



(180% plus), offshore wind (1365% plus), and solar (1966% plus). RE capacities are growing 

mostly wind and solar have enhanced competitiveness and reduced the cost of RE based on 

levelized costs of electricity (LCOE) [70]. The technology of storage also gives similar results of 

cost reductions mainly in the batteries [69]. Therefore, joining storage and RE may suggest a power 

solution of low cost in the future [66].  

 

Figure 3. Installed RE capacity. 

2. Particular risks for low-carbon energy: 

The generation of nuclear power and the scheme of carbon capture and storage (CCS) is planned 

as a system of low-carbon energy for future solutions [70]. However, both contain such particular 

risks and huge costs that the comparative benefits to culture are progressively hard to see. Nuclear 

power has steadily enhanced over the previous decades in the LCOE position. This is caused by 

ever-huge expenditures of assets that look from enhancing the complexity of the system, overruns 

of construction time, huge budget, and a requirement to shelter the society from terrorism threats 

and accidents of nuclear danger. Further, indirect and direct subsidies of the public for nuclear are 

at a huge level. Notable of these adds the socialization of several risks linked with nuclear power. 

There are many arguments why the fossil energy viability that relies on CCS is also doubtful. Ram 

et al. [71] review how CCS characterizes an option of high risk, and high cost on social grounds, 

environmental, and economic grounds. Firstly, it is not neutral of carbon, and future leakage risks 

will need efforts of vigilant management for a generation. Secondly, CCS-based fossil fuel 

complicates the point that CO2 is not only a dangerous discharge linked with fossil fuels and does 

nothing to report such dangers to environmental health and humans as the emission of heavy metal, 

nitrogen oxide, and sulfur oxide. Third, RE is less costly than the CCS. Fourth, construction and 



budget assaults add to the technology with the poor economy that has yet to act the experience 

required to capture carbon at a large scale.  

3. Share of RE: 

For these arguments, the system of RE 100% has been suggested as economically viable and 

feasible clarification on a global scale [71], and there seems to be a rising organization of 

systematic literature to help this [72]. 100% RE with energy scenarios has also been recognized as 

compliant with the sustainability criteria in a wide range and regards are known universal 

boundaries [73]. Currently modeling work in Europe also launched the economic possibility and 

technical effectiveness of RE's extraordinary share, and the strong backup function of transmission 

interconnections is highlighted [74], [75], [76], [77], [78], [79], [80], [81]. Moreover, Child et al. 

[82] suggested that the technology of storage could help an evolution concerning a cost-optimal, 

system of 100% RE for Europe. Further, the majority of this work did not argue the role of 

transmission interconnections and flexible generation in feature, nor was the sufficient discussion 

to permit references from a document viewpoint [83].  

4. Significant Features:  

Features are vital tools for energy experts and policymakers. They can support policymakers in 

setting socio-political arrangements for concentrating energy and environmental problems like air 

pollution and global warming [84],[36]. Energy features are basic measures that support avoiding 

factors disturbing the environment (emission of CO2, GHG) and increasing the population's life 

quality. The available energy and the environment are two difficult problems directly prompting 

the consumer demand for energy supply and GHG reduction rate. The features in Table 2 show an 

entry for energy experts and policymakers to come up with an altered practical technique to 

enhance conservation sustainability while completing energy requirement [84], [85]. Table 2 also 

gives information on the maximum difficult indicator that has the highest effect on the 

environment and energy.  

Table 2. The most critical features for energy and environment. 

Features Energy        Environment 

Municipal waste generation strength × √ 

Instruments used for environmental policy × √ 

Green space evolution × √ 

Energy Investment √ × 

Urban planning √ √ 

Recent technology √ √ 

Share electricity generation √ √ 

Forest area × √ 

Energy efficiency √ × 

Yearly freshwater withdrawal × √ 



Policy √ √ 

The strength of using fish resources × √ 

Energy equity and access √ × 

Quality of freshwater × √ 

The pattern of changing consumption √ √ 

Treatment of wastewater × √ 

Share transport of renewable √ √ 

Emission intensities × √ 

Final consumption  √ × 

Reduction of GHG × √ 

 

IV. Significance of dropping CO2 emissions: 

Because of the rising alarms about universal CC, CF alleviation is formally a serious subject 

whereby in-depth investigation and wide research are being conducted to discover sustainable 

solutions as it is measured to be one of the focal points [86]. In this esteem, wide efforts are being 

made internationally to combat CC by dropping CO2 emissions and utilizing low fossil fuels as 

the main energy source. Further, comparable universal environmental agreements such as the 

Tokyo and Paris Protocols highlight the reputation of dropping GHG releases to achieve the goal 

of a net-zero potential with sustainability [87], [88], [89]. 

A. Protocols for dropping GHG emissions: 

The separation and capture of the CO2 process from a plant's fossil fuel is an actual coordinated 

action and strategic planning process to attain a sustainable future [90]. The EU has effectively 

dropped GHG emissions from 1990-2012 by 17%. With suitable current strategies and planning 

in place, they are functioning towards dropping this value in 2020 by 20%. The EU's goal is to 

continue to employ the Tokyo Protocol to repeatedly drop GHG emissions [90].  

The research disguises topics on effective policies, progress, and global prospects regarding the 

environmental impacts discussed in [89]. It also investigates methods to decrease environmental 

risks. Moreover, a useful investigation of the environmental influence has been approved by H.H. 

Khoo et al. [91], to compare and evaluate the traditional fossil fuel generation and CO2 potential 

confiscation in Japan and Norway. The evaluation of the effective technologies’ application, 

storage, and carbon capture environmental impacts was investigated in [92]. Different studies on 

the life cycle valuation were conducted with a concentration on storage, utilization, and carbon 

capture. It was established that storage and carbon capture can reduce the potential of global 

warming by 63%-82%, but it can increase some other effects of the life cycle [92].  

B. Outcomes of capturing CO2: 



In [93], J. Koornneef et al. examined new environmental outcomes regarding the capture of CO2 

that is shaped by different regions such as transport and power. They measured projects linked 

with the production of natural gas, increased recovery of oil, storage of underground gas, and 

carbon capture. Important features of storage and control options and CO2 capture were explored 

by D.Y.C Leung et al. with the reduction of carbon set objectives [94]. Table 3 displays the 

emissions by region. Table 1 displays that China produces the largest emissions. 

Table 3. Emission by area (CO2 in millions of tons). 

Region 1995 2010 2010 

World 22,150 31,189 37,848 

China 3051 5322 7081 

Economic Development and 

Cooperation Organization 

10,763 13,427 14,476 

Economic Transition 3135 3852 4465 

Rest of the world 4791 8034 11,163 

 

V. Scheduling how to limit CO2 Emission:  

It takes a process that has three stages Process Outward Stage (POS), Process In Stage (PInS), and 

Process Inward Stage (PIS) shown in Figure 4 [95]. This process stage has an Energy and Matter 

(E&M) movement diagram that is shown in Figure 4. Various relevant research areas have been 

accepted for the mitigation of the emission of CO2 which is linked to this classification given in 

the Table 4. 

 

Figure 4. Three stages of the process. 

a) POS: It is comprised of technology for limiting carbon emissions via storage and capture. 



b) PInS: It comprises technology of energy-efficient and innovation that decreases carbon 

emissions in the process of production. This phase is very beneficial for industries of 

energy rigorous. 

c) PIS: This stage comprises energy source technology replacement via flowing towards 

technology and cleaner fuels for substantial replacement via adjusting the assets and 

formulas of the material for receiving less material carbon. Several energy sources like 

hydrogen, bioenergy, biofuel, wind, and solar energy sources can be utilized for the 

production of better energy. 

Table 4. Mitigation of CO2 in three process stages. 

ref Stages of the 

E&M 

movement 

Research areas Feasible technology 

[96],[97] POS Use, capture, and separation of 

CO2 

Storage and capture of CO2 

emission 

[98], [99] PInS Redesign the product, and 

improve the process 

Process innovation 

[100], 

[101] 

 Plant retrofitting and recovery 

of energy 

The technology of energy-

saving 

[102], 

[103] 

PIS RE sources, Replacement with 

low-carbon fuels 

Replacement of energy 

source 

[104],[105]  Redesign the product and 

replace the raw material 

Replacement of matter 

 

A. Limit the CE from Industries: 

It is a necessary job to limit the CE. Design is required to acquire a CO2 discharge from industries 

that do not pass the emission limit. Xu and Zhang [106] examined the issue of multi-product 

generation restriction via planning and mechanism of carbon trading. Comparably, Costa et al. 

[107] studied approaches for capacity planning while restricting the production of CE. Hauschild 

et al. [108] suggest an evaluation of life cycle valuation for environmental, social, and economic 

improvements in the generation chain which targets to limit the CE for decreasing global warming. 

Further, Varbanov and Klemes [109] suggest several works for energy efficiency development in 

the process of production for decreasing CE. Comparably, Bhowmik et al. [110] present the 

optimal development of sustainable green energy.  

Recently, Varbanov et al [111] suggested overall research trends and challenges for the reduction 

of pollution and energy saving by increasing effective training, integration of CO2, energy 

conversion, and heat transfer. Pinch Analysis (PA) gives a graphical approach for reducing the 

operation of resources in the industry. Integration of heat total-site problem [112], energy reduction 

issue in the network of batch water [113], network synthesis heat exchange [114], and water 

conservation problem have been broadly explained by utilizing PA from the last decade. It can 



also be utilized for planning optimal production and a network of supply chains for reducing CE. 

Shenoy and Singhvi [115] reported the breakthrough in the supply and production chain by 

introducing the Aggregate Production Planning (APP) procedure. They defined: 

a. A cascade design for inventory variations and production that relied on consumption 

(inventory declined) and production (inventory increased). 

b. Production composite curve and demand composite curve in production vs. time rate plot. 

c. Inventory axis vs. inventory composite time curve, like the heat integration curve of the 

grand composite [116].  

 

VI. Decisive factors of Carbon emissions: 

Kuzets [117] first proposed the decisive factors relationships with carbon emission and the 

proposal is the hypothesis of the Environmental Kuznets Curve (EKC). In this hypothesis, an 

inverted U-shaped curve between economic growth (usually represented by gross domestic 

generation, GDP) and the emission of CO2 is shown in the Figure 5. After that, many researchers 

searched the economic growth effect on the emission of CO2 and verified the EKC hypothesis 

validation via empirical studies in ref Selden and Song [118], Holtz-Eakin and Selden [119] and 

Dinda and Coondoo [120].  

 

Figure 5. Environmental Kuznets Curve. 

Various other basic features may impact carbon emissions. These features comprise urbanization 

[121], consumption of nuclear energy [122], investment in foreign direct [123], [124], trade 

openness [125], [126], transport service [125], energy consumption [126], [127], urbanization 



[128], consumption of natural gas [129], [130], electricity consumption [129], [130], (Cowan et 

al., 2014), renewable energy consumption [131], [132], finance [132], agriculture [133], [134], and 

so on shown in Figure 6. 

 

Figure 6. Basic features that impact CE. 

Further, the expansion of environmental rights, which helps in the reduction of carbon emissions 

is mostly ignored in earlier studies. Some studies investigate the effects of environmental rights 

on the emission of CO2 by relating econometric techniques. Voigt et al. [135] presented the 

technology enhancement impact on the intensity of energy reduction, but they used the 

decomposition technique of the index of Logarithmic mean Divisia. Noailly and Wurlod in ref 

[136] consider the involvement of environmental rights in reducing CE by guessing a cost function 

of translog, which relies on the function of industry assembly. Unlike them, a fixed-effect panel is 

applied with a quantile regression technique to estimate the effects of environmental rights for all 

countries. 

A. Renewable Energy Supply Effects: 

To examine the effects of RE supply, the CO2 emissions variables, and environmental rights, the 

data is collected from the indicators of World Development [137], and the environmental database 

of the Organization of Economic Cooperation and Development (OECD). Seven different 

variables are utilized renewable energy supply (RES), exports of services and goods (EXP), 



expansion of environmental technologies (DET), CO2 emission per capita (CEPC), GDP per 

capita, domestic credit for the private sector (DCP), and investment on foreign direct (IFD). 

CEPC denotes the CO2 emission units from the primary energy combustion (natural gas, crude oil, 

coal, and other fuels) separated by population. Figure 7 describes the CEPC time series of four 

countries Brazil, Russia, India, and China from 1998 to 2020. The Russian CEPC is the highest 

among all other BRIICS countries, on the other hand, India has the lowest CEPC. Figure 7 shows 

the CEPC distribution is diverse in different countries.  

 

Figure 7. CEPC distribution in different countries. 

The supply of RE is represented by the proportion of the RE supply to the combined main energy 

source. RE comprises wind, combustible renewables, solar energy, geothermal, etc. Fig exposes 

the RE time series for the BRIICS countries. Generally, India, Indonesia, and Brazil have the 

highest RE compared to South Africa, Russia, and China. According to the OECD database, the 

RE average fraction to the main energy supply in Brazil was about 42%, and India and Indonesia 

were 31.3% and 35.7%. Furthermore, South Africa, Russia, and China have less RE supply [138]. 

VII. Parameters for Economic Assessment: 

The next equations are utilized to measure the parameters essential for the economic valuation of 

the hybrid network [139]. It calculates the net present cost (NPC) in $: 

𝑁𝑃𝐶 =  
𝐶𝑡,𝑦𝑒𝑎𝑟𝑙𝑦

𝐶𝑅𝐹(ℎ, 𝑚)
 

 1 

 



𝐶𝑡,𝑦𝑒𝑎𝑟𝑙𝑦 is the complete yearly cost, the capital recovery factor is CRF, ‘h’ is the real yearly 

interest in % which can be measured based on the nominal discount and inflation rate, and ‘m’ is 

the time project period. The CRF can be measured using this formula: 

𝐶𝑅𝐹(ℎ, 𝑚) =
ℎ(1 + ℎ)𝑚

(1 + ℎ)𝑚 − 1
 

  2 

 

The levelized cost of energy (COE) is measured as follows: 

𝐶𝑂𝐸 =
𝐶𝑡,𝑦𝑒𝑎𝑟𝑙𝑦

𝐸𝑚 + 𝐸𝑔
 

 

 3   

 

Where 𝐸𝑚 is the generated electrical energy and 𝐸𝑔 is the exported electricity from the microgrid 

[140].  

Yearly cost saving is the return on investment (ROI) linked to the initial investment which is 

measured in the following equation 4: 

𝑅𝑂𝐼 =
∑ 𝐶ℎ,𝑓 − 𝐶ℎ

𝑚
ℎ=0

𝑛(𝐶𝑝 − 𝐶𝑝,𝑓)
 

4   

 

𝐶ℎ,𝑓 is the nominal reference cash flow of the network, 𝐶ℎ is the nominal annual current flow of 

the system, 𝐶𝑝 and 𝐶𝑝,𝑓 is the original cost of the current and reference network respectively. 

Finally, this equation is used for the emission of CO2: 

𝐴CO2 = 𝐶𝐸𝐹𝑐𝐹𝑞𝐻𝑉𝑣 × 𝐶𝑓 × 3: 667  5 

 

Where 𝐴CO2 is the total amount of CO2 emission, 𝐶𝐸𝐹𝑐 is the factor of carbon emissions (TJ/ton 

carbon),  𝐹𝑞  is the quantity of fuel (liter), 𝐻𝑉𝑣 is the value of fuel heating, and 𝐶𝑓 is the fraction of 

oxidized carbon. Table 3 gives the different scenarios of different countries, and it shows that the 

combination of Bat/DG has an ideal supplementary design concerning economic networks. There 

are some environmental, economic, and technical results of using a hybrid network that is cost-

effective and has less emission of CO2. 

A. Advantages of RE: 

• Environmentally, the battery, Distributed Grid (DG), WT, and PV network with a 

renewable fraction of 72% returned to a yearly reduction of CO2 > 2000kg in comparison 

to the pure grid (electricity).  



• Economically, the diesel generator and battery combined with WT/PV directed to the best 

hybrid network formation with energy costs of almost 0.151 $/kWh. The addition of a 

hydrogen tank, electrolyze, and fuel cell unit to this network, increased the energy cost to 

0.2301$/kWh, and the investment revenue dropped from 15.6% to 13.5%. 

• Technically, combining a hydrogen tank, electrolyze, fuel cell, battery, and diesel generator 

with only 262 kWh/year of extra electricity generated the best outcomes for decreasing 

energy thrashing of the hybrid WT/PV network by removing the hydrogen unit. In contrast, 

the quantity of extra electricity will increase six times more. 

• The outcomes of the sensitivity investigation present the highest reasonable variety of 

energy costs will be 0.120 to 0.240$/kWh, which signifies the suitable operation of this 

network in several environmental and economic situations. To accomplish a cost-effective 

result, in the areas with hybrid systems, the average radiation is 4.2kWh/day, and the 

average wind speed is greater than 5.3 m/s. 

The review of investment techniques presents that choosing useful indicators such as unique 

policies for the execution of new technology, there are three vital advantages to renewable energy 

investment higher sustainable generation of electricity, reduction, and an economic explanation 

for stakeholders to put investment in renewable projects given in Table 5. 

Table 5. Benefits of RE with load at different locations. 

ref location RE Non-RE RF (%) Load  COE Year 

[141] Malaysia PV/FC battery 100 140 0.355 2017 

[142] Pakistan WT/PV Bat/DG 84 205 0.450 2016 

[143] Algeria WT/PV DG 63 22.5 0.210 2020 

[144] Iran WT/PV Bat/DG 67.3 242 0.197 2019 

[145] Turkey WT/PV/FC Bat/DG 95 165.6 0.282 2018 

[146] India WT/PV/FC/Bio Bat/DG - 724.8 0.163-0.214 2020 

[147] Nigeria WT/PV Bat/DG - 7.23 0.459-0.562 2019 

[148] Cameroon WT/PV Bat/DG 91.4 100 0.443 2019 

[149] Ethiopia WT/PV/FC Bat/DG 99 16000 0.179 2016 

[150] China WT/PV/FC Bat/DG 72.2 13.68 0.151 2020 

 

VIII. Indication of the MDD program: 

Commonly, two wide model groups are engaged to examine climate change mitigation.  Top-down 

versions of models support macroeconomic interfaces, while bottom-up versions of models 

highlight the technological pragmatism of demand and supply. Furthermore, many hybrid 

techniques have been established by enhancing technological explanations to top-down versions 

of models or enhancing bottom-up models by macro-economic loop. For example, the Energy 

Department of the US utilizes the hybrid national energy modeling system (NEMS) to formulate 

its Annual Energy Outlook. 



At the maximum aggregation level, integrated assessment models (IAMs) merge many economic 

and technical modules. Most of them arrange less expensive technologies in their imitation, e.g., 

IAMs support an aggregated depiction of climate change moderation impacts and costs by region 

and sector into an endogenous tradeoff and metric of single economic the reduced cost with 

mitigation cost of climate change. For a broad review of the classification and nomenclature of 

energy network models. 

A. Models of Deep Decarbonization (MDDs): 

This study is limited to models that discover energy pathways of deep decarbonization in the 

extended run by joining physical origins with economic deliberation by utilizing computational 

software. The deficiency of any typical network of classification and nomenclature recognizes 

MDDs as a subdivision of economic-engineering models, containing such hybrids that reduce the 

expenses of attaining an exogenously definite reduction in the emission of GHG over time. 

Ignoring the bodily models of climate change, MDDs estimate the mitigation costs to support many 

technological facts than nearly other techniques of modeling, like IAMs. Concentrating on electric 

power networks, MDDs reduce the current value of the associated generation and investment 

energy costs to fulfill exogenously set requirements of energy for individual main energy 

subsectors over the topic of modeling horizon to yearly emission restrictions. Relying on the 

research interest and policy objectives, MDDs frequently join dissimilar techniques of modeling 

at different temporal and spatial levels of resolutions.  

The MDD mathematical formulation relies on a deterministic, simple structure. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑[
𝑏(𝑤)𝑘

(1 + 𝜕)𝑘⁄ ]

𝐾

𝑘=1

 

 

6  

 

Such that 

ℎ𝑖(𝑤) = 0 

𝑔𝑖(𝑤) ≤ 0 
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Where ‘w’ is a changing decision vector, e.g., the plan, ‘K’ shows the yearly time, the cost function 

is the b(w) that is reduced with a discount rate ‘𝜕’, and 𝑔𝑖 and ℎ𝑖 are inequality or equality functions 

constraints. It directly solves equation 6, suppose it present, denoted w0, relies on the set ‘w’, b(w), 

ℎ𝑖(𝑤)′s, and 𝑔𝑖(𝑤)′𝑠. ‘b(w)’ is also the operating and capital cost, the latter adds the fuel, 

maintenance, operating, and fixed costs. This function also includes the cost of societal that is 

indicated in the market price for services and goods and may comprise externalities, societal, and 

non-market costs relied on the MDD. 



1. Analytical Techniques of MDDs: 

MDDs support esteemed visions on the energy network evolution of decarbonization to a group 

of low-carbon and help in supporting the policy suggestions of such long-term evolution from 

societal. Environmental and economic viewpoints theme to practical restriction and theoretical 

assumptions. Reviewing the studies of technology and science viewpoint, the framework of MDD 

is not only estimated to be precise in taking the physical certainty in an active sense but is also told 

as characteristic of the modeler’s regulating sympathetic of the energy network. Modeling of 

energy networks has been evaluated for extreme mathematics use in potential policy issues and 

energy research. Waisman et al. recognize the main gap between country-specific and global 

models that should be talked about and the target of the Paris Agreement. Previous studies have 

also criticized modeling restrictions in taking heterogeneity in feedback, innovation of technology, 

and decision-making between the energy systems and macro-economy. The additional study 

highlights the requirement for deploying, demonstrating, developing, and researching zero-

emission applicant technologies relying on their projected and current costs except for any 

modeling of formal quantitative. Experts have also recognized the requirement for the presence of 

energy efficiency, reporting the distributional controls in reflecting implementation and policy 

realities. 

2. Formulations of MDDs: 

The formulation of MDD assures the presence, but not essential uniqueness of a resolution, at a 

comparatively less cost linked to economic outcomes. It accepts for the best, not all bodily assets 

that are restricted. Some exclusions may be in the arrangement of restraints on the size and number 

of recent nuclear power plants that can be structured geographically or over time limitations on 

bioenergy, geothermal, and hydroelectric facilities. Suppose resources of wind and solar 

generation are expected to be infinite along with the capacity to generate electric vehicles. In that 

case, it also generates limited electricity for passenger vehicles, air-conditioning, heat, and lighting 

by utilizing non-carbon-releasing energy resources. It also did not enhance costs for these 

approaches, so it can always structure infinite sources at a moderately low cost linked to the 

economic output [151].  

IX. The architecture of controlling Low-carbon by driven digital twin Job-shop 

manufacturing:  

To apply the job-shop intelligent manufacturing for the production of low-carbon, the digital twin-

obsessed architecture of controlling low-carbon is proposed as presented in Figure 8. This 

architecture offers a guideline for controlling and evaluating job-shop manufacturing [152]. Based 

on the model of the digital twin and data of the digital twin, this architecture comprises three 

components, i.e., data fusion and interaction of the digital twin, job-shop manufacturing of low-

carbon model with virtual workshop, and carbon control methods and emission predictions [153]. 



Author in ref [154] suggest the evolution of the smart grid by unleashing the power of digital twins, 

blockchain, etc. main contributions are given in Table 6. 

A. Job-shop manufacturing of low-carbon model with virtual workshop: 

It is a virtual design of the physical job shop, and all the carbon emission-related objects of the job 

shop must be formed shown in Figure 8. Here, it comprises four types of objects: the job shop's 

environment, cutting tools and machine tools, workpieces, warehousing equipment, and logistics 

[155]. For every object, dynamic, and static information must be considered. Software of 3D 

modeling is utilized for assembled job-shop statics models, cutting tools machine tools, etc. 

Further, the data of related dynamics is to be inserted into the static models. In the job shop, it 

comprises gases, electric energy, and water consumption, because it is linked with carbon 

emissions [156]. For a machine tool, the cutting fluid and power consumption required to be 

studied. For a cutting tool, the service life and carbon emission production are needed [157]. The 

warehouse and AGV power consumption are required to be studied, while the hour norm and 

machining processes of a workpiece are needed [158]. This data will organize the model of 

dynamic data of the virtual workshop, which will be reorganized to keep in step with the physical 

one [159].  

B. Manufacturing of low carbon with fusion and interaction data of digital twin: 

In the virtual workshop, it is just not utilized for creating with the physical world, but also be 

renewed synchronously [160]. To understand this purpose, the first stage is to develop a network 

of data sensors. For manufacturing low-carbon job shops, the network of harvesting sensor carbon 

emission means the network of gathering data for manufacturing of low-carbon, which comprises 

carbon emission data, state of the WIPs, and machine tools. Considering the processes of real 

production, the formation of the sensor network comprises two parts, the construction of a dynamic 

one and the static network formation. The network of dynamic sensors has a purpose at one or 

various certain tasks of production after the scheduling and planning of production, which means 

picking suitable sensors to build a sub-network to help with the logic formation task process [161], 

[162]. On the other hand, the formation of a static network is recognized after the shape of the 

manufacturing network, which is a part of the physical formation process of the manufacturing 

networks [163]. After the construction of the dynamic network, digital data needs to be garnered, 

and the usage efficiency of the sensors is also maximum. Further, the fusion and interaction data 

are also significant, which will utilize various technologies of data interface. For Enterprise 

Resource Planning (ERP) communication, the technology of WEB service will be used, and the 

languages of JSON and XML can be utilized. For the physical world control network, the OLE 

and Enterprise Service Bus (ESB) for process controlling can be utilized for solving real-time and 

business state data, respectively [164].  

C. Prediction and control of low-carbon emission with a data-driven digital twin: 



To understand the production of low-carbon emissions, the algorithm of artificial intelligence is 

utilized to develop the control model of low-carbon. This model input is data of digital twin 

production, and the output is control or prediction of carbon emission decision-making in Figure 

9 [165], [166]. The whole process is shown in Figure 10. 

 

Figure 8. Method of Low-carbon control method. 

 

 

Figure 9. Prediction and Evaluation of CE. 

 



 

Figure 10. whole procedure of fusion and interaction of DT. 

Digital twins as an advanced technology for smart manufacturing, supply a new methodology 

[155]. It is an active way to attain dynamic optimization of real objects by real-time links between 

the objects with the reliability of the models and helps the continuous development attained from 

physical machining [167]. The optimization method cutting parameter of the digital twin is 

suggested with optimized cutting features based on real machining conditions for decreasing 

carbon emission and enhancing machining efficiency [168].  

D. Minimizing carbon emission with digital twin-cutting parameters: 

We assume that machine circumstances are calculated during the machining process to obtain 

starting optimal cutting features. Carbon emission is minimized by establishing an optimization 

model of multi-objective and using an NSGA-II algorithm for solving [169], [170]. 

1. Decision Variables: 

Spindle speed with decision variables, cutting width and depth, and federate are vital parameters 

of cutting for CNC machining [171]. Some parameters like cutting width and depth are dependent 

on the machine's accuracy and allowance, and they have no influence or little carbon emissions. 

Further, the decision variables are set as federate Vf (mm/min) and spindle speed n (r/min) [172]. 

2. Optimization objectives: 



Carbon emissions are necessary for various planning objectives processes but from the view of 

economic benefits, time of processing is also essential [173]. Carbon emission objectives are 

considered in the result shown in equation 8.  

𝐹(𝑛, 𝑊𝑓) = min 𝐶𝐸𝑜  8 

  

 

3. Modeling of carbon emission: 

CNC machining [174] is linked to many features of carbon emission, such as cutting fluid 

𝐶𝐸𝑓(𝑘𝑔𝐶𝑂2), cutting tools 𝐶𝐸𝑡(𝑘𝑔𝐶𝑂2), consumption of raw materials 𝐶𝐸𝑚(𝑘𝑔𝐶𝑂2), and 

electricity consumption 𝐶𝐸𝑒(𝑘𝑔𝐶𝑂2).  

In this part of the machining process, the material 𝐶𝐸𝑚 removal amount is almost similar for 

altered cutting parameters, so the entire carbon emission can be symbolized in equation 9: 

𝐶𝐸𝑜 = 𝐶𝐸𝑓 + 𝐶𝐸𝑡 + 𝐶𝐸𝑒  9 

  

 

The calculations of 𝐶𝐸𝑓 , 𝐶𝐸𝑡 , 𝐶𝐸𝑒 are described below in equation 10: 

  10 

𝐶𝐸𝑓 =
𝑃𝑇𝑝

𝑃𝑓𝑙𝑢𝑖𝑑
× 𝐶𝐸𝐹𝑓𝑙𝑢𝑖𝑑 × 𝑉𝑓𝑙𝑢𝑖𝑑 

 

 

𝑃𝑇𝑝 is the processing time, 𝑃𝑓𝑙𝑢𝑖𝑑 is the change period of cutting fluid, 𝐶𝐸𝐹𝑓𝑙𝑢𝑖𝑑 is the emission 

factor of cutting fluid and 𝑉𝑓𝑙𝑢𝑖𝑑 is the volume of milling [175]. 

𝐶𝐸𝑡 =
𝑃𝑇𝑐 × 𝐶𝐸𝐹𝑡𝑜𝑜𝑙 × 𝑋𝑡𝑜𝑜𝑙

60 × 𝑇𝑡𝑜𝑜𝑙
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𝑃𝑇𝑐 is the material removal time, 𝐶𝐸𝐹𝑡𝑜𝑜𝑙 is the emission factor of cutting tool, 𝑋𝑡𝑜𝑜𝑙 is the weight 

of the tool [40]. 

E. Development of digital twin for carbon emission reduction in industries: 

Initially, CO2 emission data in the atmosphere are gathered from the world in real-time, through 

sensors. Then measures power production in real-time through a prosumer meter [176] from PV 

panels and wind turbines, in a specific period. Further, the machinery code QR [177] is needed in 

each process of manufacturing are then scanned for the energy needed from every device [178]. 

Simultaneously, carbon emission data from history are present in the atmosphere and are recalled 



from previous manufacturing processes from the server, where is stored [179]. The process is 

shown in Figure 11.  

 

Figure 11. The process of DT development. 

Table 6. The contributions of DT for reducing CE. 

ref year contributions 

[180] 2012 S.T. Newman used cutting parameters and reduced the CE by 6–40% in 

the manufacturing process. 

[181] 2015 Yi et al. suggested the boundary model of CE, caused by the raw materials 

production and cutting process. 

[182] 2016 Liu et al. established a CE model for the optimization of cutting 

parameters, using tools, but not raw materials. 

[183] 2017 Li et al. proposed a multi-objective algorithm to solve the cutting 

parameter optimization. 

[184] 2017 Li et al. investigated cutting parameters with DT and created a balance 

between cost and energy consumption. 

[175] 2018 Jiang et al. improved a novel model combined with consumable and 

transferable CE, and the source is cutting fluids, raw materials, etc. 

[166] 2019 Chaoyang Zhang proposed a DT-driven prediction of CE and controlling 

of low-carbon. 

[185] 2019 Zhou et al. established the NG-NSGA-II algorithm to balance the 

objectives of CF. 

[186] 2021 Qinglin Qi proposed DT as an enabling innovative technology for smart 

and new manufacturing. 

Our 

Survey 

2024 It includes all the aspects of Digital Twin for reducing CE. 

 

X. Data mining (DM) techniques are used for the reduction of CE:  



Data mining applies several data analyses, tools, and techniques to discover relationships and 

patterns concealed in massive databases [187]. Further, data mining has a vital part in controlling 

GHG emissions and recognizing their environmental impacts [188]. The amount of GHG 

emissions, which comprise CO2, is predicted, and data mining techniques are used greatly to 

recognize the best policies to avert adverse consequences. It attempts to identify a good 

combination of present features by joining techniques of data mining, as well as find the best 

technique to predict CE [189].  

A new hybrid technique is utilized to predict CE to the applicable factors. The Root Mean Square 

Error (RMSE) is also utilized to analyze the model and compare the results with other various 

techniques of data mining. For modeling, the test named Kruskal-Wallis was utilized to inspect 

the variables whether year and country had a statistically notable effect on CE [190], [191]. 

Another hybrid method is also used, a combination of Discriminant Analysis, linear-AS, and K-

means techniques. Select the best model by comparing the values of the RMSE index for every 

technique [192], [193]. Additionally, the variable's best combination is present for prediction is 

also simultaneously identified.  

The process of the joined method is such that first the present existing data are classified into 

dissimilar groups by method of clustering and CE are then predicted for every group using 

forecasting techniques of data mining comprising LINEAR-AS, LINEAR, ANN, Regression, and 

KNN [194]. In ref [195], Wagstaff et al. Suggested an algorithm of K-means that is used for K 

categories cluster data automatically [196], [197]. The purpose of this method is to first choose the 

midpoint of the first clusters and then begin as follows:  

• Each observation dj is allocated to its closest cluster.  

• Each cluster center Cj is modernized to mean the observation of cluster.  

 

A. Selecting the optimal combination and best technique of modeling of data mining 

techniques:  

As the modeling of each technique is performed, variables in different combinations (at least 4) 

are examined. The variable's best combinations are that minimize the error of model prediction. 

Generally, the combinations of total numbers are feasible for a set of 8 in state n, in this study, a 

variable solo subset cannot be less than 4. Consequently, it obtains the subset by measuring the 

combinations of whole numbers shown in the equation 12:  

2𝑛 − (
𝑛!

1! (𝑛 − 1)!
) − (

𝑛!

2! (𝑛 − 2)!
) − (

𝑛!

3! (𝑛 − 3)!
) − 1 
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Where n is the variable's total numbers equal to 8. When the value is placed in the above-given 

equation, it makes the different states equal to 163 which is checked by each technique. Data 

mining five different techniques with variables best combination is shown in Table 7, regarding 

with error index. The table shows that the best and optimal method is LINEAR-AS with the least 

error, including eight variables year, country, RE, nuclear, hydroelectric, coal, gas, and oil. The 

value of the RMSE index is 12.71 for this technique which is significantly less than the other 

techniques given in Table 7[198].  

Table 7. RMSE values for present techniques. 

Variable combination Technique RMSE 

Country, coal consumption, renewable energy, gas 

usage, Hydropower, oil consumption, nuclear energy, 

year 

KNN 6.23 

Country, oil usage, Hydropower, coal consumption, gas 

consumption, nuclear energy consumption, year 

ANN 7.79 

Country, oil consumption, coal, nuclear energy 

consumption, gas, Hydropower consumption, renewable 

energy, year 

LINEAR-AS 3.56 

Country, gas consumption, Hydropower, oil 

consumption, nuclear energy, coal consumption, 

renewable energy, year 

Regression 8.26 

Country, gas consumption, oil, coal, nuclear energy 

consumption, Hydropower consumption 

GLE 5.56 

 

B. Development of CE benchmarks from DM techniques: 

1. Formation of MFHC clusters by using the DT approach:  

To evaluate the performance of multi-family housing complexes (MFHC) of CE, it should be 

calculated relying on gas consumption and electricity. MFHC clusters are compared with the same 

characteristics to provide prediction performance or better classification. Because characteristics 

of MFHC have negative or positive impacts on CO2 emission [199], [200], [201]. Clusters of 

MFHC are formed by using DT, DT is a famous ML sorting method. The method DT is mainly 

split into three sorts (sorting and regression trees, C4.5, and automatic detection of chi-squared 

interaction) and a satisfactory type is utilized that relies on the data types (e.g. scale, data size, 

etc.). In this study, automatic detection of chi-squared relations is used for the analysis of the 

following details.   

First, for the statistics scale, the CE per area of the whole floor is a dependent factor on the 

continuous measure, and thus, automatic detection of the chi-squared interface is more appropriate 

in comparison to DT other types (C4.5, sorting, and regression trees). Second, for the data size, 

this study creates MFHCs of an entire 1,212 in the database (southern region: 425; central region: 



787), and automatic detection of the chi-squared interface is commonly fitting for analyses of data 

of higher than 500 in finite tree constructions [199].  

2. Clusters of MFHC validation relied on statistical methods:   

Results of statistical analysis with reliability validation is a compulsory stage when creating MFHC 

clusters by utilizing methods of DT. In the end, a group of MFHC with significant differences is 

analyzed in this study. It used the statistical method for non-parametric techniques like test of 

Kruskal-Wallis or Mann-Whitney Whitney or parametric approaches like ANOVA or t-test can be 

examined, and an appropriate analysis technique can be committed relying on these given 

situations:  

• First it satisfies and depends on MFHC clusters on assumptions of homoscedasticity, 

regularity, and independence, and considering the two methods (non-parametric or 

parametric) can be utilized to study the MFHC group significant differences. For example, 

if it satisfies these mentioned expectations, parametric techniques like the ANOVA and t-

test should be utilized for significant alterations analysis by the MFHC cluster, if not then 

non-parametric techniques like tests Kruskal-Wallis and Mann-Whitney should be 

utilized.  

• Second, the statistical techniques can be used to rely on the MFHC group numbers that 

analyzed the significant differences. For example, the Mann-Whitney or t-test two groups 

of MFHC should be utilized for inspection of significant differences, if there are more than 

three groups, the Kruskal-Wallis or ANOVA test should be utilized [202].   

Further suitable statistical techniques can be used for analysis relying on these mentioned 

conditions. For example, if it does not satisfy these three assumptions (homoscedasticity, 

normality, and independence), the test Kruskal-Wallis is the best method for utilizing [203], [204].  

3. Development of ORS by using CE benchmarks:  

Performance of MFHC by CE evaluation, the rating system of CE is needed. Several countries use 

the operational rating system (ORS) like South Korea, the USA, and the UK. For the calculation 

of energy efficiency of the transport, and infrastructure, the Ministry of Land and Building of 

countries uses ORS for certification system of building energy usage. This structure split the 

operational rating (OR) into five levels (level A: <50%; level B: 50-75%; level C: 75-100%; level 

D: 100-125%; level E: >125%), or the OR value is formed by equation [199]. CE's closer value is 

level A, which is superior to its performance, and the grade E value is inferior to the performance 

of CE.   

𝑂𝑅𝑤,𝑥 =
𝑦𝐶𝐸𝑤,𝑥

𝑡𝐴𝐹𝑤,𝑥
×

1

𝑦𝐵𝐶𝐸𝑊,𝑋
× 100 
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Where 𝑂𝑅𝑤,𝑥 is the operational rating of MFHC (w) to group (x), 𝑦𝐶𝐸𝑤,𝑥 is the carbon emissions 

in a year for similar MFHC (tCO2/y), 𝑡𝐴𝐹𝑤,𝑥 is the overall floor region for similar MFHC (m2), 

and 𝑦𝐵𝐶𝐸𝑊,𝑋is the benchmark of CE in a year for similar MFHC (tCO2/y. m2). 

Moreover, the OR is determined by relying on the CE yearly by group benchmark. In ref [205], 

Liu et al. represent the median and mean value of every group by using a benchmark, which relied 

on the data distribution. If the group information has a common distribution, at the average level 

of mean value, if there is a large irregularity in the distribution, the value of median is also 

considered as the average position [206]. Normally, the value of the median in groups is mostly 

used for CE benchmarks [42]. The process of MFHC clusters in reducing CE is revealed in Figure 

12. 

 

Figure 12. The process of MFHC clusters. 

Table 8. main contributions of Data Mining. 

Ref Contributions 

[187] DM applies several data analyses and techniques to discover patterns concealed 

in massive databases of CE. 

[188] DM plays a vital part in controlling GHG emissions and recognizing their 

environmental impacts.  

[189] DM technique identifies a good combination of present features to predict CE.  

[190], 

[191] 

This paper presents a hybrid technique to predict CE in the applicable factors. 

[194] By using DM techniques, it predicts every group clustering and prediction of 

CE.  

[195] Wagstaff et al. suggested an algorithm of K-means that is used for K categories 

cluster data automatically for CT. 



[198] DM uses several data analysis and techniques tools to discover relationships 

hidden in massive databases of CE. 

 Our survey considers all these contributions. 
 

XI. Federated learning for reducing CE: 

A. Principles For Designing Less Carbon Emission: 

First, we discuss the focal features that are estimated to drive the selection between paradigms of 

federated and centralized knowledge toward the design of sustainability [207]. Sustainability is 

used for corresponding GHG emissions calculation, stated as CF. The task is to recognize the 

functioning conditions that are required for strategies of federated learning (FL) that are Federated 

Averaging (FA), Consensus-Driven Federated Averaging (CFA), and FA-Deep sleep to produce 

low carbon than centralized learning (CL) is shown in Figure 13. 

 

Figure 13. Procedure of FL. 

  

FL advantages in comparison with CL are linked to computing and communication costs, as well 

as data 𝑏(𝜀𝑙) and model 𝑏(𝑊) size. Energy models are considered and the carbon footprints for 

CL (CCL) as well as for all the policies of FL (CCFA, CFA, and CFA-D). Sections of sustainability 

focus essential conditions on computing and communication energy costs (efficiencies of 

computing and energy) as well as the ratio of carbon footprints 
𝑏(𝑊) 

𝑏(𝜀𝑙)
. 

1. Model Simplifications and Carbon Footprints: 

The carbon footprints CCL, CCFA, CFA-D, and CFA are shortened in Table 9 for all the recommended 

procedures of CL as well as for FL. The models namely 𝐸𝑙,𝑞
(𝑇)

and 𝐸𝑙
(𝐶)

, with carbon intensity 𝐶𝐼𝑘 

of the generation of electricity. The terms 𝐶𝐼𝑘 relied on the definite geological areas where the 

symbols 𝑘 = 0, … … , 𝐾 are mounted and are calculated in CO2 emission corresponding to (kgCO2-



eq/kWh): they compute how much CE is generated per kilowatt hour of nearby electricity 

produced [208].  

Pointing common instructions for the evaluation of sustainability, the subsequent explanations are 

implemented to CF in Table 9. Starting with the costs of communication are computed on average, 

in expressions of the equivalent efficiencies of energy (EE), identified by ETSI (European 

Telecommunications Standards Institute) [209]. These are distinct as the fraction between 

transmissions of sidelink 𝐸𝐸𝑆 = [𝐸𝑙,𝑞
(𝑇)

]−1or UL 𝐸𝐸𝑈 = [𝐸𝑙,0
(𝑇)

]−1, originated data volume DL 

𝐸𝐸𝐷 = [𝐸𝑙,0
(𝑇)

]−1and the consumption of network energy spotted during the time needed to provide 

the same data [210].  

Term of efficiency are calculated here in bit/Joule [bit/J] [211], [212] and we count special options 

of 𝐸𝐸𝑆, 𝐸𝐸𝑈, 𝐸𝐸𝐷 relied on the particular network performances. Moreover, when the interface of 

sidelink is not present, but uses the WWAN, it is [𝐸𝐸𝑈]−1 +  [𝐸𝐸𝐷]−1 ≅ [𝐸𝐸𝑆]−1. Now 

considering the computing expenses, we describe the data center computing effectiveness (or PS) 

as 𝐸𝐸𝐶 = [𝐸0
(𝐶)

]−1. It computes how much energy is consumed per discovering round and it is 

calculated in terms of round numbers per Joule [R/J]. In the end, the computing effectiveness of 

the machines k > 0 is defined here as [𝐸𝑙
(𝐶)

]−1 =
𝐸𝐸𝐶

𝜑𝑙
 with 

𝜑𝑙 =
𝐸𝑙

(𝐶)

𝐸0
(𝐶)

=
𝑃𝑙

𝑃0
×

𝑇𝑙

𝑇0
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Devices with low power naturally experience a much higher time of local batch 𝑇𝑙 > 𝑇0 in 

comparison with information center 𝑇0. On the opposite side, they utilize significantly shorter 

power 𝑃𝑙 ≪ 𝑃0. 

Table 9. Computing and communication footprints. 

Computing C(L) footprint Communication C(C) footprint 

𝐶𝐶𝐹𝐴: 𝐶𝐶𝐹𝐴
(𝐿)

= 𝑛𝐶𝐹𝐴(∑
𝜑𝑙 . 𝐶𝐼𝑙

𝐸𝐸𝐶

𝐿𝑎

𝑙=1

) 𝐶𝐶𝐹𝐴
(𝐶)

= 𝑛𝐶𝐹𝐴𝑏(𝑤)(∑
𝑁. 𝐶𝐼𝑙

𝐸𝐸𝑆

𝐿𝑎

𝑙=1

) 

𝐶𝐹𝐴: 𝐶𝐹𝐴
(𝐿)

= 𝑛𝐹𝐴(∑
𝜑𝑙 . 𝐶𝐼𝑙

𝐸𝐸𝐶
+ 𝛾. 𝛽.

𝐶𝐼𝑜

𝐸𝐸𝐶

𝐿

𝑙=1

) 𝐶𝐹𝐴
(𝐶)

= 𝑛𝐹𝐴𝑏(𝑤)(∑
𝐶𝐼𝑙

𝐸𝐸𝑈
+ 𝛾. 𝐿.

𝐶𝐼𝑜

𝐸𝐸𝐷

𝐿𝑎

𝑙=1

) 

𝐶𝐹𝐴−𝐷: 𝐶𝐹𝐴−𝐷
(𝐿)

= 𝑛𝐹𝐴−𝐷(∑
𝜑𝑙. 𝐶𝐼𝑙

𝐸𝐸𝐶

𝐿𝑎

𝑙=1

+ 𝛾. 𝛽.
𝐶𝐼𝑜

𝐸𝐸𝐶
) 

𝐶𝐹𝐴−𝐷
(𝐶)

= 𝑛𝐶𝐹𝐴𝑏(𝑤)(∑
𝐶𝐼𝑙

𝐸𝐸𝑈
+ 𝛾. 𝐿𝑎.

𝐶𝐼𝑜

𝐸𝐸𝐷

𝐿𝑎

𝑙=1

) 



𝐶𝐶𝐿: 𝐶𝐶𝐿
(𝐿)

= 𝑛𝐶𝐿 . 𝛾.
𝐶𝐼𝑜

𝐸𝐸𝐶
 𝐶𝐶𝐿

(𝐶)
= 𝛼. ∑ 𝑏(𝜀𝑙)

𝐶𝐼𝑙

𝐸𝐸𝑈

𝐿

𝑙=1

 

 

2. Sustainable requirements and Regions for Carbon-Aware: 

FL sustainability relied on the definite operating conditions (OC) regarding efficiency of 

computing (EES), and communication 𝐸𝐸𝑆, 𝐸𝐸𝑈, 𝐸𝐸𝐷, as well as data 𝑏(𝜀𝑙) and model 𝑏(𝑊) 

footprints. These operational points focus on necessary or practical necessities for green schemes. 

To make simpler the analysis, we study here CIk ≈ CI, as the broad outcomes with random values 

of carbon intensity CIk. All the analyzed requirements and regions below are considered in Table 

10. 

• Computing efficiency 

• Communications of direct mode (efficiency of side link) 

• Model and data size 

• Efficiencies of DL and UL in cellular communications 

Table 10. Regions and requirements of carbon intensity. 

Regions Requirements 

𝑹𝑪𝑰: {𝑪𝑰𝒍,∀k:
𝑪𝑪𝑭𝑨

(𝒁)

𝒏𝑪𝑭𝑨
<

𝑪𝑪𝑳
(𝒁)

𝒏𝑪𝑳
} 

        {𝑪𝑰𝒍,∀k:
𝑪𝑭𝑨

(𝒁)

𝒏𝑭𝑨
<

𝑪𝑪𝑳
(𝒁)

𝒏𝑪𝑳
} 

        {𝑪𝑰𝒍,∀k:
𝑪𝑭𝑨−𝑫

(𝒁)

𝒏𝑭𝑨−𝑫
<

𝑪𝑪𝑳
(𝒁)

𝒏𝑪𝑳
} 

          

∑ 𝜑𝑙𝐶𝐼𝑙 < 𝛾𝐶𝐼𝑜

𝐿

𝑙=1

 

      ∑
𝜑𝑙

1 − 𝛽

𝐿

𝑙=1

 𝐶𝐼𝑙 < 𝛾𝐶𝐼𝑜 

     ∑
𝜑𝑙

1 − 𝛽

𝐿𝑎

𝑙=1

𝐶𝐼𝑙 < 𝛾𝐶𝐼𝑜 

𝑹𝑺𝑼: {𝑬𝑬𝑺, 𝑬𝑬𝑼: 𝑪𝑪𝑭𝑨
(𝑪)

< 𝑪𝑪𝑳
(𝑪)

} 𝐸𝐸𝑆

𝐸𝐸𝑈
 .

𝛼

𝑛. 𝑙𝛼
> 𝑁.

𝑏(𝑊)
∑ 𝑏(𝜀𝑙)𝐿

𝑙=1
⁄  

𝑹𝒃(𝑾): {𝒃(𝜺𝒍), 𝒃(𝑾): 𝐦𝐚𝐱 [𝑪𝑭𝑨−𝑫
(𝑪)

, 𝑪𝑭𝑨
(𝑪)

]

< 𝑪𝑪𝑳
(𝑪)

} 

{𝒃(𝜺𝒍), 𝒃(𝑾): 𝐦𝐚𝐱 [𝑪𝑭𝑨−𝑫
(𝑪)

, 𝑪𝑭𝑨
(𝑪)

, 𝑪𝑪𝑭𝑨
(𝑪)

] < 𝑪𝑪𝑳
(𝑪)

} 

 

𝛼
𝑛⁄ × 𝑙

𝑙𝑎
⁄ > 𝑏(𝑊)

𝑏(𝜀𝑙)⁄  

    𝛼 𝑛⁄ × 𝑙
𝑁. 𝑙𝑎

⁄ > 𝑏(𝑊)
𝑏(𝜀𝑙)⁄  

𝑹𝑫𝑼:{ 𝑬𝑬𝑼, 𝑬𝑬𝑫: 𝑪𝑪𝑳
(𝑪)

> 𝑪𝑭𝑨
(𝑪)

} 

        { 𝑬𝑬𝑼, 𝑬𝑬𝑫: 𝑪𝑪𝑳
(𝑪)

> 𝑪𝑭𝑨−𝑫
(𝑪)

} 

𝐸𝐸𝐷

𝐸𝐸𝑈
(

∑ 𝑏(𝜀𝑙)𝐿
𝑙=1

𝑏(𝑊)
.

𝑎

𝑛. 𝑙𝑎
− 1) >  𝛾. 𝑙

𝑙𝑎
⁄  

𝐸𝐸𝐷

𝐸𝐸𝑈
(

∑ 𝑏(𝜀𝑙)𝐿
𝑙=1

𝑏(𝑊)
.

𝑎

𝑛. 𝑙𝑎
− 1) >  𝛾 

 

B. Roadmap of FL:  



FL is even a growing structure with a bunch to develop in a changed phase [213]. It focuses on the 

direction of future research and some challenges relied on our investigation [214]. Mainly, the 

footprint of carbon relies on the hardware's physical location, either in terms of communication or 

training, CE can be massively decreased by choosing consumers with connections to faster internet 

or from greener places. There will be applied firms in selecting clients in specific places more 

frequently e.g. greener location clients might not have adequate samples of data for directing or 

signify a twisted distribution of data [215]. 

However, it could indicate further investigation needed and demographic bias. Also, statistics of 

industries on the existing devices fleet are vital to enhance the CEs of FL. Certainly, in the real 

world, the effectiveness of hardware can change immensely from one client to another client. 

Further, in the physical places, we also like to select clients with equivalent computing capability, 

more competent hardware, and a range of encouraged potential biases. take the case centralized, 

tuning of hyper-parameter is of higher importance in decreasing period of training [216], [217].  

In some experiments, it is decided only to adjust parameters of optimizer-connected (e.g. 

momentum, learning time) to increase performance at a sufficient level and fair comparison. The 

tuning is completed to simplify the FL training junction. Nevertheless, in FL, tuning of hyper-

parameters becomes a highly difficult task as it theoretically adds hundreds of simulations (i.e. 

models, local clients), each assembled usage of a few datasets that are probably to monitor a very 

twisted distribution. In addition to tuning of client-side, the scheme of aggregation also suggest 

additional parameterization, that enhances the tuning process's complexity [218].  

Therefore, innovative tuning algorithms of hyper-parameters should sensibly be planned to 

minimize CE by decreasing the released CE and mutually enhancing the accuracy.   The figure of 

local epochs is also a significant hyper-parameter that can affect the total CE. Settings of local 

epochs often carbon less than settings of 1 local epoch for non-IID, separated from the task of 

ImageNet. This is simply clarified by the cost of hidden interaction. certainly, a solo local epoch 

involves more rounds of communication and, therefore, energy to converge contrasted to five local 

epochs. Additionally, the communication rounds number needed for five local epochs is typically 

less than the communication rounds in five instances that are needed for one local epoch. In the 

framework of ImageNet, objects are mostly distinct as the training of local becomes needed high 

energy. Therefore, easily realizing the local epoch right number also distinctly appeared as a 

serious point in decreasing FLCEs [219]. In the end, CE also relied on aggregation policies [220]. 

With more strategies of superior aggregation, the number of communication rounds can be 

decreased, hence decreasing the overall CEs. 

Table 11. Main contribution of federated learning. 

Year Ref Contribution 

2016 [221] H. Brendan presented a practical technique for the FL of deep networks 

relying on an averaging iterative model. 



2016 [222] 

 

Jakub proposed the one-device intelligence distributed ML with federated 

learning to reduce CE. 

2019 [223] Deniz suggested federated machine learning with wireless fading 

channels 

2020 [224] Xinchi proposed the FL by raising environmental concerns and severe 

privacy for decreasing CE. 

2020 [225] L.U. Khan presents the open challenges, taxonomy, and recent advances 

in FL. 

2021 [226] Stefano suggests the FL opportunities for the cooperative connected 

system for controlling CF. 

2021 [227] Peter proposed the open problems and advances in FL 

2021 [228] Zhaohui presents the computation resource allocation and transmission 

with the efficiency of FL. 

2024  Our survey includes all these aspects. 

 

1. Communication and training energy: 

Carbon footprint relied on the consumption of communication energy and training energy, which 

relied on the FL strategies, hyper-parameters training, hardware efficiency, and physical places of 

the hardware. We establish that the FL of carbon footprint is rigid to assess in comparison to 

centralized guidance without a framework, because of the essential difficulties in how FL is 

presently accomplished. The difficulties might include system heterogeneity, geographic 

distribution, client, and data collection. A comprehensive assessment was given in this portion for 

reducing CE with FL [229], [230].  

XII. Transfer learning (TL) for CE reduction: 

CE is determined to express the total emissions of GHG of activity or a particular substance, not 

captivating not only emissions of carbon dioxide (CO2), but also other GHG, such as fluorinated 

gases, nitrous oxide (N2O), and methane (CH4). CE is utilized as a standardized piece of 

calculation to aggregate and compare the whole influence of different GHGs on climate 

modification and the environment. Metric tons, known as “t” or “MT” are mainly utilized as the 

CE measurement unit, where 1 metric ton is equal to 1000 kilograms [231]. 

Gitzel et al. [232] organized a study of factors investigation that involves the AI models with 

carbon footprint through all three phases of the machine learning (ML) method, involving model 

architecture inference, search, and training. 

Walsh et al. [233] established an experiment on TL, where fine-tuned pre-trained are used for 

detailed tasks, headed to 14.8 times less than energy consumption at GPU that is compared to 

models training from scrape in a classification task of machine vision by utilizing the architecture 

of Xception model and the dataset of “cats_vs_dogs”. In ref [234] the author presents a method of 

transfer learning with an instance-based multisource by utilizing analysis of maximal correlation 



that removes the requirement for data of the source domain to practice a model of the target 

domain; as an alternative, it employs pre-trained models of the source domain to build a feature 

extraction distributed links for in the target area, by computation reduction during preparation 

[235]. 

The TL's main objective is to explain a target task by using the information found from source 

tasks in several connected fields, thereby removing the requirement to turn on from abandon with 

a huge data quantity. It can also be unraveled by utilizing pre-trained develops to report the same 

problems of deep learning [236], [237], [238]. By leveraging past developed source tasks 

knowledge, TL can decrease the computational resources and required period while increasing the 

efficiency of data [239], [240], [241], [242]. Therefore, it is compatible with the structure of 

friendly environmentally ML that needs usage of efficient data. Earlier defined transfer learning, 

let us reconsider the introduction of task and domain [243], [244]. Domain ‘O’ includes two 

elements: a marginal probability distribution ‘XD’ and feature space ‘X’, i.e., O = {XD, X} here 

X represents the instances set,  

𝑋 = [𝑥|𝑥𝑙 ∈ 𝜒, 𝑙 = 1, … … … , 𝑛]  15 

  

A task ‘K’ consists of a decision function ‘f’ and label space ‘s’, that is, K = {f, s}. The decision 

operator is an implicit one, which is projected to be educated from the sample records. In training, 

a domain is normally seen through cases that have no label information.  source task SK related to 

source domain SD is normally seen by utilizing their corresponding labels and instances pairs, 

which can be signified as: 

𝑆𝐷 = [(𝑥, 𝑦)|𝑥𝑙 ∈ 𝜒𝑆, 𝑦𝑙 ∈ 𝑦𝑆, 𝑙 = 1, … … … , 𝑛)] 
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In the target field, the statement normally comprises a kind of labeled case with a classified number 

and unlabeled cases. some source task(s) and domain(s) and a/some target task(s) and domain(s) 

is given, TL goes to employ the source tasks(s) and domain(s) knowledge to enhance the predictive 

operator ‘f’ of the target task(s) and domain(s) where 𝐷𝑇 ≠ 𝐷𝑆, or 𝑇𝑇 ≠ 𝑇𝑆.  

Some researchers establish that transfer learning succeeds in decreasing the ML computational 

charges by reducing the required period for training. For instance, Liu et al. [245] utilize an 

autoencoder (AE) compression as a case survey and discovered that transfer learning substantially 

decreases the training period on data of high-performance computing (HPC) without performance 

compromises. Gayakwad et al. [246] discovered the training time reduction for models of deep 

learning using TL on an equivalent dataset. This idea relies on the resemblance of the 

characteristics in the same datasets and the layers category of deep neural nets are different. 

Hence, as an alternative to the whole neural net training, just trained classification is responsible 

for the final layers, and the past weighted trained model is practical to the lasting layers, outcomes 

are time-saving substantial. As discussed, previously, TL is a popular approach used in few-short 



learning (FSL) for previous knowledge transferred from a source task to an FS target task [247], 

[248], [249], [250] to enhance accuracy, statistics efficiency, and learning speed. Here, transfer 

skills are attained by deep network pretraining on a huge training data amount that has been seen 

before in base classes, and then unseen in the new FS classes that are fine-tuned.  

Moreover, using naive fine-tuning only rare examples leads to the performance of slow 

generalization and overfitting on the tasks of FS. In TL, the previous skills are removed from the 

source task by vanilla learning, without meta-objective usage. In meta-learning (ML), the 

subsequent prior by an external optimisation that estimates the prior benefit when learning the new 

task. Approaches of TL that frequently superior performance or demonstrate comparable on tasks 

of FSL when compared to the methods of intricate meta-learning that previously mentioned. 

To enhance the knowledge growth of transfer-related inventions, researchers must talk about 

critical various problems. First, there is a requirement to discover transfer skills in a varied series 

of applications, covering their potential through several areas. Second, avoiding negative transfer 

or calculating transferability across domains is vital to ensuring the efficient transfer of knowledge. 

Additionally, TL interpretability research is vital to attain insights into the analysis behind transfer 

decision knowledge. The theoretical studies following the TL effectiveness will support a solid 

basis for its relevance. In the end, substantial reliance is given to transferring methods of 

knowledge on human experience and instruction, the comprehensive guidelines development is 

important. These recommendations will support determining practitioners what to allocate, how to 

transfer, and when to transfer skills successfully, making the process more practical and reliable.  

A. Task Transfer Learning: 

Task transfer learning (TTL) was proposed in this analysis to pay attention to single- and multi-

task drawbacks. TTL was hardly useful for forecasting the facts of the core combustion engine 

(CE), although it is extensively explored in natural language and image processing ranges. TTL is 

a procedure in which a skilled model for a particular incident is predicted, that is, a pre-trained 

model, is changed into another fine-tuning phenomenon model for prediction [251], [252]. 

1. TTL method: 

TL is organized by the task and domain relationships between the target and source given in Table 

12 [253]. The task and domain relationships between the target and source are utilized to define 

the TL and traditional ML [254], [255].  

Table 12. Applications of TTL. 

 Learning settings Target & Source Task Target & Source Domain 

 Traditional ML same same 

Transfer 

Learning 

Transductive TL same Different but related 



 Unsupervised TL/ 

Inductive TL 

Different but related Different but related 

 

The inductive TL is defined as the function of target prediction learning is 𝑓𝑝(. ) in domain tasks 

by using source and task domain knowledge. The multi-task learning problem was projected for 

SVM [256], and it was adapted for inductive TL [253],[257]. In inductive TL,  

                                                   𝑧𝑠 = 𝑣𝑠 + 𝑧0 and 𝑧𝑇 = 𝑣𝑇 + 𝑧0  17 

  

where 𝑧𝑠 is the source task parameter, and 𝑧𝑇 is the target task parameter. 𝑣𝑠 and 𝑣𝑇  are each source 

and target task parameters, correspondingly, while 𝑧0 is a mutual constraint. The TL of SVM can 

be expressed as develops [253].  

𝑚𝑖𝑛𝑧0,𝑣𝑇,ξ𝑡𝑙
  18 

  

= ∑ ∑ ξ𝑡𝑙
+

λ1
2⁄

𝑛𝑡

𝑙=1𝑡∈𝑆,𝑇

∑ ||

𝑡∈𝑆,𝑇

 𝑣𝑇||2 + λ1|| 𝑧0||2 
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                              𝑠. 𝑡. y𝑡𝑙
(𝑣𝑇 + 𝑧0). 1 − ξ𝑡𝑙

≤ x𝑡𝑙
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ξ𝑡𝑙
≥ 0, 𝑙 ∈ {1,2, … , … . , 𝑛𝑡} 𝑎𝑛𝑑 𝑡 ∈ {𝑆, 𝑇} 
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Here, the parameters of positive regularization are λ1and λ2; slack variables ξ𝑡𝑙
 calculate the final 

model error 𝑧0 builds on the data; cost function is the J(.). For the model of deep learning (DL), 

for the classification of images, TTL has been resulting from [41], [258], and can be changed for 

the regression applied. TTL was achieved as the schematic shown in Fig. The pre-trained model 

has hidden layers and the last two were again trained by utilizing the target information ‘T’ 

whereas, during training, the other hidden layer masses were frozen as shown in Figure 14 [41].  



 

Figure 14. Layers of TTL. 

XIII. Blockchain (BC) technology for CE reduction: 

The technology of BC is described as a dispersed ledger that is immutable and cryptographically 

safe, in which data moving is extremely tough [259]. BC allows every transaction without the 

involvement of third parties needed. In ref [260], Laurence suggested the system of BC, where 

each made transaction is verified onto a ledger and then added into the block. Every block is linked 

with before a block and after it. When one block is linked within a chain, it converts immutable, 

and a solo cannot delete or alter the blocks. BC is a decentralization system that allows demanders 

and suppliers to sort transactions point-to-point. Every node of the enterprise will monitor a similar 

protocol.  

In ref [261], Wang et al. suggested that BCs exist in two types, which are relied on mechanisms of 

access control. Public BC is the first type. In ref [262]Adnan et al. proposed the convergence of 

BC, AI, MV, etc.  BC this type can be made without permission transactions and is anonymous. 

This type has the mechanism of incentivizing to inspire higher participants to link the association. 

The private BC is a second type. A member who is willing to link to the network is required to 

have system approval or be invited. Usually, a solo organization (private BC) has monitor access 

to a consortium of members [263], [264]. BC structure is given in Figure 15 [265]. 



 

Figure 15. Structure of Blockchain. 

 

A. Carbon Trading Challenges: 

Carbon emission trading (CET) faces challenges and the procedures essential for executing a 

participated transparent system of carbon trading. Some challenges of CT are given:  

• Carbon Stipends are Complex. 

• The Procedure of Allocating Carbon Stipends is Complex [266].   

• CT is considered by the absence of tracing calculations of CE. 

• The calculations of the carbon budgets are open to abuse and manipulation [267]. 

• CT extends the capability to purchase high-carbon praises [268].  

• The discrepancy in GHG emissions is ignored.  

• The market of CT is described by non-transparency and corruption [269].  

• The market of CT can be extremely complex and needs the charges of high transactions 

[270]. 

• There is no need for an Integrated market of Carbon Trading.  

 

B. BC-enabled technology for the trading of carbon:  

Carbon emissions (CEs) have developed a main interest, and production companies have gathered 

enhancing tension to bound the total of GHG of the whole generation. Khaqqi et al. [271] assumed 

that the technology of BC is utilized as an emissions trading proposal. An emissions trading 



scheme (ETS) is called a policy of tradable permits. In this situation, the total GHS numbers 

authorized are supplied to companies. At distinct times, contributors are needed to produce a 

statement on the total of generated emissions. Contributors can customize their GHG documents. 

A company that less GHG has generated than permitted can push its extra capability to others who 

have generated higher emissions than expected. An ETS supports producing companies in 

attaining a drop of CEs. The fidelity and transparency of the process of emission trading utilizing 

BC technology can enhance fidelity, transparency, and efficiency [272]. Trading of carbon using 

BC technology can confirm each transaction's safety. All operations will be recorded accurately in 

a joined record, and a timestamp proof will confirm that it traced back each operation. BC 

technology can transmit and record information flow in CE trading to prevent repeated transactions 

or lost quotas. Any unauthorized activity of trading will be noticed. All transactions of CE must 

obey the algorithm of the same consensus to build all processes consistent [273], [274]. 

1. Adoption of BC technology and environmental-technological-organizational:  

The technological perspective discusses the technologies significant to a company. This comprises 

compatibility and technological competence. Technological ability signifies the arrangement of a 

company in the organization, as well as the knowledge level involved in such technology, and a 

company's cooperation to become concerned in the adaptation of such an action as well [275],  

[276], [277] 

Recent technology adoption is frequently a strategic requirement to participate in the market [278], 

[279]. By adopting BC technology, companies can have more precise access to data in real-time 

and superior visibility of the market. These schemes can be transformed into the following 

premises Figure 16:  

P1. Technology capability will have a positive and substantial connection to the BC technology 

adoption.  

P2. Compatibility will have a positive and substantial link to the acceptance [280].  

P3. Corporation size will have a positive and significant link to the approval of BC technology 

[281], [282], [283].  

P4. Upper management helps have a positive and significant connection with the acceptance of 

BC technology.  

P5. Economic compression will have a positive and significant connection to the BC technology 

approval.  

2. Carbon performance and environmental-technological-organizational:  

According to Gemunden and Ritter [284], technology competence allows an exploit technology 

internally, and organization to utilize. Further, technical competence helps in the planning of 



technology communications, adding the implementation of a necessary knowledge stage as it is 

linked to the existing techniques. Companies that are capable the technological acceptance will be 

able to work hard on the results of carbon (P6). In conditions of compatibility, adequately than 

physical data trace for CEs, the performance of the BC technique can support decreasing data loss, 

manipulation, and fraud. We discussed that companies adopting compatible technology for energy 

usage will indicate less carbon implementation (P7). The company's size is linked with the total 

assets of companies, which replicates a company's resources. The higher value of sustainability 

can be discovered in larger companies, and such companies manage to supply extra environmental 

indices in their yearly reports [285]. On the other side, without small-sized companies, government 

funding is typically opposed by inadequate budgets for obeying energy-related guidelines. Since 

BC technology has indicated carbon reduction and monitoring, the government will participate in 

initial funds for the adoption of technology. The small and large proportions of companies have 

the same prospects of attaining low performance of carbon (P8). Promotion of top management is 

a decisive feature in governments, which manages all methods, adding strategic planning and 

decision-making [286]. Companies will track their business well if the upper management helps 

the adoption of developing technology to attain a reduction of carbon (P9). In the end, companies 

are subject to competitive stress in decreasing the emissions of GHG in a population that is 

dedicated to reducing CEs. Stress for low implementation of carbon can be attained if the firm has 

noticed that participants have a better implementation of carbon than them (P10). It declarations 

can be transformed into the given premises:  

P6. Technology expertise will have a positive and significant connection with the implementation 

of carbon.  

P7. Compatibility has a positive and significant connection with the implementation of carbon.   

P8. Company size will have a positive and substantial connection with the working of carbon.  

P9. The support of upper management will have a positive and significant connection with the 

performance of carbon. 

P10. Reasonable stress will have a positive and significant connection with the performance of 

carbon. 

3. Carbon performance and adoption of BC technology:  

A deficiency of the implementation of ecological agreements can no extended be overlooked 

[287]. Firms are required to participate in the technology to obey with assume responsibility and 

environmental principles for reducing CEs, and BC technique is a consistent platform to transmit 

the flow of information and records in CE trading. In ref [274], Pan et al. introduced BC technology 

that can be installed for corporate record carbon operations. Firms can imagine performance and 

evidence for the performance of carbon. The level of consumption will be established at indicated 

periods, and the CE reduction product will be gathered in the database [288], [289]. Thus, the BC 



technology adoption can support a firm in preventing fraudulent transaction traces with an 

exclusive cryptographic signature and a timestamp. The integrity and transparency of GHG help 

an organization to attain performance of low carbon [290].  

P11. The acceptance of BC technology has a confident, positive, and significant relation to carbon 

implementation. 

 

Figure 16. Premises of BC adoption. 

C. Roles of value-added and Blockchain explanations in the carbon trading regions: 

The technology of BC with its exclusive characteristics and detailed overhead can solve issues of 

carbon trading as well as progressing operation schemes and current practices. In the next 

explanation, BC's valuable position in the CT region is noted and given in Table 13:  

1. Transparency:  

Entities contributing to the market of CET have a full profile of the trading process of carbon 

stipends. Every node will be capable of specifying where and how trading of allowances occurred 

[291]. The absence of transparency is the greatest issue facing frameworks of CT for it opens for 

actions of manipulation. Therefore, the transparency of BC is a resource for the CT region that 

shall support it to attain the focus it was recognized for.  

2. Security: 



 The structure of BC cryptography guarantees immutability and data security. Because of block 

dicing, with no circumstance to modify records in every block if the muddles of each block, with 

all sequential blocks, are rescheduled once again. It is an approximately impossible project. 

Further, the dispersed BC information traces do not grant any doubtful information validations 

since it is compulsory to find the agreement of most nodes before informing them [292]. Therefore, 

immutability and security are secured.  

3. Eliminate central servers, intermediaries, and third parties: 

BC as a dispersed system excludes the idea of dominant servers. In BC, information is saved in a 

dispersed approach where every association member would have a duplicate of all knowledge that 

is informed uninterrupted. Also, processes of data validation will be attained over the BC consent 

process without the requirement for central attendants to validate data. Data exploration could be 

accomplished with the help of smart agreements belonging to BC. Those benefits are enormously 

significant, specifically for a large platform of CT where new investors constantly bond with the 

group, hence, a structure dispersed is more accessible and does not tolerate from failure of a solo 

point [293].  

4. Records of historical action:  

Data related to CE trading, prices, budgets, allowances, and readings are immutably saved in 

capsulated and recorded inside blocks that could be discovered at the very initial reading or 

activity. This explains the arguments looking at the CT assists and sector in pursuing the 

advancement of the directed plans and schemes for coming improvements founded on past data 

[294].  

5. Credible and Irreversible Transactions:  

The formation of BC avoids double wasting which excludes fraudulent operations [295].  

6. Built-in Consortium:  

The structure of BC distributed and its implemented consensus method present consortium in CE 

values and reading since binding nodes assure that the information stays tamperproof. If all 

members have the means and the data to confirm that it has not been falsified or altered, then 

credibility could be attained [296].  

7. Data Solitude:  

The further section of the cryptographic blockchain organization relies on public/private pair keys, 

which confirms that the targeted or assigned group objects can access the information. This shall 

defend penetrating data associated with the processes of business approved by confident producers 

from receiving revealed while at a similar period sharing the essential CE allowances, analysis, 



and some created necessary KPIs to accomplish a beneficial and fair framework of carbon trading 

[297].  

8. Automation:  

Using smart agreements is a substantial appearance that adds competence to the operated support 

because of the sharp level of presented automation. A carbon share that is expected to be traded 

meets a particular situation, the smart agreement is prompted, and an evident significance will be 

transformed. Further, with the perfectly fixed requirements, integrity is guaranteed and established 

as properly. The bonds are stored and coded in BC are renovated in real-time and are capable of 

finishing CT themselves a result, the cost of high transactions is an alternative trial solved by smart 

bonds in adding to flexibility, integrity, and efficiency [298].  

9. Consistency and Robustness:  

All these aspects of BC confirm its consistency when assumed in frameworks of CT. Also, the 

consistency of BC, besides the extended record of its perfect implementation in numerous 

disciplines, confirms its extreme robustness [299].  

It is sure from the description of BC's included estimates that incorporating this technique with a 

market of CET numerous facing tasks shall resolve it. The system of joint BC-CET will operate 

quick contracts in determining the carbon resources and calculating carbon adjustment 

spontaneously and lacking individual intervention. In the end, utilizing the BC of Belongings 

concept where sensors transfer utilizing BC shall support measurement tools, tracking, and vital 

monitoring, for the CO2 released and supply the market of CET with secured and trusted data that 

is clear to all revelries. Viewing the problem of overlooking the collection of GHG releases faced 

in the promotion of CET, BC may give transparent and trusted data information that will help 

governments select the optimal approach to tackle this issue [300] [297]. 

Table 13. Aspects and contributions of Blockchain. 

ref aspects contributions 

[291] Transparency BC can specify where and how the trading of allowances occurred. 

[292] Security  BC guarantees immutability and data security. 

[293] Elimination BC as a dispersed system excludes the idea of dominant servers. 

[294] Records BC saves all the initial reading and activities of CT. 

[295] Irreversible 

Transactions 

BC avoids double wasting which excludes fraudulent operations.  

[296] Built-in 

Consortium 

BC distributed and its implemented consensus method present 

consortium in CE values and reading. 

[297] Data solitude BC accomplishes a beneficial and fair framework of CT. 

[298] Automation BC are renovated and are capable of finishing CT as a result, of the 

cost of high transactions. 

[300] Reliability BC gives transparent and trusted data information to select the 

optimal approach to tackle the issues.  



  Our survey considers all these aspects. 

 

XIV. Internet of Things (IoT) for CE reduction: 

A. Monitoring Techniques of IoT: 

Monitoring techniques of IoT-based have a substantial ability to control CEs [301]. These 

structures allow individuals and organizations to trace their carbon footprints (CF) as given in 

Figure 17, recognize opportunities for emission decrease, and create notified assessments about 

the control of energy [302], [303].  

 

Figure 17. Monitoring IoT system. 

Benammar et al. [304] designed a platform of IoT that examines indoor air conditioning in real 

time. This comprises criteria for several devices of smart mobile, wireless sensor networks 

(WSNs), and sensor technologies. Near access distributes and handles information around a web 

server to clients. The network utilizes Emoncms to save internal monitoring of air quality (IMAQ) 

data for long-term and immediate checking. This study helps the magnitude of several parameters 

of air quality, comprising ambient temperature, relative humidity, Cl2, SO2, O3, NO2, CO2, and 

CO. The examine emphasizes the capability of monitoring systems of IoT-built control of CE, 

especially in indoor surroundings [304]. 

Ma and Wang [305] designed a model by utilizing DNT to balance reducing CE and extending 

resource economy and energy. To attain this, the authors established prediction of CE develops 

and integrated game premise to optimize the economy of resources. The conclusion of the 

simulation denoted that the popular model boosted the maximization of energy assets and lowered 



the CF cautiously. The researchers counsel that coming research on studies of frequent empirical 

to find out the inherent causes affecting the prediction of CE. The researchers explained the 

model’s ability to reduce CEs while maximizing the economic resource.  

The author in ref [306] employed an IoT-built network that controls and monitors releases of CO2 

from forest fires, industries, municipalities, and transport. The network senses levels of CO2 in a 

town and discovers the most polluted zones. They accomplish that their network can support 

decreasing global warming by controlling and monitoring emissions of CO2 in real-time. The 

advantage of monitoring methods of IoT-built is their capacity to deliver notified insights into 

patterns of energy consume [307].  

By analyzing information from sensors and extra resources, organizations can recognize regions 

wherever they can present alterations to decrease CFs. Further, they also recognize specific 

processes or equipment that utilize additional energy than required. There are various challenges 

in employing monitoring methods of IoT-based for control of CE. These networks needed 

personnel investments, software, and significant hardware, to maintain and install [308], [309].  

B. Green IoT with ICT for carbon reduction: 

In [310], the author proposed the effect of information and communication technology (ICT) on 

CE and energy consumption in EC. 

The researchers of [311] examined the usage of ICT applications and strategies to bring down EC 

and CE. The author of the ref [312], [313] suggest sustainable smart cities with data-driven 

technologies. In [314] the authors studied the principles and roles of IoT green and its capacity to 

improve the environment, economic progression, and life quality. They offer several advantages 

of decreasing the negative outcomes of recent technologies on individual health and the ecosystem. 

For ICT sustainability, solutions have absorbed the data center optimization through methods of 

sharing organization, which primes to a reduction in CE, enhances energy efficiency, and 

decreases e-waste appearing from disposals of material [315]. Furthermore, in [316] the authors 

summarized and discussed the qualifying techniques for green IoT which comprises green 

communication and internet networks, green data centers (GDC), green machine-to-machine 

(GM2M), computing of green cloud (CGC), green RFID (GRFID), green wireless sensor networks 

(NGWS) are shown in Figure 18.  



 

Figure 18. Technologies of green IoT. 

The primary aim of greening IoT is to lessen pollution and CE, increase environmental 

conservation, and reduce power consumption and operational things costs [317], [318], [319]. 

Enabling technologies of ICT for green IoT, techniques of ICT play a fundamental part in 

estimating the effect of ICT on decreasing CE for applications of green IoT like smart building, 

smart transportation, and so on [310]. Green ICT contains several technologies such as cloud 

computing, telecommuting, IoT, virtualization, supercomputers, smart grids, and e-commerce, 

[311]. The researchers in [320] examined the green IoT and ICT relying on technologies of green 

communication, smart grid, and usages of computing technologies [321], [322].  

1. Green M2M  

Newly, technology is progressively becoming able and smarter to collect information without 

human interference. techniques of AI are the lead after the advancement of numerous modern 

technologies. Also, for recognizing the vision of a smart system of Machine-to-machine (M2M), 

communication of devices is required to be treated on a significant range. Chan et al. [323] 

explained patterns set for estimating the use-phase CE and power utilization for network services 

of wireless communication [324]. 

2. Green RFID  

RFID is the mutual Identification (ID) and Radio Frequency (RF) term [325], [326], [327]. It is 

denoted as the networks of wireless communication utilized to allow IoT. Further, it does not 

require a scenario of operational Line of Sight (LoS) and draws the physical domain into the 

graphical domain very simply [328]. The application of RFID is given in Table 14. 



3. Network of Green Wireless Sensors (NGWS): 

The incorporation of wireless and interaction of sensing has directed to the Wireless Sensor 

Networks (WSNs) theory [329],[330]. It has certainly made the flourishing of IoT into a 

magnificent [331], [332]. The sensor is a sequence of massive, tiny low-cost and little-power 

electronic machines [333], [334], [335]. 

Hence, microprocessor leanings for WSNs contain decreasing EC, though enhancing the 

processor's speed. It is an arising thought in which the throughput performance and lifespan are 

extended while the CE is diminished. In ref [336], Mahapatra et al. examined three numerous ideas 

(viz. Error Control Coding (ECC), Wireless Energy Harvesting (WEH), and Wake-Up Radio 

(WUR)) to improve the implementation of green WSNs as decreasing the CE [337], [338]. 

4. Computing of Green Cloud Technology: 

The technology of Cloud computing (CC) is a promising virtualization method utilized through 

the internet. It delivers almost all capabilities of unlimited computational, service delivery, and 

unlimited storage, via the internet as theoretically given in Table 14, the technology of CC is 

universal whereas IoT is extensive [339]. 

C. Green IoT Designing:  

Acquiring appropriate procedures for increasing constraints of QoS (i.e., throughput, delay, and 

Bandwidth) will further efficiently and effectively to greening IoT. Extra research is required to 

extend the IoT device model, which supports energy usage reduction and CE. Energy saving and 

decreasing the CE are the most essential tasks for a green and smart environment [340], [341]. 

Table 14. Applications of CGC and RFID. 

 Applications  Applications 

CGC Camera, 

Tablet, 

Monitor, 

Laptop, 

Mobile, 

Desktop, 

Cloud 

RFID RFID tag, 

RFID Antenna, 

RFID Station, 

RFID Reader, 

 

 

D. Drawbacks 

This underlines the complications tangled in adopting monitoring systems of IoT-based CE 

controlling. These hurdles incorporate substantial human resources, software, and hardware, needs 

for the upkeep and setup. Furthermore, a notable issue of privacy is connected to scrutiny and data 

gathering from entities and individuals. Overall, monitoring systems of IoT-based can be effective 



tools for CE controllers. As technology upgrades and decreases the costs, we expect to see more 

extensive adoption of these networks in the next years. Nonetheless, it is important to study these 

structures' challenges and potential advantages earlier than spending on them [342].  

XV. Metaverse Role with Carbon Reduction: 

In research by Emergen [343], the global market size of the metaverse has accomplished in 2021 

is $63 billion and is projected to reach in 2030 is $1607 billion. With the fast metaverse 

evolvement, there will certainly be high CE at the same time. To undertake actual measures for 

the reduction of carbon emissions, we must first recognize the metaverse with the role of “carbon” 

by deliberating its CE in the following duration. Further, it is nontrivial to perform the estimation 

precisely as the metaverse is yet a constantly evolving and newly emerging concept that wraps up 

a wide scale of technologies. To decrease the estimation error, we consider the CE and energy 

consumption of the metaverse relying on the figures of energy specified by the following proper 

sources:  

1. the market size of the metaverse and global IT: a report from a report from Research by 

Emergen [344] and The Business Research Company [345], respectively,  

2. the energy consumption of networking, end devices, and data centers: articles on the energy 

of Information and Communications Technology (ICT) from Huawei Technologies [346], 

[347],  

3. Blockchain energy consumption: research from the University of Cambridge for analyzing 

the Bitcoin energy [348], [349] and a paper from the Technical University of Munich for 

considering the overall cryptocurrency energy of [350].  

The cryptocurrency energy consumption of the blockchain is taking since the blockchain is used 

for metaverse transactions. Since the cryptocurrency's energy numbers are only available before 

2022, an exponential function is utilized to evaluate future energy consumption based on previous 

values [351], [352]. 

By multiplying the proportion of the market size metaverse to the market size global IT and energy 

numbers, we can assess the global metaverse energy consumption from the year 2022 to 2030 with 

every layer [351]. Figure 19 plots the growth trend and results. Based on the approximation, we 

obtain that the infrastructure energy consumption of the layer extends comparatively proportional 

to the metaverse total energy and captures about one-fifth of the total time. By dissimilarity, the 

consumed energy by the layer interaction remains constantly at a high level.  

While a solo end-device mostly consumes only various Watts, growing demand and their huge 

quantity for transmission of data still lead to a share of high energy for interaction of supporting 

immersive. Temporarily, its energy share fell off in 2022 from about three quarters in 2030, it is 

less than half. The energy dropped share can be recognized in the economy layer fast growth, 

whose 8× increased the energy consumption in the eight years. This strong growth is expected, as 

the existing blockchain technology is mostly assumed to be unexpectedly energy-consuming for 



the demand to complete computations of useless hash and lots of terminated. To measure the CEs, 

it is kept in mind that energy consumption is not only determined but also linked with the electricity 

generation carbon intensity which gets reduced due in huge part to an improving clean energy 

share. Therefore, Figure 19 shows the carbon intensity energy numbers of electricity generation 

[353], we assess the corresponding CE of every layer from 2022 to 2030 as shown in Figure 20.  

 

Figure 19. the growth and trend of energy consumption from 2022-2030. 

 

Figure 20. the growth and trend of carbon emissions from 2022-2030. 



The metaverse CEs spread as high as 115.30 Mt by 2030 year. To contend with climate change 

and succeed in carbon neutrality as guaranteed, global CE should be lowered to 23.63 Gt by 2030 

[354], [355], which conditions the accounts of metaverse for almost 0.5% of the global CE. We 

contend that it is gradually urgent to think of enough green phases when operating and building 

the metaverse and prepare several green techniques to address its carbon problems. The metaverse 

will justify as high as 0.5% of global CEs by 2030 unless we obtain an effective preventive process 

from now on. It should identify global considerations for its carbon problem and reassure 

collaborative attempts on green techniques [356], [357].  

A. Metaverse Green Efforts: 

In the IT sector to address the carbon problem, several green techniques have appeared. As given 

in Figure 2, these techniques will support reducing the carbon footprint in the metaverse three 

layers[274]. 

1. Adoption of BCques can be classified into the enhancement of the entire infrastructure, 

power system, cooling system, and IT system, as well as concerning all of them.  

2. Interaction Layer: At the layer of interaction, given the whole interaction process with 

others, the techniques comprise the enhancement of networking, MR/VR/AR-based 

applications, and end devices.  

3. Economy Layer: At the layer of economy, the techniques essentially refer to the 

enhancement of BC technology. However, these present techniques also establish 

limitations when splitting with workloads of the metaverse.  

It will dive into these mentioned green techniques for the three layers of the metaverse by 

examining their limitations and applicability shown in Figure 21. If there presents a moderately 

prominent estimation error, in the examination of the metaverse's growing trend, the metaverse 

carbon footprint will still be great enough to underline the significance of the green effort. 

 

Figure 21. Three layers of the metaverse. 



B. AI model compression with metaverse:  

It is assumed that AI-based services play a substantial function in the metaverse. However, their 

enormous energy utilization justifies our special consideration as well. When huge AI model 

training includes 6 billion factors only to 13% of the entire process, the CE released by GPUs will 

be as high as home powering in America for 1 year [358], [359]. The technique of model 

compression has appeared as an applicable method to reduce CE of model inference and training, 

by reducing the model size and thus the time and resource overhead without notably modifying 

the accuracy. 

With the fast metaverse evolvement, it is assumed that a user’s growing number will see the 

metaverse when it presents better QoE of trading, playing, working, etc., soon. However, we 

debate that this may come at the price of CE and large energy consumption, which will mainly 

delay the path to carbon neutrality[360], [361]. To enhance understanding of this carbon problem, 

we first divide the metaverse into three layers of carbon-intensive and approximate their carbon 

footprints from 2022 to 2030. The outcomes show that the metaverse CE in 2030 will reach close 

to 0.5% of the global CE if we cannot bring effective procedures [362], [363], [364]. Given this 

vital issue, we then describe a wide array of emerging and current green techniques to examine 

their limitations and reduce CE when realizing the metaverse workload's specific requirements. In 

the end, we propose future directions and various insights to assist in making every layer green 

[39]. 

XVI. Artificial Intelligence (AI) Impact on CE: 

Studies on AI's impact on CE are mixed up. The well-known opinion remains that AI has an 

encouraging impact on the reduction of CE [365], [366]. First, technical advancement may 

promote the upgrading of industrial structure, adjustment of energy structure, and economic 

development, which can lower CE efficiency [367], [368], [369], [370]. The technology of AI may 

charge great information from various sources to resolve difficult problems, hence reducing CE 

and boosting productivity GDP per unit. Next, AI as a technology of cutting-edge generates 

information spillover and data and increases productivity, which permits technologies of carbon 

neutrality [345][274]. 

Adoption of BC technology and environmental-technological-organizational:  

The technological perspective discusses the technologies significant to a company. This comprises 

compatibility and technological competence. Technological competency signifies the formulation 

of a company in the organization, with the knowledge level involved in such technology, and a 

company's cooperation to be. 

However, other researchers contend that technical improvements carried out by AI not only 

decrease energy depletion but also outcome in lesser energy amounts and surplus, which may 

additionally inspire energy transition and use, thereby falling the projected energy reserves of the 



knowledge. This sensation is called the “rebound effect” [371], [372]. AI is comparatively energy-

concentrated for industrial use, as industrial robotics and ML are considerably more energy-

concentrated than workers. Recently, the computational intensity essential for general technologies 

of AI such as DeepMind’s AlphaZero Go cycle has roughly expanded every 3.4 months, three 

times between 2012 to 2018. AI that relies on deep learning is developing the major device of 

corporate development in information centers around the world, with CE and energy utilizing it 

produces not seriously controlled, it will begin a “butterfly effect” devastation. In the interim, the 

EU has proceeded with an alert that the GHG emissions in industries with AI could rise to 14% 

for the coming two decades. This article analytically implies that it is of main consequence to 

discover whether AI has a negative or positive outcome on CE [373], [374], [375].  

A. AI Reduces CE by Optimizing Green Technology Invention:  

Technical innovation and progress are referred to as vital portions of emission reduction and 

energy maintenance [376], [377]. Technology diffusion supports the stimulation of green 

technology and processes of cleaner manufacturing in environmentally stained areas, which has a 

promising effect on CE and energy execution [378]. 

B. AI Reduces CE by Improving Industry Structure:  

Upgrading industrial structures is a main driving intensity for pollution reduction and energy 

maintenance. With upgrading the industrial configuration, factors steadily transfer from areas with 

less marginal effectiveness to areas with huge marginal effectiveness. The tools of resource 

provision with the AI economy can rearrange capital, labor, and other source features to encourage 

the industrial assembly to the industrial chain high termination, which is favorable to decreasing 

pollution emissions and increasing energy efficiency [379], [380], [381]. 

C. AI Reduces CE by Optimizing Information Infrastructure: 

Information structure, which is naturally friendly with minimized CE, fewer destructive 

externalities, and economic activity promotes dematerialization [382], [383]. Further, information 

infrastructure urges businesses to devote themselves to information technology, which decreases 

the activities of CE. Also, it facilitates information structure improved communication, and 

articulation between downstream, midstream, and upstream, initiatives in the industry chain, with 

the propagation of data and information between the manufacturing industries and productive 

facility, thereby attaining the parting of the service link from the production connection and a 

cleaner and further operation model and efficient production [384].  

D. Methods and Materials: 

1. Identification Approaches:  

This article examines the impact of AI on CE. The standard model is:  

𝐶𝐸𝑇𝑟,𝑦 = 𝛽 ln𝐴𝑇𝑟,𝑦 + 𝛼 + 𝜇𝑡 + 𝜇𝑟 + λ𝑊𝑟,𝑦 + 𝜀𝑟,𝑦  22 



  

where 𝐶𝐸𝑇𝑟,𝑦 represents the CE intensity of; 𝐴𝑇𝑟,𝑦 calculates the AI growth level of region ‘r’ in 

year ‘y’; 𝑊𝑟,𝑦is a control variables set; 𝜀𝑟,𝑦 is the error term, and 𝜇𝑡 and 𝜇𝑟 indicate the fixed time 

effect and fixed area effect. The coefficient ‘β’, is the net effect of AI development level on the 

intensity of CE, is the key coefficient. A vital negative ‘β’ represents reduced CE intensity because 

of enhanced AI progress. Either an irrelevant or a positive β represents an insignificant effect of 

the enhancement of AI on CE. 

2. Variables: 

3. Basic Independent Variable (Development Level of AI): 

In the period of the digital world, AI is widely utilized in several areas of society and the economy. 

Inspired by an applicable study, it uses a technique related to the “Bartik instrument” to build the 

exposure to the robot (ETR) for region ‘r’ in year ‘y’: 

𝐸𝑇𝑅𝑟,𝑦 = ∑ 𝛾𝑐,𝑙

𝑙∈∅

. 𝐴𝑃𝐷𝑙,𝑦 
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where 𝛾𝑐,𝑙 represent the employment proportion in industry ‘l’ in the manufacturing region, 𝐴𝑃𝐷𝑙,𝑦 

represents the robot dispersion in year ‘y’ in industry ‘l’ at the country level, 𝛾𝑐,𝑙 and 𝐴𝑃𝐷𝑙,𝑦 are 

measured: 

𝛾𝑐,𝑙 =
𝑃𝑟,𝑙

𝑃𝑟,
⁄  
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𝐴𝑃𝐷𝑙,𝑦 =
𝑆𝑅𝑙,𝑦

𝑃𝑙,
⁄  
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where 𝑃𝑟,𝑙 represents the industry-employed population in region ‘r’, 𝑃𝑟, represents the 

manufacturing sector employed population in region ‘r’, 𝑆𝑅𝑙,𝑦 notes in year ‘y’ the stock of 

industrial robots in industry ‘l’ in countrywide. 

4. Dependent Variable (Intensity of CE):  

It worked on town industrial CE owing to the reality that products of AI are currently pitched 

regarding businesses. It also splits urban industrial CE into two classifications: straight emissions 

from the use of energy such as LPG and natural gas, and emissions comes from electricity in town 

industries [385],[386], [387], [388] the CE is calculated as follows:  



𝐶𝐸 = 𝐶1 + 𝐶2 + 𝐶3 = 𝛼1𝐸1 + 𝛼2𝐸2 + 𝛼3(η𝐸1)  26 

  

  

𝐶𝐸𝑇 = 𝐶𝐸
𝐺𝐷𝑃⁄  
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C1 and C2 represent the CE from LPG and natural gas, and C3 is the CE of the consumption of 

electricity of the whole union; E1, E2, and E3 denote the use of industrial electricity, LPG, and 

natural gas. α1, α2 denotes the factors of CE of LPG and natural gas, α3 is the GHG factor of the 

fuel chain of coal power, and η represents the share of generation of coal power to entire generation 

[389].  

5. Instrumental Variables  

Throughout the sample, like China, the industrial robot’s growth in the US can indicate the 

tendency of technological growth, and its effect on China’s CE contents the endogeneity 

hypothesis of instrumental variables. Changes in the industrial robot supply of the US do not 

associate with variables involving the carbon intensity of China during the same period, satisfying 

the homogeneity hypothesis of instrumental variables [390], [391].  

6. Control Variables  

This work control variables are investment with fixed asset (invest), represented as the proportion 

of the city’s entire investment with secure benefit to regional GDP; financial expansion level (f 

in), urbanization ratio (urban), which is stated as the municipal district with population share; and 

government interference (expenditure), which is stated as the proportion of the city’s overall public 

expenditure funds to the regional GDP [392], [393].  

The effect of the improvement of AI on CE for the level of 270 prefectures using panel data cities 

in China 2011-2017 [394], [395]. Publicly available statistics from the China Research Data 

Service Platform (CNRDS), EPS Data Platform, Yearbook of Statistical China City, International 

Federation of Robotics (IFR), and Database of Enterprises of China Industry, are the primary bases 

of research data. The Table 15 includes the expressive statistical evaluation of the variables [396], 

[397]. 

Table 15. statistical evaluation of the variables. 

Variables Symbols Standard 

Deviation 

Mean Max. Min. 50 

percentiles 

CE Intensity CET 1.020 0.0300 6.200 −1.450 −0.270 

Population (%) in 

urban areas  

Urban 0.0500 0.0800 1.270 0.0100 0.0700 

Financial 

expansion 

fin 0.290 0.790 2.200 2.200 0.760 



Government 

interference 

Expenditure 1.030 11.94 16.08 8.130 11.82 

Exposure to robot   In ETR 0.870 2.380 5.370 −0.0700 2.380 

Fixed asset 

investment  

invest 0.240  1 0.0500 0.300 

 

XVII. Edge computing (EC) for Carbon Reduction: 

This section decisively examines the leading trends toward the EC for a green environment. Distant 

from offering insight into the algorithmic and architectural aspects, we accomplish an accurate 

estimation of the literature by several assessment constraints. These evaluation constraints are 

largely derivative from the literature on new advances in EC [398], [399], [400], [401], [402], 

[403], [404], [405], [406], [407]. Taking five altered assessment constraints, namely, 

sustainability, context responsiveness, security, caching, and scalability, for the estimation of the 

current developments are as follows and given in Table 16.  

A. Sustainability:  

This contrasts with the use of RE sources and the energy-efficient design. Furthermore, 

sustainability discusses energy gathering, which receives energy from radiofrequency foundations 

and environmental sources and keeps it for additional usage. The main sustainability objective is 

to decrease CE. A major portion (>80%) of produced energy by utilizing brown supplies [408]. 

Hence, sustainability is an essential key feature measured in the structure of EC-permitted 

organizations. In addition, this measure suggests an enhancement in profit, hardware reliability, 

and reduced carbon footprint [409].  

In the future, the densification of servers and devices is projected, which in alter will outcome in 

restrictions of energy. Thus, sustainable expansions are essential. Sustainability in EC can be done 

by utilizing sources of RE [405], energy harvesting [410], [411], [412], and design of energy-

efficient [413]. Sources of RE include wind, geothermal, and biomass energy. The design of 

efficiency has three significant portions, software of energy-efficient, resource management of 

energy-efficient, and hardware of energy-efficient shown in Figure 22. Other than the design of 

energy efficiency and sources of RE, energy gathering contracts with the energy withdrawal from 

external resources for extra source in the small device’s operation, such as wearable tools and 

sensors [409], [414], [415], [416], [417].  



 

Figure 22. Three significant aspects of edge designing. 

Energy is collected either from ecological resources, such as thermal, solar, and wind, or from 

foundations of radiofrequency. There are important distinctions in the gathered energy from 

cooperation sources of radiofrequency and natural sources [418]. Thus, it is authoritative to 

propose a hybrid network that utilizes mutual grid energy and harvested energy. A mixed network 

initially must completely utilize gathered energy and then advanced utilize grid energy in instances 

when the level of harvested energy becomes less than the required operation energy. Hybrid energy 

supplies are used to allow sustainable operation. Sources of hybrid energy make use of both grid 

energy and harvested energy on necessity. First, such a network applies accessible collected 

energy. Then grid energy is utilized only when the gathered energy level reduces below the 

application's essential energy level [419], [420], [421], [422], [423], [424]. 

Sustainability is an alternative important requirement when planning EC infrastructures for a green 

environment. The densification of EC servers and end-user machines is expected. Therefore, this 

adds major energy limitations to the whole green city design infrastructure. Therefore, tackling the 

task of huge energy intake without demeaning QoS is essential. The three major aspects are linked 

to sustainability of the EC-enabled green cities:  

• harvesting energy [425], [426], [427]; 

• use of RE sources [428], [429], [430]; and 

• design of energy-efficient [431], [432], [433]. 



The EC-enabled infrastructure of green cities is proposed to design energy consumption by 

engaging innovative communication technologies and architecture design. Various styles to 

enhance the energy effectiveness of the EC system model comprise caching with energy-efficient 

[434], sleeping [435], offloading of energy-forced and offloading with computation of energy-

aware, and user suggestion [436]. Further, technologies of wireless networking of energy-efficient, 

such as ZigBee and IPv6 can be utilized to support the sustainable operation of network [437], 

[438], [439], [440]. In [441], Gai et al. suggested communication of cognitive wireless that applies 

EC and reinforcement knowledge to enable operation with efficiency. Other than the design of 

energy-efficient, an ecosystem with EC that utilizes energy from power generation plants will 

contribute to the CF. However, an EC infrastructure should use energy from RE sources, such as 

hydropower solar, and wind. On the other side, energy can be collected from environmental 

supplies, such as sun and wind [442] radio-frequency supplies, such as interference signals and 

transmitters [443]. Energy harvesting proposes substantial rewards but undergoes casual variations 

in both radiofrequency and environmental energy [444], [445], [446], [447]. Thus, it must utilize 

hybrid supplies that also use grid energy and harvest energy on request if the level of collected 

energy drops below the essential energy. The edge attendants are proposed for roles in several 

diverse applications to help a huge number of handlers. However, edge servers are also projected 

to assist and help with algorithms of computationally exclusive ML. Therefore, high-performance 

retention is used as one of the capable explanations for allowing sustainable EC-aided smart 

surroundings [448], [449].  

1. Context Responsiveness:  

The capability of the network to acquire knowledge about the surrounding environment and node’s 

locations. Context awareness suggests various advantages, comprising the addition of more 

denotation to data of emergency management support, M2M communication assistance, smart IoT 

mechanism, and program implementation of smart town facilities, to assign a limited [450], [451].  

2. Security:  

This mentions a tool’s cyber security and physical security. Further precisely, cyber security 

contracts with information from attacks, computing infrastructure, and network protection 

[452],[453]. 

3. Caching:  

The transient storage of famous matter at unique positions in a complex allows contact with little 

dormancy. Caching also decreases network congestion by preventing the flow of frequent traffic. 

Caching contracts with the loading of famous matter and EC supplies computation funds, but these 

ideas can be leveraged instantaneously in smart cities to allow a variation of smart purposes [454].  

4. Scalability:  



The aptitude of a network to allow elastic facilities as per manipulator requirements without 

misplacing QoS results with the process of cost-efficient [413].  

Table 16. Main aspects of edge computing. 

ref aspects contributions 

[450], [451] Responsive facility It has the capability of acquiring knowledge at different 

locations. 

[453] Privacy It controls all the physical and cyber security. 

[454] Caching It has the power of storage and decreases network 

congestion. 

[413] Scalability It allows the process of cost-effective. 

 

XVIII. Distributed computing (DC) for Low Carbon footprint: 

the evaluation of the carbon footprint (CF) and latent reserves footprint of such a follow the 

wind/follow the sun (FTWFTS)-relied on a distributed information center. It will simplify the 

notion of RE and as a replacement for considering energy of high-footprint (HF) and energy of 

low-footprint (LF). As a measure for the CF, we will utilize carbon in grams, if otherwise 

suggested. The mathematical version is given for defining the CF and reserves of such an 

infrastructure of a distributed information focus which is fueled by a located mixture of HF and 

LF energy [455], [456], [457]. 

A. Theoretical model:  

Develop and consider a model for appraising its complete CF. The several parameters 

quantification in our interpretation will be organized [458], [459], [460]. To present our theoretical 

model, we study the infrastructure of a distributed basic data point. It comprises of ‘p’ 

proportionately sized locations. Of these ‘p’ locations, on average ‘q’ locations are functioning. 

When a particular location becomes non-active, processing and data are moved to the alternative 

lively location, retaining the total of functioning information centers always to ‘n’ equal. At this 

fact, it is vital to point out that, while we practice the term information center, our model will be 

separate in the mass of the information center. An information-filling location is an energy-

improved structure housing huge attendants, or it be as tiny as a solo attendant. It might be helpful 

to imagine an information center location as a computing connection of any feasible size [461], 

[462], [463].  

Each location is operated by either HF or LF. The average accessibility of energy LF against HF 

is judged equal, for every location [464], [465]. This accessibility ratio ‘b’ may be the outcome of 

the average sequential accessibility of an exact RE source (for example, wind or solar power), or 

agreements of restricted service rank between the utility provider and the information center 

operator. To decrease the whole footprint, the LF use will be expanded by drifting the working of 

an information center operated by HF energy to an information focus where LF is present. When 



the energy of LF is absent, HF will be utilized to deliver guaranteed service. The whole carbon 

footprint ‘T’ of the beyond-designated infrastructure of the distributed information focus, averaged 

over an extended sufficient time, then add the footprint of communication ‘Tc’, usage ‘Tu’, and 

the manufacturing ‘Tm’: 

𝑇 = 𝑇𝑐 + 𝑇𝑢 + 𝑇𝑚  28 

  

 

The ‘Tm’ will be the emitted carbon through the fabrication of the apparatus (network apparatus, 

servers, etc.) internally and at the sites. The ‘Tu’ will be the outcome of the energy utilized through 

the use period. The ‘Tc’ is the emitted carbon by jobs and transferring data from location to 

location. All these footprints are extracted in g CO2-eq. Formerly we detail every footprint, it is 

beneficial to show the arising assumptions we will get for our theoretical template:  

• Do not believe the remaining LF energy.  

• Imagine each location in the allocated information core to be of identical size.  

• Suppose immediate location resettlement. That is, we suppose that relocation requires no 

period and creates no further expenses not reported for in the ‘Tc’. If the migration 

frequency is comparatively low, this hypothesis will hold.  

• Suppose a non-active information core location utilizes less energy. Although this is a 

confident hypothesis for significant information cores, this is possible for micro-scale 

information centers containing a few attendants (recall that the designated information 

focus, model is free of the information focus size). A non-active energy location could be 

decreased to (approximately) zero by hanging all attendants. 

 

B. Footprint of Usage: 

Let us consider ‘h’ the probability that a location is driven by the energy of LF. We consider ‘k’ 

the whole number of information place locations that are driven by LF and ‘hk’ the probability of 

this ‘k’ number. This change is specified by the function of likelihood mass of the binomial 

distribution:  

                           ℎ𝑘 =
𝑠
𝑘

 ℎ𝑘(1 − ℎ)𝑠−𝑘   29 

  

It is also known as natural development. The possibility for the same ‘k’ locations driven by LF is 

ℎ𝑘. The probability for the (s−k) lasting locations to be not driven by LF is (1 − ℎ)𝑠−𝑘. The 

number of systems to select the ‘k’ location out of a whole of ‘s’ location is provided by the 

binomial factor 
𝑠
𝑘

 and can be estimated as: 



𝑠
𝑘

=
𝑠!

𝑘!(𝑠−𝑘)!
   30 

  

Assumed ‘J’ the CF of the whole usage part of a solo location when driven entirely by LF and ‘G’ 

the CF when driven entirely by the energy of HF. The whole footprint of usage ‘Tu’ for all 

locations is: If k ≥ n (if available energy of LF is sufficient or more locations than needed):  

𝑇𝑢 = 𝑛𝐽  31 

  

 

𝐸𝑙𝑠𝑒: 

𝑇𝑢 = (𝑛 − 𝑘)𝐺 + 𝑘𝐽  32 

  

 

Thus, utilizing the risks of ‘k’ remaining a specified term, the whole usage 𝑇𝑢 becomes:  

𝑇𝑢 = ∑ [ℎ𝑘𝑛𝐽] + ∑ [ℎ𝑘(𝑛 − 𝑘)𝐺 + 𝑘𝐽]𝑛−1
𝑘=0

𝑠
𝑘=𝑛   
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The 1st term defines the prejudiced footprint if sufficient locations are driven by the energy of LF, 

and the 2nd term is after this is not the issue. When swapping Eq. (30) in (34) we find the whole 

usage 𝑇𝑢of the infrastructure of distributed information cluster:  

𝑇𝑢 = 𝑛𝐽 ∑ [
𝑠
𝑘

 ℎ𝑘(1 − ℎ)𝑠−𝑘] + ∑ [
𝑠
𝑘

 ℎ𝑘(1 − ℎ)𝑠−𝑘(𝑛 − 𝑘)𝐺 + 𝑘𝐽]

𝑛−1

𝑘=0

𝑠

𝑘=𝑛

 

  

34 

  

 

The footprint of usage outcomes entirely from the energy of electrical (EE). The intensity of 

emission from electricity illustrates the emissions of GHG in g CO2-eq/kWh. By using ‘IJ’ and 

‘IG’ to represent the intensity of emission for electricity of LF and HF correspondingly. With Ed, 

the energy utilized by a solo location through the whole use level, J and G can thus be extracted 

as:  

𝐽 = 𝐼𝐽𝐸𝑑 , 𝐺 = 𝐼𝐺𝐸𝑑  35 

  

 

C. Footprint of Manufacturing: 

The whole footprint of manufacturing ‘Tm’ is a purpose of the CF cost ‘O’ for developing one 

information center location, and the number of information center locations ‘m’: 



𝑇𝑚 = 𝑚𝑂   36 

  

it is appropriate to study the developing element ‘e’, which is the proportion of the footprint of 

carbon manufacturing ‘M’ of a solo location over the CF ‘G’ of a solo location:  

𝑒 =
𝑀

𝐺
  

 

 37 

  

Apparatus where it releases a smaller amount of GHG than the distinctive GHG released through 

its use stage will have an element e < 1. Now, we can modify eq:  

𝑇𝑚 = 𝑚𝑒𝐺 = 𝑚𝑒𝐼𝐺𝐸𝑑  38 

  

We learned the apparatus to be generated with HF energy, by stating ‘M’ as a role of ‘G’ in its 

place of ‘J’.  

D. Footprint of Communication: 

Drifting data or jobs through information centers suffers an additional CE amount. This will 

primarily be owed to the energy utilized for 

• duration and preparation of the migration,  

• the transport over an optical system, and 

• transferring the information core to the non-active condition or contrariwise.  

It is established that the operating cost of the beyond three circumstances is insignificant with 

esteem to the carbon released in the use and manufacturing period and can thus be overlooked for 

now. Information clusters are normally linked by optical systems [466].  

E. Total footprint  

Combining Equations from carbon manufacturing and usage, the total footprint is fixed by:  

𝑇 =  𝑚𝑒𝐼𝐺𝐸𝑑 + 𝑛𝐽 ∑ [
𝑠
𝑘

 ℎ𝑘(1 − ℎ)𝑠−𝑘]

𝑠

𝑘=𝑛

+ ∑ [
𝑠
𝑘

 ℎ𝑘(1 − ℎ)𝑠−𝑘(𝑛 − 𝑘)𝐺 + 𝑘𝐽]

𝑛−1

𝑘=0
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It relies on the ‘Ed’ value, the single usage energy position. It alters altering on the information 

core type and size and the data and processes the jobs. We can remove this factor if we standardize 

the whole footprint over the solo position of usage energy ‘Ed’. Now, we can appropriately definite 

this whole standardized footprint 𝑇𝑛𝑜𝑟𝑚 as a task of the LF intensity of energy emission ‘IL’, the 

HF intensity IH energy emission, and the element e:  



𝑇𝑛𝑜𝑟𝑚 =
𝑇

𝐸𝑑
 

 40 

= 𝑚𝑒𝐼𝐺 + 𝑛𝐼𝐽 ∑ [
𝑠
𝑘

 ℎ𝑘(1 − ℎ)𝑠−𝑘]

𝑠

𝑘=𝑛

+ ∑ [
𝑠
𝑘

 ℎ𝑘(1 − ℎ)𝑠−𝑘 (𝑛 − 𝑘)𝐼𝐺 + 𝑘𝐼𝐽]

𝑛−1

𝑘=0
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Now have a CF metric separate from the information foundation type and size, and with unit, (g 

CO2-eq/kWh).  

XIX. Economic Benefits Towards Generation of Renewable Energy (RE):  

In a few years, the potential of job creation in technologies of RE in the situation of energy 

evolution has expected consideration from a few stakeholders comprising civil society, the private 

sector, government agencies, and academia [467]. The author [468] suggests the RE integration 

with multi-microgrid. Adnan et al. [469] proposed the transient stability and load flow balancing 

with the integration of RE [470]. The International Renewable Energy Agency (IRENA) has 

valued jobs related to RE to grow in 2030 by about 16.7 million [471] and their yearly analysis of 

employment globally linked to RE displays that a population of 10.3 million were hired in 2017 

[472]. Jacobson et al. projected jobs formed and jobs missing for an infrastructure of long-term of 

sustainable energy that delivers 100% renewable energy in entirely regions (industry, 

cooling/heating, transportation, electricity) from solar, water, wind power (except nuclear, 

biofuels, and fossil fuels power) for the California state and obtained that it will generate a 40-

years 220,000 net in operation plus construction jobs (190,600 new operation jobs for 40-years 

and 442,200 new construction jobs for 40-years, some 413,000 jobs missing in recent California 

of nuclear-based and fossil-fuels industries). 

Further, in ref [473] Jacobson et al. evaluate their focal situation by 2050 (generation of electricity 

with 100% solar power, water, and wind with entirely energy regions) would generate a permanent 

net of 24.3 million, 139 countries in the world have full-time jobs. This assessment comprises 52 

million creations of new enduring jobs for RE of 100% and supply of transmission for huge, 

electrified energy regions (comprising transport, heat, and power) up to 2050, and jobs are about 

27.7 million are missing in the recent industries of nuclear, biofuel, and fossil fuel [474]. 

Trends of employment expressively differ across the altered technologies of energy generation. 

Many recognizable approaches have been utilized to compute the impacts of employment in the 

changing energy regions and have been well familiar in [475], [476], [477]. Further, the several 

approaches applied can be considered top-down and bottom-up techniques, or more precisely 

utilize the models of input-output or analytical [478]. Moreover, [479],[480] focus on a life cycle 

and value-chain technique respectively, for guessing job formation mostly from RE development. 

Additionally, several studies reflect different kinds of jobs linked with energy production, the 



mutually approved arrangement is induced, indirect, and direct jobs. In ref [481], IRENA explains 

an operational and clear definition of these relations, with their clarification across studies. In  

[482] recognize that analytical training by utilizing wide surveys is established to be further 

suitable for provincial education, while output/input techniques are more suitable for international 

and national studies. 

In [483], [484], Jacobson et al. evaluate the standard jobs in the main situation of per unit energy 

relying on jobs of the National Renewable Energy Laboratory (NREL) and models with Impacts 

of Economic Development. These are output/input economic models with various uncertainties 

and assumptions. On the other side, [471], [485] assume approaches of easier analytical impacts 

of estimating jobs that also have a huge transparency level. This involves using of job employment 

factor (EF) and intensities, explained as the quantity of jobs oriented from specific energy sources 

capacity investment or addition. The EF approach used for job creation estimation with the 

scenario of Greenpeace energy potential is acknowledged by [486], and an updated version is given 

in [487], [488]. 

A. Policy Scenario for Job Creation: 

A scenario for the best policy involves the generation of 100% electricity from several options of 

storage and resources of RE through the different areas of the world, focusing on the Agreement 

of Paris. The expansion of power regions is organized by dynamic electricity growing demand 

obsessed by emerging and developing countries and enhances the share of RE in the whole mixture 

of supply. The outcomes indicate an expanding trend of RE that will recompense for the phasing 

out of the repeatedly decreasing fossil fuels numbers with the generation of nuclear power. From 

the output, the installed RE capacity will touch in 2030 by almost 14,000 GW and greater than in 

2050 is 28,000 GW. A supply of 100% electricity from RE leads to almost 23,600 GW of capacities 

of installed geothermal power, bioenergy, hydropower, wind energy, and solar PV generation by 

2050 as given in [489], [490]. The segment of RE in the whole electricity will reach 99.65% 

worldwide in 2050. Generation of RE, mainly wind energy and solar PV, is estimated to provide 

around 87% of the whole generation of electricity in 2050, of which 95% is delivered by batteries. 

The installed generation is governed by the storage of gas, while the whole generation of battery 

storage is governed. The LCOE for the global power network decreases from 70 €/MWh in 2015 

and it will decline in 2050 to 52 €/MWh. Furthermore, outcomes of the regional energy transition 

in the world [489], [490]. 

B. Globally Employment Creation: 

With the quick ramp-up of inducted generation capacities, developing RE technologies share are 

noted [491]. This tough growth in the RE region will lead to an enhancement of more than 70% in 

2030 direct jobs of power, and the generally created jobs will be 1.5 times increase in 2050, rivaled 

to 2015. Created jobs resume to increase to reach about 34 million jobs by 2030. They decrease to 



about a range of 30 million and next progressively enhance to about 35 million jobs by 2050 as 

displayed in Figure 23.  

This is usually due to huge capacities staying reinvested and replaced in, as their decommissioning 

provides lifetimes of 2% of overall jobs by 2050. In 2050, jobs in wind energy will be 1.4 million, 

batteries 4,5 million, and solar PV 22.2 million are the main technologies jobs through the period 

2015-2050. Jobs of nearly 7.3 million in wind energy are provided from 2020 to 2030, and solar 

energy is cost-effective they push the bulk of the installation before 2050 and stabilize the wind 

sector jobs. In 2050 jobs created in bioenergy are 2.3 million and 1.9 million hydropower and 

stable share in the whole period. Solar power is perceived to swap coal and it is the major energy 

resource creation, as compared to 10% jobs in 2015 and 64% jobs in 2050. Moreover, it is well-

accompanied creating jobs of about 13% by battery storage in 2050. On the other side, sectors of 

nuclear power, gas, and coal jobs are perceived to decrease rapidly as shown in Figure 23. 

Classification of jobs in categories transmission, decommissioning, fuel supply, maintenance, 

operation, installation, construction, and manufacturing shaped through the energy period 2015-

2050 is displayed in Figure 23. Jobs in the sector of fuel are decided to reduce from 44% in 2015 

of the combined jobs to reach 2% in 2050, as nuclear power and fossil fuels power capacities 

decrease. On the opposite side, it can be noted that jobs in maintenance and operation have the 

most important enhancement in the total jobs that were generated in 2015 is 15% to 50% in 2050. 

This specifies that the evolution towards a 100% RE network permits the generation of more steady 

jobs, which can donate to the economic steady development of countries focused on the emerging 

areas of the circle and support unemployment by youth tackling [492]. In many regions of the 

world, this may be a reagent to progress in political stability with social well-being [493]. 

Additionally, Figure 24 also explains the electricity development in definite jobs, that stay quite 

steady around the whole period. 

In 2015 897 jobs/TWhel and then in 2030 increased to 1091 jobs/TWhel due to huge assets during 

this time, ahead of 2030 it decreased in 2050 continuously to around 715 jobs/TWhel [44]. 

 



 

Figure 23. Jobs are generated by the several technologies of storage and power generation. 

 

Figure 24. jobs created relied on distinct categories with specific job development during the global 

energy transition 2015-2050. 

The evaluation of correlated reviews and the novelty of our effort are given in the Table 17 along 

with their advantages and limitations. This review paper is broadly distinct due to the functioning 

of CE reduction techniques, policies, and their complete types.  

Table 17. evaluation of related reviews and the novelty of our work. Note: CE- Carbon Emission, 

MDD- Models of Deep Decarbonization, RE- Renewable Energy, EKC- Environmental Kuznets 

Curve, E&M- Energy and Movement Process, DT- Digital Twin, DM- Data Mining, FL- Federated 



Learning, TL- Transfer Learning, MV- Metaverse, BC- Blockchain, IoT- Internet of Things, EC- 

Edge Computing, AI- Artificial Intelligence, DC- Distributed Computing. 
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[231] 2009-

2019 
√ × √ √ × × × × × × × × × × × 

[494] 2010-

2020 
√ × √ × × × × √ √ × √ √ √ √ × 

[495] 1993-

2023 
√ √ √ × × × × × × × × × × × × 

[496] 2008-

2019 
√ × √ × √ × × × × × × × × × × 

[497] 2007-

2017 
√ × √ × × × × × × × × × × × √ 

[498] 2014-

2024 
√ × × × × × × √ √ × × √ √ √ × 

[499] 2012-

2022 
√ × √ × × × × × × × √ √ × × × 

[500] 2013-

2023 
√ × √ √ × × × × × × √ √ × × × 

[501] 2012-

2022 
√ × √ × × √ × × × √ √ × × √ × 

[502] 2010-

2020 
√ × × × × × √ × × × × × × × × 

[37] 2008-

2019 
√ × √ √ × × × × × × × × × × × 

Our 

work 

Up to 

2022 
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

 

XX. Conclusion and Future Research: 

This paper's energy transition roadmap for global decarbonization highlights the crucial position 

that reducing CE shows in contending climate change (CC). The evolution to a fully RE system is 

not purely a strategic essential but necessary for attaining meaningful reductions in GHG 

emissions. This survey approves that RES such as hydropower, wind, and solar, are decisive in 

significantly decreasing carbon footprints (CF), thereby supporting global objectives for carbon 

neutrality. 

This review specifies a specified roadmap for transitioning to RE, outlining vital strategies and 

steps for successful implementation. It focuses on the requirement for a diverse combination of 

renewable technologies to guarantee a continuous and stable energy supply. This review indicates 

that the energy decarbonization sector is a complex problem where several political, social, 

technical, economic, and environmental aspects must be instantaneously considered. The current 



condition concerning the sector's energy decarbonization is far from acceptable. Supporting both 

“affordable and clean” energy for entirety makes us unite social justice and environmental 

sustainability while remaining inside the planetary social boundaries. 

The economic evaluation depicted in the survey further emphasizes the benefits of RE in the 

context of CE reduction. While the primary capital investment in RE infrastructure and 

technologies can be noteworthy, the environmental benefits and long-term savings are substantial. 

Reduced dependence on fossil fuels translates into lower carbon emissions and decreased 

pollution, aligning economic incentives with environmental goals. The survey emphasizes that 

investing in RE is not just an environmental obligation but also a sound decision economically that 

can raise job creation and sustainable growth. 

Policy regulatory support and frameworks are vital sections of the transition roadmap. This 

research has been categorized into three of the E&M movement phases. Innovative technology 

applications at every process phase result in a reduction in CE with the RE integration with the 

current sources of energy and advancement in the efficiency of E&M. Different techniques like 

DT, DM, FL, AL, and many others are discussed briefly in this survey for reducing CE and 

attaining green environment. 

Finally, this review underlines that a 100% RE will be achieved in the future and significant CE 

reductions need collective action at all stages of society. individual commitment, corporate 

responsibility, and public awareness are key to lashing the forward transition. By fostering a 

supporting RE initiatives and sustainability culture, stakeholders can participate in a global effort 

to decrease CE and mitigate climate change. This survey serves as both a guide and a demand for 

action, demonstrating that with innovative strategies and unified effort, a low-carbon and 

sustainable future is within reach. 
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