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Abstract

A reliable prediction of the pseudoelastic behavior necessitates the involvement of marten-

site reorientation in the model. This is important not only under non-proportional loading

but in general when the phase transformation proceeds in a localized manner, which results

in complex local deformation paths. In this work, an advanced model of pseudoelasticity

is developed within the incremental energy minimization framework. A novel enhancement

of the model over its original version lies in the formulation of a suitable rate-independent

dissipation potential that incorporates the dissipation due to martensitic phase transforma-

tion and also due to martensite reorientation, thus yielding an accurate description of the

inelastic transformation strain. The finite-element implementation of the model relies on the

augmented Lagrangian treatment of the non-smooth incremental energy problem. Thanks to

the micromrophic regularization, the related complexities are efficiently handled at the local

level, leading to a robust finite-element model. Numerical studies highlight the predictive

capabilities of the model. The characteristic mechanical behavior of NiTi tubes under non-

proportional tension–torsion and the intricate transformation evolution under pure bending

are effectively captured by the model. Additionally, a detailed analysis is carried out to elu-

cidate the important role of martensite reorientation in promoting the striations of the phase

transformation front.

Keywords: Shape memory alloys; Phase transformation; Martensite reorientation; Strain

localization, Finite-element method

1. Introduction

The reversible evolution of martensitic microstructure is the underlying mechanism behind

the unique properties of shape memory alloys (SMAs), namely pseudoelasticity and shape

memory effect (Bhattacharya, 2003). When SMA is subjected to mechanical loading, a biased

martensitic microstructure develops that accommodates those martensite variants with crys-

tallographic structures favorable to the loading direction (Miyazaki et al., 1989; Duerig et al.,

2013). Upon altering the direction of the applied load within a non-proportional loading path,

∗Corresponding author.
Email address: mrezaee@ippt.pan.pl (Mohsen Rezaee-Hajidehi)
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a different set of variants becomes preferable, and this leads to the phenomenon of variant

reorientation. In pseudoelastic SMAs, the process of variant alignment/reorientation occurs

in conjunction with austenite–martensite phase transformation. Various experimental studies

have shown the complex transformation behavior resulting from the simultaneous evolution of

transformation and reorientation under non-proportional loading conditions and have identi-

fied reorientation as a major inelastic deformation contributor (e.g., Lim and McDowell, 1999;

Sun and Li, 2002; Bouvet et al., 2002; McNaney et al., 2003; Helm and Haupt, 2003; Grabe

and Bruhns, 2009; Song et al., 2014).

To date, a plethora of macroscopic models has been developed to capture the complex

behavior of polycrystalline SMAs. The corresponding literature is quite rich, and a thorough

review is beyond the scope of this discussion; interested readers are directed to Lagoudas

et al. (2006); Saleeb et al. (2011); Auricchio et al. (2014); Cissé et al. (2016); Alsawalhi and

Landis (2022). Within the phenomenological framework, appropriate internal variables are

defined and the corresponding evolution laws are formulated to represent faithfully the be-

havior of the material without a direct link to the micromechanical considerations. Typically,

a scalar-type internal variable, i.e., the volume fraction of martensite, and a tensorial one,

representing the transformation strain, are adequate to characterize the inelastic deformation

(Luig and Bruhns, 2008). When dealing with unidirectional loading only, the kinematics of

the phase transformation can be considerably simplified, allowing to confidently assume a

fixed and predetermined transformation strain, as for instance in phase-field-type approaches

(He and Sun, 2010; Wendler et al., 2017). On the contrary, in order to address arbitrary

multiaxial loading conditions, a proper depiction of the material’s behavior relies upon a rig-

orous formulation of the transformation strain. Such a formulation must effectively account

for martensite variant reorientation and its interaction with the phase transformation, and

this is only achieved when the energetic cost associated with the evolution of the internal

variables is correctly embedded into the model (Sedlak et al., 2012). In the present work, the

model is based on the incremental energy minimization approach. Accordingly, a physically

meaningful formulation of the evolution equations demands a suitable dissipation potential

that properly penalizes the changes in the martensite volume fraction and, more crucially, the

transformation strain. It is generally accepted that, under isothermal conditions, SMAs ex-

hibit macroscopically a rate-independent hysteresis behavior (Sun and He, 2008). Important

to highlight is thus the non-smoothness of the rate-independent dissipation potential that,

along with the equality/inequality constraints on the internal variables, may compromise the

robustness of the resulting computational model if not handled carefully.

While devising sophisticated constitutive models that incorporate various physical aspects

and coupling mechanisms is undeniably crucial, implementing the models into the finite-

element framework is a necessary next step for tackling problems of practical relevance. This

necessity arises since the structural response of SMA specimens is greatly influenced by the

transformation localization and propagation, and is substantially different than the intrinsic

material response (Hallai and Kyriakides, 2013). Stress-induced martensitic transformation

in pseudoelastic NiTi under uniaxial tension serves as a typical example of localized trans-
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formation that has been extensively studied both experimentally (e.g., Shaw and Kyriakides,

1997; Zhang et al., 2010; Bechle and Kyriakides, 2014) and numerically (e.g., Jiang et al.,

2017b; Rezaee-Hajidehi et al., 2020; Yu and Landis, 2023). A rich variety of inhomogeneous

transformation patterns has been also reported for NiTi tubes under more involved loading

conditions, such as bending (Bechle and Kyriakides, 2014; Reedlunn et al., 2014) and com-

bined tension–torsion (Sun and Li, 2002; Reedlunn et al., 2020). Moreover, it is important

to note that the emergence of localization alters significantly the local deformation process,

resulting in material points experiencing complex non-proportional stress/strain paths under

nominally proportional macroscopic loading (Reedlunn et al., 2020).

A suitable finite-element model is thus the one that, beside featuring an advanced con-

stitutive material formulation, is able to treat the transformation localization effects. Special

strategies ought to be employed in order to overcome the ill-posed problem of localization

instability, which is led by a softening-type behavior in the material response. A common

strategy involves enhancing the model, more specifically, the free energy function, with the

gradient of the internal variable (Rezaee Hajidehi and Stupkiewicz, 2018). Here, the primary

challenge is to come up with a robust finite-element implementation of the gradient-enhanced

model, in particular, in view of resolving the localization and propagating interfaces, which

necessitates adequately fine mesh densities and incurs high computational costs. Indeed, this

challenge, together with the complexities inherent in the underlying constitutive equations,

pose significant obstacles to the practical application of the existing models.

The model in this study originates from the model of pseudoelasticity proposed by Stup-

kiewicz and Petryk (2013), which has the following important characteristics: (i) it is based on

the finite-deformation kinematics, (ii) its constitutive description involves tension–compression

asymmetry and transverse isotropy of the transformation strain, (iii) it is formulated within the

incremental energy minimization framework, and (iv) an augmented Lagrangian approach is

utilized to satisfy the inequality constraints on the martensite volume fraction and to treat the

non-smoothness of the rate-independent dissipation potential. The latter was deemed essential

for a robust and efficient finite-element implementation. In light of the innate properties of

the original model, its gradient-enhanced version was later developed and successfully applied

to study the problem of transformation evolution in NiTi specimens under uniaxial tension

and combined tension–torsion (Rezaee-Hajidehi et al., 2020; Rezaee-Hajidehi and Stupkiewicz,

2021b, 2023). On the debit side, a major simplification of the model lies in the form of the

dissipation potential which solely penalizes the evolution of the martensite volume fraction,

i.e., it only considers the dissipation due to phase transformation, while neglecting the ener-

getic cost associated with martensite variant reorientation. As a consequence, the application

of the model is limited to predominantly proportional loading conditions. To address this

limitation, an extended form of the dissipation potential that incorporates the contribution of

martensite reorientation is formulated in this work. It is to be remarked that deriving a math-

ematically consistent formulation that satisfies the general requirements of a rate-independent

dissipation potential (specifically, being a positively homogeneous function of degree one in

the rate of the internal variables, see more details in Stupkiewicz and Petryk (2013)) is rather
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straightforward. The main difficulty, however, resides in a proper computational treatment

that maintains the robustness of the resulting finite-element model. This is accomplished here

by generalizing the augmented Lagrangian approach, which marks the novelty of the present

work in terms of the model development.

The remainder of this paper is organized as follows. Section 2 presents the model formu-

lation. The particular emphasis of this section is on the choice of the dissipation potential,

as elaborated in Section 2.4. The description of the finite-element model is provided in Sec-

tion 3. Of prime importance in this section are the augmented Lagrangian functions that are

tailored to the specific requirements of the present implementation. Section 4 is devoted to

the finite-element studies. Three different scenarios are considered, each reflecting a different

key aspect of incorporating the dissipation due to martensite reorientation into the model,

and all intrinsically connected with the phase transformation localization/propagation.

2. Model formulation

This section is devoted to the description of the model formulation. The kinematics and

the gradient-enhanced Helmholtz free energy function are identical to those in the previous

version of the model (Rezaee-Hajidehi et al., 2020). The related equations are recapitulated

in Sections 2.1 and 2.2, respectively. The incremental energy minimization framework is

briefly outlined in Section 2.3. In Section 2.4, a detailed discussion is provided regarding the

choice of the dissipation potential. A novel dissipation potential that accounts for martensitic

transformation and reorientation is then adopted for the finite-element studies, which are

reported in Section 4.

2.1. Kinematics

The kinematics of the model are formulated within the finite-deformation theory and are

summarized below.

• Deformation gradient F = ∇φ, with φ as the reference–current deformation mapping,

is the primary kinematic quantity and is decomposed, in a multiplicative manner, into

the elastic part F e and the transformation part F t,

F = F eF t. (1)

• Two internal variables characterize the material state: the transformation strain et and

the martensite volume fraction η. The present model postulates that the transformation

strain et is purely deviatoric, thus tr(et) = 0.

• Upon applying the polar decomposition, the transformation deformation gradient F t is

represented in terms of a symmetric stretch tensor U t and a rotation tensor Rt, given

by F t = RtU t. The transformation stretch tensor U t is then expressed in the following

exponential form,

U t = exp(et), (2)
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while the specification of the rotation Rt is unnecessary, given the assumption of elastic

isotropy, see Eq. (10). Clearly, in view of tr(et) = 0, Eq. (2) implies detU t = 1.

Moreover, the reference (stress-free) austenitic state is described by F t = U t = I.

• It is assumed that the transformation strain et is defined as a product of the volume

fraction η and the transformation strain of fully-oriented martensite ēt (which is hereafter

referred to as ‘limit transformation strain’), viz.,

et = ηēt. (3)

• The variables η and ēt satisfy the following constraints,

0 ≤ η ≤ 1, ēt ∈ P̄ = {ēt : g(ēt) = 0}, (4)

where η = 0 and η = 1 characterize, respectively, the pure austenite and pure martensite

phases, and g(ēt) = 0 defines the surface of the admissible limit transformation strains.

• The function g(ēt) is capable of describing tension–compression asymmetry and trans-

verse isotropy. It is defined in terms of the invariants Ik of the limit transformation

strain tensor ēt,

I2 = −1

2
tr(ēt)2, I3 = det ēt, I4 = m · ētm. (5)

Note that I4 serves as a mixed invariant of the tensor ēt and the vector m which indicates

the axis of transverse isotropy. The function g(ēt) is formulated as

g(ēt) =
[
(−I2)

3/2 − bI3 − cI34

]1/3
− a, (6)

where

a = ϵT

[ 3
√

3

4(1 + α3)

]1/3
, b =

√
3

6

9α3β3 − 7α3 + 7β3 − 9

(1 + α3)(1 + β3)
, c =

2
√

3

3

α3 − β3

(1 + α3)(1 + β3)
.

(7)

The parameters α, β and ϵT characterize, respectively, the tension–compression asym-

metry ratio, the degree of transverse isotropy and the maximum transformation strain

attainable in uniaxial tension.

2.2. Free energy function

The gradient-enhanced Helmholtz free energy function ϕ is composed of the following

contributions: the chemical energy ϕchem, the elastic strain energy ϕel, the interaction energy

ϕint, and the contribution ϕgrad pertaining to the energy of the diffuse interfaces (macroscopic

transformation fronts),

ϕ(F , ēt, η,∇η) = ϕchem(η) + ϕel(F , ēt, η) + ϕint(ē
t, η) + ϕgrad(∇η). (8)
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Below, a brief description of each contribution is provided.

• The chemical energy ϕchem is formulated as

ϕchem(η) = (1 − η)ϕa
0 + ηϕm

0 = ϕa
0 + ∆ϕ0η, (9)

where ϕa
0 and ϕm

0 , represent, respectively, the reference (stress-free) free energy densities

of austenite and martensite phases.

• A neo-Hookean elastic strain energy is adopted in the following form

ϕel(F , ēt, η) =
1

2
µ(η)(tr(b̂e) − 3) +

1

4
κ(det(be) − 1 − log(det(be))), (10)

where be = F e(F e)T is the left Cauchy-Green tensor and b̂e = (det(be))−1/3 be is the

corresponding volume-preserving part. The shear modulus µ(η) is considered to be

phase-dependent and is obtained as 1/µ(η) = (1− η)/µa + η/µm, with µa and µm as the

shear moduli of austenite and martensite phases, while the bulk modulus κ is constant.

• The interaction energy ϕint governs the response of the material within the transforma-

tion regime and is simply assumed as a quadratic function of η, i.e.,

ϕint(ē
t, η) =

1

2
H(ēt)η2, (11)

where H determines the slope of the response and is assumed to be dependent on the

limit transformation strain ēt through the following relation,

H(ēt) = HT −
(ϵT −

√
2/3 ϵ(ēt))(HT −HC)

ϵT − ϵC
, ϵ(ēt) =

√
tr(ēt)2. (12)

Here, HT and HC denote, respectively, the softening modulus in tension and the hard-

ening modulus in compression, ϵC = ϵT/α denotes the maximum transformation strain

in uniaxial compression, and
√

2/3 ϵ(ēt) is the equivalent limit transformation strain.

• Finally, the gradient energy term ϕgrad reads

ϕgrad(∇η) =
1

2
G∇η · ∇η, (13)

where G > 0 is the corresponding penalization parameter.

It is pertinent to note that the linear dependence between the interaction energy coefficient

H and the equivalent limit transformation strain
√

2/3 ϵ(ēt), as introduced in Eq. (12), is suffi-

cient to adequately calibrate the intrinsic material response in tension, compression and shear

(typically, NiTi manifests a softening-type behavior in tension and a hardening-type behavior

in compression and shear). Additionally, the quadratic form of the interaction energy ϕint in

Eq. (11) yields a simple trilinear (flag-shaped) intrinsic response. While more sophisticated

formulations of the interaction energy could be devised (e.g., Wang et al., 2017) to achieve a
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more realistic nonlinear intrinsic response (Hallai and Kyriakides, 2013; Alarcon et al., 2017),

a deliberate choice is made for a trilinear one. This decision is guided by the recognition that

a nonlinear response might also contribute to the striations of the propagating front alongside

martensite reorientation, as discussed in more details in Section 4.4. Therefore, with the aim

to isolate the effects attributed to martensite reorientation, in line with the primary focus of

this paper, a quadratic form of the interaction energy ϕint is adopted.

2.3. Incremental energy minimization framework

After formulating the Helmholtz free energy function ϕ, a suitable dissipation potential ∆D

is defined (to be discussed in the next subsection), thereby establishing all essential compo-

nents of the incremental energy minimization framework. Subsequently, a global incremental

potential Π is constructed from the Helmholtz free energy functional Φ =
∫
B ϕ dV and the

global dissipation potential ∆D =
∫
B ∆D dV . The incremental solution is then sought by

minimizing Π with respect to the problem unknowns, including the deformation mapping φ,

the limit transformation strain ēt, and the volume fraction of martensite η. This is expressed

as

Π = ∆Φ + ∆D + ∆Ω → min
φ,ēt,η

(14)

where ∆Ω is the potential energy arising from the external loads. Note that the minimization

problem (14) is subject to the constraints specified in Eq. (4). For the general concept, details

and applications of the incremental energy minimization principle, the reader is referred to

Petryk (2003); Miehe (2011); Stupkiewicz and Petryk (2013); Rezaee-Hajidehi et al. (2020).

2.4. Dissipation potential

The simplest choice for the dissipation potential is the one that considers only the dissipa-

tion resulting from the phase transformation, i.e., from the evolution of the martensite volume

fraction η. In the time-discrete setting, it takes the form

∆D(∆η) = fc|∆η|, (15)

where fc > 0 is a material parameter (i.e., critical driving force of transformation) that

determines the width of the hysteresis loop in the intrinsic response, and ∆η = η − ηn,

with ηn as the martensite volume fraction related to the previous time step. This form of

dissipation potential can be considered reasonable for applications limited to (predominantly)

proportional loading paths (Rezaee-Hajidehi et al., 2020; Rezaee-Hajidehi and Stupkiewicz,

2023).

On the other hand, in cases where the martensite reorientation plays an important role,

as for instance under non-proportional loading paths, the model with this simplistic dissipa-

tion potential fails to capture appropriately the transformation evolution. This is due to the

absence of an energetic cost assigned to the reorientation process, which, in the present for-

mulation, amounts to the lack of dissipation for the evolution of the transformation strain et.

Accordingly, in order to extend the range of applicability of the model, a more generalized
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dissipation potential ought to be constructed. Two possible choices are explored here, each

associated with a specific form of the rate-independent dissipation potential defined for the

pair (∆et,∆η), where ∆et = et − etn.

The first choice adopts the l1 norm (also called taxicab norm) of the pair (∆et,∆η) and

is expressed as,

∆D(∆et,∆η) = ∆D(∆ēt,∆η, ēt, η) = fc|∆η| +
fr

ϵ(ēt)
∥∆et∥, ∥∆et∥ =

√
∆et · ∆et, (16)

where fr represents the reorientation dissipation parameter. Notice the normalization of the

norm ∥∆et∥ by ϵ(ēt), cf. Eq. (12)2. This normalization serves dual purposes: first, it aligns

the magnitude of fr with that of fc, hence a coherent scaling of dissipation contributions,

and second, in line with the definition of the limit transformation strain ēt, it renders the

reorientation dissipation mechanism loading-dependent. Additionally, it is important to note

that the term fr/ϵ(ē
t)∥∆et∥ brings on additional dissipation associated with the phase trans-

formation. This is because et = ηēt, see Eq. (3), and thus any penalization of the evolution

of η also penalizes the evolution of et. Nevertheless, the presence of the transformation-only

term fc|∆η| is still crucial, as it enables to adequately adjust the contributions arising from

the two mechanisms.

The second choice adopts the l2 norm (Euclidean norm) and takes the form

∆D(∆et,∆η) = ∆D(∆ēt,∆η, ēt, η) =

√
f2
c ∆η2 +

f2
r

ϵ(ēt)2
∆et · ∆et. (17)

In both potentials (16) and (17), upon setting fr = 0, the simplistic case of Eq. (15) is

retrieved. Similar forms of dissipation potentials have been devised by Barrera et al. (2014), see

also Petrini and Bertini (2020), in the context of pseudoelasticity and functional degradation.

Therein, discussions are provided on the physical and mathematical attributes of various

dissipation potentials.

As a preface to the finite-element studies presented in Section 4, a material-point analysis is

carried out in order to hint on the implications of including the reorientation dissipation in the

model. A single material point is subjected to combined non-proportional axial–shear loading

within a mixed-type loading control, where the axial strain ε and shear strain γ are prescribed

and the axial stress σ and shear stress τ are measured. All the other stress components are

constrained to zero. Various axial–shear strain paths are examined, including box-, circular-

and butterfly-shaped paths, as illustrated in Fig. 1. To simplify the analysis, a small-strain

version of the model is employed, and clearly, the gradient energy term, Eq. (13), is ignored.

In this analysis, the constrained minimization problem, cf. Eq. (14), is solved in Mathematica

(www.wolfram.com) by using the built-in FindMinimum function which relies on the interior-

point method. The calculations are done by the models with different forms of dissipation

potentials, i.e., Eqs. (15), (16) and (17), which are herein labeled, respectively, as model T,

model TR/1 and model TR/2 (T denoting transformation and TR denoting transformation

and reorientation). The material parameters are consistent with those adopted in the finite-
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Figure 1: Axial–shear strain paths used in the material-point analysis: (a) circular-shaped, (b) box-shaped,
and (c) butterfly-shaped. The maximum axial strain and the maximum (scaled) shear strain in all cases is
limited to 3% while the corresponding mean strains are zero.

element study in Section 4.2. The parameters related to dissipation are adopted as: fc = 6

MPa for model T, whereas fc = 3 MPa and fr = 3 MPa for models TR/1 and TR/2.

Fig. 2 collects and compares the responses obtained for different models. A close examina-

tion reveals that models incorporating martensite reorientation dissipation, TR/1 and TR/2,

are capable of capturing characteristic features overlooked by model T, which align with the

experimental observations of Grabe and Bruhns (2009). Particularly noteworthy is the pro-

nounced hysteresis observed in axial and shear responses obtained by TR/1 and TR/2 models

within the non-proportional segments of circular- and box-shaped paths, while model T shows

considerably smaller hysteresis. Another notable feature pertains to the emergence of positive

shear stress at the endpoints of circular- and box-shaped paths (see the proximity of arrow 6

in panel (c) and arrow 7 in panel (f)), which is also missed by model T. At the same time,

for the butterfly-shaped path which is characterized by a number of proportional segments,

model T presents responses qualitatively similar to those of models TR/1 and TR/2.

Overall, Fig. 2 underlines the importance of martensite reorientation dissipation in cap-

turing a number of intrinsic features at the material-point level. Both l1 and l2 norms can be

regarded as legitimate choices for the dissipation potential. However, it is important to note

that the computational treatment of the l2-norm dissipation potential could not be done suc-

cessfully as the resulting finite-element model suffered from severe convergence issues. This,

as a result, has prompted the adoption of the l1-norm dissipation potential for the studies re-

ported in Section 4. Further details on the computational treatment of the model are provided

in Section 3.3.

Remark. The dissipation potentials (16) and (17) represent an isotropic dissipation mechanism

of martensite reorientation. Both potentials can be readily adapted to an anisotropic case. As

an example, the anisotropic version of the l1-norm dissipation potential is expressed as

∆D(∆et,∆η) = ∆D(∆ēt,∆η, ēt, η) = fc|∆η| + ∥∆et∥Dr , (18)
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Figure 2: Material-point responses obtained for different dissipation potentials under different axial–shear strain
paths: (a,b,c) circular-shaped path, (d,e,f) box-shaped path, and (g,h,i) butterfly-shaped path. Panels (a,d,g)
depict the axial stress–axial strain responses, panels (b,e,h) depict the shear stress–shear strain responses, and
panels (c,f,i) depict the shear stress–axial stress responses. The superimposed arrows on the plots are solely
intended to indicate the trajectories.
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where ∥∆et∥Dr denotes the elliptic norm of the transformation strain increment ∆et relative

to Dr, a positive-definite fourth-rank tensor that contains the material parameters associated

with reorientation dissipation,

∥∆et∥Dr =
√

∆et · Dr∆et. (19)

It is worth noting that the finite-element treatment of the anisotropic dissipation potential

can be accomplished by extending the augmented Lagrangian function used for the isotropic

dissipation (more details in Section 3.3).

3. Finite-element model

In this section, first, the micromorphic regularization and thermomechanical couplings are

described, respectively, in Sections 3.1 and 3.2. The computational treatments and implemen-

tation of the model are then briefly discussed in Section 3.3.

3.1. Micromorphic regularization

The finite-element implementation of the model hinges on the micromorphic regularization

technique (Forest, 2009; Mazière and Forest, 2015). The technique has been successfully

employed in our previous studies (Rezaee Hajidehi and Stupkiewicz, 2018; Rezaee-Hajidehi

et al., 2020) related to the current context; see Rezaee-Hajidehi and Stupkiewicz (2021a)

for the application of the micromorphic technique in phase-field modeling of multi-variant

martensitic transformation; see also Yu and Landis (2023) for a more recent application.

The presence of the gradient term ϕgrad in the Helmholtz free energy function ϕ dictates the

martensite volume fraction η to be a global degree of freedom. However, the complexities asso-

ciated with the constitutive equation for η, in particular, the new form of the rate-independent

dissipation potential (16), which relies on the coupling between η and the limit transformation

strain ēt, render such a global formulation of η infeasible. Upon resorting to the micromorphic

regularization, η can be treated as a local quantity and thus the associated complexities can

be efficiently addressed. To this end, a new global degree of freedom η̆ is introduced and is

linked to the martensite volume fraction η via a penalty term ϕpen,

ϕpen(η, η̆) =
1

2
χ(η − η̆)2, (20)

where χ is the corresponding penalty parameter. Clearly, the larger the parameter χ, the

better the approximation of η by η̆. Accordingly, the gradient energy term ϕgrad is rewritten

in terms of the gradient of the micromrophic variable η̆ as ϕgrad = 1/2G∇η̆ · ∇η̆. Therefore,

the Helmholtz free energy function ϕ takes the following new form

ϕ(F , ēt, η, η̆,∇η̆) = ϕchem(η) + ϕel(F , ēt, η) + ϕint(ē
t, η) + ϕgrad(∇η̆) + ϕpen(η, η̆). (21)

A new global incremental potential Π is then constructed, cf. Eq. (14), and the mini-

mization problem is solved by minimizing the new incremental potential with respect to the
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deformation mapping φ, the limit transformation strain ēt, the martensite volume fraction

η and also the micromorphic variable η̆. As mentioned above, in light of the micromorphic

regularization, η is transformed into a local quantity and its evolution equation, together with

that of the limit transformation strain ēt, is solved locally at each integration point. This

translates to the following local minimization problem,

{ēt, η} = arg min
ēt,η

π(F , ēt, η, η̆,∇η̆). (22)

The local potential π is defined as

π(F , ēt, η, η̆,∇η̆) = ϕ(F , ēt, η, η̆,∇η̆) − ϕn + ∆D(∆et,∆η) + I[0,1](η) + IP̄(ēt), (23)

where ϕn represents the free energy related to the previous time step, and the indicator

functions I[0,1] and IP̄ account for the inequality constraints on the order parameter and the

equality constraint of g(ēt) = 0, respectively,

I[0,1](η) =

0 if 0 ≤ η ≤ 1,

+∞ otherwise,
IP̄(ēt) =

0 if ēt ∈ P̄,

+∞ otherwise.
(24)

On the global level, the minimization is performed with respect to φ and η̆. The corre-

sponding stationarity conditions lead to, respectively, the weak of the mechanical equilibrium

(virtual work principle) and the weak form of the averaging Helmholtz-type PDE. Details are

omitted for brevity, see Rezaee-Hajidehi et al. (2020).

3.2. Thermomechanical couplings

The thermomechanical extension of the model follows that adopted in the previous ver-

sions of the model (Rezaee Hajidehi and Stupkiewicz, 2018; Rezaee-Hajidehi et al., 2020).

Specifically, two key thermomechanical coupling effects are incorporated. First, the Clausius–

Clapeyron relationship is embedded into the model through establishing a linear dependence

between the temperature T and the chemical energy of transformation ∆ϕ0. The chemical

energy contribution ϕchem of the Helmholtz free energy function ϕ is hence reformulated as

ϕchem(η, T ) = ϕa
0 + ∆ϕ0(T )η, ∆ϕ0(T ) = ∆s∗(T − Tt), (25)

with ∆s∗ as the entropy difference between pure phases of austenite and martensite and Tt as

the transformation equilibrium temperature.

Secondly, an internal heat source of transformation/reorientation is introduced in the fol-

lowing (rate) form,

Ṙ = ∆s∗T η̇ + fc|η̇| +
fr

ϵ(ēt)
∥ėt∥, (26)

where the first term on the right-hand side reflects the latent heat of transformation, while

the other two account for the mechanical dissipation and simply correspond to the dissipation

potential of the taxicab norm, cf. Eq. (16), expressed here in the rate form. Obviously, the
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martensite reorientation solely contributes to heat release through mechanical dissipation.

Finally, the heat conduction equation is introduced to the model and is expressed in the

following form (Holzapfel, 2006)

ϱ0cṪ + ∇ ·Q = Ṙ, Q = −KC−1∇T, (27)

where ϱ0c is the specific heat capacity, Q is the nominal heat flux, K is the heat conduction

coefficient, and C = FTF is the right Cauchy-Green strain tensor.

Note that although in all the simulation studies reported in Section 4 relatively low loading

rates are applied, hence resulting in minimal temperature effects, the model is deliberately

made thermomechanically coupled. This choice is mainly driven by the regularization effects

offered by thermomechanical couplings that enhance the robustness of the model even under

nearly isothermal conditions.

3.3. Computational treatments and implementation

There are several components of the potential π of the local minimization problem that

require careful attention due to their contribution to the non-smoothness of the local prob-

lem (23). These include the indicator function I[0,1] representing the inequality constraints

0 ≤ η ≤ 1, the indicator function IP̄ representing the surface of the limit transformation strain

g(ēt) = 0, and most importantly, the rate-independent dissipation potential ∆D. Recall that

∆D is in the form of the taxicab norm and consists of two terms, the transformation-only

term fc|∆η| and the term fr/ϵ(ē
t)∥∆et∥ that encompasses martensite reorientation dissipa-

tion. The non-differentiability arising from each dissipation term must be adequately ad-

dressed and the strategy adopted here is based on the augmented Lagrangian method. To

this end, two Lagrangian functions are introduced. Firstly, following Stupkiewicz and Petryk

(2013), an augmented Lagrangian function lη is constructed that handles simultaneously the

transformation-only part fc|∆η| of the dissipation potential and the inequality constraints

0 ≤ η ≤ 1, via utilization of a single Lagrange multiplier λη. The function lη is formulated as

lη(∆η, λη) =



λη(∆η − ∆η−) +
ρη
2

(∆η − ∆η−)2 − fc∆η− if λ̂η ≤ ρη∆η− − fc,

− 1

2ρη

(
λ2
η + 2fcλ̂η + f2

c

)
if ρη∆η− − fc < λ̂η < −fc,(

λη +
ρη
2

∆η
)

∆η if − fc ≤ λ̂η ≤ fc,

− 1

2ρη

(
λ2
η − 2fcλ̂η + f2

c

)
if fc < λ̂η < ρη∆η+ + fc,

λη(∆η − ∆η+) +
ρη
2

(∆η − ∆η+)2 + fc∆η+ if ρη∆η+ + fc ≤ λ̂η,

(28)

where λ̂η = λη + ρη∆η, ρη > 0 is a regularization parameter, and ∆η− = −ηn ≤ 0 and

∆η+ = 1 − ηn ≥ 0 are the bounds imposed on the increment ∆η.

Secondly, to tackle the non-differentiability of the term fr/ϵ(ē
t)∥∆et∥, an augmented La-

grangian function is constructed in the spirit of the frictional contact problem (Alart and

Curnier, 1991; Pietrzak and Curnier, 1999). A set of Lagrange multipliers λr, which are con-
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jugate to the transformation strain increment ∆et, are introduced. The Lagrangian function

lr is then formulated as

lr(∆et,λr) =


(
λr +

ρr
2

∆et
)
· ∆et if ∥λ̂r∥ ≤ fr

ϵ(ēt)
,

− 1

2ρr

(
∥λr∥2 −

2fr
ϵ(ēt)

∥λ̂r∥ +
f2
r

ϵ(ēt)2

)
otherwise,

(29)

where λ̂r = λr + ρr∆et and ρr > 0 is the corresponding regularization parameter. It is worth

noting that an anisotropic variant of the friction-type Lagrangian function (29) was previously

used in the context of phase-field modeling of multi-variant martensitic transformation for an

analogous issue of non-differentiability of rate-independent dissipation effects (Rezaee-Hajidehi

and Stupkiewicz, 2021a). For further insights into the formulation procedure, the reader is

referred to Appendix A therein.

Lastly, the equality constraint g(ēt) is enforced by standard penalty regularization method.

Consequently, the potential π of the local minimization problem, see Eqs. (22) and (23), is

replaced by the following Lagrangian function,

L(F , ēt, η, η̆,∇η̆,λr, λη) = ϕ(F , ēt, η, η̆,∇η̆)−ϕn + lr(∆et,λr) + lη(∆η, λη) +
1

2
ωg(ēt)2, (30)

and thereby, the local constrained minimization problem is transformed to the following un-

constrained saddle-point problem,

{ēt, η,λr, λη} = arg min
ēt,η

max
λr,λη

L(F , ēt, η, η̆,∇η̆,λr, λη). (31)

The complete thermomechanically-coupled problem is structured as a global–local nested

iterative–subiterative scheme, where the Newton method is applied to solve the problem at

both the local and global levels. The global degrees of freedom include the displacement

u, the micromorphic variable η̆ and the temperature T . Within each Newton iteration, the

unknowns are solved in a monolithic manner (all at the same time) by a direct linear solver

(Intel MKL PARDISO). The finite-element discretization of the global fields is done as follows:

20-noded serendipity hexahedral elements with reduced integration rule are employed for the

displacement field u, while 8-noded linear hexahedral elements with standard integration

rule are employed for the fields of η̆ and T . The model is translated into a computer code

written in Mathematica package AceGen (Korelc, 2009; Korelc and Wriggers, 2016). AceGen

is based on automatic differentiation and features code simplification techniques, and thereby,

renders the resulting computer code to be optimized and highly efficient. This is crucial for

the implementation as it leads to an exact global tangent matrix and guarantees quadratic

convergence of the Newton method. The simulations are carried out in the finite-element

environment AceFEM.

During the preliminary testing of the finite-element model, it was observed that the model

encounters serious convergence issues, particularly in the simulations where strain localization

occurs. Upon closer examination, it was discovered that the convergence issues are traced
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to the poor performance of the friction-type augmented Lagrangian function (29). The issue

is then resolved by disuniting the transformation strain et = ηēt that enters the kinematics

and the Helmholtz free energy function from the one that enters the friction-type augmented

Lagrangian function (29). To achieve this, a new set of local variables are introduced into the

model to approximate the transformation strain et, where the approximation is realized by the

penalty regularization method. Subsequently, the original variables of et in the Lagrangian

function (29) are replaced by the newly introduced variables. This is a simple but potent

computational treatment that dramatically improves the performance and robustness of the

finite-element model, provided that the related penalty parameter is not too large.

4. Finite-element simulations

Three distinct numerical studies are carried out to assess the range of applicability of

the model and showcase its ability in capturing various experimentally-observed features.

Each numerical study corresponds to a particular experimental scenario and in each case

comparisons with the experimental results are made to validate the obtained results. The

first study concerns a NiTi tube specimen subjected to combined non-proportional tension–

torsion loading. This study refers to the experiment of McNaney et al. (2003). The aim of the

study is to demonstrate the immediate implications of incorporating martensite reorientation

dissipation into the model. In the second study, with reference to the experiment of Bechle and

Kyriakides (2014), a NiTi tube under pure bending is analyzed. This study highlights the role

of martensite reorientation dissipation as a crucial modeling asset that enables the successful

simulation of this specific scenario. The third numerical study explores the striations of the

propagating fronts, a subtle characteristic of the martensitic transformation pattern that,

despite its emergence, is often overlooked in the experiments and modeling studies. Here, the

importance of martensite reorientation dissipation in capturing and controlling the striations

is underlined. While striations have been noted in several experiments, the more recent

experimental study by Shariat et al. (2022) serves as a reference for the current investigation.

4.1. Choice of the model parameters

Table 1 lists the model parameters adopted in the numerical studies. There exist certain

parameters that remain consistent across all the three studies and their values are sourced

from the existing literature data. These include the bulk modulus κ = 130 GPa, the specific

entropy difference ∆s∗ = 0.24 MPa/K, and the parameters that govern the heat flow: the

heat conductivity coefficient K = 18 W/(m K) and the specific heat capacity ϱ0c = 2.86

MJ/(m3K). At the same time, the material parameters that characterize the intrinsic me-

chanical responses are calibrated based on the structural response of the related experiment.

This calibration involves adjusting the trilinear (softening-type) response in tension to align its

Maxwell construction within the forward and reverse transformation with the stress plateau

observed in the experiment. As a result of this, the austenite and martensite shear moduli

µa and µm, the transformation equilibrium temperature Tt, the dissipation parameter fc, the

tensile transformation strain ϵT, and the softening modulus HT are selected. It is worthwhile
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Table 1: Parameters adopted in the numerical studies.

Parameter Unit Value (study 1) Value (study 2) Value (study 3)
∆s∗ Specific entropy difference MPa/K 0.24 0.24 0.24
κ Bulk modulus GPa 130 130 130
µa Shear modulus for austenite GPa 12.7 21.1 10.3
µm Shear modulus for martensite GPa 8.6 9.8 6.8
Tt Transformation equilibrium temperature K 236 214 234
fc Dissipation parameter (reference value) MPa 3 3.5 3
fr Dissipation parameter (reference value) MPa 3 3.5 3
ϵT Maximum transformation strain in tension [-] 4.8% 5.3% 5.2%
HT Softening modulus in tension MPa -2 -8 -5
HC Hardening modulus in compression MPa 8 8 8
α Tension–compression asymmetry ratio [-] 1.2 1.4 1.4
β Transverse isotropy parameter⋆ [-] 1.0 1.0 1.0
G Gradient energy parameter Pa mm2 50 350 104

χ Micromorphic penalty parameter MPa 200 850 500
K Heat conductivity coefficient W/(m K) 18 18 18
ϱ0c Specific heat capacity MJ/(m3K) 2.86 2.86 2.86

⋆ The axis of transverse isotropy alignes with the longitudinal axis of the specimen.

to acknowledge the inherent ambiguity (and thus freedom) in the selection of the softening

modulus HT, as it cannot be directly inferred from the experimental plateau-type response.

This delicate issue is discussed in more details in Rezaee-Hajidehi and Stupkiewicz (2023).

Next, the intrinsic response in compression and/or shear is refined by calibrating the tension–

compression asymmetry parameter α, the transverse isotropy parameter β, and the hardening

modulus HC. This refinement is particularly pertinent to numerical studies 1 and 2, which

involve combined tension–torsion loading and pure bending, respectively, with the correspond-

ing parameters determined based on the structural response under pure torsion and uniaxial

compression. To illustrate the outcome of the parameter identification process, Fig. 3 depicts

the tensile and compressive intrinsic responses related to numerical study 2.

One important point to highlight regards the selection of the dissipation parameter fr. In

the present formulation, the dissipation mechanisms of phase transformation and reorientation

cannot be fully decoupled, cf. Eq. (16). This is a limiting factor that does not allow an accurate

determination of the reorientation-only hysteresis magnitude in the model. Given that, the

admissible range for fr is selected with reference to the mechanical responses of macro-scale

experiments of pseudoelasticity (e.g., Grabe and Bruhns, 2009; McNaney et al., 2003). From

the outcome of the preliminary analysis it follows that fr should be of the same order of

magnitude as that of the transformation-only dissipation parameter fc. Therefore, in all the

three numerical studies reported below the reference value for fr is set equal to fc. Note

that, a major part of the investigation in each study is dedicated to the parametric study

examining the impact of the dissipation parameters fc and fr. It is important to point out

that in view of the construction of the dissipation potential (16), as long as the sum of fc and

fr remains fixed, any alternation in their values will not affect the dissipation associated with

phase transformation in simple proportional loading paths.

It remains to properly choose the gradient energy parameter G and the micromorphic

penalty parameter χ. These parameters are identified by means of the analytical solution
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Figure 3: The intrinsic response in tension and compression calibrated for the numerical example of NiTi
tube under pure bending (Section 4.3). The dashed curves represent the structural responses obtained in the
experiment of Bechle and Kyriakides (2014) at 23◦.

of the corresponding 1D model (Rezaee Hajidehi and Stupkiewicz, 2018). Concerning the

gradient energy parameter G, a suitable value for the thickness of the theoretical interface,

λ, is assumed first. The parameter G is then calculated based on the analytical relation

G = −HTλ
2/π2. It is necessary to highlight that in 3D simulations, beyond the regularization

provided by the gradient term in the free energy, additional regularization arises from the 3D

geometry of the problem, specifically, from the 3D deformation state of the specimen (He and

Sun, 2009; Rezaee-Hajidehi et al., 2020). Notably, as discussed in our previous study (Rezaee-

Hajidehi et al., 2020), the larger the specimen’s thickness the larger the 3D effects. This

implies that the ‘actual’ thickness of the austenite–martensite diffuse interfaces obtained in

the simulations is larger compared to the theoretical thickness given by the gradient-enhanced

model. In addition, our experience with the simulation of thick-walled NiTi tubes indicates

that opting for a relatively low value of G is necessary to preserve the subtle morphological

pattern of the transformation front, while still providing adequate regularization effects.

Based on the above discussion, a small value of λ is employed in numerical studies 1 and 2,

hence a small value of G. At the same time, in numerical study 3 which involves straight NiTi

specimens, an interface thickness equal to the finite-element size is considered, λ = 0.14 mm,

which results in G = 104 Pa mm2. Note also that the finite-element mesh adopted to discretize

the geometries is too coarse to exclude all the possible numerical artifacts that may arise.

However, as confirmed by the results of our auxiliary simulations, the artifacts are not severe

enough to impose qualitative influences. As a side remark, it is worth noting that in 2D

problems, regularization is solely governed by the gradient energy. Therefore, it is crucial to

adjust carefully the element size in relation to the theoretical interface thickness to ensure a

proper resolution of the interfaces (Yu and Landis, 2023).

Finally, the rationale behind the choice of the micromorphic parameter χ is that it must

be adequately large to ensure a close correlation between the local variable η and the global

unknown η̆ without compromising the computational performance.
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4.2. Numerical study 1: NiTi tube under non-proportional tension–torsion

An hourglass-shaped thin-walled NiTi tube of the total length of L0 = 75 mm was used

in the experiment of McNaney et al. (2003). The tube had an inner diameter of 3.9 mm

throughout the entire length, a wall thickness of 0.2 mm along the 25 mm central segment,

and a wall thickness of 0.37 mm elsewhere. The tube was subjected to both proportional and

non-proportional tension–torsion in a displacement-control loading configuration with various

combinations of maximum axial and shear strains. The experiments were conducted at an

ambient temperature of 22◦ and the applied strain rate corresponded to nearly isothermal

conditions. The same setup is mimicked in the present numerical study. To comply with the

aim of the study, only non-proportional loading is considered. Representative torsion-then-

tension and tension-then-torsion paths are examined, where the prescribed shear strain γ is

limited to 4% while the prescribed axial strain ε takes two maximum values: 3% and 6%. The

unloading phase in each path is applied in a reverse order as that of loading. A reasonably fine

mesh density is used. The tube is discretized using elements with an in-plane size of 0.15 mm.

To prevent overly expensive computations, the mesh is coarsened outside the 25 mm central

segment, and only one element is used through the thickness. Note that the reference values

of the dissipation parameters for this analysis are fc = fr = 3 MPa.

Following the convention of McNaney et al. (2003), the mechanical responses are presented

here in terms of the equivalent stress σeq and equivalent strain εeq, which are defined as

σeq =
√

σ2 + 3τ2, εeq =
√
ε2 + γ2/3, (32)

where σ and τ denote, respectively, the nominal axial stress and the nominal shear stress.

An important observation in the torsion-then-tension simulations with a maximum axial

strain of 6% was the occurrence of the so-called helical buckling during unloading, which has

not been reported by McNaney et al. (2003). To avoid buckling, the thickness of the tube in

the 25 mm central segment has been increased to 0.25 mm for this particular loading path.

The case demonstrating the helical buckling is thus removed from the main analysis in this

section and the corresponding results are deferred to Appendix A.

Fig. 4 illustrates the mechanical responses predicted by the model for torsion-then-tension

loading paths and compares them with those from the experiment. For a comprehensive

comparison, the responses obtained without the reorientation dissipation are also included in

the figure, as indicated by dashed curves. It is evident at the first glance that the incorporation

of reorientation dissipation gives rise to admirable results. The mechanical response displays

two hallmarks: one during loading when the maximum shear strain of 4% is attained and the

axial strain starts to apply, and the other during unloading when the axial strain decreases

towards zero. The significant stress variations linked to these two characteristic instants have

been effectively captured by the model, albeit with some quantitative discrepancies, especially

related to the underestimation of the stress rise during unloading. From the comparison in

Fig. 4 it is clear that in the absence of reorientation dissipation the model fails to capture

properly the two hallmarks of the mechanical response. On the other hand, in tension-then-

torsion loading paths, as depicted in Fig. 5, the simulation results with and without the
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Figure 4: NiTi tube under torsion-then-tension: the predicted equivalent stress–equivalent strain response
compared with that from the experiment of McNaney et al. (2003). The blue dashed lines represent the
simulation results with no dissipation due to reorientation, i.e., fc = 6 MPa and fr = 0.
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Figure 5: NiTi tube under tension-then-torsion: the predicted equivalent stress–equivalent strain response
compared with that from the experiment of McNaney et al. (2003). The blue dashed lines represent the
simulation results with no dissipation due to reorientation, i.e., fc = 6 MPa and fr = 0.
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Figure 6: NiTi tube under torsion (4%) followed by tension (6%): the effect of the dissipation parameters fc
and fr on (a) the equivalent stress–equivalent strain response and (b) shear stress–axial stress response.

reorientation dissipation exhibit great similarity. Minor differences can be observed between

the responses in the case with 3% of axial strain. In particular, sudden stress changes at the

beginning of reverse transformation during unloading have been reproduced with reorientation

dissipation, which are, however, visibly less significant compared to the stress drop seen in the

experiment. At the same time, almost identical responses in the case with 6% of axial strain

are predicted. In this case, the small hallmark at the beginning of unloading is totally missed

in the simulations.

The observations from Fig. 5 are supplemented by two important remarks. Firstly, aux-

iliary analysis (results not shown here) has revealed that the softening modulus HT visibly

influences the magnitude of the stress variations. As discussed previously, there exists a de-

gree of flexibility in adopting the value of HT and its definitive determination cannot be based

solely on the structural response in the experiment. Secondly, in the case with an allowable

axial strain of 6%, nearly full transformation is achieved at the onset of applying the shear

strain, which potentially explains the absence of stress variation in the predicted response

during unloading.

Next, the impact of the dissipation parameters fc and fr on the simulation results is ex-

plored. The loading path chosen for this investigation is torsion-then-tension with a maximum

axial strain of 6%. The reason for this choice is twofold. Firstly, unlike the case with a max-

imum axial strain of 3%, this case presents a localized phase transformation, which is also

intriguing to examine. Secondly, as follows from Figs. 4 and 5, the role of the reorientation

dissipation mechanism in torsion-then-tension scenario is more important than in tension-then-

torsion. Fig. 6(a) shows the mechanical responses in terms of the equivalent stress–equivalent

strain for various combinations of fc and fr. A systematic tendency is obviously found: the

larger the parameter fr, the more pronounced the characteristic stress variations. To enrich the

analysis, the mechanical responses in terms of the shear stress–axial stress are also compared

(Fig. 6(b)), highlighting the impact of reorientation dissipation from a different viewpoint.

The discussion concludes with a comparison of the transformation patterns for the cases
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Figure 7: NiTi tube under torsion (4%) followed by tension (6%): snapshots of the axial strain field εZZ (a) and
shear strain field γΘZ (b) for the simulations without and with the dissipation due to martensite reorientation,
respectively, with fc = 6 MPa and fr = 0 (snapshots on the left) and fc = 3 MPa and fr = 3 MPa (snapshots
on the right).

with and without the reorientation dissipation, as shown in Fig. 7. Transformation patterns

are represented by the components of the Green–Lagrange finite–strain measure (a convention

that is consistently used in the subsequent studies). Noticeable differences are discernible,

particularly concerning the level of axial and shear strains during the transformation, as well

as the detailed morphology of the transformation front in propagation. Since no information

on the transformation pattern from the experiment of McNaney et al. (2003) is available, the

validity of the results in Fig. 7 remains elusive.

4.3. Numerical study 2: NiTi tube under bending

Pseudoelastic NiTi tubes exhibit an attractive phase transformation pattern when sub-

jected to bending. As documented by Bechle and Kyriakides (2014), diamond-shaped marten-

site regions with high strain/curvature localization emerge on the tensioned side of the tube,

which gradually spread and dominate over the whole length. Conversely, the transforma-

tion on the compressed side of the tube is uniform, albeit not entirely so due to the high

strain/curvature localization effects on the tensioned side. The transformation is accompa-

nied by a plateau-type moment–curvature response that resembles the typical response of NiTi

specimens under tension. The intricate behavior of NiTi tube under bending is attributed to

arise from the combined effects of tube’s circular geometry and the tension–compression asym-
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metry inherent in the material (Watkins et al., 2018).

The focus of this section is the analysis of a NiTi tube under pure bending. The study draws

upon the experiment of Bechle and Kyriakides (2014) whose modeling was later performed

by Jiang et al. (2017a). It is important to stress here that the success of such a modeling

endeavor hinges on the inclusion of martensite reorientation dissipation. Without it, the

model fails immediately at the onset of localized transformation. This failure is believed

to result from the uncontrolled growth of the transformation strain within the localization

zone, leading to a form of local buckling in the tube that disrupts the simulation. However,

when the reorientation dissipation comes into play, the transformation strain evolves in a

physically reasonable manner, and this hinders the occurrence of buckling. In this section,

the simulation results based on the reference values of the dissipation parameters fc = fr =

3.5 MPa are investigated first, with the aim to demonstrate the capability of the model in

capturing essential features. Subsequently, the impact of the dissipation parameters on the

simulation results is examined.

Adhering to the specifications provided by Bechle and Kyriakides (2014), the tube under

study possesses an outer diameter of 5.11 mm, a wall thickness of 0.625 mm, and a length of

2L0 = 76.7 mm. In the experimental setup, the tube underwent isothermal bending using a

custom-built device designed for pure bending. To mimic pure bending, idealized boundary

conditions are enforced here. Following Hallai and Kyriakides (2011), the end sections are

assumed to remain plane while being free to ovalize. This constraint is expressed as

tan θend =
xref − xi
zref − zi

, (33)

where xi and zi denote the coordinates of the nodes located on the end sections, xref and zref

the coordinates of the corresponding reference node, and θend the prescribed rotation angle.

By leveraging the symmetry about the plane of bending, only one half of the cross section is

simulated, with appropriate symmetry conditions enforced at the cut surface. The symmetry

about the mid-span can also be taken advantage of, so that only one quarter of the complete

geometry is simulated. To illustrate the significance of this symmetry consideration, the

main simulation is performed twice, once with the symmetry disregarded and once with the

symmetry exploited. These cases are referred to, respectively, as ‘full tube’ and ‘half tube’ in

the sequel. A uniform finite-element mesh is adopted in the simulations with equiaxed elements

of the size 0.21 mm, i.e., 3 elements are used through the thickness. Auxiliary simulations

have confirmed the adequacy of this mesh density, as a finer mesh density did not lead to any

appreciable improvement in the results. Note that to initiate the transformation localization

consistently in all the simulations, a geometrical imperfection is introduced on the top edge

close to the end section.

Let’s first delve into the simulation results of the full tube and compare them with the ex-

perimental data. Figs. 8(a) and 9 depict the predicted and experimental bending moment–end

rotation responses and phase transformation evolutions, respectively. The predicted mechani-

cal response is normalized using the same variables M0 = 4790 N mm and κ0 = 0.0032 mm−1
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Figure 8: NiTi tube under bending: (a) comparison between the predicted bending moment–end rotation
response with that from the experiment of Bechle and Kyriakides (2014) and (b) comparison between the
bending moment–end rotation responses obtained for the simulations with full tube and half tube.

as those employed in the experiment, see Table 1 of Bechle and Kyriakides (2014). Recall that

the axial component of the Green–Lagrange strain measure is used to represent the transfor-

mation pattern. To accentuate the similarities between the transformation patterns, the same

color contour as that in the experiment is used. Numerous similarities become immediately

apparent. Firstly, the upper and lower moment plateaus are well captured by the model.

Although, on average, the lower plateau exhibits a slightly higher level of moment than that

in the experiment, overall, the agreement is good. Unlike the typical transformation evolution

observed in tension, the transformation under bending does not feature a propagating front.

Instead, individual martensite domains nucleate continuously and turn into diamond-shaped

pockets. A similar pattern is observed during unloading. The raggedness of the moment

plateaus is indeed linked to this continuous domain nucleation and is qualitatively comparable

with that reproduced by the model. A notable difference in the mechanical responses con-

cerns the extent of the upper moment plateau, which is larger in the predicted response. This

observation was also made in the modeling study of Jiang et al. (2017a). One possible reason

for this inconsistency is related to the extent of the transformation regime in the material

response under uniaxial compression. A close examination of Fig. 3 reveals that the structural

response in the experiment represents a nearly complete transformation under compression,

as the corresponding response is about to enter the stiff branch of saturated martensite (Fig. 5

in Bechle and Kyriakides (2014) clearly shows this nearly complete transformation). At the

same time, in the calibrated intrinsic response, the material still remains within an incomplete

transformation state under the maximum applied strain, with a martensite volume fraction

of about η = 0.6. This is in fact due to the limitation of the model that does not allow a full

quantitative calibration of the intrinsic responses in both tension and compression, see the re-

lated discussion in Rezaee-Hajidehi and Stupkiewicz (2023). Another noticeable and delicate

difference in the mechanical responses is that the experimental curve shows a moment increase
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(a) (b)

Figure 9: NiTi tube under bending: comparison between (a) the predicted transformation evolution and (b)
the transformation evolution observed in the experiment of Bechle and Kyriakides (2014) (reproduced with
permission from Elsevier). The experimental snapshots are taken from the paper of Jiang et al. (2017a).
The numbers marking the simulation snapshots correspond to those indicated on the mechanical response in
Fig. 8(a).
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between instants 3 and 4 (as indicated by the arrow in Fig. 8(a)). This is likely related to the

saturation of the transformation in the high-curvature region of the tube, which is followed

by an elastic deformation throughout the tube. As transformation nucleates in the other end

of the tube, the moment drops and continues along the original plateau. This feature has not

been captured in the model prediction.

Regarding the transformation evolution, the resemblance to the experiment is striking,

with many essential features being well captured. One particularly interesting feature is the

co-existence of high-curvature and low-curvature regions, clearly evident in the deformed tube

configuration, see e.g., snapshots 3 or 11 in Fig. 9. This aspect is further discussed later on.

On the other hand, one notable disparity lies in the manner in which the martensite domains

spread throughout the entire tube during loading. In the simulation, the transformation

proceeds via the formation of diamond-shaped pockets of martensite that are visibly separated

from each other. The spaces between the pockets are then filled by smaller and more randomly

oriented domains. In the experiment, however, such clear spacing between the individual

pockets is not as prominent.

The assumption of symmetry about the mid-span is a common practice in modeling tube

specimens under bending (Hallai and Kyriakides, 2011; Jiang et al., 2017a; Kazinakis et al.,

2021; Frost et al., 2021). Here, as a side analysis, the implications of enforcing this symmetry

on the results are explored. Figs. 8(b) and 10 compare the simulation results between the full

tube and half tube configurations, with the latter implementing this symmetry consideration.

Fig. 8(b) reveals two marked differences in the mechanical response. The major one con-

cerns the value of the transformation-onset moment during unloading and the level of ensuing

moment plateau, which are lower in the half tube simulation. Additionally, the number of

oscillations within the ragged plateaus in the half tube simulation is visibly lower than that

in the full tube. This is mostly the consequence of halving the tube in length, and hence

reducing the number of domain nucleations. The comparison of the transformation evolutions

in Fig. 10 suggests that the prediction made by half tube configuration is reasonably accu-

rate, as the main features are correctly captured. However, one point that deserves further

attention regards the distribution of curvature along the tube’s length. In the full tube simu-

lation, the division of the tube into high-curvature and low-curvature zones is evident. Such

a division is not possible in the half tube configuration, as the tube lacks sufficient freedom

to accommodate it. This aspect is reflected in the distribution of slope θ along the tube’s

length in Fig. 11 (note that the distribution of curvature can be readily envisioned from the

distribution of slope). The top fiber of the tube, which is under maximum tension, is chosen

for this analysis. Setting aside the local slope variations, it can be seen that as the loading

increases/decreases the slope in the half tube configuration increases/decreases in a somewhat

more uniform fashion compared to the full tube. The co-existence of high- and low-curvature

zones in the full tube can be conceived from the overall trend of the graphs as well as the

asymmetry of the graphs about the centerline, see the magnified views in Fig. 11(a,b).

Finally, the impact of the dissipation parameters fc and fr on the simulation results is

discussed. In view of the high computational cost associated with full tube simulation, the
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(a) (b)

Figure 10: NiTi tube under bending: comparison between the transformation evolutions in the simulations
with (a) full tube and (b) half tube. For the ease of comparison, the half tube is reflected along the plane of
symmetry (mid-span) and is shown as full. The snapshots correspond to nearly the same prescribed angle θend.
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(a) full tube (loading) (b) full tube (unloading)

1
2
3
4

5
6
7
8

0 10 20 30 40 50 60 70
-60

-40

-20

0

20

40

60

Distance [mm]

L
oc
al
sl
op
e,
θ
[d
eg
]

8
9
10
11
12

13
14
15
16

0 10 20 30 40 50 60 70
-60

-40

-20

0

20

40

60

Distance [mm]

L
oc
al
sl
op
e,
θ
[d
eg
]

(c) half tube (loading) (d) half tube (unloading)
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Figure 11: NiTi tube under bending: distribution of the slope along the tube at various stages of loading and
unloading for (a,b) full tube and (c,d) half tube. The numbers in the legends correspond to the deformation
stages shown in Fig. 10. For the ease of comparison, the plots related to half tube are reflected along the
plane of symmetry (mid-span) and are shown as full. The vertical dashed line indicates the mid-span of the
undeformed tube.
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Figure 12: NiTi tube under bending: bending moment–end rotation response obtained for different combina-
tions of dissipation parameters fc and fr.

Figure 13: NiTi tube under bending: predicted transformation pattern for different combinations of dissipation
parameters fc and fr. The numbers marking the snapshots correspond to the same end rotations as those
indicated on the mechanical response in Fig. 8.

related computations are conducted for the half tube configuration. Given the proportional

nature of the bending loading, it is expected that the martensite reorientation does not play a

major role in shaping the phase transformation pathway, hence minimal qualitative impact of

the reorientation dissipation. The results are illustrated in Figs. 12 and 13. It follows that the

changes mainly manifest in the shape and amplitude of moment oscillations in the mechanical

response as well as in the subtle details of the transformation morphology. However, identifying

a systematic pattern of changes is likely infeasible.

4.4. Numerical study 3: on the striations of the transformation front

It has been frequently observed in the experiments involving NiTi straight/tube specimens

under tension-dominated loading that faint striations1 are left behind at the wake of a travel-

ing phase transformation front, in particular when the front features a criss-cross pattern (as

1The term ‘striations’ is adopted here following the terminology of (Reedlunn et al., 2014, 2020).
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striations

Figure 14: Phase transformation evolution recorded in the experiment of Shariat et al. (2022): (a) representative
snapshots of the transformation pattern during loading and (b) details of the transformation pattern at the
end of loading, displaying clearly the striations. In both panels, the transformation is represented by the axial
strain field, however, the color scale used in panel (b) is manipulated to enhance the visibility of striations.
The figure is reproduced with permission from Elsevier.

in straight samples) or a multi-pronged pattern (as in tube geometries) (Kim and Daly, 2011;

Bechle and Kyriakides, 2014; Reedlunn et al., 2014, 2020; Shariat et al., 2022). Fig. 14, repro-

duced from Shariat et al. (2022), showcases the presence of front striations in a NiTi dog-bone

specimen under tension. The revelation of striations has been facilitated by the use of Digital

Image Correlation (DIC) technique, which unveils the very fine details of the transformation

evolution pattern, although hints on their existence were noted in earlier studies that did not

employ the DIC technique (Shaw and Kyriakides, 1997). Despite their ubiquitous presence,

scant attention has been given to the origin and characteristics of striations. The general

consensus is that striations represent regions of incompletely transformed martensite, which

may eventually reach saturation at higher stresses. In our previous study (Rezaee-Hajidehi

and Stupkiewicz, 2023), we argued that striations emerge as a result of a distinct evolution

pathway within the front fingers and their surroundings, indicating a different evolution of

the transformation strain. This implies that a model that accurately captures the evolution

of the transformation strain can effectively describe the striations. In the present framework,

this is made feasible by the incorporation of the martensite reorientation dissipation. In fact,

the goal of this investigation is to highlight the role of martensite reorientation dissipation in

predicting the striations.

The NiTi dog-bone specimen in the experiment of Shariat et al. (2022) was examined under

isothermal uniaxial tension in a displacement-control loading mode. The dog-bone had a gauge

length of L0 = 30 mm, a gauge width of 5 mm and a thickness of 0.22 mm. The same setup

is employed in this study. The dog-bone geometry is discretized uniformly within the gauge

segment using elements of an in-plane size of 0.14 mm. To optimize the computational effort,

only one element is used through the thickness. In addition, the mesh is made coarser within

the clamping segments which do not participate in the transformation. Idealized boundary

conditions are imposed: displacements at the bottom surface are fully constrained, while at the
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Figure 15: NiTi dog-bone under uniaxial tension: (a) mechanical response and (b) transformation pattern.
The experimental response in panel (a) refers to Shariat et al. (2022), and the corresponding transformation
pattern is depicted in Fig. 14.

top surface, lateral displacements are constrained and the axial displacement δ is prescribed.

To provoke the localization of a single martensite band, a geometrical imperfection is placed

at the bottom end of the gauge segment. The analysis begins by examining the case with

the reference pair of dissipation parameters, fc = fr = 3 MPa, to establish a baseline for

subsequent comparisons. The analysis is then extended to explore the impact of dissipation

parameters on the evolution of striations.

Fig. 15 presents the mechanical responses alongside selected snapshots of the predicted

transformation pattern during loading and unloading. The mechanical response is expressed

in terms of the average axial stress P/A0 versus the normalized elongation δ/L0, with P and

A0 denoting the axial force and initial cross-section area, respectively. A rich color-scale is

utilized for a vivid illustration of the transformation pattern, enabling a clear identification of

the striations. The results show a strong correlation with the experimental counterpart, see

Fig. 14 for the comparisons of the transformation patterns. Initially, the transformation fea-

tures a single traveling inclined interface that persists until a normalized elongation of about

3% is reached. Afterwards, the front transitions into a criss-cross configuration characterized

by alternating left-handed and right-handed fingers. As a consequence of this transition, the

stress plateau in the mechanical response changes from a smooth appearance to a ragged ap-

pearance. During unloading, a similar front transitioning occurs in a reverse sequence, with the

front initially adopting a criss-cross configuration, shrinking simultaneously from both ends,
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Figure 16: NiTi dog-bone under uniaxial tension: a more detailed look at the transformed domain at the end
of loading for different combinations of the dissipation parameters fc and fr.
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Figure 17: Distribution of the shear strain γΘZ along the centerline of the dog-bone at the end of the loading
stage. The plot corresponds to the gauge segment of the dog-bone.

that later reforms into inclined interfaces that persist for the remainder of the reverse trans-

formation. Of particular importance is the manifestation of striations within the transformed

domain that extend over the criss-cross route. Consistent with the experiment, striations

exhibit an approximately 0.5% of higher axial strain with respect to the surroundings.

The striations form when a criss-cross propagation mode is active. The criss-cross propa-

gation is a self-adjusting mechanism in response to the excessive misalignment of the specimen

and the ensuing intolerable in-plane bending moment. The alternating arrangement of the

criss-cross fingers acts as a corrective measure to straighten the specimen and mitigate the

bending moment, as discussed by Shaw and Kyriakides (1997); Jiang et al. (2017b); Shariat

et al. (2022). The right-handed and left-handed fingers are associated with shear strains of

opposing directions, an observation which is in line with the experimental findings of Shariat

et al. (2022), see Fig. 4 therein. Indeed, the formation of striations can be intuitively linked to

the evolution of shear strains: the larger the shear strains, the more pronounced the striations.

This is illustrated in Fig. 16 and 17 that compare, for different combinations of the dissipation

parameters fc and fr, the transformed domain at the end of loading and the distribution of

the shear strain γΘZ along the centerline of the dog-bone, respectively. For a clear illustration

in Fig. 16, the color scale covers only the highest 1% of axial strain εZZ. It can be seen that

as the dissipation parameter fr increases, so does the amplitude of shear strain, and thereby,
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Figure 18: NiTi strip under uniaxial tension: (a) the transformation pattern during loading for the reference
dissipation parameters fc = 3 MPa and fr = 3 MPa, and (b) the effect of the dissipation parameters fc and fr
on the pattern of the martensite volume fraction at the onset of the reverse transformation during unloading.
The numbers in panel (a) refer to the same overall elongations as those indicated in Fig. 15(a).

the striations become more pronounced. While, for fr = 0 with no reorientation dissipation,

shear strain is relatively negligible and no trace of striations is visible.

As discussed earlier in this section, striations are commonly perceived as areas of incom-

plete martensitic transformation. It is thus intriguing to examine the evolution of martensite

volume fraction η within the zone of striations. Interestingly, results show no sign of non-

uniformity of η within the zone of striations during loading. However, at the onset of reverse

transformation during unloading, a non-uniform distribution of η becomes evident. The non-

uniformity is insignificant and the related results are not explicitly reported here. To further

investigate this aspect, another set of simulations are performed on a NiTi strip with material

parameters identical to those of the dog-bone and dimensions equal to its gauge segment. The

objective is to allow the transformation to spread throughout the entire specimen and analyze

the potential impacts on the distribution of the martensite volume fraction η during unload-

ing. To achieve this, less restrictive boundary conditions permitting lateral displacement of

the strip are imposed. The corresponding results are presented in Fig. 18. Similar to the

dog-bone, the transformation evolves in the form of a criss-cross pattern during loading, see

Fig. 18(a). An interesting non-uniformity of η is observed that appears abruptly and immedi-

ately at the onset of of the reverse transformation, see Fig. 18(b). The non-uniformity adapts

the pattern of striations and becomes more severe as the dissipation parameter fr is increased.

As a result of this non-uniformity, the reverse transformation consistently initiates from the

top edge of the strip. In contrast, in the case of fr = 0 with a uniform distribution of volume

fraction η, the reverse transformation is triggered at the position of the imperfection.

The discussion concludes by noting that in addition to martensite reorientation dissipation,

an intrinsic stress–strain response with an adequate nonlinearity within the transformation

regime also contributes to the formation of striations. To further look into this, an additional

simulation has been conducted with a nonlinear intrinsic response, similar to that employed in

32



our previous study (Rezaee-Hajidehi and Stupkiewicz, 2023). As expected, the results reveal

a non-uniform distribution of η within the striations zone during both loading and unloading.

Striations are also, to some extent, affected, in terms of both the evolution pattern and the

strain amplitude. For brevity, the corresponding snapshots are not reported here.

5. Conclusion

To reliably predict the phase transformation behavior under arbitrary loading conditions,

it is crucial that the SMA constitutive model is capable of accurately capturing the evolu-

tion of the transformation strain. Specifically, the model must adequately account for the

martensite reorientation effects. This necessity is further substantiated by the occurrence of

transformation localization, as a result of which the material points undergo complex non-

proportional stress/strain paths even under a macroscopically proportional loading. In light

of these considerations, an advanced model of pseudoelasticity is developed in this work. The

model extends the constitutive description proposed by Stupkiewicz and Petryk (2013). A new

rate-independent dissipation potential is formulated that assigns dissipation to the evolution

of martensite volume fraction and transformation strain. The finite-element implementation

of the model relies on the augmented Lagrangian treatment of the non-smooth minimization

problem. Thanks to the micromorphic regularization, the resulting computational complexi-

ties are taken care of efficiently at the local (integration-point) level.

The constitutive description of the model encompasses tension–compression asymmetry

and transverse isotropy of the transformation strain. These features, along with the newly

introduced dissipation potential, deliver a unique model of pseudoelasticity, capable of ad-

dressing a broad range of applications, including non-proportional loading conditions. In

this regard, three numerical studies have been conducted and their outcomes are summa-

rized below. (i) The model has successfully captured the complex stress response of the

NiTi tube under non-proportional tension–torsion. In tension-then-torsion scenarios, where

the transformation localization prevails, the predicted martensite reorientation effects are less

pronounced compared to torsion-then-tension. (ii) The model has well reproduced the intrigu-

ing diamond-shaped phase transformation pattern of the NiTi tube subjected to pure bending.

The simulated structural features were in a good agreement with the experimental findings of

Bechle and Kyriakides (2014), especially when the ideal mid-point symmetry condition is not

imposed. (iii) Lastly, the controlling role of the martensite reorientation on the striations of

the transformation front has been pinpointed. The reorientation effects come into action due

to the complex deformation path of the front fingers. This modeling study is apparently the

first time that a detailed analysis is performed on the front striations.
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Figure A.1: NiTi tube under torsion (4%) followed by tension (6%) exhibiting helical buckling: snapshots of
the axial strain field εZZ (a) and shear strain field γΘZ (b) for the simulation with the dissipation parameters
fc = 3 MPa and fr = 3 MPa.

Appendix A. NiTi tube under torsion-then-tension: occurrence of helical buck-

ling

A curious result emerged in the study in Section 4.2: the tube unexpectedly buckled

when subjected to 4% torsion followed by 6% tension. This buckling was not reported in the

experiment of McNaney et al. (2003), and interestingly, it occurred during unloading. In this

appendix, the results of the buckled tube are briefly discussed.

Figs. A.1 and A.2 depict the snapshots of the deformed tube configuration overlaid with

contours of axial and shear strain fields, and the mechanical response of the tube, respectively.

Upon comparing the phase transformation evolution with that of the thicker tube in the

reference simulation (see Fig. 7), it becomes apparent that the transformation evolutions are

identical until more than halfway through tensile unloading. It is at this point, at about an

axial strain of ε = 2%, that the tube experiences a buckling instability, in the form of a helical

deformation. Accompanied by this, the equivalent stress σeq declines, which eventually results

in a noticeable bump shape in the mechanical response.

A peculiar observation in this analysis is that the helical buckling does occur during un-

loading. A closer inspection of the transformation pattern reveals that a mild phase transfor-

mation inhomogeneity still exists at the onset of helical buckling, which may have stimulated

the buckling. It is also worthwhile to mention that the finite-element simulations of the tube
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Figure A.2: NiTi tube under torsion (4%) followed by tension (6%): comparison of the mechanical responses
for the reference case and the case that exhibits buckling. The reference case is the one for the thicker tube
analyzed in Section 4.2.

involve certain simplifications compared to real experimental conditions. Notable among them

is the absence of residual stresses that are typically present in drawn tubes. As discussed by

Rodŕıguez and Merodio (2016), depending on the magnitude of the residual stresses and the

sign of the eigenstrains they induce, helical buckling can be promoted or hindered. Neverthe-

less, an in-depth analysis of the helical buckling is not pursued here, as it falls beyond the

scope of the current study.
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