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Abstract—A large-scale integration of renewable generation,
usually interfaced to the network through power electronics,
has led to an overall decrease in power system inertia. This
paper presents novel insights on the fundamental stability prop-
erties of such systems. For that purpose, a uniform set of
Differential-Algebraic Equations (DAEs) describing a generic,
low-inertia power system has been developed. A full-order, state-
of-the-art control scheme of both synchronous and converter-
based generators are included, with the latter differentiating
between the grid-forming and grid-following mode of operation.
Furthermore, the dynamics of transmission lines and loads are
captured in the model. Using modal analysis techniques such
as participation factors and parameter sensitivity, we determine
the most vulnerable segments of the system and investigate the
adverse effects of the underlying control interference. Finally, the
appropriate directions for improving the system stability margin
under different generation portfolios have been proposed.

Index Terms—differential-algebraic equations, voltage source
converter, synchronous generator, small-signal stability, low-
inertia systems

I. INTRODUCTION

In an effort to render the electric power system more
sustainable, increasing shares of renewable generation, e.g.,
wind turbines and solar panels, are being deployed all around
the world. Due to physical properties of such units and the
fact that they are typically interfaced via Voltage Source
Converters (VSCs) to the system, their interaction with the
grid is substantially different compared to traditional plants
and thus poses many challenges for power system modeling,
analysis and control [1]. On the one hand, with the reduction
of total system inertia and the associated faster frequency
dynamics, the existing protection and under-frequency load
shedding schemes are becoming obsolete. On the other, a
high penetration of fast-acting VSCs introduces a timescale
separation between the corresponding controls of synchronous
and converter-based generators, which can adversely affect
frequency and voltage stability. With the aim of providing
solutions to the underlying problems, detailed and accurate
models of low-inertia systems, usually in the form of Differen-
tial Algebraic Equations (DAEs), are needed for the purposes
of small-signal analysis.

The field of small-signal analysis is well established for
conventional power systems [2], [3]. With the increasing
integration of renewables, a number of publications addressing
modeling and stability of 100 % inverter-based microgrids has
emerged. The focus of these studies differentiates drastically,
varying from individual converter operation modes in a single-
machine infinite-bus equivalent [4]–[6] to operation of real-
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size distribution grids [7]–[9]. In contrast, the currently on-
going transition phase towards inertia-less power systems has
been somewhat neglected in the literature. Having in mind
that operators in Ireland [10], Texas [11] and South Australia
[12] are already facing obstacles regarding excessively high
wind penetration during certain periods of the day, the funda-
mental understanding of low-inertia systems and their stability
properties is of crucial importance.

The existing literature on power systems with low rotational
inertia confines itself to very basic network models and often
oversimplified generator control schemes, mostly due to the
lack of a uniform state-space formulation for stability analyses.
Moreover, the focus is primarily set on distribution networks
and microgrids, thus neglecting the potential impact of line
dynamics. In [13], the interactions between a VSM-controlled
generator and a converter-interfaced load are investigated by
considering small-signal stability under different operating
conditions. While the authors include a dynamical model of
the load and the interconnecting line, they analyze stability
only via a basic parameter sweep of the VSM inertia constant
and load impedance.

Alternatively, a two-bus microgrid comprised of VSC and
Synchronous Generator (SG) was studied in [14] and [15].
The work in [14] considers line dynamics and relatively
detailed control structures of both units, but only aims at
model validation and the impact of operating points on DAE
linearization. On the other hand, the authors in [15] provide
insightful remarks regarding the permissible penetration levels
of grid-following inverters, as well as the relevance of different
controllers on small-signal stability. However, they employ an
impractical inverter scaling method, which obstructs such DAE
implementation on a larger system, and disregard dynamics of
the lines. Another limitation of this work lies in oversimplified
control schemes, e.g., omittance of Power System Stabilizer
(PSS) and important flux dynamics from the SG model.
Furthermore, neither of the aforementioned studies employs
participation factors for identifying the adverse interactions
and determining the true root of instability, nor considers the
impact of different converter operation modes.

This study combines the work from [14] and [16], and
improves on it in several ways. First, we introduce a uniform,
high-fidelity DAE formulation of a generic, low-inertia system
that captures all relevant physical properties and associated
dynamics, including synchronous and converter-based gen-
erators, as well as the dynamics of loads and transmission
lines. Second, we highlight the issues related to timescale
separation in such systems, and subsequently derive analytic
expressions for necessary control criteria pertaining to the
impact of transmission line dynamics. Finally, we determine
the most vulnerable segments of the system and investigate



the adverse effects of the underlying control interference. As
a result, some new insights on the overall stability of low- and
no-inertia systems are presented, together with the appropriate
directions for improving the system stability margin under
different generation portfolios. The remainder of the paper
is structured as follows. In Section II, the state-of-the-art
converter control scheme is specified. Section III presents the
dynamics of a synchronous generator equipped with a prime
mover, governor and voltage excitation system. Subsequently,
in Section IV the uniform mathematical formulation of the sys-
tem, as well as the appropriate synchronization and reference
frame alignment are elaborated. Furthermore, the associated
timescale separation characteristic of low-inertia systems is
described. The simulation results from different case studies
and the respective stability margins are illustrated in Section V,
whereas Section VI draws the main conclusions and discusses
the outlook of the study.

II. VSC CONTROL DESIGN

The proposed converter model is based on a state-of-the-art
VSC control scheme presented in Fig. 1, where the converter
is connected to the system through an RLC filter and a trans-
former. The outer control loop consists of active and reactive
power controllers, which provide the output voltage angle
and magnitude reference by adjusting the predefined setpoints
according to a measured power imbalance. The reference
voltage vector signal is sent to the inner control loop consisting
of cascaded voltage and current controllers operating in a
Synchronously-rotating Reference Frame (SRF). In order to
detect the system frequency at the Point of Common Coupling
(PCC), a Phase-Locked Loop (PLL) synchronization unit is
included in the model. However, in case of a grid-forming
converter this unit is bypassed via ω∗c = ω0, with ω0 being
the nominal system frequency.

Complete control is implemented in the internal SRF, with
the (abc/dq)-block denoting a sequence of power-invariant
Clarke (T c) and Park (T p) transformations from a stationary
(abc)-frame to the SRF:

xdq =

√
2

3


cos θ cos (θ − 2π

3 ) cos (θ + 2π
3 )

sin θ sin (θ − 2π
3 ) sin (θ + 2π

3 )




︸ ︷︷ ︸
T pT c

xabc (1)

It should be noted that the mathematical model is defined in
per unit (denoted by lower-case symbols), and the quantities
in the (dq)-frame are described in complex space vector form:

x ≡ xdq = xd + jxq (2)

with the dq superscript omitted in the remainder of the
paper. Furthermore, the external control setpoints, e.g., the
active power reference, are marked with x∗, whereas the
internally computed references are represented as x̄. A de-
tailed mathematical formulation of the Differential-Algebraic
Equation (DAEs) set describing the converter control scheme
is presented in the remainder of this section.

A. Electrical Interface and Power Calculation

The electrical system includes an RLC filter (rf , lf , cf ) and
a transformer equivalent (rt, lt) to model the respective copper
and iron losses. It is modeled in the SRF defined by the angular
frequency ωc of the converter’s Active Power Control (APC).
The SRF state-space equations are formulated as follows:

i̇s =
ωb
lf

(vm − eg)−
(
rf
lf
ωb + jωbωc

)
is (3)

i̇g =
ωb
lt

(eg − vn)−
(
rt
lt
ωb + jωbωc

)
ig (4)

ėg =
ωb
cf

(is − ig)− jωcωbeg (5)

where is is the switching current flowing through the filter
inductance, vm is the modulation voltage at the converter
output, ig is the current flowing into the grid, eg is the output
voltage across the filter capacitance, and vn denotes the nodal
voltage at the PCC. System base frequency is represented by
ωb and equals the nominal frequency.

The power calculation block computes the active and reac-
tive power output of the converter by processing the measure-
ments of voltage and current after the filter:

pc = <(egi
∗
g) , qc = =(egi

∗
g) (6)

with i∗g being a complex conjugate of the grid current.

B. Phase-Locked Loop

The synchronization unit is implemented as a Type-2 PLL,
which estimates the grid frequency and keeps the VSC syn-
chronized in a grid-following mode of operation [17]. It
measures the stationary output voltage eg and transforms it
into an internal (dq)-frame, hence introducing a second SRF:

êg = ege
−jϑpll (7)

ϑ̇pll = (ωpll − ωc)ωb (8)

The internally computed output voltage is denoted as êg ,
while ϑpll is the angle difference between the two SRFs. The
synchronization is achieved by diminishing the q-component
of êg and thus aligning the d-axis of the internal SRF with
the output voltage space vector eg , as described in [6]:

ωpll = ω0 +Kpll
p êqg +Kpll

i ε (9)
ε̇ = êqg (10)

θ̇pll = ωpllωb (11)

The estimated frequency and angle are represented as ωpll and
θpll respectively, whereas ε is an integrator state.

C. Outer Control Loop

The main function of outer control is to generate a voltage
phasor reference. This is achieved by adjusting the predefined
active and reactive setpoints according to a measured power
imbalance. Since the focus of this work is on converter
operation on a transmission grid level, both traditional droop
and virtual inertia control schemes have been considered for
active power regulation.
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Fig. 1: General configuration of the implemented VSC control structure.

For droop control the measured active power signal is
passed through a first-order Low-Pass Filter (LPF) with a cut-
off frequency ωz = 2πfz . Subsequently, the active power
droop gain Rp regulates the output frequency ωc based on
the mismatch between the filtered power measurement signal
p̃c and the external setpoint p∗c , as follows:

ωc = ω∗c +Rp(p
∗
c − p̃c) (12)

˙̃pc = ωz(pc − p̃c) (13)

On the other hand, the virtual inertia is based on a linearized
form of the conventional swing equation, representing the re-
lation between physical inertia and damping of a synchronous
machine [18], [19]. Hence, the frequency can be expressed via
a differential equation of the form:

ω̇c =
1

Mc
(p∗c − pc)︸ ︷︷ ︸
pm−pe

− 1

Mc
Dc(ωc − ω∗c )︸ ︷︷ ︸

pd

(14)

where the mechanical (pm) and electrical (pe) power of a syn-
chronous machine are replaced by the active power setpoint p∗

and the converter output power pc, respectively. The damping
power term pd is incorporated through a feedback loop, with
a damping constant Dc being the feedback gain imposed on
the frequency mismatch, while a normalized inertia constant
Mc determines the initial RoCoF during transients. The two
control architectures can be proven mathematically equivalent
under certain steady-state conditions [4], as follows:

Mc =
1

ωzRp
, Dc =

1

Rp
(15)

Nonetheless, virtual inertia control offers overall better be-
havior during frequency transients [20]. Furthermore, the
corresponding phase angle θc is used as a reference angle for
the (dq)-transformation of the entire converter control system,
with exclusion of the PLL, i.e., θ̇c = ωcωb.

Analogous to APC, the strong coupling of reactive power
and voltage enables a droop-based implementation of Reactive

Power Control (RPC). The desired output voltage vc is com-
puted as an adjustment of the voltage setpoint v∗ according
to a mismatch in the reactive power:

vc = v∗c +Rq(q
∗
c − q̃c) (16)

˙̃qc = ωz(qc − q̃c) (17)

with qc, q̃c and q∗c denoting the actual, LPF and setpoint value
of the reactive power, respectively, and Rq being the reactive
power droop gain.

D. Virtual Impedance
Virtual impedance is embedded as an additional degree of

freedom for active stabilization and disturbance rejection, as
it splits the voltage reference into (dq)-components before
passing it to the inner control loop. Despite maximizing the
active power output when set to zero, a non-zero q-component
is necessary to allow for “acceleration” and “deceleration” of
the virtual machine [21]. Therefore, a minor cross-coupling
of d- and q-components is included via the resistive (rv) and
inductive (lv) elements. While the former is set to rv = 0
for simplicity, the latter should be kept as small as possible,
yielding the respective d-axis and q-axis voltage components:

v̄dc = vc − rvidg + ωclvi
q
g (18)

v̄qc = −rviqg + ωclvi
d
g (19)

which are directly used as reference inputs for the decoupling
SRF voltage controller.

E. Inner Control Loop and Modulation
The computed voltage and frequency references are passed

to the inner control loop in order to impose a controlled
saturation of the converter’s currents and voltages [22].

A structure of the SRF voltage controller follows the similar
principles as the controllers in [4], [22]:

īs = Kv
p (v̄ − eg) +Kv

i ξ + jωccfeg +Ki
f ig (20)

ξ̇ = v̄ − eg (21)



TABLE I: Converter Control Parameters

Parameter Symbol Value Unit
Active power droop gain Rp 2 %

Reactive power droop gain Rq 0.1 %

LPF cut-off frequency fz 5 Hz
RLC filter resistance rf 0.03 p.u.
RLC filter inductance lf 0.08 p.u.
RLC filter capacitance cf 0.074 p.u.

P-gain of SRF current control Ki
p 0.74 -

I-gain of SRF current control Ki
i 1.19 -

FF-gain of SRF current control Ki
f 1 -

P-gain of SRF voltage control Kv
p 0.52 -

I-gain of SRF voltage control Kv
i 1.16 -

FF-gain of SRF voltage control Kv
f 1 -

PLL proportional gain Kpll
p 0.4 -

PLL integral gain Kpll
i 4.69 -

Virtual impedance resistance rv 0 p.u.
Virtual impedance inductance lv 0.2 p.u.

where Kv
p and Kv

i are the proportional and integral gains of
the SRF voltage PI controller, and ξ is the integrator state.
Furthermore, a feed-forward signal of the measured currents
can be enabled or disabled by changing the gain Ki

f ∈ [0, 1].
The output current reference īs is then used as an input
setpoint to the current controller.

Similar to its voltage counterpart, the configuration of the
SRF current controller is based on a PI control with decoupling
terms:

v̄m = Ki
p(īs − is) +Ki

iγ + jωclf is +Kv
feg (22)

γ̇ = īs − is (23)

with Ki
p, Ki

i and Kv
f being the respective controller gains, and

γ the integrator state. The generated output voltage reference
v̄m is used to determine the averaged modulation signal

mabc = (T pT c)
−1
mdq = (T pT c)

−1 v̄m
vdc

(24)

which reduces the AC side sensitivity to DC voltage (vdc)
oscillations [4]. Due to high complexity and very fast internal
dynamics, the converter switching and DC-side buffers are not
included in the model, since their impact on the small-signal
stability is rather negligible.

With inclusion of the current and voltage dynamics associ-
ated to the electrical system interface in (3)-(5), the complete
mathematical model consists of 13 states for the grid-forming
and 15 states for the grid-following converter unit. All relevant
converter parameters used in this paper are presented in
Table I, whereas more details on the overall converter control
structure, potential operation modes and respective transient
properties can be found in [5], [6], [20].

III. SYNCHRONOUS GENERATOR MODEL

We consider a traditional two-pole synchronous generator
equipped with a prime mover and a governor, described in
per unit. Additionally, a voltage excitation system consisted of
Automatic Voltage Regulator (AVR) and PSS is incorporated.
A detailed block diagram is showcased in Fig. 2, where
the synchronous generator is connected to the grid trough a
transformer. The main parameters are listed in Table II. This
is a well-established configuration used both for academic and
industrial purposes [2], [23], [24].

A. Electrical Interface
A synchronous generator is interfaced through a transformer

(rt, lt) to the grid, and modeled in the SRF defined by its
synchronous velocity ωs:

i̇s =
ωb
lt

(es − vn)−
(
rt
lt
ωb + jωbωs

)
is (25)

with es and is denoting the stator voltage and current respec-
tively, and vn representing the nodal voltage at the PCC.

B. Internal Machine Dynamics
The internal machine dynamics are characterized by the

transients in the rotor circuits, as transients in the stator
windings decay rapidly and can thus be neglected. Rotor
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Fig. 2: Block diagram of a synchronous generator equipped with a prime mover, governor and voltage excitation system.



TABLE II: Synchronous Generator Parameters

Parameter Symbol Value Unit
Droop control gain Rg 2 %

Governor time constant Tg 0.5 s
Reheat time constant Tr 10 s

Mechanical power gain factor Km 0.85 -
Turbine power fraction factor Fh 0.1 -
Normalized inertia constant Mg 13 s
Normalized damping factor Dg 1 p.u.
Transducer time constant Te 0.05 s
AVR exciter control gain Ke 200 -

Saturation minimum output V min
f 0 p.u.

Saturation maximum output V max
f 4 p.u.

PSS stabilization gain Ks 5 -
Washout time constant Tw 2 s

1st lead-lag derivative time constant T1 0.25 s
1st lead-lag delay time constant T2 0.03 s

2nd lead-lag derivative time constant T3 0.15 s
2nd lead-lag delay time constant T4 0.015 s

dynamics originate in the armature reaction, i.e., in the effect
of the stator field on the rotor currents, which can be described
through flux linkage dynamics:

ψ̇df =
ω0rf
xda,u

vdf −
ω0rf
xf

(
ψdf − ψda

)
(26a)

ψ̇D1
= −ω0rD1

xD1

(
ψD1
− ψda

)
(26b)

ψ̇Q1 = −ω0rQ1

xQ1

(ψQ1 − ψqa) (26c)

ψ̇Q2
= −ω0rQ2

xQ2

(ψQ2
− ψqa) (26d)

Here, subscripts f , D1, Q1 and Q2 stand for the quantities
of the field circuit, d-axis damping circuit and two q-axis
damping circuits respectively, whereas ψ, r and x denote the
respective flux linkage, resistance and reactance of a circuit;
vf is the exciter output voltage, ω0 designates the synchronous
angular velocity, and xda,u stands for the unsaturated mutual
reactance. Superscripts d and q are omitted from damping
circuit quantities for simplicity. The armature flux linkages
are expressed as follows:

ψda = x̂da,s

(
−ids +

ψdf
xf

+
ψD1

xD1

)
(26e)

ψqa = x̂qa,s

(
−iqs +

ψQ1

xQ1

+
ψD1

xQ2

)
(26f)

with the subtransient, saturated, mutual reactances x̂da,s and
x̂qa,s defined in the form:

x̂da,s =

(
1

xda,s
+

1

xf
+

1

xD1

)−1
(26g)

x̂qa,s =

(
1

xqa,s
+

1

xQ1

+
1

xQ2

)−1
(26h)

Finally, the inclusion of stator circuit balance completes the
set of differential-algebraic equations in (26) describing the
internal generator dynamics:

eds = −raids + xli
q
s − ψqa (26i)

eqs = −raiqs + xli
d
s − ψda (26j)

Stator voltages and currents are denoted by edqs and idqs ,
while ra and xl represent the armature resistance and leakage
reactance respectively. Combining (25)-(26) with 8 controller
states depicted in Fig. 2 yields a 14th order model. For
more details regarding the generator modeling and internal
parameter computation we refer the reader to [2].

IV. UNIFORM POWER SYSTEM FORMULATION

A. Network Modeling

Modeling of the transmission network is described for a
generic system depicted in Fig. 3, composed of generators
supplying local RL loads and the interconnecting transmission
lines modeled as π-sections. In order to establish a consistent
mathematical formulation, all variables have to be defined
within a single, uniform SRF. For this purpose, the terminal
currents (itu) and voltages (vtu) of each generator unit u ∈ U
are mapped to the network nodes j ∈ Ju ⊂ J with generator
connection, and subsequently aligned to the network SRF
rotating at nominal angular speed ωn:

xnj
= xtue

−j(θn−θj), ∀j, u (27)

where xnj ∈ {inj ,vnj} denotes the “nodal” metrics described
in the nominal reference frame, θ̇n = ωnωb is the uniform
SRF angle, and θj corresponds to the internal SRF angle of
the respective unit, i.e., θs for the synchronous and θc for the
converter-based generator. Several benefits of using a uniform
reference frame for describing the power system dynamics
have already been indicated in [25]. The nodal voltage and
current dynamics can now be expressed as follows:

v̇nj
=
ωb
clj
icj − jωnωbvnj

, ∀j (28)

i̇lj =
ωb
llj
vnj −

(
rlj
lljωb

+ jωbωn

)
ilj , ∀j (29)
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Fig. 3: Generic network model with line dynamics and the
respective (dq)-frame alignment.



thus capturing the load (rlj , llj ) and aggregate shunt (cj)
phenomena at each node j ∈ J . Finally, the line dynamics
are represented using a conventional RL circuit formulation:

i̇jk =
ωb
ljk

(vnj
− vnk

)−
(
rjk
ljk

ωb + jωbωn

)
ijk, ∀j, k (30)

with (rjk, ljk) being the respective line parameters and k ∈
Kj denoting the set of nodes adjacent to node j. Combining
equations (27)-(30) with the algebraic current balance terms
at each node in the system completes the DAE formulation.

It should be noted that for the purposes of the small-
signal model the alignment in (27) has to be modified, i.e.,
the frequency at which the uniform SRF rotates must be a
state variable instead of a constant ωn. The reason lies in the
linearization of the exponential term performing the rotation,
which otherwise gets oversimplified and cannot capture the
alignment accurately. As a result, the linearized model is
expressed in an SRF of an arbitrary grid-forming inverter or
a synchronous generator.

B. Uniform Linearized Model
A full state-space form of the VSC control scheme can be

derived from (1)-(24), resulting in the 15th order model:

xc =
[
edqg , i

dq
g , i

dq
s , ξ

dq, γdq, ε, ϑc, ϑpll, p̃, q̃
]T

(31)

uc = [p∗, q∗, v∗, ω0]
T (32)

where xc and uc denote the state and input vectors respec-
tively. For a grid-forming inverter the PLL states (ε, ϑpll)
would be omitted from (31), whereas in case of a virtual
inertia APC the state p̃ is replaced by νapc, as explained in
Section II-C. The input vector consists of the converter control
setpoints. On the other hand, the 14th order state-space model
of a synchronous generator is formulated as follows:

xs =
[
idqs , ψs, v1, v2, v3, vs, pg, pm, ∆ωr, θg

]T
(33)

us = [p∗, v∗]T (34)

with ψs = [ψdf , ψD1
, ψQ1

, ψQ2
] being the vector of fluxes

describing the internal rotor dynamics. The grid state repre-
sentation is described by the vector

xg =
[
un1 , . . . ,unNn

, il1 , . . . , ilNn
, ib1 , . . . , ibNb

]T
(35)

where Nn and Nb denote the total number of nodes and
branches in the network respectively, and ibm corresponds to
the branch currents ijk introduced in (30). Finally, the uniform
system formulation can be established:

x =
[
xTc1 , . . . ,x

T
cNc

, xTs1 , . . . ,x
T
sNs

, xTg

]T
(36)

u =
[
uTc1 , . . . ,u

T
cNc

, us1 , . . . ,u
T
sNs

]T
(37)

with Ns and Nc representing the total number of synchronous
and converter-based generators. The small-signal model is thus
defined in the general form as

∆ẋ = A∆x+B∆u (38)

where ∆ indicates a small-signal deviation around the lin-
earization point (x0, u0).

C. Timescale Separation
The overall complexity of dynamics pertaining to low-

inertia systems is well described through timescale separation
illustrated in Fig. 4. Traditional power systems based on
synchronous generators have a distinct difference in time
constants between the frequency and voltage regulation, with
turbines (Tr ≈ 10 s) and governors (Tg ≈ 1 s) operating
on a much higher timescales than the exciter (Te ≈ 50 ms).
Considering that the time constants of the line dynamics vary
in the Tl ∈ [1− 30] ms range, depending on the network type,
it is clear that the conventional control schemes would ensure
system stability. However, with the inclusion of fast-acting,
converter-based generation, the system dynamics become more
convoluted. More precisely, the time constants of the PI con-
trollers and LPFs associated with the inner and outer inverter
control loops are one or two orders of magnitude smaller than
the ones of the synchronous machines, potentially resulting in
adverse control interference and instability, especially under
high installation share of renewables. Moreover, the time de-
lays associated with Wide Area Monitoring Systems (WAMS)
would make any type of centralized system regulation without
the use of high-speed fibre optics obsolete.

Another insightful observation is that the impact of network
line dynamics becomes more profound in inertialess systems.
Its effect on frequency stability can be illustrated by analyzing
a uniform frequency control loop of an individual grid-forming
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Fig. 4: Timescale separation between different physical and control dynamics in a low inertia system.



inverter connected to k ∈ Kj adjacent inverter units described
in Appendix A:

τz θ̈cj +
(
1− ωbRpB′j

)
θ̇cj + ωbRpBjθcj + Cj = 0 (39)

with

Cj = ωbω
∗
cj + ωbRpp

∗
cj (40)

Bj =
∑

k∈Kj

ω0ljk(
r2jk + ω2

0l
2
jk

)2 , B′j =
∑

k∈Kj

2rjkl
2
jk(

r2jk + ω2
0l

2
jk

)2

In order to preserve system synchronization the natural
negative feedback terms for θcj and θ̇cj must be positive,
indicating an upper limit on the active power droop gain
of Rp < (ωbB

′
j)
−1. One can notice that such threshold

is even more restrictive for a distribution network, due to
shorter node distances and a lower ljk/rjk line impedance
ratio. Furthermore, the impact of the power network also
pertains to inverter synchronization through θcj term, since
very high feedback control gains κj = ωbRpBj might lead to
inverter frequency oscillations exciting the oscillatory modes
of the transmission lines. In other words, the inverters achieve
synchronization by inferring information about the phase angle
differences through local measurements of currents and volt-
ages. Therefore, the time constant of the transmission lines
can be interpreted as a propagation delay of the information
on the phase angles, and the controllers cannot act faster than
the time needed to observe information through the network.
Hence, larger time constants require a lower feedback gain,
which implies that shortening or adding transmission lines
can make a low-inertia system unstable. Similar remarks have
been pointed out for microgrids consisted solely of inverters
based on droop [26] and dispatchable virtual oscillator control
[27]. While we solely focus on frequency dynamics in this
example, it should be noted that the voltage stability could
also be assessed using the proposed approach, as indicated
in [26]–[28].

V. RESULTS

A. Model Verification

In order to validate the proposed control structure, a non-
linear inverter model was developed in MATLAB Simulink,
with the use of a Simscape Power Systems library for the
electrical system design. Subsequently, the response to a 10%
step change in active power setpoint was compared against the
detailed DAE and small-signal models. The results presented
in Fig. 5 verify the accuracy of the proposed mathematical
formulation, with the small-signal model having better initial-
ization behavior due to aforementioned linearization.

B. Unit Interactions in a 2-bus Test System

For the first case study we consider a simple 2-bus system
similar to the one described in Fig. 3, with two generators
connected over a transmission line and an RL load supplied
at the first node. The goal is to incorporate different units
into the system and investigate their dynamic interactions
and the respective stability margins. In order to confine the
observed phenomena solely to the generators under study, the
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Fig. 5: Transient response of different inverter models to a
step change in active power setpoint.

transmission line dynamics are not taken into account at this
point.

We investigate three different scenarios based on the gen-
erator type configuration: (i) a synchronous generator and
a grid-following VSC; (ii) a synchronous generator and a
grid-forming VSC; (iii) a grid-forming and a grid-following
VSC. Furthermore, we introduce a penetration ratio η, which
describes the installed penetration level of inverter-based units.
In first two cases this corresponds to η = pc/(pg + pc),
whereas in the last scenario this factor denotes the penetration
of the grid-following generation, i.e., η = pcf /(pcF + pcf ),
with subscripts F and f representing the grid-forming and
grid-following converters respectively. The second formulation
is justified by grid-following units being the main origin of
instability, especially under a high installation share.

The stability margins of different system configurations
are illustrated in Fig. 6, where the stability is assessed
through real-part movement of the most critical eigenvalue λ̂.
Understandably, the system comprising of both synchronous
generators and grid-forming inverters can withstand drastically
higher levels of PE-based devices (≈ 79%), as the voltage
phasors at both nodes are fully established and controlled
by the local generators. Additionally, the synchronization and
power sharing properties are inherently provided by both units.
On the other hand, the penetration of grid-following genera-
tion adversely affects the system balance, and significantly
reduces the maximum admissible ratio to ηmax ≈ 60 % and
ηmax ≈ 59 % for Scenarios 2 and 3, respectively. The latter
configuration also has a steeper progression of λ̂, indicating
that the penetration ratio can hardly be improved.
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Fig. 6: Impact of inverter penetration on system stability for
different unit configuration.
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As a second step, we thoroughly explore the fundamental
components contributing to the aforementioned instability.
This is achieved by determining the critical modes of the sys-
tem, employing participation factor and parameter sensitivity
analyses, and determining the states, i.e., the controllers, that
mainly contribute to such modes. Each of the proposed scenar-
ios comprises a unique DAE system with specific dynamics.
Therefore, all three system configurations are individually
investigated and elaborated in detail below:

1) Scenario I: It is observed that the inverter penetration
above 60 % leads to system collapse. Interestingly, the insta-
bility initially originates in the voltage dynamics, with the
VSC inner control loop interfering with the generator’s PSS,
as illustrated in Fig. 7. Subsequently, the vulnerability spreads
across the whole excitation system, including the AVR. At this
point the system is heavily unstable. This phenomena comes
from the time constants of the inner loops being drastically
smaller than the ones of the exciter. More specifically, once the
system becomes predominantly PE-based, the “non-forming”
aspect of the inverter’s voltage phasor diminishes the voltage
at the SG terminal and weakens the system resilience. For
even higher VSC penetration levels (> 75 %) the system faces
frequency stability issues, as the PLL, and subsequently the
active power controller, cannot provide adequate synchroniza-
tion of the grid-following units due to insufficiently strong
global frequency signal.

By studying the movement of the critical eigenvalue spec-
trum in Fig. 7 we can notice that the real part <(λ̂) signif-
icantly increases for inverter shares above 68 %. Considering
that PSS and converter SRF controllers largely participate in
critical modes for η ∈ [60, 68] %, one can assume that tuning
the respective control gains could restore system stability
within this range. While the increase in stabilization gain
Ks shown in Fig. 8 proves to be beneficial for the system,
the adjustment of inner loop PI controllers has no impact on
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Fig. 8: Stability maps in the Ks − η and Dg − η planes
indicating the effect of PSS stabilization gain and synchronous
generator damping on admissible penetration of grid-following
inverter units in Scenario I.

the eigenvalue spectrum. This is an expected outcome due
to a large timescale separation between the two feedback
loops, which in turn hinders the synchronous generation in
providing a stiff voltage at the terminal. Furthermore, the SRF
converter control is often predefined by the manufacturer and
optimally designed for providing fast and accurate voltage
and power reference tracking, implying that any parameter
changes would distort its original purpose and effectiveness.
Beside the SG voltage regulators, the dynamics of the swing
equation also prove to be relevant for the overall stability.
However, in contrast to the popular belief that low inertia
levels lead to vulnerability, it is in fact the insufficient damping
Dg that propagates the problem. Similar to the Ks gain,
the higher damping constant facilitates the integration of
converters, whereas the inertia constant Mg has no impact
on the overall penetration. Nonetheless, damping is related
to physical properties of synchronous generators, while droop
gains, essentially corresponding to damping, are prescribed
within narrow ranges by the grid codes. This suggests that
the most viable and practical solution would be to improve
the PSS design, i.e., increase its responsiveness, in order to
accommodate a high penetration of grid-following inverter-
based generation.

2) Scenario II: As highlighted in the previous scenario, the
issues pertaining to the timescale separation between different
voltage controllers remain. It can be noticed that the “forming”
inverter property bolsters the voltage vector at the respective
bus and drastically improves the stability margin of the system.
Nonetheless, for η > 78 % the AVR and PSS controllers can-
not achieve adequate voltage stabilization, as the eigenvalues
depicted in Fig. 9 drive deeply into the right-hand side of the
root loci spectrum. Hence, the maximum feasible penetration
of VSCs can hardly be improved upon. Another important
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observation is that the frequency dynamics are not contributing
to instability anymore, since both units independently establish
an adequate frequency signal and subsequently synchronize.

3) Scenario III: We tackle the 100 % PE-based scenario by
increasing the share of grid-following units through factor η,
as presented in Fig. 10. The main distinction of this scenario
is the elimination of voltage control issues in the presence
of SGs and inverters, as both VSCs regulate voltage on the
same timescale. In spite of improving the voltage stability
of the system, the synchronization problems are aggravated
due to an exclusion of a synchronous generator. In other
words, the dedicated “forming” capability of a grid-forming
converter is inferior to the one of a traditional generator.
As a result, for penetration levels above ≈ 59 % the PLL
units of grid-following inverters cannot accurately estimate the
frequency signal, leading to the failure in the active power
control and preventing the system-level synchronization. Sim-
ilar properties are also reflected in Fig. 11, where a stability
map in the Kpll

p − η plane is depicted. One can observe that
a more responsive PLL could potentially facilitate a higher
penetration factor η. Nonetheless, this approach does not solve
the fundamental problem at hand, and provides only a marginal
improvement of few percent. It should be noted that the
integral gain of the respective PI controller does not affect
the system stability margin, indicating that the original PLL
time constant could be maintained in the process.

C. Inclusion of Transmission Line Dynamics
We broaden the scope of our analysis by including the

transmission line dynamics described in Section IV. The same
three scenarios are re-evaluated and compared against the
previous case study, with the respective results illustrated
in Fig. 12. A noticeable difference in the stability margin
of a 100 % inverter-based system can be observed, where
the inclusion of line dynamics significantly broadens the
maximum penetration ratio η. This can be justified by the
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Fig. 10: Impact of different controllers on system stability
under high grid-following inverter penetration in Scenario III.

inductive and capacitive components of the lines acting as
energy buffers and augmenting the synchronization between
the two units, as previously described in Section IV-C. More
precisely, the frequency issues associated to a large proportion
of PLL-based generation are alleviated through interactions
with the LC segments of the transmission lines, which slows
down the frequency dynamics and enables the grid-following
VSCs to more accurately detect the weak, global frequency
signal. Similar conclusions have been drawn in [27] for a
specific class of grid-forming inverters, as well as in [3] using
a mechanical analogue of swings in a multi-machine system.

On the other hand, the scenarios experiencing voltage
instability problems are for the most part unaffected by the
transmission lines. The voltage control interaction between the
synchronous and PE-based generation is somewhat mitigated,
due to the time constants of the line dynamics and the SRF
inner control loops being of the same order of magnitude.
However, the line dynamics do not have any impact on
the slower modes associated to the synchronous machines.
Therefore, the stability in Scenario I cannot be preserved for
the grid-following penetration above 70 %, as it is associated
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effect of proportional PLL gain on admissible penetration of
grid-following inverter units in Scenario III.
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lines indicate the additionally incorporated transmission lines.

solely to the AVR and PSS control design. The predominant
impact of SMs on the system stability is even higher in Sce-
nario II, with grid-forming inverters only marginally affecting
the critical modes within a narrow range of η ∈ [78, 79] %.
Hence, the maximum admissible VSC penetration after the
inclusion of transmission lines remains the same in this case.

D. Stability Margins of the IEEE 9-bus System

In order to investigate the simultaneous interactions between
all three unit types, as well as to increase the network
complexity, the IEEE 9-bus system presented in Fig. 13 is
considered in this case study. The converter-based generation
is placed at nodes 2 and 3, with a grid-following VSC being
the former and a grid-forming the latter one. The transmission
line dynamics are also included in the model.

The stability mapping for the IEEE 9-bus system is show-
cased in Fig. 14, while simultaneously considering different
levels of network connectivity. Each triangular axis denotes
a penetration of the respective unit type, more precisely ηSG
refers to synchronous generators, ηF to grid-forming and ηf
to grid-following inverter-based units. We modify the original
system by gradually adding transmission lines, first between
the generator buses and subsequently between the load buses,
as indicated by the red and blue lines in Fig. 13 respectively.
Such procedure allows us to increase the network connectivity,

defined as εg = 2Nb/(N
2
n − Nn), from 40 % in the original

model to 60 % and 80 % in the modified system.
It can be observed in Fig. 14 that there exists a minimum

required level of synchronous generation in order to preserve
system stability. For εg = 40 % this amounts to approximately
57 %, whereas for more meshed networks this limit can be
reduced by 8−10 %. Nonetheless, it is clear that the production
portfolios involving high penetration of converter-interfaced
generation can drastically distort the system, independent of
the grid-forming share. Interestingly, the permissible VSC
installation margin significantly reduces when ηF /ηf ratio
diverges from 1, as maximum value of η = ηF + ηf drops
from 44 % to 27 % in case of ηF ≈ 0 % or ηf ≈ 0 %. This
is justified by different instabilities occurring between various
unit types, specifically voltage issues for a system comprised
of synchronous and inverter-based generators (Scenarios I and
II) and synchronization obstacles related to a 100 % PE-based
system (Scenario III), as described in Section V-B. For a
rather balanced portfolio, all of these problems are somewhat
confined within reasonable limits, while an imbalance in
ηF /ηf ratio tends to emphasize the voltage instability and
endanger the whole network. Another valid point can be
made regarding the beneficial impact of transmission line
dynamics. As previously indicated in Section V-C, a direct
connection between units experiencing frequency instability
mitigates the synchronization issues, thus facilitating a higher
share of PE-based devices. Nonetheless, this is not the case
for transmission lines between the load nodes, as increasing
connectivity from 60 % to 80 % has a marginal impact on the
stability margin.

We extend this analysis by differentiating between three
different generation portfolios: (i) P0 - a mix of all three unit
types, as previously discussed; (ii) Pf - a system comprised
only of synchronous generators and grid-following VSCs; and
(iii) PF - a system comprised only of synchronous generators
and grid-forming VSCs; in the latter two cases, the total
inverter penetration ratio is equal to either ηf or ηF . The
results for the IEEE 9-bus system presented in Fig. 15 suggest
that more homogeneous portfolios, such as Pf and PF , can
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withstand drastically higher penetration of renewables, with
ηmax reaching up to 75 % and 82 % respectively. Understand-
ably, portfolio PF has a higher η margin due to less accentu-
ated voltage instability compared to Pf scenario. However,
increasing network connectivity balances these penetration
ratios out, as direct transmission line connections resolve
the timescale separation between the voltage controllers of
synchronous and converter-based generators (see Fig. 4). As
a result, the system can facilitate up to ηmax = 88 % of PE-
interfaced units; an increase of approximately 70 % compared
to the original portfolio P0.

E. Key Takeaway Messages

It should be noted that the obtained permissible penetra-
tion levels of inverter-based generation might vary drastically
between systems of different sizes and complexity. While
presented results should be taken with caution from a quan-
titative perspective, they highlight some important qualitative
properties of future low-inertia systems. Therefore, several key
conclusions can be drawn from this study:

1) Transition might be hard: The existing literature focuses
mostly on 100% inverter-based power systems and the associ-
ated frequency stability and synchronization issues, assuming
an easy transition along the way. While this might be the case
from the perspective of stiff frequency signal in the network,
the overall stability of the interim system is significantly more
vulnerable and harder to ensure, as was already experienced in
South Australian grid [12]. Although some solutions for fast
frequency control have already been proposed [29], this is just
a temporary mitigation of a much deeper and more convoluted
problem, which as such should receive an adequate attention.

2) Need for uniform regulation: Throughout this study
we assume a perfectly balanced converter control design,
i.e., compatible control schemes and parameter tuning which
ensure stable synchronization and safe operation of the system.
However, this might not be the case in the future, especially
considering current grid codes and lack of a uniform regulation
for VSC manufacturers. As a matter of fact, the portfolios
Pf and PF could have even underperformed compared to
P0 under such circumstances. Furthermore, even the sole
definition and classification of converter operation modes, e.g.,
grid-forming, grid-following and grid-supporting, lacks foun-
dation and tends to drastically differentiate between different
operators and industries.

3) Timescale separation: One of the main contrasts be-
tween traditional and low-inertia systems is a timescale sep-
aration between the respective controllers of synchronous
and inverter-based generators, which leads to frequency and
voltage instabilities under high penetration of renewables. Due
to significantly faster dynamics of VSCs, the conventional
power systems are facing challenges in accommodating a
predominantly high level of PE-interfaced units, especially in
the case of very heterogeneous1 production portfolios.

4) Premise of line dynamics: Transmission line dynamics
have traditionally been neglected in power system studies,
since their fast dynamics did not influence the dynamic be-
havior of the overall slower generation side. Nonetheless, with
the introduction of fast-acting PE devices, the aforementioned
interactions become drastically more profound in networks
with low rotational inertia. Interestingly enough, they can
have both positive and adverse effects on the system. On
the one hand, the time constants of transmission lines enable
them to act as a buffer and “bypass” the gap between fast
inverter and slow SG dynamics, thus aiding system stability.
Furthermore, direct line connections improve synchronization
between generators. On the other, they impose strict upper
bounds on droop feedback gains in order to ensure both
voltage and frequency stability, which are not necessarily met
by today’s manufacturers. The latter property is especially
pronounced in distribution networks, due to shorter node
distances and a lower X/R line impedance ratio.

VI. CONCLUSION

The presented paper introduces a uniform, high-fidelity
DAE formulation of a generic, low-inertia system that captures
all relevant physical properties and associated dynamics. By
combining detailed control schemes of both synchronous and
converter-based generators, as well as the dynamics of loads
and transmission lines, we determine the most vulnerable
segments of the system and investigate the adverse effects
of the underlying control interference. As a result, some new
insights on the overall stability of low- and no-inertia systems
are presented, together with the appropriate directions for
improving the system stability margin under different gen-
eration portfolios. Furthermore, we clarify the issues related
to timescale separation and the impact of line dynamics, and
highlight the main obstacles in a transition from a traditional
SG-based power system to the one with with almost no
conventional generators.

APPENDIX A
Let us consider a set j ∈ J of interconnected grid-forming

inverters with the active power control of the form:

τzω̇cj = ω∗cj − ωcj +Rp

(
p∗cj − pcj

)
(41)

where τz = ω−1z is the LPF time constant and the remaining
notation is preserved from Section II. Having in mind that
θ̇cj = ωcjωb, one can transform (41) into

τz θ̈cj = −θ̇cj + ωbω
∗
cj + ωbRp

(
p∗ck − pck

)
(42)

1By heterogeneous we consider portfolios comprised of both grid-forming
and grid-following VSCs, in addition to synchronous generators



The inverter output power pcj can be described as the sum
of all powers flowing across the lines connecting the adjacent
inverters k ∈ Kj :

pcj =
∑

k∈Kj

pjk =
∑

k∈Kj

<(vcj i
∗
jk) (43)

with ijk being the complex vector of the current flowing
through the line between inverters j and k, and θjk = θcj−θck
Furthermore, considering line parameters of the form (rl, ll),
we express the electromagnetic dynamics of the line current
in a (dq)-frame as

i̇jk =
ωb
ll

(vcj − vck)−
(
rl
ll
ωb + jωbω0

)
ijk (44)

which is subsequently transformed into a Laplace domain:

ijk =
vcj − vck

rl + jω0ll + sll/ωb
=

i0jk

1 + sll/
(
ω0rl + jω2

0ll
)

︸ ︷︷ ︸
σl

(45)

For the purposes of capturing the slow modes dynamics, it is
reasonable to assume that σl � 1 holds for modes evolving
on the timescales slower than the line time constant [28]. By
performing a Taylor series expansion we obtain:

ijk ≈ i0jk −
sll

ω0rl + jω2
0ll
i0jk

L−1

7−→

ijk ≈ i0jk −
ll

ω0 (rl + jω0ll)
2

(
v̇cj − v̇ck

) (46)

Assuming nominal voltage magnitudes and small angle de-
viations between the nodes (vcj,k ≈ 1 p.u., θjk ≈ 0), we
can compute the time derivatives of voltage phasors and
subsequently the total active power injection:

pcj =
∑

k∈Kj


 ω0ljk(

r2jk + ω2
0l

2
jk

)2 θcj +
2rkml

2
km

(r2km + ω2
0l

2
km)

2 θ̇cj




= Bjθcj +B′j θ̇cj (47)

where subscript jk denotes the respective parameters (rl, ll)
of the power line connecting the nodes j and k. Combining
(41) and (47) yields the uniform frequency dynamics of an
individual inverter of the form:

τz θ̈cj +
(
1− ωbRpB′j

)
θ̇cj + ωbRpBjθcj + Cj = 0 (48)

with Cj = ωbω
∗
cj + ωbRpp

∗
cj .
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