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Abstract 12 

Ion exchange (IX) is a key technology in resource recovery processes for demineralization and fit-for-purpose 13 
water production due to its inherent ion-selective recovery properties. A major bottleneck in the optimization 14 
of the IX process is the accurate prediction of ion breakthrough times, which has the potential to save on 15 
regeneration chemicals by maximizing resin utilization. However, the models used to predict ion breakthrough 16 
times are often unreliable due to poor calibration methods and significant uncertainty in parameter estimates. 17 
Consequently, we conducted local and global sensitivity analyses to identify the design and operational 18 
parameters that contribute most to the prediction of breakthrough curves. The global sensitivity analysis 19 
enabled the selection of a limited subset of parameters for calibration, demonstrating that only two 20 
parameters, namely the maximum adsorption capacity isotherm parameter and the resin bead particle size, 21 
require thorough calibration, resulting in a 76% improvement in the breakthrough prediction. We also showed 22 
that the calibration of additional, less sensitive or correlated parameters results in an insignificant 23 
improvement of the predictive power, with a 16% to 60% increased uncertainty in the breakthrough time 24 
prediction. The model was validated using three independent data sets, which showed a fairly accurate 25 
breakthrough time prediction, with a relative error ranging from 1% to 11%. Herein, we propose a robust 26 
calibration procedure, based on good modeling practice, that encompasses both sensitivity and uncertainty 27 
analyses and therefore provides a basis for process optimization. The framework is presented in a manner 28 
that allows for its application to analogous process settings.   29 
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Highlights 33 

1. Local and global sensitivity analyses identified key parameters for calibration. 34 
2. Only maximum adsorption capacity and resin bead size require thorough calibration. 35 
3. Calibrating only two parameters resulted in a 76% improved breakthrough prediction. 36 
4. Prediction uncertainty increased by 16-60% when calibrating correlated parameters.  37 
5. Calibration protocol is applicable to any physico-chemical or adsorption processes. 38 

Abbreviations 39 

AIC Akaike Information Criterion 40 
BIC Bayesian Information Criterion 41 
CI Confidence Interval 42 
FMI Fisher Information Matrix 43 
GSA Global Sensitivity Analysis 44 
IX Ion Exchange 45 
LSA Local Sensitivity Analysis 46 
ODE Ordinary Dieerential Equation 47 
PDE Partial Dieerential Equation 48 
RMSE Root Mean Square Error 49 
WSSE Weighted Sum of Square Error 50 

1. Introduction  51 

The global issue of water scarcity is placing increasing pressure on the supply and management of water 52 
resources. As a result, resource recovery has emerged as a strategy to increase the circularity of resources 53 
and water supplies. Ion exchange (IX) is a key technology in this endeavor, as it enables fit-for-purpose water 54 
demineralization through its ion-selective recovery properties (Kabdaşlı and Tünay, 2018; Jegatheesan et al., 55 
2021; Taghvaie Nakhjiri et al., 2022). IX, like other adsorption processes, is typically operated as a continuous 56 
process in fixed-bed packed columns and used as an end-of-pipe removal treatment (Inglezakis and Zorpas, 57 
2012). Notable applications include the recovery of nutrients and by-products in the food production industry 58 
(Kammerer et al., 2011); the removal of heavy metals such as nickel from urban wastewater (Ma et al., 2019), 59 
petrochemical wastewater (Cechinel et al., 2018) and other industrial waters such as chromium-rich textile 60 
waste (Wang et al., 2015); the recovery of precious metals from industrial wastewater (Taghvaie Nakhjiri et al., 61 
2022); the removal of silica for the production of ultrapure water in various industries, including paper mills 62 
and electronics (Chen et al., 2022); or the removal of pharmaceuticals (Chu and Hashim, 2023a) and 63 
micropollutants such as PFAS in drinking water production (Smith et al., 2023). 64 

The challenges of the IX technology include the optimization of the cost of chemicals associated with resin 65 
regeneration and the disposal of generated waste streams (Crittenden et al., 2012), as well as the accurate 66 
prediction of target ion breakthrough times for downstream compliance during operation and control 67 
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(Inglezakis and Zorpas, 2012). Consequently, the optimization of IX processes would allow for a reduction in 68 
the energetic and material impacts of water treatments, thereby enhancing their environmental and economic 69 
sustainability and further increasing their potential for resource recovery. 70 

A number of mechanistic and empirical models have been developed with the objective of improving the 71 
understanding of the IX process and addressing the aforementioned challenges by identifying the 72 
breakthrough time. A myriad of these models can be found in the literature, including transport and dispersion 73 
mechanisms derived from conservation laws, such as surface dieusion (Ma et al., 2019), pore dieusion (Zhang 74 
et al., 2015), and other intraparticle dieusion kinetic models (Wang and Guo, 2022). Similarly, numerous 75 
equilibrium isotherm models have been developed beyond the classical Langmuir and Freundlich models. A 76 
comprehensive review of the most commonly used models can be found in LeVan and Carta (2008), and more 77 
recently in Wang and Guo (2023) and Wang et al. (2024). 78 

Therefore, in view of the considerable number of existing models, no unified modeling procedure exists, and 79 
as a result, a standardized calibration protocol for adsorption models is still missing. This is evidenced by the 80 
numerous existing reports on inconsistencies, mistakes, and misconceptions in the modeling of the IX 81 
process (Chu, 2023; Haupert et al., 2021; Hu et al., 2021; Lima et al., 2021; Mudhoo and Pittman, 2023; Tran 82 
et al., 2017; Xiao et al., 2018), which result in models with limited reliability and prediction power. Recent 83 
studies also emphasize the need for repeated experiments and the reporting of data of complete 84 
breakthrough curves as essential practices in IX modeling (Hu et al., 2024). Furthermore, the following five 85 
common misconceptions in modeling tasks were identified: (i) overfitting, (ii) use of linearized models, (iii) 86 
false sensitivity analyses, performed locally and for single parameters, (iv) absence of uncertainty 87 
quantification, and (v) confusion between the goal of sensitivity analyses and uncertainty analyses, as 88 
highlighted by Saltelli et al. (2019). 89 

A review of the above articles from the literature essentially shows that in IX, models can be eeectively used 90 
to predict ion breakthrough in a multitude of applications. However, the calibration methodologies employed 91 
by various authors exhibit inconsistencies in rigor resulting in overfitting, limited reproducibility and high 92 
uncertainty regarding the predictions of these models. Consequently, these models frequently fail when 93 
subjected to validation or extrapolation to future time series, due to the considerable uncertainty associated 94 
with the calibrated parameters. The limited extrapolation capability, coupled with the complexity and non-95 
linear nature of the operation, restricts the utility of these models as a monitoring and control tool for water 96 
treatment applications. A standardized model calibration procedure is currently missing. 97 

In order to achieve reliable and powerful prediction capabilities and establish good modeling practice for the 98 
calibration and reproducibility of IX models, we followed general recommendations by Saltelli et al. (2019) 99 
regarding sensitivity and uncertainty analysis, which are valid across disciplines. Similar guidelines have been 100 
successfully established for the calibration of diverse processes in the wastewater field (Rieger et al., 2012; 101 
Vanrolleghem et al., 2003; Verhaeghe et al., 2024). In a recent study, Chu and Hashim (2023b) employed 102 
rigorous model selection techniques to evaluate the performance of competing models with varying numbers 103 
of fitting parameters. Nevertheless, essential considerations in the calibration process, such as verification of 104 
the model structure, a detailed description and uncertainty quantification of the parameter estimation 105 
procedure, and the analysis of the data quality and resulting performance, are still absent in numerous studies. 106 
Our work is based on the model proposed by Zhang et al. (2015), which considered an advection-dieusion-107 
reaction model for fixed-bed ion exchange columns. This allowed us to address a few of the aforementioned 108 
limitations and resulted in the formulation of the proposed framework for model calibration. This framework 109 
is based on principles of good modeling practice, which are applicable to other physico-chemical or 110 
adsorption processes of analogous systems described by mechanistic models. 111 
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This work is accompanied by open-access code (https://github.com/UGentBiomath/IX-GMP) and presents a 112 
framework for model calibration based on good modeling practice. The work includes a description of a simple 113 
one-component IX model for fixed-bed operation and employs sensitivity and uncertainty analyses to verify 114 
the model structure and facilitate rigorous calibration of an identifiable parameter set. The resulting protocol 115 
is applicable to other IX modeling studies and allows for scenario analysis and optimization of the system 116 
under study. A description of the implementation of the presented framework can be found in the Appendix. 117 

2. Materials and Methods  118 

2.1 Model definition  119 

We implemented a dynamic model describing the transport of ions through a fixed-bed IX column reactor. We 120 
selected the two one-dimensional partial dieerential equation (PDE) approach of Zhang et al. (2015) in order 121 
to develop our model. The first PDE describes the liquid phase, while the second PDE describes the solid 122 
dieusion. As the goal of this modeling study is to optimize the process, computational eeiciency is a 123 
significant factor. Consequently, we simplified the model with the following modifications: the simplified 124 
model considers the same one-dimensional set of equations, comprising an advection-dispersion-reaction 125 
partial dieerential equation (PDE) for the liquid phase, but proposes a linear driving force mass transfer 126 
ordinary dieerential equation (ODE) for the solid dieusion, as proposed by LeVan and Carta (2008). Therefore, 127 
we replaced the second PDE with an ODE. 128 

Both models compute the concentration profile of ions in the liquid and solid phases along the column, 129 
thereby predicting the breakthrough of these ions following saturation of the resin. A visual inspection of Figure 130 
7 shows that our simplified model using parameters from Zhang et al. (2015) (designated as “uncalibrated” in 131 
the figure) does indeed produce the anticipated breakthrough curve of the data presented by Zhang et al. 132 
(2015). Therefore, the simplified model can be employed as a fast, accurate tool to improve the eeiciency of 133 
IX operations. This is made possible by the fast concurrent computation of both scales of the process, namely 134 
the ion concentration in the liquid and solid phases, which are respectively referred to as the macro and 135 
micro-scale by Zhang et al. (2015). Subsequently, both scales are translated into a single output, namely the 136 
ion transport in the fluid along the column. Similarly, the solid phase can be analyzed for the purposes of 137 
regeneration, although this is beyond the scope of the present work. 138 

2.1.1 Model structure 139 

Figure 1 depicts the IX process as a fixed-bed resin-packed column, illustrating the main variables involved in 140 
the dynamic transport of ions along the column and through the liquid and solid phases. 141 

https://github.com/UGentBiomath/IX-GMP
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 142 

Figure 1. Schematic representation of a typical fixed-bed IX column and description of the main variables of 143 
the 1-D model with appropriate initial and boundary conditions. The parameters are detailed in Table 1. 144 

The evolution of the concentration profiles of a given ion in the column can be obtained by performing a mass 145 
balance. This results in the PDE (1), which must be solved after the appropriate initial and boundary conditions 146 
have been defined. Furthermore, the solution involves the discretization of the space and time domains:  147 

𝜕𝐶
𝜕𝑡 = 𝐷!

𝜕"𝐶
𝜕𝑧" − 𝑢

𝜕𝐶
𝜕𝑧 +
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𝜀
𝜕𝑞
𝜕𝑡

 148 

(1) 149 

In the above expression, 𝐶 represents the concentration of ions present in the liquid phase at any given point. 150 
The variable 𝑞 denotes the concentration of ions in the solid phase. The term 𝑢 is the fluid velocity, which is 151 
assumed to be constant. 𝐷!  is the axial liquid dispersion coeeicient. 𝜌#  is the bulk bed density, while 𝜀 152 
denotes the bed porosity. In this context, the independent variables 𝑡  and 𝑧  are used to refer to time and 153 
column height, respectively. Furthermore, the following assumptions have been made: a uniform velocity 154 
profile and intraparticle dieusion in the column; and a controlling equilibrium between the liquid and solid 155 
phases (negligible resistance to mass transfer in the boundary layer, as indicated by Zhang et al., 2015). The 156 
velocity can be calculated by assuming a constant inlet flow and a constant void bed cross-section in the 157 

column, according to the following equation: 𝑢 = $
%&

. The last term in Equation (1) denotes the change in ion 158 

concentration due to adsorption or desorption in the solid phase. Assuming a linear driving force between the 159 
liquid and solid phases (LeVan and Carta, 2008), the second equation of the model can be expressed as an 160 
ordinary dieerential equation at each discretized point within the spatial domain: 161 
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𝜕𝑞
𝜕𝑡 = 𝑘'()(𝑞∗ − 𝑞) 162 

(2) 163 

where 𝑘'()  is the mass transfer coeeicient and 𝑞∗ 	is the concentration in the resin phase surface in 164 
equilibrium with the liquid phase concentration, 𝐶, which can be calculated using an equilibrium isotherm 165 
model. Equations (1) and (2) must be integrated and solved concurrently. 166 

The two most frequently utilized equilibrium isotherm models in literature are the Freundlich and Langmuir 167 
models (O’Neal and Boyer, 2013). The Freundlich isotherm model (Freundlich, 1907) assumes multilayer 168 
adsorption described by a power law: 169 

𝑞∗ = 𝐾) · 𝐶+! = 𝐾) · 𝐶,/+ 170 

(3) 171 

where 𝐾)  and 𝑛)  are parameters to be calibrated. The Langmuir model (Langmuir, 1918) assumes monolayer 172 
adsorption, with 𝑞./0  representing the maximum adsorption capacity, and 𝐾1  a second parameter to be 173 
calibrated: 174 

𝑞∗ = 𝑞./0
𝐾1𝐶

1 + 𝐾1𝐶
 175 

(4) 176 

In this study, we used the Langmuir isotherm model due to the greater interpretability of its parameters. 177 
Nevertheless, the Freundlich model has also been successfully applied to describe the equilibrium between 178 
two phases (Sengupta and Pandit, 2011; O’Neal and Boyer, 2013). It should be noted that other, more 179 
complex models exist; however, the inclusion of additional parameters complicates the calibration process 180 
and is therefore not considered here. 181 

The mass transfer coeeicient 𝑘'()  in Equation (2) is a function of the intraparticle dieusion coeeicient, 𝐷2, and 182 
the particle radius, 𝑟2, according to a pore or solid dieusion mechanism (LeVan and Carta, 2008). This can be 183 
expressed as follows: 184 

𝑘'() = 15
𝐷2
𝑟2"

 185 

(5) 186 

The solid and liquid phases are related through the bed density given by 𝜌# = 𝜌2(1 − 𝜀), where 𝜌2 is the resin 187 
density and 𝜀 is the void fraction in the column left by the settled resin, also known as bed porosity. 188 

2.1.2 Model parameters and variables 189 

Table 1 lists the variables considered for the present model structure, classified according to their function: 190 
output variable, input variable, or parameter. The latter can be further subdivided into the following categories, 191 
according to their function: design parameters, which include column dimensions and the physicochemical 192 
properties of the resin; operational parameters, which are derived from the specific column operation and 193 
subject to the inherent variability of the process; and equilibrium parameters, which could also be considered 194 
operational but are here treated separately due to their importance in the considered model. The last column 195 
indicates the source of the values: whether they were measured experimentally, calculated numerically, fixed 196 
by the process or equipment specifications related to design decisions and reported in manufacturers’ data 197 
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sheets, or obtained from the literature. Parameters for which there is no direct measurement or other means 198 
of obtaining a value are estimated from output measurements in the calibration process. For each parameter, 199 
the values reported in the literature are listed in Table 2, together with their ranges and sources. Even those 200 
parameters which can be assumed to be constant for design reasons (manufacturer's data sheets, operating 201 
rules) are considered uncertain for the purposes of the sensitivity analysis and the calibration, in order to 202 
provide a comprehensive overview of potential model uncertainties. For instance, manufacturers frequently 203 
oeer data on the particle size distribution of resins. As a result, the inherent variability of this critical parameter 204 
can be significant. Furthermore, only the average value is often considered as a model parameter. Therefore, 205 
we regard the resin particle size as an uncertain parameter due to the uncertainty in measurement. 206 

The liquid phase concentration is frequently determined at the inlet (𝐶3) and outlet (C) of the column. Direct 207 
measurement of the concentration profile within the column is not feasible without introducing multiple 208 
sample extractions, which would aeect the total column volume. However, these profiles are predicted by the 209 
model. While the measurement of solid-phase concentrations is challenging, they can be calculated through 210 
a mass balance by means of Equation (2). The initial solid phase concentration, 𝑞3, is assumed to be zero for 211 
fresh resin. As the original resin capacity is never fully restored, this initial condition could also be regarded as 212 
a variable in cases where regeneration is being investigated.  213 

Table 1. Variables and parameters considered in the simplified IX model. The symbols are in accordance with 214 
the commonly used nomenclature in the literature. For detailed values, see Table 2. 215 

Name Symbol Unit Type Source 

Outputs     
Liquid-phase concentration  𝐶 mmol/L             Computed by Eq. (1) 
Solid-phase concentration 𝑞 mmol/g             Computed by Eq. (2) 
     
Inputs     
Inlet liquid-phase concentration                  𝐶3 mmol/L             Directly measured* 
Initial solid-phase concentration 𝑞3 mmol/g  Initial condition in Eq. (2) 
Volumetric flow  𝑄 L/min              Manipulated/fixed* 
     
Parameters     
Bed length 𝐿 m             Design Directly measured* 
Bed diameter       𝐷 m             Design Column manufacturer* 
Resin bead particle size  𝑟2 m             Design Resin manufacturer* 
Resin bead particle density ρ2 g/L Design Resin manufacturer* 
Bed porosity (void fraction) ε –                 Operation Literature* 
Axial dispersion coeeicient 𝐷! m2/s Operation Literature* 
Intraparticle dieusion coeeicient 𝐷2 m2/s       Operation Literature* 
Maximum adsorption capacity 𝑞./0  mmol/g Equilibrium Literature* 
Langmuir constant 𝐾1  L/mmol Equilibrium Literature* 

*Determination of these parameters is uncertain and therefore could be considered for calibration. 216 

The design parameters include the bed dimensions, which determine the volume available for both resin and 217 
eeluent in the column, as well as the particle size and the density of the solid phase (inversely proportional to 218 
the specific volume occupied by the resin). The eeective volume available for the liquid fraction is a function 219 
of the bed porosity, which is in turn determined by the compaction of the resin in the column and the swelling 220 
induced by the liquid. This parameter has been extensively studied, and a range of variability can be found in 221 
the literature depending on the packing shape and size (see Table 2). The actual liquid capacity of the bed is 222 
calculated as follows: 𝑉 = 𝜀𝐿𝐴 = 𝜀𝐿 4

5
𝐷", with the height or length (𝐿)	of the bed directly measured, as it is 223 
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not always the case that the full column length is utilized. In the literature, the bed volume is typically referred 224 
to as a measure of the time elapsed during the process, calculated as the treated eeluent volume per unit 225 
time divided by the eeective bed volume. In addition, dispersion coeeicients are frequently encountered in 226 
the literature in the form of empirical correlation functions of the Reynolds number and bed configuration. The 227 
determination of intraparticle coeeicients is an experimental process, and they are therefore considered to 228 
be uncertain. 229 

Table 2. Values and ranges of variability reported in the literature for the parameters listed in Table 1. 230 

 Reported value Variability range Source 

Design parameters    
Bed diameter, 𝐷 0.1 m (±20%) Zhang et al., 2015 
Bed length, 𝐿 10-2 m (±20%) Zhang et al., 2015 
    
Operational parameters    
Inlet P concentration, 𝐶3 20 mmol/L (±20%) Zhang et al., 2015 
Flow, 𝑄 3.1 cm/min (±20%) Zhang et al., 2015 
Porosity, 𝜀 0.37 0.3–0.44 (±20%) Yoshida et al., 1985 
Resin size (diameter), 𝑑2 = 2𝑟2 7.5·10-4 m 3-12·10-4 m (±60%) Sengupta and Pandit, 2011 
Resin density, 𝜌2 389 g/L (±20%) O’Neal and Boyer, 2013 
Intraparticle dieusivity, 𝐷2 5.3·10-10 m2/s* (±20%) Sengupta and Pandit, 2011 
Maximum capacity, 𝑞./0  0.291 mmol/g* (±20%) O’Neal and Boyer, 2013 
Langmuir constant, 𝐾1  1.18 L/mmol* (±20%) O’Neal and Boyer, 2013 

* Values for synthetic fresh urine. 231 

2.1.3 Model implementation and numerical solution 232 

The model equations have been formulated as a set of one-dimensional dieerential equations, thereby 233 
enabling the model to be employed as a fast optimization tool for the IX process. It is assumed that the velocity 234 
profiles of the fluid across the column are uniform and that there is no significant existence of wide 235 
preferential channels due to the low diameter-to-length ratio (𝐷/𝐿) of the column. 236 

In order to predict the one-dimensional spatial variation of pollutant concentration along the IX column, a 237 
discretization of the column length was considered. The solution of the nonlinear system of equations can be 238 
computationally intensive. Therefore, a discretization error analysis was conducted (see Appendix for a 239 
detailed discussion) and an appropriate discretization step of 100 grid points and a time step of 0.1 seconds 240 
was selected to achieve sueicient accuracy without substantial computational eeort.  241 

The model was implemented in Python 3 (Van Rossum and Drake, 2009) and makes use of available scientific 242 
packages Numpy (Harris et al., 2020), Scipy (Virtanen et al., 2020), Pandas (McKinney, 2010; The pandas 243 
development team, 2020), and Matplotlib (Hunter, 2007). The code will be made available at 244 
https://github.com/UGentBiomath/IX-GMP. 245 

The equations were solved with the scikit-finite-di; package (Cellier and Ruyer-Quil, 2019) using the finite 246 
dieerence method and the method of lines for the spatial and temporal discretization of the PDE. Figure 2a 247 
illustrates the concentration profiles along the length of the column as a function of time in relation to the inlet 248 
concentration, 𝐶3 . The arrow indicates the typical temporal evolution of the profiles resulting from the 249 
transport of ions along the column and into the solid phase. The breakthrough curve (Figure 2b) reflects the 250 
evolving ion concentration in the eeluent at the column outlet, illustrating the gradual depletion of the resin 251 
and the breakthrough of the ion, which is adsorbed onto the solid phase until the resin is completely saturated. 252 

https://github.com/UGentBiomath/IX-GMP
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 253 

Figure 2. Concentration profiles (a) and breakthrough curve (b) obtained by solving the model equations (1) to 254 
(4) with the appropriate initial and boundary conditions, as specified by the scheme in Figure 1. The 255 
breakthrough time (highlighted) is defined as the time for 10% of initial concentration in the outlet. 256 

2.2 Sensitivity analysis 257 

The objective of the sensitivity analysis is to identify those parameters that exert the greatest influence on 258 
model output, with the aim of reducing the variability or uncertainty in the model output by accurately 259 
determining their values. By identifying which parameters are sensitive, it is possible to reduce the cost of 260 
experiments by focusing eeorts on measuring those parameters (Saltelli et al., 2007). This methodology is 261 
based on principles applicable to a broad range of disciplines, as suggested by Saltelli et al.(2019). 262 

2.2.1 Local sensitivity analysis 263 

A local sensitivity analysis (LSA) quantifies which model parameters have a greater influence on the model 264 
output(s) for a given value of each parameter (Saltelli et al., 2007). The sensitivity function is defined as the 265 
change in the model output resulting from a small change or perturbation in the value of a single parameter. 266 
A numerical approximation of the sensitivity function, often referred to as the derivative method, is the first-267 
order forward finite approximation, which is normalized for the purpose of comparison: 268 

𝑆6"
7 =

∂𝑦7
∂θ8

·
θ8
𝑦7
≈
𝑦7(θ8 + Δθ8) − 𝑦7(θ8)

Δθ8
·
θ8
𝑦7

 269 

(6) 270 

where y9  represents the model output, θ8  denotes the parameter subject to variation, and Δθ8  is the 271 
perturbation value. In the present study, a perturbation value of 10:; · 𝜃	was used for all parameters. The 272 
sensitivity function is normalized to accommodate disparate scales or magnitudes for both the output and 273 
the parameters. It is important to note that the results of a local sensitivity analysis may vary significantly 274 
depending on the specific location within the parameter space under investigation. Hence, the analysis may 275 
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be repeated at dieerent locations to obtain further information, or a global sensitivity analysis may be 276 
performed (see section 2.2.2). Additionally, the calculation of sensitivity as outlined here can be applied to 277 
other mechanistic model descriptions, irrespective of the process, the presence of algebraic or dieerential 278 
equations, or the inclusion of non-linear terms. 279 

The local sensitivity analysis is employed as an initial model check on the parameters’ behavior, requiring 280 
minimal computational eeort and oeering insight into the extent to which varying parameters influence the 281 
model output. Furthermore, it identifies potential correlations between parameters and operational regions 282 
where parameter sensitivity is higher and correlation minimal. These regions are of particular interest for 283 
experimental data collection.  284 

2.2.2 Global sensitivity analysis 285 

A global sensitivity analysis (GSA) aims to quantify the relative importance of parameters in determining the 286 
variability of a model output over a wide range of parameter values (Saltelli et al., 2007). In contrast to a local 287 
analysis, a systematic exploration of the parameter space can provide a more comprehensive understanding 288 
of the overall influence of the dieerent parameters on the model output, even in regions of the parameter 289 
space where the model exhibits anomalous behavior. This phenomenon arises when multiple parameters are 290 
modified simultaneously. To this end, sensitivity indices can be calculated in order to identify these eeects. 291 

First-order indices describe the main eeect of parameters on the variance of model outputs. They can be 292 
calculated as the variability in model output resulting from the variation of a single parameter in isolation, 293 
relative to the total variability attributable to changes in all parameters, expressed as follows: 294 

𝑆8 =
𝑉[𝐸(𝑌|𝑋8)]	

𝑉(𝑌)  295 

(7) 296 

where 𝑉  represents the variability of model output 𝑌 , 𝐸  denotes the expected value, and 𝑋8  is a specific 297 
parameter value. In contrast, total eeects comprise the cumulative impact of a parameter on the model 298 
output, accounting for both first-order and higher-order eeects stemming from interactions or non-linearities 299 
between parameters. A disparity between total and first-order eeects indicates the existence of higher-order 300 
interactions: 301 

𝑆<" = 1 −
𝑉[𝐸(𝑌|𝑋~8)]

𝑉(𝑌)  302 

(8) 303 

The GSA is performed at a specific time point. In the present study, the time at which 10% breakthrough is 304 
observed was selected as the most informative for GSA. The sensitivity indices for the 10% concentration 305 
breakthrough times with respect to the model parameters listed in Table 2 were calculated by Sobol uniform 306 
sampling using the SALib sensitivity analysis library (Herman and Usher, 2017). Furthermore, second-order 307 
sensitivity indices were calculated and employed to ascertain the existing correlation between parameters. 308 
The Sobol sampling of parameters consisted of 5,632 uniform values, selected within the ranges of variability 309 
outlined in Table 2. A 20% variability was considered for all parameters, including 𝑟2. Subsequently, a Monte 310 
Carlo-type of simulation was employed to ascertain the variability in model output derived from the 311 
simulation results corresponding to each parameter subset sampling. Parameter variability is propagated 312 
through the model. Consequently, output variability is a determining factor of sensitivity and results in an 313 
uncertainty in the calculated sensitivity indices. Output variability can be reduced by increasing the number 314 
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of simulations and scales as 1 √𝑁⁄ . The primary disadvantage of GSA is thus its high computational cost, 315 
which is a consequence of the substantial number of model evaluations required. One advantage of an LSA 316 
over a GSA is that it can facilitate the preliminary screening and reduction of the parameter set prior to a more 317 
comprehensive global analysis. However, it is important to note that, in principle, a GSA can be applied to any 318 
type of model with an arbitrary number of parameters. Once the most sensitive model parameters have been 319 
identified, they can be estimated through the process known as model calibration. In order to achieve this, it 320 
is necessary to obtain experimental data. 321 

2.3 Experimental data for calibration and validation 322 

The experimental data used for the calibration of our model are derived from measurements of breakthrough 323 
curves for ion exchange of phosphorus recovery from fresh urine, as documented by O’Neal and Boyer (2015). 324 
The data set describes the breakthrough of phosphate ions from synthetic fresh urine as it traverses a fixed-325 
bed column containing a specific phosphate-selective HAIX-Fe resin. Further details regarding the column 326 
tests can be found in the referred work.  327 

The authors acknowledge a limitation in the data set, namely the absence of measurements of sulphate and 328 
other ions present in the urine eeluent. These ions compete with phosphates in their adsorption onto the 329 
resin; however, the analysis of competition and aeinity eeects is beyond the scope of the present work and 330 
not captured by the model. Therefore, the influence of these ions on the predictive power of the model will not 331 
be addressed. The required parameters for the modeling of this system are enumerated in Table 2, 332 
accompanied by the sources from which they were derived. As illustrated by Figure 7, the predicted 333 
breakthrough curve exhibits a high degree of agreement with the measured data. Further details can be found 334 
in the Results and Discussion section. 335 

2.4 Model calibration 336 

The goal of model calibration is to identify the optimal set of parameter values that fit the experimental data, 337 
which can be considered as an optimization problem. The quality of the fit is quantified by an objective 338 
function, which is then minimized. The weighted sum of squared errors (WSSE) was selected as the objective 339 
function for model calibration to represent the distance between model prediction and experimental data: 340 

𝐽(𝜃) = 	R(𝑦S8(θ) − 𝑦8)<𝑊(𝑦S8(θ) − 𝑦8)
>

?@,

= 𝑊𝑆𝑆𝐸 341 

(9) 342 

where 𝑦S8(θ) represents the model prediction of the output 𝑦8  corresponding to the parameter set of values 𝜃, 343 
𝑦8  denotes the measurement of the output 𝑦, 𝑊  is the square matrix of weights associated with dieerent 344 
outputs or time moments, and 𝑁 is the number of measurements. In this analysis, we assumed 𝑊 to be the 345 
identity matrix, thereby assigning equal weight to each time point of the single measured model output. 346 

There are numerous techniques for minimizing the objective function, including the well-known Nelder-Mead 347 
simplex method (Nelder and Mead, 1965). The Levenberg-Marquardt method (Levenberg, 1944; Marquardt, 348 
1963) was selected as a robust and eeicient method well suited for unconstrained nonlinear least squares 349 
fitting problems. Further details regarding the implementation can be found in Gavin (2019). A recent overview 350 
of calibration methods for computer simulation is provided by Sung and Tuo (2024).  351 

Unconstrained optimization methods may suggest values for the parameters that are outside of their range of 352 
physical validity. Consequently, we also employed a robust constrained trust region method (Branch et al., 353 
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1999) to evaluate the performance of constrained parameter subsets in comparison to that of the 354 
unconstrained Levenberg-Marquardt algorithm. Both constrained and unconstrained methods are readily 355 
available in the optimization library of the Scipy Python package (Virtanen et al., 2020). For the constrained 356 
optimization method, the parameter values were bounded by their ranges of validity. The initial parameter 357 
estimates, along with their respective ranges of variability, are presented in Table 2. The relative tolerance, 358 
which serves as a stopping criterion for the iterative optimization algorithm, was set to 10:5 in order to reduce 359 
the number of model evaluations. This value was selected following a verification process, during which it was 360 
determined that it produced results that were not significantly dieerent from those obtained with lower 361 
tolerance. Furthermore, the scale or magnitude of each parameter was provided to the algorithm, thereby 362 
reducing the number of iterations. The accuracy of the solution was evaluated by comparing the model output 363 
to the experimental data provided by Zhang et al. (2015).  364 

2.5 Uncertainty of the parameter estimation 365 

As Saltelli et al. (2019) observe, while numerous studies acknowledge the significance of sensitivity analysis 366 
for model calibration, uncertainty quantification is frequently absent from calibration procedures, resulting in 367 
deficient model assessments and an overestimation of their predictive capacity. The estimated parameters 368 
have an associated uncertainty due to the presence of noise in the experimental data set used for calibration, 369 
and the degree of uncertainty is dependent on the relative importance of this imperfect information in the 370 
model structure. Accordingly, parameter estimates are only meaningful when accompanied by their 371 
confidence region, within which the actual true value is situated at a specified confidence level (Donckels, 372 
2009). The confidence region can be based on an approximation of the contour of the WSSE objective function, 373 
as this provides a measure of the fit to the experimental data. In the case of linear models, the contour is exact. 374 
However, for nonlinear models, it is common practice to employ a linear approximation of the parameter 375 
estimation covariance matrix, providing a lower bound for this region (Marsili-Libelli et al., 2003): 376 

U𝜃 ∶ 𝑊𝑆𝑆𝐸(𝜃) ≤ 𝑐 · 𝑊𝑆𝑆𝐸Y𝜃Z[\ 377 

(10) 378 

A linear approximation results in the Fisher Information Matrix (FIM), whose inverse is employed for the 379 
approximation of the error covariance matrix, can be computed as follows (Dochain and Vanrolleghem, 2001): 380 

𝐹𝐼𝑀 =	RS6A · 𝑊:, · 𝑆B

>

8@,

=	Ra
𝜕𝑦S
𝜕𝜃

(𝑡8)b
A

· 𝑊:, · c
𝜕𝑦S
𝜕𝜃 (𝑡8)d

>

8@,

 381 

(11) 382 

where 𝑊 is the covariance matrix of the measurement errors associated with the measured variables, and 𝑆B  383 
denotes the parameter sensitivity matrix of all outputs with respect to each parameter, as calculated by 384 
Equation (5) for 𝑁2  parameters and 𝑁 experimental time points. The approximated error covariance matrix 385 
can be used to construct a confidence region for the parameter estimates, 𝛿8 , with a specified level of 386 
confidence 1-𝛼 (Marsili-Libelli et al., 2003): 387 

𝛿8 = 𝑡>:>#
C/"	 · g𝜎8,8"  388 

(12) 389 

where 𝑡 represents the 𝛼/2 quartile of the Student’s t distribution for a given confidence level 𝛼 and 𝑁 −𝑁2 390 
degrees of freedom, with 𝑁 denoting the number of data points,	𝑁2 the number of estimated parameters, and 391 
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𝜎8,8"  the variance of parameter 𝑖 taken from the error covariance matrix. The diagonals of the covariance matrix 392 
thus provide the variances of the errors in the parameter estimates, whereas the oe-diagonal elements are 393 
the covariances of the errors and oeer a measure of the correlation between the dieerent parameters. The 394 
linear correlation between two parameters can be estimated based on the following equation: 395 

𝑟8,7 	= k
𝜎8,7

𝜎8,8" · 𝜎7,7"
 396 

(13) 397 

The linear correlation is approximately -1 (negative) or 1 (positive) for pairs of parameters with a high degree of 398 
correlation, whereas a value of approximately zero indicates a low correlation. 399 

Once the confidence region for the parameter values has been established, the Monte Carlo technique can 400 
be employed to sample the parameters within the region and thereby obtain the expected variability in the 401 
model output. A normal distribution was assumed for all parameters, and a total of 640 values were sampled 402 
for use in the Monte Carlo simulations. The plotting of the most frequent values of the model output can assist 403 
in establishing an uncertainty band around the mean value, thereby providing a confidence interval band for 404 
the prediction of the breakthrough curve. 405 

2.6 Fitness comparison 406 

The root mean square error (RMSE) was employed as a metric for assessing the goodness of fit, or the 407 
discrepancy between the experimental data and the calculated breakthrough concentrations. The RMSE can 408 
be calculated from the WSSE as follows: 409 

𝑅𝑀𝑆𝐸 =	k
∑(𝑦8 − 𝑦S8)"

𝑁 = k𝑊𝑆𝑆𝐸
𝑁  410 

(14) 411 

The RMSE oeers a straightforward and readily understandable representation of the overall model's error, 412 
using the same units as the measured variable, even for unitless comparisons, and represents a more 413 
accurate average of the distance between the data and the model prediction than the WSSE from the objective 414 
function. On the other hand, the RMSE is sensitive to both outliers and overfitting; consequently, it diminishes 415 
when additional parameters are incorporated into the model. To further evaluate the fitting quality, methods 416 
beyond the use of error statistics, such as residual plots or statistical hypothesis tests for model comparison, 417 
can be considered. Residual plots can more reliably display the even distribution of errors centered around 418 
zero than error statistics, showing clear trends or biases, while statistical tests allow to compare between 419 
models of dieerent complexity (Hu et al., 2024). 420 

In order to facilitate a comparative analysis of model fitness for dieerent numbers of calibrated parameters, it 421 
is possible to consider criteria that balance the goodness of fit to experimental data with the number of model 422 
parameters (Wang et al., 2024). This approach allows to penalize overfitting when increasing parameters are 423 
incorporated into the model structure. One such established method is Akaike’s Information Criterion or AIC 424 
(Akaike, 1974): 425 

𝐴𝐼𝐶 = 𝑁 · log c
𝑊𝑆𝑆𝐸
𝑁 d + 2 · 𝑁2 426 
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(15) 427 

In Equation (15), the first term will decrease for overparametrized candidate models due to overfitting, while 428 
the second term will penalize the added complexity when more parameters are considered. A lower value of 429 
AIC is indicative of a superior model, whereas a low WSSE value is indicative of overfitting. In instances where 430 
the sample size is less than 40, a corrected form of AIC can be employed (Wang et al., 2024): 431 

𝐴𝐼𝐶 = 𝑁 · log c
𝑊𝑆𝑆𝐸
𝑁 d + 2 · 𝑁2 +

2𝑁2Y𝑁2 + 1[
𝑁 − 𝑁2 − 1

 432 

(16) 433 

Alternatively, the Bayesian Information Criterion (BIC) imposes a greater penalty on excessive complexity in 434 
overparametrized models to a greater extent than AIC when applied to large data sets (Schwarz, 1978): 435 

𝐵𝐼𝐶 = 𝑁 · log c
𝑊𝑆𝑆𝐸
𝑁 d + 𝑁2 · log𝑁 436 

(17) 437 

Both AIC and BIC can be applied to evaluate and select the most suitable model for a given set of experimental 438 
data. The utilization of the corrected AIC form is recommended for data sets of limited size (Wang et al., 2024).  439 

2.7 Model validation 440 

To confirm the predictive power of the calibrated model, a new data set was selected from the same column 441 
breakthrough experiments as the calibration tests (see Section 2.3 for a description of the data). For 442 
calibration, the parameter 𝑞3 in our model was assumed to be zero, corresponding to fresh resin.  The second 443 
cycle was chosen to validate the model and therefore the measured data correspond to a regenerated column. 444 
Hence, we assumed a regeneration eeiciency of 95% for the resin, which was calculated as the amount of 445 
phosphorus recovered from the total adsorbed in the column, and the remaining amount was assumed to be 446 
retained or fouled in the resin, as also reported by the authors (O’Neal and Boyer, 2015; Zhang et al., 2015). 447 
From the adsorption data, fouling is estimated at 1.7 mg out of the total 31.9 mg adsorbed, resulting in a 5.3% 448 
fouled amount or 94.7% regeneration eeiciency. We then assumed an initial concentration profile in the resin, 449 
parameterized by 𝑞3 in our model.  450 

3. Results and Discussion 451 

3.1 Sensitivity analysis 452 

3.1.1 Local sensitivity analysis 453 

The specific set of model parameters to be analyzed is presented in Table 2. The parameter 𝑞3 was omitted 454 
from the list, as it is assumed to be equal to zero in this calibration data set. Figure 3(a) shows the variation 455 
over time, expressed in bed volumes, of the relative sensitivity values for the breakthrough concentration with 456 
respect to all parameters in the selected subset, with the most sensitive parameters highlighted. The less 457 
sensitive parameter 𝐷2  is also highlighted as a reference. As can be seen, the sensitivity to changes in 458 
parameter values is practically zero at the start of the column operation and increases exponentially when the 459 
first breakthrough is detected, around two bed volumes. A peak in sensitivity is reached for all parameters 460 
around four to six bed volumes and decreases again exponentially until the end of the operation when the 461 
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resin is saturated. The occurrence of peaks for several parameters at approximately the same time is a clear 462 
indication of a correlation between these parameters. This correlation will make it more challenging to obtain 463 
reliable values when these parameters are estimated simultaneously. Since some sensitivities appear to 464 
change sign over time, an averaged sensitivity allows to compare the overall trend. Figure 3(b) shows the 465 
averaged local sensitivity values over 16 bed volumes for all parameters with their corresponding signs. 466 

 467 

Figure 3. Local sensitivity analysis (LSA) of the breakthrough curve for the parameters listed in Table 1: time 468 
variation in bed volumes for a 10-5 relative perturbation (a), and time average with sign (b).  469 
The most sensitive parameters (𝑞./0, 𝜀, 𝜌2, 𝐶3, 𝑟2) are highlighted, with 𝑟2 and 𝐷2 negatively correlated. 470 

In descending order of sensitivity, the most sensitive parameters are 𝑞./0 , 𝜀 , 𝜌2 , and 𝐶3 . Most of these 471 
parameters exhibit positive or negative sensitivity to varying degrees, indicating that they aeect the model 472 
output in a consistent manner but with dieering magnitudes. However, parameters 𝑟2 and 𝐷2 exert an inverse 473 
influence on breakthrough, as evidenced by their inverse correlation, illustrated in Figure 3(a) and in 474 
accordance with Equation (5). The particle size is more than twice as sensitive as the intraparticle dieusivity 475 
due to the quadratic influence, with the greatest eeect observed around four bed volumes, where both 476 
parameters are most sensitive. 477 

Changes in sensitivities are also indicative of nonlinearity. In order to illustrate the impact of varying 478 
sensitivities, it is possible to plot the eeect of a change in dieerent parameters on the model output. Figure 4 479 
shows the impact of a 10% increase in four of the most sensitive parameters and its eeect on the breakthrough 480 
concentration. An increase in a parameter with negative sensitivity (e.g., 𝑞./0 ) will result in a delay in 481 
breakthrough, as it has a negative influence on the concentration. Conversely, a positive sensitivity (e.g., with 482 
respect to 𝜀 or 𝐶3) will result in an earlier occurrence of breakthrough for an increase in the parameter value. 483 
Figure 4 also confirms that 𝐶3 is a less sensitive parameter than 𝜀, indicating that a 10% increase in the latter 484 
will have a more pronounced eeect on breakthrough. An analogous analysis may be performed for the 485 
remaining, less sensitive parameters. As can be observed, a change in the less sensitive parameter 𝑟2 is most 486 
pronounced around four bed volumes, where the parameter exhibits the greatest sensitivity to changes, as 487 
illustrated in Figure 3. However, the overall eeect of this one parameter is minor in comparison to an increase 488 
in the maximum adsorption capacity, 𝑞./0 , as demonstrated by Figure 3: an increase in the bed height 489 
(parameter 𝐿) would result in greater resin availability too, which in turn delays breakthrough. However, this 490 
increase has overall less eeect than a comparable change in the maximum adsorption capacity. This serves 491 
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to illustrate once more the nonlinear nature of the process and the importance of taking into account these 492 
eeects for the estimation of parameters. 493 

 494 

Figure 4. Eeect of a 10% increase in the most sensitive parameters (𝑞./0, 𝜀, 𝐶3 and 𝑟2) on the breakthrough 495 
curve: the maximum adsorption capacity ( 𝑞./0 ) has a marked negative impact on the breakthrough 496 
concentration, while the other three parameters have a positive eeect, albeit with varying magnitudes. 497 

Following Figure 3 and Figure 4, we can establish a local ranking of the parameter sensitivities for the model 498 
structure considered. It is important to note, however, that this is only a local ranking and should therefore be 499 
interpreted and used with care. In the case of nonlinear models, parameter sensitivities may vary considerably 500 
when evaluated in dieerent regions of the parameter space. Accordingly, a global sensitivity analysis is 501 
conducted in the following section to ascertain an overall parameter ranking for the model calibration.  502 

The results of the LSA serve two distinct purposes. First and foremost, the LSA results oeer insights into the 503 
parameter sensitivities as a function of time, thereby enabling the identification of an optimal time point for 504 
conducting a GSA analysis. Based on the LSA analysis, the time at which a 10% breakthrough occurs is 505 
identified as an informative time instant to perform the GSA. Secondly, the LSA results are employed to 506 
conduct an initial screening of the parameters, whereby parameters exhibiting low sensitivity can be excluded 507 
from a subsequent analysis. As the GSA analysis is considerably more computationally intensive, a 508 
preliminary screening through LSA can significantly accelerate the global analysis. The parameters exhibiting 509 
the lowest local sensitivity are 𝐾1, 𝑄, 𝐷2 and 𝐷!. As the inlet flow rate 𝑄 is a variable that can be manipulated, 510 
it was decided that it should be retained for a comprehensive analysis in order to ascertain its influence. 511 
Furthermore, the isotherm parameter 𝐾1  is frequently calibrated in conjunction with 𝑞./0, and thus it was also 512 
determined that it should be included in the GSA. However, in the event of computational constraints, this 513 
category of parameters may be excluded from the subsequent analysis, given their negligible impact. It is 514 
therefore possible to assign a fixed value within their range of variability to those parameters that have little 515 
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influence on the output and produce little variance, without compromising the estimation process for the 516 
remaining parameters.  517 

A sensitivity analysis may also serve to identify the experimental conditions that will yield the most accurate 518 
parameter estimation by maximizing the eeect on the model output, which is the goal of optimal experimental 519 
design or OED (Donckels, 2009). The objective may be to generate experimental data with high information 520 
content, thereby further reducing the uncertainty of the parameter estimates. Nevertheless, the optimization 521 
of the experimental design for parameter estimation lies beyond the scope of the study. The LSA analysis 522 
conducted in the present study indicates that experiments where the breakthrough concentration surpasses 523 
at least 50% of the initial concentration represent the most informative experiments, exhibiting the highest 524 
parameter sensitivity.  525 

3.1.2 Global sensitivity analysis 526 

Parameter subset selection for GSA 527 

Based on the LSA results, parameter 𝐷! was excluded from the GSA: its quasi-zero sensitivity corresponds to 528 
the common plug-flow assumption and the reason why the dieusion term in Equation (1) is often neglected in 529 
practice. Figure 5 illustrates the Sobol sensitivity indices for 10% concentration breakthrough times across 530 
the ten remaining parameters. Both the total and first-order sensitivity indices are plotted for each parameter, 531 
accompanied by 95% confidence bands. The uncertainty in the calculation of the sensitivity indices, along 532 
with the variability in the model output, can be reduced by increasing the number of simulations performed. 533 
First-order sensitivity indices are analogous to local sensitivities; however, they are calculated over the entire 534 
parameter space. As can be observed, 𝜀 and 𝑞./0  are the parameters that exert the greatest influence on the 535 
breakthrough curve based on both the total and first-order indices. Despite the broader uncertainty bands 536 
when compared to the remaining parameters, these bands do not significantly overlap and are sueiciently 537 
narrow to render the ranking clear. Consequently, it was determined that conducting additional simulations 538 
would not contribute a substantial dieerence. The maximum adsorption capacity, 𝑞./0, has a smaller eeect 539 
than anticipated by LSA when the full range of parameter values is considered. In contrast, the bed porosity, 540 
𝜀, has overall a more pronounced eeect on the breakthrough concentration than anticipated by LSA. This is 541 
due to the fact that a slight increase in the value of 𝜀 results in a reduction of the resin available in the column, 542 
which in turn leads to a decrease in the overall adsorption eeiciency. The other equilibrium parameter, the 543 
Langmuir constant, 𝐾1, has a negligible eeect on the breakthrough concentration across the entire range of 544 
values considered. Consequently, the considerably more sensitive equilibrium parameter 𝑞./0  should be 545 
given precedence in model calibration. Lastly, we selected an arbitrary cut-oe value of 0.1 for parameters 546 
exhibiting minimal global sensitivity. The design parameters, 𝐷 and 𝐿, and the inlet flow, 𝑄, have low indices, 547 
indicating that these parameters could be excluded from the calibration process initially. Nevertheless, the 548 
resin density and particle size parameters demonstrated a notable degree of local sensitivity, as illustrated in 549 
Figure 3. Accordingly, the outcomes of the GSA should always be interpreted with caution.  550 
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 551 

Figure 5. Sobol global sensitivity indices for the parameters listed in Table 2: total-order indices (left), and first-552 
order indices (right). The analysis was performed for a 10% concentration breakthrough time. A variability of 553 
20% for all parameters was considered. The two most influential or sensitive parameters are 𝜀 and 𝑞./0. 554 

Figure 5 additionally illustrates the total-order sensitivity indices for each parameter. The observation that the 555 
sum of the total and first-order indices is, respectively, 1.08 and 0.99, with an uncertainty indicated by the 556 
95% confidence bands, suggests that this model exhibits some degree of nonlinearity. This is also evidenced 557 
by the discrepancy between total-order and first-order eeects, which suggests the presence of higher-order 558 
interactions or correlations between parameters. The parameters exhibiting the most significant discrepancy 559 
between total and first-order indices indicate the highest degree of interaction with other parameters. The 560 
SAlib library further allows the calculation of second-order sensitivity indices with supplementary parameter 561 
values sampled, thus necessitating additional computational resources and eeort. Figure 6 depicts these 562 
second-order sensitivity indices, which illustrate the interactions between pairs of parameters. The largest 563 
interactions are observed for both isotherm parameters and the intraparticle dieusivity with the bed porosity, 564 
the particle size, and the resin density. This indicates that all these parameters have a high degree of 565 
correlation and may exert a particularly strong influence on the adsorption process. This strong correlation 566 
between parameters was also evident in the single point of the parameter space depicted in Figure 3, with the 567 
majority of parameters exhibiting a peak in sensitivity at approximately the same time instant, following 568 
breakthrough and preceding saturation. A strong correlation complicates the simultaneous estimation of 569 
multiple parameters, since correlated parameters are non-identifiable (Dochain and Vanrolleghem, 2001). 570 
Nevertheless, an example of parameter exhibiting comparatively less correlation with the remaining 571 
parameters is that of the intraparticle dieusion, 𝐷2, with the notable exception of 𝑟2  and 𝜀, with which it is 572 
significantly correlated. Furthermore, the remaining parameters also exhibit some degree of interaction, 573 
particularly the inlet concentration, 𝐶3, although to a lesser extent. 574 
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 575 

Figure 6. Second-order sensitivity indices. Parameters 𝜀, 𝑞./0, 𝐾1, 𝐷2, 𝑟2 show the largest interactions. 576 

Parameter subset selection for calibration 577 

In light of the results of the GSA presented in Figure 5 and Figure 6, it becomes evident that only a limited 578 
subset of parameters should undergo calibration. A subset of parameters for calibration can be selected 579 
based on the most sensitive parameters. Consequently, the first parameter to be estimated would be 𝜀, as 580 
this exerts the greatest influence on the breakthrough concentration. Furthermore, it can be observed that 581 
𝑞./0  exerts a considerable impact on the breakthrough concentration. A calibration subset comprising the 582 
two most sensitive parameters could be formed. Both 𝜌2 and 𝑟2 have low indices, yet Figure 3 indicates that 583 
both parameters exhibit high local sensitivities. Accordingly, both parameters could also be included in a 584 
calibration subset. The parameters 𝐷2  and 𝐾1  exert an overall negligible influence on the breakthrough 585 
concentration and should therefore not be calibrated initially. Moreover, we assumed that the inlet 586 
concentration, 𝐶3, remains constant in this study. The design parameters 𝐿 and 𝐷 can be excluded, given their 587 
low sensitivity indices and the fact that their values are frequently fixed for existing columns. With regard to 588 
the manipulable variable 𝑄, its value is typically fixed for operational reasons. Therefore, only the parameters 589 
𝜀, 𝑞./0, 𝜌2 and 𝑟2 will be considered for calibration. 590 

3.2 Model calibration 591 

In accordance with the findings of the GSA, we conducted a stepwise calibration for the model parameters, 592 
beginning with the calibration of the most sensitive parameter and subsequently incorporating an additional 593 
parameter into the calibration set. For instance, we initially calibrated 𝜀 , followed by the simultaneous 594 
calibration of 𝜀 and 𝑞./0. This process was then repeated for subsequent parameters. For each calibration 595 
exercise, the confidence intervals of the parameters were calculated. The RMSE, AIC (corrected form) and BIC 596 
values are provided as fitness criteria. The results are summarized in Table 3. 597 
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Table 3. Results of the parameter estimation for up to four parameters in dieerent calibration subsets. The 598 
values indicate the estimated parameter values, the corresponding 95% confidence intervals (CI, relative 599 
percentage calculated with FIM), and RMSE, AIC and BIC as fitness criteria. Initial estimates given by  𝜃3.  600 

𝑁! a 𝑁"  b Min. c 𝜀 𝑞#$%  𝜌! 𝑟! RMSE AIC BIC 

1 9, 10 LM, TR 0.35 ± 1.8%    0.0233 -148 -147 
 11, 12 LM, TR  0.323 ± 1.4%   0.0261 -144 -143 
 10 TR   463 ± 25.8%  0.0300 -136 -134 
 9, 8 LM, TR    3.4·10-4 ± 34.8% 0.0857 -96 -95 
2 31, 38 LM, TR  0.31 ± 30.6% 0.243 ± 22.1%   0.0207 -151 -149 
 25 LM  0.30 ± 30.0%  248 ± 42.9%  0.0208 -148 -146 
 24 TR 0.32 ± 32.5%  311 ± 48.0%  0.0213 -147 -145 
 15 LM, TR 0.35 ± 1.9%   4.1·10-4  ± 8.1% 0.0207 -151 -149 
 21 LM d  0.280 ± 105 % 517 ± 105 %  0.0261 -141 -140 
 15 TR d  0.312 ± 105 % 417 ± 105 %  0.0261 -138 -137 
 15 LM, TR  0.326 ± 1.4%  4.3·10-4  ± 8.4% 0.0206 -151 -149 
3 44 TR d 0.31 ± 11.7 % 0.258 ± 106 % 344 ± 106 %  0.0207 -148 -146 
 35 LM  0.33 ± 102 % 0.275 ± 102 %  4.0·10-4 ± 102 % 0.0206 -148 -146 
 39 TR  0.36 ± 102 % 0.312 ± 102 %  4.2·10-4 ± 102 % 0.0205 -148 -146 
4 71 TR d 0.35 ± 107 % 0.301 ± 107 % 389 ± 107 % 4.2·10-4 ± 107 % 0.0207 -145 -143 
 35 TR d 0.35 ± 107 % 0.301 ± 107 % 466 ± 107 % 4.2·10-4 ± 107 % 0.0207 -145 -143 
𝜃&     0.37    0.291 389 3.8·10-4 0.0864 – – 
  LM – – – –    

  TR 0.30-0.44  
(±20%) 

0.233-0.349 
(±20%) 

311-467  
(±20%) 

(3.0-4.5)·10-4 
(±20%)    

a Number of model parameters in the calibration subset. 601 
b Number of respective function evaluations of the minimization algorithm. 602 
c Minimization algorithm. LM: Levenberg-Marquardt (unconstrained); TR: trust region (constrained). 603 
d The broad CIs are attributable to the inability to estimate the covariance matrix (FIM matrix is singular). 604 

The calibration of only the most sensitive parameter, namely 𝜀, resulted in a 73% improvement in fit (RMSE of 605 
0.0233 vs 0.0864) compared to the initial uncalibrated value of 0.37 given by 𝜃3 at the bottom of Table 3. The 606 
95% confidence interval (CI) was estimated at ±1.8%, expressed as a relative percentage of the optimal value. 607 
After approximately 10 to 20 model evaluations, both the Levenberg-Marquardt method (unconstrained 608 
parameter values) and the trust reflective region method (parameter values are constrained to the bounds 609 
indicated at the bottom of Table 3) yielded identical results. In comparison, the calibration of the following 610 
less sensitive parameter, 𝑞./0, yielded a confidence interval of ±1.4%, which can be attributed to the higher 611 
local sensitivity compared to 𝜀. Moreover, the determined value of 0.323 is more closely aligned with the total 612 
phosphate loading on the resin of 10.2 mg P/g or 0.329 mmol P/g, as reported by O’Neal and Boyer (2015). The 613 
remaining, less sensitive parameters 𝜌2 and 𝑟2 yielded a comparatively inferior fit when calibrated separately, 614 
as evidenced by the increased values for the confidence intervals and RMSE, AIC and BIC fitness criteria. This 615 
observation suggests that models with poor calibration, characterized by uncertain or unidentifiable 616 
parameters, may not exhibit significantly superior performance in comparison to those that are uncalibrated. 617 
This phenomenon can also be attributed to the potential for overfitting, which can lead to a failure to capture 618 
process dynamics, as evidenced by research on the training of a hybrid model, a combination of mechanistic 619 
and data-driven models, where the uncalibrated mechanistic models outperformed calibrated models 620 
(Verhaeghe et al., 2024). The presented framework oeers a methodology to circumvent such cases. 621 
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Subsequently, a second parameter was incorporated into the calibration set. This allowed for the 622 
simultaneous estimation of both parameters, beginning with their initial values as presented at the bottom of 623 
Table 3. The estimation of both 𝜀 and 𝑞./0  resulted in a further reduction in the root mean square error (RMSE) 624 
to 0.0207, representing an 11% decrease. However, both minimization methods yielded considerably low 625 
values in comparison to those reported in the literature, and the quality of the estimation also declined, as 626 
evidenced by the increased confidence intervals. This can be attributed to the significant correlation between 627 
both parameters, which was calculated to be as high as 99.8%, as illustrated in Figure 3. Moreover, estimating 628 
both 𝜀 and 𝜌2 did not yield enhanced results, as this last parameter is considerably less sensitive than 𝑞./0. 629 
This was demonstrated in both Figure 3 and Figure 5, and is further corroborated by the calculated correlation 630 
coeeicient, which reached a value of 99.8%. However, when estimating both 𝜀 and 𝑟2 simultaneously, despite 631 
the calculated correlation of 44.5%, the estimated value and uncertainty for 𝜀 remained largely unchanged. 632 
Furthermore, the calculated 95% confidence interval for this second parameter was 8.1%, indicating that both 633 
parameters can be estimated with a high degree of confidence. In comparison, the simultaneous calibration 634 
of both 𝑞./0  and 𝑟2 resulted in an uncertainty of 1.4% and 8.4%, respectively. An alternative calibration subset 635 
comprising parameters 𝑞./0  and 𝜌2 yielded unreliable estimates, likely due to their correlation.  636 

As illustrated in Table 3, the calibration of additional parameters results in considerably larger confidence 637 
intervals for all parameters, consequently leading to a notable increase in the uncertainty associated with the 638 
estimated values. Such overparameterization does not result in a significant increase in the fit to the 639 
experimental data, as the introduction of additional, less sensitive parameters necessitates substantially 640 
larger alterations in their values to produce a change in the objective function. Moreover, this also dramatically 641 
increases the number of required iterations for convergence of the minimization algorithm. As a result, the 642 
estimation is rendered ill-conditioned. For instance, this is substantiated by the relatively higher (less 643 
negative) values of AIC of -148 and -147, with the lowest value of -151 corresponding to the calibration of only 644 
two parameters. The  BIC criterion confirms these results. These findings are in line with values for RMSE and 645 
AIC reported in recent modeling studies for breakthrough prediction (Hu et al., 2024). The simultaneous 646 
calibration of three or four parameters results in a further deterioration in the precision of the estimation, as 647 
evidenced by the considerably broader confidence intervals for all parameters, including those that were 648 
previously estimated with a high degree of accuracy (11.7% for 𝜀 vs 1.8% when it is estimated together with 649 
𝑞./0  and 𝜌2). This phenomenon occurs when the selected minimization method yields disparate solutions 650 
within the parameter space, with less sensitive parameters estimated at the expense of the certainty in the 651 
value of the most sensitive ones. Furthermore, the estimation of less sensitive parameters provides only 652 
minimal information, resulting in unreliable estimates due to a poor approximation of the covariance matrix 653 
(Vugrin et al., 2007). Consequently, the sensitivity ranking from Figure 5 provides a rough indication of 654 
calibration order for the most sensitive parameters. However, correlation and nonlinear interactions between 655 
parameters should be taken into account to decide the final subset. This is further substantiated by the data 656 
presented in Table 3, which displays the size of the confidence regions as a measure of uncertainty. Finally, 657 
we note that this exhaustive analysis can be applied to models of any process or system with multiple 658 
parameters. 659 

Figure 7(a) illustrates the fit of the model predictions to the experimental data of Zhang et al. (2015), 660 
showcasing both calibrated and uncalibrated parameter values. The calibrated values for parameter 𝑞./0  661 
from Table 3 are slightly higher than the initial reported values in the literature, resulting in a rightward shift of 662 
the breakthrough curve with respect to the uncalibrated model. Figure 7(b) depicts the residuals, defined as 663 
the absolute dieerence between the experimental data and both the calibrated and uncalibrated model 664 
predictions. As can be observed, calibration essentially reduces the residuals in the zone where the calibrated 665 
parameters are most sensitive, namely after breakthrough, around 4-10 bed volumes. This is the case for all 666 
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parameter subsets, although beyond two calibrated parameters, the residuals are almost indistinguishable. 667 
The calibration of additional parameters does not significantly improve the fit to the experimental data, due to 668 
the phenomenon of overfitting or overparameterization, which underlines the usefulness of a screening 669 
procedure to select the best parameter subset for calibration and increases the reliability of the estimation. 670 
Furthermore, the uncalibrated model displays a tendency to overpredict the breakthrough concentration, 671 
which is addressed in the calibration. However, all instances exhibit a comparable limitation in accurately 672 
reproducing the initial time instants of the experimental data. This is a consequence of the low sensitivity of 673 
the parameters in this zone, which renders the model less powerful in its ability to capture this aspect of the 674 
curve for the utilized data. As a result, this limitation of the model structure, revealed by the local sensitivity 675 
analysis, is attributable to the choice of model rather than to the calibration procedure itself. Further 676 
improvements in the context of dieerent model structures can be achieved by employing model selection 677 
techniques. 678 

 679 

Figure 7. Calibration of up to three model parameters (𝑞./0 , 𝑟2, 𝜀): model fit to experimental data (a) and 680 
residual calculation (b). Data for fresh urine by Zhang et al. (2015). Decreasing RSME is a better fit. 681 

The optimal model, according to the ranking determined by the lowest value of both the Akaike Information 682 
Criterion (AIC) and the Bayesian Information Criterion (BIC), as displayed in Table 3, is obtained by calibrating 683 
only two of the most sensitive parameters. These may be, for example, the bed porosity, 𝜀, and the particle 684 
size, 𝑟2, or alternatively, the maximum adsorption capacity isotherm parameter, 𝑞./0, and the particle size, 𝑟2, 685 
since 𝜀  and 𝑞./0  are correlated. This example illustrates the importance of exercising caution when 686 
estimating parameters with low sensitivity, as for subsets of more than two parameters, there exist infinite 687 
combinations of parameters that produce the same fit, which significantly reduces the predictive capacity of 688 
the model. Hence, these results confirm that only the most sensitive model parameters should be included 689 
in the calibration process. In practice, many authors perform calibration without a previous analysis of the 690 
model structure or provide parameter values without uncertainty estimates. Therefore, a robust calibration 691 
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protocol, where sensitivity and correlation of parameters are evaluated prior to calibration, is essential to 692 
ensure the development of a reliable model with minimal uncertainty and optimal predictive power.  693 

3.3 Uncertainty analysis 694 

In addition to the quality of the parameter estimation provided by the confidence regions from Table 3, an 695 
uncertainty analysis of the model with respectively two and three calibrated parameters is presented in Figure 696 
8. The calibrated model output of the breakthrough curve is enclosed by a 95% confidence band. As illustrated, 697 
the uncertainty in the prediction is minimal at the initial and final stages of the operation but increases after 698 
breakthrough at approximately 2-4 bed volumes and subsequently decreases near the saturation point at 699 
around 10-12 bed volumes. Consequently, the width of the uncertainty band is dependent upon the quality of 700 
the model calibration step and thus determines the reliability of the model prediction. For two calibrated 701 
parameters (𝑞./0  and 𝑟2, 𝑁2 = 2), the uncertainty band is narrow and closely surrounds the calibration data 702 
set, indicating a highly accurate prediction. However, while the initial instants of the process were not 703 
accurately captured by the model, the prediction of breakthrough closely follows the calibration data. Further 704 
reasoning was provided in Section 3.2. In the case of calibrated parameters 𝑞./0  and 𝜀, the uncertainty band 705 
becomes between 16% and 60% broader at 10% breakthrough concentration due to the higher uncertainty 706 
resulting from the correlation of these two parameters, which is propagated to the model output. For three 707 
calibrated parameters (𝑁2 = 3, as illustrated in Figure 8), the uncertainty band surrounding the breakthrough 708 
prediction is markedly broader, thereby demonstrating the inferior calibration. The lowest uncertainty is thus 709 
obtained with the calibration of parameters 𝑞./0  and 𝑟2. This finding indicates that conducting sensitivity and 710 
uncertainty analyses concurrently enhances the reliability on the predictive power of the model, and 711 
integration of both analyses is advantageous for the modeling task. 712 
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 713 

Figure 8. Uncertainty analysis of the breakthrough curve for a 95% confidence in the prediction interval. The 714 
uncertainty bands for two and three calibrated parameters are generated by the corresponding confidence 715 
intervals indicated in Table 3. The lowest uncertainty is obtained with two parameters (𝑞./0  and 𝑟2). 716 

3.4 Model validation 717 

Once the model has been calibrated with the accurate determination of the most sensitive parameters, the 718 
predictive power of the model can be tested against a validation data set. Figure 9 depicts the predicted 719 
breakthrough curve of an independent data set for the IX treatment of fresh urine, with a 6% higher influent 720 
concentration (713 mg/L). This is compared to the experimental data reported by O’Neal and Boyer (2015).  721 

0 2 4 6 8 10 12 14 16
Bed volumes

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

co
nc

en
tra

tio
n,

C
/C

0

0.1

calibration data set (first cycle)
model prediction (RMSE = 0.0206)
95% interval, Np = 2 (qmax, ")
95% interval, Np = 2 (qmax, rp)
95% interval, Np = 3 (qmax, ", rp)



   
 

 25 

 722 

Figure 9. Model validation on an independent data set from O’Neal and Boyer (2015). The inset illustrates that 723 
the initial time period corresponding to 10% breakthrough is accurately captured by the calibrated model. 724 

As demonstrated in the inset, the initial time period of the experiment is accurately represented by the model, 725 
providing a precise prediction (with an error of 1.4%) of the 10% breakthrough time, which occurs at 726 
approximately 4.1 bed volumes (see Table 4). For the calibration set, the predicted 10% breakthrough time 727 
exhibited strong agreement with the measured value of 3.8 bed volumes, with an error of 7.8%. To further 728 
validate the calibrated model, a second and third cycle of operation were used to predict breakthrough 729 
concentration after regeneration of the resin. An approximation of the initial concentration profiles in the resin 730 
was calculated based on the fouling information reported by Zhang et al. (2015). The comparison between the 731 
data and the model prediction is shown in Figure 10. The predicted breakthrough and saturation times are 732 
summarized in Table 4. 733 

Table 4. Breakthrough and saturation times (in bed volumes) from the model prediction and experimental data. 734 
The first cycle corresponds to the calibration data set, the second and third cycle to the validation data set. 735 
The last line corresponds to an independent data set with 6% higher influent concentration. 736 

 Breakthrough time, 𝑡,3 Saturation time, 𝑡F3 

 Data Model Rel. error Data Model Rel. error 
First cycle (calibration, 𝐶3 	= 	672 mg/L) 3.8 4.1 7.8% 8.8 9.0 2.1% 
Second cycle (validation, 6% fouled) 3.2 3.2 1.0% 10.3 8.1 21.5% 
Third cycle (validation, 54% fouled) 2.4 2.2 6.7% 9.3 7.2 22.6% 
Higher inflow (validation, 𝐶3 = 713 mg/L) 4.0 4.1 1.4% 9.3 8.9 5.4% 

 737 
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 738 

Figure 10. Model validation for the second and third operation cycles following resin regeneration as reported 739 
by Zhang et al. (2015). The calibration (first cycle) from Figure 7 is shown as reference. The 10% breakthrough 740 
times for the second and third cycles were accurately predicted, while saturation times were overpredicted. 741 

Figure 10(a) illustrates the breakthrough curve of a second cycle for the same influent with a 6% fouled resin. 742 
As expected, the breakthrough time decreases as a consequence of resin fouling. Moreover, the saturation 743 
time, defined as the time required for a breakthrough concentration of 90% of the initial concentration, also 744 
decreases with the accumulation of fouling. These trends were also observed in the prediction of the third 745 
cycle, depicted in Figure 10(b), with good agreement between prediction and experimental data. However, the 746 
discrepancy between the predicted and actual values at the saturation point is more pronounced in 747 
comparison to the breakthrough times. The potential causes of this discrepancy include interactions between 748 
the adsorbed ions onto the resin, as postulated by O’Neal and Boyer (2015), which could result in an increased 749 
adsorption capacity when the resin is close to saturation. This may, in turn, result in a delayed breakthrough 750 
of the ions. It seems plausible that this trend may persist following additional regeneration cycles. However, 751 
further analysis is necessary to substantiate this hypothesis, which is beyond the scope of the present study. 752 
In addition, a more comprehensive model for resin regeneration is required to further optimize the process. 753 

4. Conclusions 754 

We present a framework for calibrating a dynamic model, such as for ion exchange (IX) fixed-bed column 755 
operation, based on good modeling practice that can be used as a reference for future modeling studies and 756 
practical model implementations.  757 
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• The local and global sensitivity analyses allowed us to identify the design and operational parameters 758 
that contribute most to the prediction of breakthrough curves. Specifically, the local sensitivity 759 
analysis (LSA) revealed which time intervals during IX operation provide the most information for 760 
model calibration, thus allowing the selection of the most informative time instances for further 761 
analysis as well as enabling an initial screening to identify highly sensitive parameters at low 762 
computational cost. Subsequently, the global sensitivity analysis (GSA) allowed us to select a limited 763 
subset of parameters for calibration.  764 

• Our approach showed that calibrating multiple parameters is not invariably optimal. Only two 765 
parameters, namely the maximum adsorption capacity isotherm parameter and the resin particle size, 766 
require comprehensive calibration to achieve an accurate prediction of the breakthrough curve. 767 
Moreover, our findings demonstrated that the inclusion of additional, less sensitive and correlated 768 
parameters results in a reduction in the reliability of the parameter estimates, since the parameters 769 
become less identifiable (as illustrated by the AIC and BIC model selection criteria).  770 

• We demonstrated the eeect of parameter estimation uncertainty on the model output by propagating 771 
the parameter uncertainty through the model, which showed that the inclusion of unsensitive or highly 772 
correlated parameters in the calibration significantly increased the uncertainty of the prediction.  773 

The model was validated using three dieerent breakthrough experiments. In light of these findings, we 774 
proposed a robust calibration procedure, based on good modeling practice, that encompasses both 775 
sensitivity and uncertainty analyses, and therefore provides a basis for process optimization. We applied our 776 
calibration procedure to the IX process with the aim of improving the accuracy of breakthrough prediction. The 777 
framework is presented in a manner that allows for its application to analogous process settings. 778 
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Appendix 785 

Discretization analysis with respect to numerical parameters 786 

 787 

Figure S1. Discretization analysis of model output (breakthrough concentration) with respect to numerical 788 
parameters: time step (left) and number of discretized column elements (right). A time step dt = 0.1 and Np = 789 
100 elements provide sueicient accuracy in the numerical solution to predict breakthrough without 790 
significantly adding computational eeort. This was assessed by subsequently performing simulations with 791 
time steps of 1, 0.75, 0.5, 0.25, 0.1 and 0.05 seconds with 100 grid points, followed by 5, 10, 25, 100, 200 and 792 
500 grid points with a 0.1 second time step, and observing indistinguishable simulation results. All 793 
simulations require a computation time of under 1 minute. 794 

Description of the implementation of sensitivity and uncertainty analyses 795 

Algorithm 1. Detailed description of the implementation process for the calibration framework. 796 

Inputs: parameter values, initial and boundary conditions, discretization steps. 797 

Outputs: breakthrough concentration, 𝑪; breakthrough time, 10% 𝑪𝟎; saturation time, 90% 𝑪𝟎. 798 

Main steps: 799 

1. Model definition 800 
a. Model structure, including the number of equations (algebraic, ODEs, PDEs) to solve. 801 
b. Variables and model parameters. Uncertain parameters are candidates for calibration. 802 
c. Numerical solution of the model, with appropriate initial conditions and boundary conditions, 803 

and selected time and space discretization steps. 804 
2. Local sensitivity analysis 805 

a. Selection of parameters and output variable for analysis, with perturbation value Δθ8. 806 
b. Calculation of the sensitivity function and average sensitivity 𝑆8  with Eq. (6). 807 

3. Global sensitivity analysis 808 
a. Selection of parameter subset according to LSA. Selection of output variable for analysis. 809 
b. Parameter sampling (Sobol) according to specific ranges (percentage or observed values). 810 
c. Monte Carlo simulation with 𝑁 runs for each set of sampled parameters from the subset. 811 
d. Calculation of first-order and total-order Sobol sensitivity indices according to Eq. (7) and (8). 812 
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e. (Optional) Calculation of second-order Sobol indices for non-linear interactions. 813 
4. Model calibration 814 

a. Selection of parameters to calibrate from sensitivity analysis (reduced calibration subset). 815 
b. Selection of optimization algorithm, stopping criteria (tolerance, max. no. of function 816 

evaluations) and objective function, Eq. (9). 817 
c. Estimation of selected parameters. 818 
d. Calculation of Fisher Information Matrix (FIM) from sensitivity function according to Eq. (11). 819 
e. Calculation of confidence intervals from covariance matrix, for confidence level 𝛼, Eq. (12). 820 
f. Calculation of correlation between pairs of parameters from covariance matrix, Eq. (13). 821 

5. Uncertainty analysis 822 
a. Sampling (assumed normal) according to confidence intervals of 𝑁2 calibrated parameters. 823 
b. Monte Carlo simulation with 𝑁 runs for the 𝑁2 sampled calibrated parameters. 824 
c. Calculation of uncertainty band for 95% percentile of model output. 825 

6. Model validation 826 
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