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Abstract 
Ion exchange (IX) is a key technology in resource recovery for demineralization and fit-for-purpose water 
production thanks to its ion-selective recovery features. A major bottleneck in the optimization of the 
IX process is the accurate prediction of ion breakthrough times, which has the potential to save on 
regeneration chemicals by maximizing resin utilization. The models used to predict ion breakthrough 
times are often unreliable due to poor calibration methods and high uncertainty in parameter estimates. 
A well-calibrated model for ion breakthrough prediction can provide important insights into the process 
and enable optimization and model-based control with the goal of improving the overall e_iciency and 
sustainability of the process. Therefore, we performed local and global sensitivity analyses to identify 
the design and operational parameters that contribute most to the prediction of breakthrough curves. 
The global sensitivity analysis allowed us to select a small subset of parameters for calibration, which 
showed that only two parameters, namely the maximum adsorption capacity isotherm parameter and 
the resin particle size, need to be thoroughly calibrated to obtain an accurate prediction of the 
breakthrough curve. We also showed that uncertainty quantification for model calibration is important 
to establish the reliability of the predictions. Validation of the model was carried out using experimental 
data. Hence, we propose a sound calibration procedure, based on good modeling practice, that 
encompasses both sensitivity and uncertainty analyses and provides a basis for the optimization of the 
IX process with the aim of improving the accuracy of breakthrough prediction. 
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Highlights 
1. Model parameters most a_ecting breakthrough are revealed by sensitivity analysis. 
2. Breakthrough prediction improved by calibrating resin capacity and particle size. 
3. Proper calibration of parameter subsets is reliant on uncertainty of the estimates. 
4. Uncertainty quantification provides reliability bands for breakthrough prediction. 
5. Calibration protocol is applicable to other physico-chemical adsorption processes. 
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GSA Global Sensitivity Analysis 
IX Ion Exchange 
LSA Local Sensitivity Analysis 
ODE Ordinary Di_erential Equation 
PDE Partial Di_erential Equation 
RMSE Root Mean Square Error 
WSSE Weighted Sum of Square Error 

1. Introduction  
The global issue of water scarcity is placing increasing pressure on the supply and management of 
water resources. As a result, resource recovery has emerged as a strategy to increase the circularity of 
resources and water supplies. Ion exchange (IX) is a key technology in this endeavor, as it enables fit-
for-purpose water demineralization through its ion-selective recovery properties (Kabdaşlı and Tünay, 
2018; Jegatheesan et al., 2021; Taghvaie Nakhjiri et al., 2022). IX, like other adsorption processes, is 
typically operated as a continuous process in fixed-bed packed columns and used as an end-of-pipe 
removal treatment (Inglezakis and Zorpas, 2012). Notable applications include the recovery of nutrients 
and by-products in the food production industry (Kammerer et al., 2011); the removal of heavy metals 
such as nickel from urban wastewater (Ma et al., 2019), petrochemical wastewater (Cechinel et al., 
2018) and other industrial waters such as chromium-rich textile waste (Wang et al., 2015); the recovery 
of precious metals from industrial wastewater (Taghvaie Nakhjiri et al., 2022); the removal of silica for 
the production of ultrapure water in various industries, including paper mills and electronics (Chen et 
al., 2022); or the removal of pharmaceuticals (Chu and Hashim, 2023a) and micropollutants such as 
PFAS in drinking water production (Smith et al., 2023). 
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The challenges of the IX technology include the optimization of the cost of chemicals associated with 
resin regeneration and the disposal of generated waste streams (Crittenden et al., 2012), as well as the 
accurate prediction of target ion breakthrough times for downstream compliance during operation and 
control (Inglezakis and Zorpas, 2012). Consequently, the optimization of IX processes would allow for 
a reduction in the energetic and material impacts of water treatments, thereby enhancing their 
environmental and economic sustainability and further increasing their potential for resource recovery. 

A number of mechanistic and empirical models have been developed with the objective of improving 
the understanding of the IX process and addressing the aforementioned challenges by identifying the 
breakthrough time. A myriad of IX models can be found in the literature, including transport and 
dispersion mechanisms derived from conservation laws. These include surface di_usion (Ma et al., 
2019), pore di_usion (Zhang et al., 2015), and other intraparticle di_usion kinetic models (Wang and 
Guo, 2022). Similarly, numerous equilibrium isotherm models have been developed beyond the 
classical Langmuir and Freundlich models. A comprehensive review of the most commonly used 
models can be found in LeVan and Carta (2008), and more recently in Wang and Guo (2023), (Wang et 
al., 2024). 

Therefore, in view of the considerable number of existing models, no unified modeling procedure exists, 
and as a result, a standardized calibration protocol for adsorption models is still missing. This is 
evidenced by the numerous existing reports on inconsistencies, mistakes, and misconceptions in the 
modeling of the IX process (Chu, 2023; Haupert et al., 2021; Hu et al., 2021; Lima et al., 2021; Mudhoo 
and Pittman, 2023; Tran et al., 2017; Xiao et al., 2018), which result in models with limited reliability and 
prediction power. We identified the following five misconceptions as common in modeling tasks: (i) 
overfitting, (ii) absence of uncertainty quantification, (iii) use of linearized models, (iv) misconceptions 
regarding sensitivity analyses, which are performed locally and for single parameters, and (v) confusion 
with the uncertainty analysis.  

In order to achieve reliable and powerful prediction capabilities and establish good modeling practice 
for the calibration and reproducibility of IX models, we followed general recommendations by Saltelli et 
al. (2019) regarding sensitivity and uncertainty analysis, which are valid across disciplines. Similar 
guidelines have been successfully established for the calibration of diverse processes in the 
wastewater field (Rieger et al., 2012; Vanrolleghem et al., 2003). In a recent study, Chu and Hashim 
(2023b) employed rigorous model selection techniques to evaluate the performance of competing 
models with varying numbers of fitting parameters. Nevertheless, essential considerations in the 
calibration process, such as verification of the model structure, a detailed description and uncertainty 
quantification of the parameter estimation procedure, and an analysis of the data quality and resulting 
performance, are still absent in numerous studies. Our work is based on the model proposed by Zhang 
et al. (2015), which considered an advection-di_usion-reaction model for fixed-bed ion exchange 
columns. This allowed us to address a few of the aforementioned limitations and to propose a 
framework for model calibration based on good modeling practice. 

A review of the above articles from literature essentially shows that in IX, models can be e_ectively used 
to predict ion breakthrough in a multitude of applications. However, the calibration methodologies 
employed by various authors exhibit inconsistencies in rigor resulting in overfitting, limited 
reproducibility and high uncertainty regarding the predictions of these models. Consequently, these 
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models frequently fail when subjected to validation or extrapolation to future time series, due to the 
considerable uncertainty associated with the calibrated parameters. The limited extrapolation 
capability, coupled with the complexity and non-linear nature of the operation, restricts the utility of 
these models as a monitoring and control tool for water treatment applications. A standardized model 
calibration procedure is currently missing. 

This work is accompanied by open-access code (https://github.com/UGentBiomath/IX-GMP) and 
presents a framework for model calibration based on good modeling practice. The work includes a 
description of a simple one-component IX model for fixed-bed operation and employs sensitivity and 
uncertainty analyses to verify the model structure and facilitate rigorous calibration of an identifiable 
parameter set. The resulting protocol is applicable to other IX modeling studies and allows for scenario 
analysis and optimization of the system under study.  

2. Materials and Methods  

2.1 Model definition  
We implemented a dynamic model describing the transport of ions through a fixed-bed IX column 
reactor. We selected a two one-dimensional partial di_erential equation (PDE) model by Zhang et al. 
(2015) in order to develop our model. The first PDE describes the liquid phase, while the second PDE 
describes the solid di_usion. As the goal of this modeling study is to optimize the process, 
computational e_iciency is a significant factor. Consequently, we simplified the model with the 
following modifications: the simplified model considers the same one-dimensional set of equations, 
comprising an advection-dispersion-reaction partial di_erential equation (PDE) for the liquid phase, 
but proposes a linear driving force mass transfer ordinary di_erential equation (ODE) for the solid 
di_usion, as proposed by LeVan and Carta (2008). Therefore, we replaced the second PDE with an ODE. 

Both models compute the concentration profile of ions in the liquid and solid phases along the column, 
thereby predicting the breakthrough of these ions following saturation of the resin. A visual inspection 
of Figure 8 shows that our simplified model using parameters from Zhang et al. (2015) (designated as 
“uncalibrated” in the figure) does indeed produce the anticipated breakthrough curve of the data 
presented by Zhang et al. (2015). Therefore, the simplified model can be employed as a fast, real-time 
optimization and control tool to improve the e_iciency of IX operations. This is made possible by the 
fast concurrent computation of both scales of the process, namely the ion concentration in the liquid 
and solid phases, which are respectively referred to as the macro and micro-scale by Zhang et al. (2015). 
Subsequently, both scales are translated into a single output, namely the ion transport in the fluid along 
the column. Similarly, the solid phase can be analyzed for the purposes of regeneration, although this 
is beyond the scope of the present work. 

2.1.1 Model structure 
Figure 1 depicts the IX process as a fixed-bed resin-packed column, illustrating the main variables 
involved in the dynamic transport of ions along the column and through the liquid and solid phases. 

https://github.com/UGentBiomath/IX-GMP
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Figure 1. Schematic representation of a typical fixed-bed IX column and description of the main 
variables of the 1-D model with appropriate initial and boundary conditions. The parameters are 
detailed in Table 1. 

The evolution of the concentration profiles of a given ion in the column can be obtained by performing 
a mass balance. This results in the PDE (1), which must be solved after the appropriate initial and 
boundary conditions have been defined. Furthermore, the solution involves the discretization of the 
space and time domains:  
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In the above expression, 𝐶 represents the concentration of ions present in the liquid phase at any given 
point. The variable 𝑞 denotes the concentration of ions in the solid phase. The term 𝑢 is the fluid velocity, 
which is assumed to be constant. 𝐷!  is the axial liquid dispersion coe_icient. 𝜌#  is the bulk bed density, 
while 𝜀 denotes the bed porosity. In this context, the independent variables 𝑡 and 𝑧 are used to refer to 
time and column height, respectively. Furthermore, the following assumptions have been made: a 
uniform velocity profile and intraparticle di_usion in the column; and a controlling equilibrium between 
the liquid and solid phases (negligible resistance to mass transfer in the boundary layer, as indicated 
by Zhang et al., 2015). The velocity can be calculated by assuming a constant inlet flow and a constant 

void bed cross-section in the column, according to the following equation: 𝑢 = $
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The last term in Equation (1) denotes the change in ion concentration due to adsorption or desorption 
in the solid phase. Assuming a linear driving force between the liquid and solid phases (LeVan and Carta, 
2008), the second equation of the model can be expressed as an ordinary di_erential equation at each 
discretized point within the spatial domain: 
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𝜕𝑞
𝜕𝑡 = 𝑘'()(𝑞∗ − 𝑞) 

(2) 

where 𝑘'()  is the mass transfer coe_icient and 𝑞∗ 	is the concentration in the resin phase surface in 
equilibrium with the liquid phase concentration, 𝐶 , which can be calculated using an equilibrium 
isotherm model. Equations (1) and (2) must be integrated and solved concurrently. 

The two most frequently utilized equilibrium isotherm models in the literature are the Freundlich and 
Langmuir models (O’Neal and Boyer, 2013). The Freundlich isotherm model (Freundlich, 1907) 
assumes multilayer adsorption described by a power law: 

𝑞∗ = 𝐾) · 𝐶+! = 𝐾) · 𝐶,/+ 

(3) 

where 𝐾)  and 𝑛)  are parameters to be calibrated. The Langmuir model (Langmuir, 1918) assumes 
monolayer adsorption, with 𝑞./0  representing the maximum adsorption capacity, and 𝐾1  a second 
parameter to be calibrated: 

𝑞∗ = 𝑞./0
𝐾1𝐶

1 + 𝐾1𝐶
 

(4) 

In this study, we used the Langmuir isotherm model due to the greater interpretability of its parameters. 
Nevertheless, the Freundlich model has also been successfully applied to describe the equilibrium 
between two phases (Sengupta and Pandit, 2011; O’Neal and Boyer, 2013). It should be noted that 
other, more complex models exist; however, the inclusion of additional parameters complicates the 
calibration process and is therefore not considered here. 

The mass transfer coe_icient 𝑘'()  in Equation (2) is a function of the intraparticle di_usion coe_icient, 
𝐷2, and the particle radius, 𝑟2, according to a pore or solid di_usion mechanism (LeVan and Carta, 
2008). This can be expressed as follows: 

𝑘'() = 15
𝐷2
𝑟2"

 

(5) 

The solid and liquid phases are related through the bed density given by 𝜌# = 𝜌2(1 − 𝜀), where 𝜌2 is the 
resin density and 𝜀 is the void fraction in the column left by the settled resin, also known as bed porosity. 

2.1.2 Model parameters and variables 
Table 1 lists the variables considered for the present model structure, classified according to their 
function: output variable, input variable, or parameter. The latter can be further subdivided into the 
following categories: design parameters, which include column dimensions and the physicochemical 
properties of the resin; operational parameters; and equilibrium parameters. The last column indicates 
the source of the values: whether they were measured experimentally, calculated numerically, fixed by 
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the process or equipment specifications related to design decisions and reported in manufacturers’ 
data sheets, or obtained from the literature. Parameters for which there is no direct measurement or 
other means of obtaining a value are estimated from output measurements in the calibration process. 
For each parameter, the values reported in the literature are listed in Table 2, together with the ranges 
and sources. Even those parameters which have been assumed to be constant for design reasons 
(manufacturer's data sheets, operating rules), are considered uncertain for the purposes of the 
sensitivity analysis, in order to provide a comprehensive overview of potential model uncertainties. 

The liquid phase concentration is frequently determined at the inlet (𝐶3) and outlet (C) of the column. 
Direct measurement of the concentration profile within the column is not feasible without introducing 
multiple sample extractions, which would a_ect the total column volume. However, these profiles are 
predicted by the model. The measurement of solid-phase concentrations is challenging; however, they 
can be calculated through a mass balance by means of Equation (2). The initial solid phase 
concentration, 𝑞3, is assumed to be zero for both fresh resin and regenerated resins where fouling is 
considered to be negligible. As the original capacity is never fully restored, this initial condition could 
also be regarded as a variable in cases where regeneration is being investigated. For the purposes of 
this study, however, it is assumed that 𝑞3 is equal to zero.  
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Table 1. Variables and parameters considered in the simplified IX model. The symbols are in 
accordance with the commonly used nomenclature in the literature. For detailed values, see Table 2. 

Name Symbol Unit Type Source 

Outputs     
Liquid-phase concentration  𝐶 mmol/L             Computed by Eq. (1) 
Solid-phase concentration 𝑞 mmol/g             Computed by Eq. (2) 
     
Inputs     
Inlet liquid-phase concentration                  𝐶3 mmol/L             Directly measured* 
Initial solid-phase concentration 𝑞3 mmol/g  Initial condition in Eq. (2) 
Volumetric flow  𝑄 L/min              Manipulated/fixed* 
     
Parameters     
Bed length 𝐿 m             Design Directly measured* 
Bed diameter       𝐷 m             Design Column manufacturer* 
Resin bead particle size  𝑟2 m             Design Resin manufacturer* 
Resin bead particle density ρ2 g/L Design Resin manufacturer* 
Bed porosity (void fraction) ε –                 Operation Literature* 
Axial dispersion coe_icient 𝐷!  m2/s Operation Literature* 
Intraparticle di_usion coe_icient 𝐷2 m2/s       Operation Literature* 
Sorption capacity 𝑞./0  mmol/g Equilibrium Literature* 
Langmuir constant 𝐾1  L/mmol Equilibrium Literature* 

*Determination of these parameters is uncertain and therefore could be considered for calibration. 

The design parameters include the bed dimensions, which determine the volume available for both 
resin and e_luent in the column, as well as the particle size and the density of the solid phase (inversely 
proportional to the specific volume occupied by the resin). The e_ective volume available for the liquid 
fraction is a function of the bed porosity, which is in turn determined by the compaction of the resin in 
the column and the swelling induced by the liquid. This parameter has been extensively studied, and a 
range of variability can be found in the literature depending on the packing shape and size (see Table 2). 
The actual liquid capacity of the bed is calculated as follows: 𝑉 = 𝜀𝐿𝐴 = 𝜀𝐿 4

5
𝐷". In the literature, the 

bed volume is typically referred to as a measure of the time elapsed during the process, calculated as 
the treated e_luent volume per unit time divided by the e_ective bed volume. In addition, dispersion 
coe_icients are frequently encountered in the literature in the form of empirical correlation functions 
of the Reynolds number and bed configuration. The determination of intraparticle coe_icients is an 
experimental process, and they are therefore considered to be uncertain. 
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Table 2. Value and range of variability reported in the literature for the parameters listed in Table 1. 

 Reported value Variability range Source 

Design parameters    
Bed diameter, 𝐷 0.1 m (±20%) Zhang et al., 2015 
Bed length, 𝐿 10-2 m (±20%) Zhang et al., 2015 
    
Operational parameters    
Inlet P concentration, 𝐶3 20 mmol/L (±20%) Zhang et al., 2015 
Flow, 𝑄 3.1 cm/min (±20%) Zhang et al., 2015 
Porosity, 𝜀 0.37 0.3–0.44 (±20%) Yoshida et al., 1985 
Resin size (diameter), 𝑑2 = 2𝑟2 7.5·10-4 m 3-12·10-4 m (±60%) Sengupta and Pandit, 2011 
Resin density, 𝜌2 389 g/L (±20%) O’Neal and Boyer, 2013 
Intraparticle di_usivity, 𝐷2 5.3·10-10 m2/s (±20%) Sengupta and Pandit, 2011 
Maximum capacity, 𝑞./0  0.291 mmol/g* (±20%) O’Neal and Boyer, 2013 
Langmuir constant, 𝐾1  1.18 L/mmol* (±20%) O’Neal and Boyer, 2013 

* Values for synthetic fresh urine. 

2.1.3 Model implementation and numerical solution 
The model equations have been formulated as a set of one-dimensional di_erential equations, thereby 
enabling the model to be employed as a fast optimization tool for the IX process. It is assumed that the 
velocity profiles of the fluid across the column are uniform and that there is no significant existence of 
wide preferential channels due to the low diameter-to-length ratio (𝐷/𝐿) of the column. 

In order to predict the one-dimensional spatial variation of pollutant concentration along the IX column, 
a discretization of the column length was considered. The solution of the nonlinear system of equations 
can be computationally intensive. Therefore, a discretization error analysis was conducted (see 
Appendix for a detailed discussion) and an appropriate discretization step of 100 grid points and a time 
step of 0.1 seconds was selected to achieve su_icient accuracy without substantial computational 
e_ort.  

The model was implemented in Python 3 (Van Rossum and Drake, 2009) and makes use of available 
scientific packages Numpy (Harris et al., 2020), Scipy (Virtanen et al., 2020), Pandas (McKinney, 2010; 
The pandas development team, 2020), and Matplotlib (Hunter, 2007). The code will be made available 
(upon publication) at https://github.com/UGentBiomath/IX-GMP. 

The equations were solved using the finite di_erence method and the method of lines for the spatial 
and temporal discretization of the PDE with the scikit-finite-di; package (Cellier and Ruyer-Quil, 2019). 
Figure 2a illustrates the concentration profiles along the length of the column as a function of time in 
relation to the inlet concentration, 𝐶3. The arrow indicates the typical temporal evolution of the profiles 
resulting from the transport of ions along the column and into the solid phase. The breakthrough curve 
(Figure 2b) reflects the evolving ion concentration in the e_luent at the column outlet, illustrating the 
gradual depletion of the resin and the breakthrough of the ion, which is adsorbed onto the solid phase 
until the resin is completely saturated. 

https://github.com/UGentBiomath/IX-GMP
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Figure 2. Concentration profiles (a) and breakthrough curve (b) obtained by solving the model equations 
(1) to (4) with the appropriate initial and boundary conditions as specified by the scheme in Figure 1. 
The breakthrough time (highlighted) is defined as the time for 10% of initial concentration in the outlet. 

2.2 Sensitivity analysis 
The objective of the sensitivity analysis is to identify those parameters that exert the greatest influence 
on model output, with the aim of reducing the variability or uncertainty in the model output by 
accurately determining their values. By identifying which parameters are sensitive, it is possible to 
reduce the cost of experiments by focusing e_orts on measuring those parameters (Saltelli et al., 2007). 

2.2.1 Local sensitivity analysis 
A local sensitivity analysis (LSA) quantifies which model parameters have a greater influence on the 
model output(s) for a given value of each parameter (Saltelli et al., 2007). The sensitivity function is 
defined as the change in the model output resulting from a small change or perturbation in the value of 
a single parameter. A numerical approximation of this, commonly referred to as the derivative method, 
is the first-order forward finite approximation: 

𝑆6"
7 =

∂𝑦7
∂θ8

·
θ8
𝑦7
≈
𝑦7(θ8 + Δθ8) − 𝑦7(θ8)

Δθ8
·
θ8
𝑦7

 

(6) 

where y9  represents the model output, θ8  denotes the parameter subject to variation, and Δ8  is the 
perturbation value. In the present study, a perturbation value of 10:; · 𝜃	was used for all parameters. 
The sensitivity function is normalized to accommodate for disparate scales or magnitudes for both the 
output and the parameters. It is important to note that the results of a local sensitivity analysis may vary 
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significantly depending on the specific location within the parameter space under investigation. Hence, 
the analysis may be repeated at di_erent locations to obtain further information, or a global sensitivity 
analysis may be performed (see section Global sensitivity analysis).  

The local sensitivity analysis is employed as an initial model check on the parameters’ behavior, 
requiring minimal computational e_orts and o_ering insight into the extent to which varying parameters 
influence the model output. Furthermore, it identifies potential correlations between parameters and 
operational regions where parameter sensitivity is higher and correlation minimal. These regions are of 
particular interest for experimental data collection.  

2.2.2 Global sensitivity analysis 
A global sensitivity analysis (GSA) aims to quantify the relative importance of parameters in determining 
the variability of a model output over a wide range of parameter values (Saltelli et al., 2007). In contrast 
to a local analysis, a systematic exploration of the parameter space can provide a more comprehensive 
understanding of the overall influence of the di_erent parameters on the model output. To this end, 
sensitivity indices can be calculated in order to identify these e_ects. 

First-order indices describe the main e_ect of parameters on the variance of model outputs. They can 
be calculated as the variability in model output resulting from the variation of a single parameter in 
isolation, relative to the total variability attributable to changes in all parameters, expressed as follows: 

𝑆8 =
𝑉[𝐸(𝑌|𝑋8)]	

𝑉(𝑌)  

(7) 

where 𝑉 represents the variability of model output 𝑌, 𝐸 denotes the expected value, and 𝑋8  is a specific 
parameter value. In contrast, total e_ects comprise the cumulative impact of a parameter on the model 
output, accounting for both first-order and higher-order e_ects stemming from interactions or non-
linearities between parameters. A disparity between total and first-order e_ects indicates the existence 
of higher-order interactions: 

𝑆<" = 1 −
𝑉[𝐸(𝑌|𝑋~8)]

𝑉(𝑌)  

(8) 

The GSA is calculated at a specific time point. In the present study, the time at which 10% breakthrough 
is observed was selected as the most informative for GSA. The sensitivity indices for the 10% 
breakthrough concentration with respect to the model parameters listed in Table 2 were calculated by 
Sobol uniform sampling using the SALib sensitivity analysis library (Herman and Usher, 2017). 
Furthermore, second-order sensitivity indices were calculated and employed to ascertain the existing 
correlation between parameters. The Sobol sampling of parameters consisted of 5,632 uniform values, 
selected within the ranges of variability outlined in Table 2. Subsequently, a Monte Carlo-type of 
simulation was employed to ascertain the variability in model output derived from the simulation 
results corresponding to each parameter subset sampling. The primary disadvantage of GSA is its high 
computational cost, which is a consequence of the substantial number of model evaluations required. 
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One advantage of an LSA over a GSA is that it can facilitate the preliminary screening and reduction of 
the parameter set prior to a more comprehensive global analysis. 

Once the most sensitive model parameters have been identified, they can be estimated through the 
process known as model calibration. In order to achieve this, it is necessary to obtain experimental data. 

2.3 Experimental data for calibration and validation 
The experimental data used for the calibration of our model are derived from measurements of 
breakthrough curves for ion exchange of phosphorus recovery from fresh urine, as documented by 
O’Neal and Boyer (2015). The data set describes the breakthrough of phosphate ions from synthetic 
fresh urine as it traverses a fixed-bed column containing a specific phosphate-selective HAIX-Fe resin. 
Further details regarding the column tests can be found in the referred work.  

The authors acknowledge a limitation in the data set, namely the absence of measurements of sulphate 
and other ions present in the urine e_luent. These ions compete with phosphates in their adsorption 
onto the resin; however, the analysis of competition and a_inity e_ects is beyond the scope of the 
present work and not captured by the model. Therefore, the influence of these ions on the predictive 
power of the model will not be addressed. The required parameters for the modeling of this system are 
enumerated in Table 2, accompanied by the sources from which they were derived. As illustrated by 
Figure 8, the predicted breakthrough curve exhibits a high degree of agreement with the measured data. 
Further details can be found in the Results and Discussion section. 

2.4 Model calibration 
The goal of model calibration is to identify the optimal set of parameter values that fit the experimental 
data, which can be considered as an optimization problem. The quality of the fit is quantified by an 
objective function, which is then minimized. The weighted sum of squared errors (WSSE) was selected 
as the objective function for model calibration: 

𝐽(𝜃) = 	O(𝑦P8(θ) − 𝑦8)<𝑊(𝑦P8(θ) − 𝑦8)
>

?@,

 

(9) 

where 𝑦P8(θ) represents the model prediction of the output 𝑦8  corresponding to the parameter set of 
values 𝜃, 𝑦8  denotes the measurement of the output 𝑦, 𝑊 is the square matrix of weights associated 
with di_erent outputs or time moments, and 𝑁 is the number of measurements. In this analysis, we 
assumed 𝑊 to be the identity matrix, thereby assigning equal weight to each time point of the single 
measured model output. 

There are numerous techniques for minimizing the objective function, including the well-known Nelder-
Mead simplex method (Nelder and Mead, 1965). The Levenberg-Marquardt method (Levenberg, 1944; 
Marquardt, 1963) was selected as a robust and e_icient method well suited for unconstrained 
nonlinear least squares fitting problems. Further details regarding the implementation can be found in 
Gavin (2019). A recent overview of calibration methods for computer simulation is provided by Sung 
and Tuo (2024).  
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Unconstrained optimization methods may suggest values for the parameters that are outside of their 
range of physical validity. Consequently, we also employed a robust constrained trust region method 
(Branch et al., 1999) to evaluate the performance of constrained parameter subsets in comparison to 
that of the unconstrained algorithm. Both constrained and unconstrained methods are readily available 
in the optimization library of the Scipy Python package (Virtanen et al., 2020). For the constrained 
optimization method, the parameter values were bounded by their ranges of validity. The initial 
parameter estimates, along with their respective ranges of variability, are presented in Table 2. The 
relative tolerance, which serves as a stopping criterion for the iterative optimization algorithm, was set 
to 10:5  in order to reduce the number of model evaluations. This value was selected following a 
verification process, during which it was determined that it produced results that were not significantly 
di_erent from those obtained with lower tolerance. Furthermore, the scale or magnitude of each 
parameter was provided to the algorithm, thereby reducing the number of iterations. The accuracy of 
the solution was evaluated by comparing the model output to the experimental data provided by Zhang 
et al. (2015).  

2.5 Uncertainty of the parameter estimation 
The estimated parameters have an associated uncertainty due to the presence of noise in the 
experimental data set used for calibration. Accordingly, parameter estimates are only meaningful when 
accompanied by their confidence region, within which the actual true value is situated at a specified 
confidence level (Donckels, 2009). The confidence region can be based on an approximation of the 
contour of the WSSE objective function, as this provides a measure of the fit to the experimental data. 
In the case of linear models, the contour is exact. However, for nonlinear models, it is common practice 
to employ a linear approximation of the parameter estimation covariance matrix, providing a lower 
bound for this region (Marsili-Libelli et al., 2003): 

S𝜃 ∶ 𝑊𝑆𝑆𝐸(𝜃) ≤ 𝑐 · 𝑊𝑆𝑆𝐸W𝜃XYZ 

(10) 

A linear approximation results in the Fisher Information Matrix (FMI), whose inverse is employed for the 
approximation of the error covariance matrix, can be computed as follows (Dochain and Vanrolleghem, 
2001): 

𝐹𝑀𝐼 = 	OS6A · 𝑊:, · 𝑆B

>

8@,

=	O_
𝜕𝑦P
𝜕𝜃

(𝑡8)`
A

· 𝑊:, · a
𝜕𝑦P
𝜕𝜃 (𝑡8)b

>

8@,

 

(11) 

where 𝑊 is the covariance matrix of the measurement errors associated with the measured variables, 
and 𝑆B  denotes the parameter sensitivity matrix of all outputs with respect to each parameter, as 
calculated by Equation (5) for 𝑁2  parameters and 𝑁  experimental time points. The error covariance 
matrix can be used to construct a confidence region for the parameter estimates, 𝛿8, with a specified 
level of confidence 1-𝛼 (Marsili-Libelli et al., 2003): 
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𝛿8 = 𝑡>:>#
C/"	 · e𝜎8,8"  

(12) 

where 𝑡 represents the 𝛼/2 quartile of the Student’s t distribution for a given confidence level 𝛼 and 
𝑁 − 𝑁2 degrees of freedom, with 𝑁 denoting the number of data points,	𝑁2 the number of estimated 
parameters, and 𝜎8,8"  the variance of parameter 𝑖 taken from the error covariance matrix. The diagonals 
of the covariance matrix thus provide the variances of the errors in the parameter estimates, whereas 
the o_-diagonal elements are the covariances of the errors and o_er a measure of the correlation 
between the di_erent parameters. The linear correlation between two parameters can be estimated 
based on the following equation: 

𝑟8,7 	= i
𝜎8,7

𝜎8,8" · 𝜎7,7"
 

(13) 

The linear correlation is approximately -1 or 1 for pairs of parameters with a high degree of correlation, 
whereas a value of approximately zero indicates a low correlation. 

Once the confidence region for the parameter values has been established, the Monte Carlo technique 
can be employed to sample the parameters within the region and thereby obtain the expected variability 
in the model output. A normal distribution was assumed for all parameters, and a total of 640 values 
was sampled for use in the Monte Carlo simulations. The plotting of the most frequent values can assist 
in establishing an uncertainty band around the mean value, thereby providing a confidence interval 
band for prediction of the breakthrough curve. 

2.6 Fitness comparison 
The root mean square error (RMSE) was employed as a metric for assessing the goodness of fit, or the 
discrepancy between the experimental data and the calculated breakthrough concentrations. This was 
due to the fact that the RMSE represents a more accurate average of the distance between the data and 
the model prediction than the WSSR of the objective function. The RMSE can be calculated as follows: 

𝑅𝑀𝑆𝐸 = 	i
∑(𝑦8 − 𝑦P8)"

𝑁 = i𝑊𝑆𝑆𝑅
𝑁  

(14) 

The RMSE o_ers a straightforward and readily understandable representation of the overall model's 
error, using the same units as the measured variable, even for unitless comparisons. On the other hand, 
the RMSE is sensitive to both outliers and overfitting; consequently, it diminishes when additional 
parameters are incorporated into the model. In order to facilitate a comparative analysis of model 
fitness for di_erent numbers of calibrated parameters, it is possible to consider criteria that balance 
the goodness of fit to experimental data with the number of model parameters. This approach allows 
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to penalize overfitting when increasing parameters are incorporated into the model structure. One such 
established method is Akaike’s Information Criterion or AIC (Akaike, 1974): 

𝐴𝐼𝐶 = 𝑁 · log a
𝑊𝑆𝑆𝑅
𝑁 b + 2 · 𝑁2 

(15) 

In Equation (15), the first term will decrease for overparametrized candidate models due to overfitting, 
while the second term will penalize the added complexity when more parameters are considered. 
Lower values of AIC are indicative of a superior model, while lower values of RMSE indicate overfitting. 

2.7 Model validation 
To confirm the predictive power of the calibrated model, a new data set was selected from the same 
column breakthrough experiments as the calibration tests (see Section 2.3 for a description of the data). 
For calibration, the parameter 𝑞3 in our model was assumed to be zero, corresponding to fresh resin.  
The second cycle was chosen to validate the model and therefore the measured data correspond to a 
regenerated column. Hence, we assumed a regeneration e_iciency of 95% for the resin, which was 
calculated as the amount of phosphorus recovered from the total adsorbed in the column, and the 
remaining amount was assumed to be retained or fouled in the resin, as also reported by the authors 
(O’Neal and Boyer, 2015; Zhang et al., 2015). From the adsorption data, fouling is estimated at 1.7 mg 
out of the total 31.9 mg adsorbed, resulting in a 5.3% fouled amount or 94.7% regeneration e_iciency. 
We then assumed an initial concentration profile in the resin, parameterized by 𝑞3 in our model.  

3. Results and Discussion 

3.1 Sensitivity analysis 

3.1.1 Local sensitivity analysis 
The specific set of model parameters to be analyzed is presented in Table 2. The parameter 𝑞3  was 
omitted from the list, as it is assumed to be equal to zero in this study and therefore its sensitivity to 
changes would be insignificant. Figure 3(a) shows the variation over time, expressed in bed volumes, of 
the relative sensitivity values for the breakthrough concentration with respect to all parameters in the 
selected subset, with the most sensitive parameters highlighted. The less sensitive parameter 𝐷2  is 
also highlighted as a reference. As can be seen, the sensitivity to changes in parameter values is 
practically zero at the start of the column operation and increases exponentially when the first 
breakthrough is detected, around two bed volumes. A peak in sensitivity is reached for all parameters 
around four to six bed volumes and decreases again exponentially until the end of the operation when 
the resin is saturated. The occurrence of peaks for all parameters around the same time is a clear 
indication of the correlation between all parameters, which shows that unique determination of values 
is complicated when all parameters are estimated simultaneously. Since some sensitivities appear to 
change sign over time, an averaged sensitivity allows to compare the overall trend. Figure 3(b) shows 
the averaged local sensitivity values over 16 bed volumes for all parameters with their corresponding 
signs. 
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Figure 3. Local sensitivity analysis (LSA) of the breakthrough curve for the parameters listed in Table 1: 
time variation in bed volumes for a 0.001% relative perturbation (a), and time average with sign (b).  
The most sensitive parameters (𝑞./0, 𝜀, 𝜌2, 𝐶3, 𝑟2, 𝐷2) are highlighted, with 𝑟2, 𝐷2 inversely correlated. 

In descending order of sensitivity, the most sensitive parameters are 𝑞./0, 𝜀, 𝜌2, and 𝐶3. Most of these 
parameters exhibit positive or negative sensitivity to varying degrees, indicating that they a_ect the 
model output in a consistent manner but with di_ering magnitudes. However, parameters 𝑟2  and 𝐷2 
exert an inverse influence on breakthrough, as evidenced by their inverse correlation, illustrated in 
Figure 3(a) and in accordance with Equation (5). The particle size is more than twice as sensitive as the 
intraparticle di_usivity due to the quadratic influence, with the greatest e_ect observed around four 
bed volumes, where both parameters are most sensitive. 

Changes in sensitivities are also indicative of nonlinearity. In order to illustrate the impact of varying 
sensitivities, it is possible to plot the e_ect of a change in di_erent parameters on the model output. 
Figure 4 shows the impact of a 10% increase in four of the most sensitive parameters and its e_ect on 
the breakthrough concentration. An increase in a parameter with negative sensitivity (e.g., 𝑞./0) will 
result in a delay in breakthrough, as it has a negative influence on the concentration. Conversely, a 
positive sensitivity (e.g., with respect to 𝜀 or 𝐶3) will result in an earlier occurrence of breakthrough for 
an increase in the parameter value. Figure 4 also demonstrates that 𝐶3 is a less sensitive parameter 
than 𝜀, indicating that a 10% increase in the latter will have a more pronounced e_ect on breakthrough. 
An analogous analysis may be performed for the remaining, less sensitive parameters. As can be 
observed, a change in the less sensitive parameter 𝑟2 is most pronounced around 4 bed volumes, where 
the parameter exhibits the greatest sensitivity to changes, as illustrated in Figure 3. However, the overall 
e_ect of this one parameter is minor in comparison to an increase in the adsorption capacity (𝑞./0), as 
demonstrated by Figure 3: an increase in the bed height (parameter 𝐿) would result in greater resin 
availability too, which in turn delays breakthrough. However, this increase has overall less e_ect than a 
comparable change in the adsorption capacity. This serves to illustrate once more the nonlinear nature 
of the process and the importance of taking into account these e_ects for the estimation of parameters. 
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Figure 4. E_ect of a 10% increase in the most sensitive parameters (𝑞./0 , 𝜀 , 𝐶3  and 𝑟2 ) on the 
breakthrough curve: the adsorption capacity (𝑞./0) has a marked negative impact on the breakthrough 
concentration, while the other three parameters have a positive e_ect, albeit with varying magnitudes. 

Following Figure 3 and Figure 4, we can establish a local ranking of the parameter sensitivities for the 
model structure considered. It should be noted, however, that this is only a local ranking and should 
therefore be interpreted and used with care. In the case of nonlinear models, parameter sensitivities 
may vary considerably when evaluated in di_erent regions of the parameter space. Accordingly, a global 
sensitivity analysis is conducted in the following section to ascertain an overall parameter ranking for 
the model calibration. The results of the LSA serve two distinct purposes. First and foremost, the LSA 
results o_er insights into the parameter sensitivities as a function of time, thereby enabling the 
identification of an optimal time point for conducting a GSA analysis. Based on the LSA analysis, the 
time at which a 10% breakthrough occurs is identified as an informative time instant to perform the GSA.  

Secondly, the LSA results are employed to conduct an initial screening of the parameters, whereby 
parameters exhibiting low sensitivity can be excluded from a subsequent analysis. As the GSA analysis 
is considerably more computationally intensive, a preliminary screening through LSA can significantly 
accelerate the global analysis. The parameters exhibiting the lowest local sensitivity are 𝐾1, 𝑄, 𝐷2 and 
𝐷! . As the inlet flow rate 𝑄  is a variable that can be manipulated, it was decided that it should be 
retained for a comprehensive analysis in order to ascertain its influence. Furthermore, the isotherm 
parameter 𝐾1  is frequently calibrated in conjunction with 𝑞./0, and thus it was also determined that it 
should be included in the GSA. However, in the event of computational constraints, this category of 
parameters may be excluded from the subsequent analysis, given their negligible impact. It is therefore 
possible to assign a fixed value within their range of variability to those parameters that have little 
influence on the output and produce little variance, without compromising the estimation process for 
the remaining parameters.  
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A sensitivity analysis may also serve to identify the experimental conditions that will yield the most 
accurate parameter estimation by maximizing the e_ect on the model output, which is the goal of 
optimal experimental design or OED (Donckels, 2009). The objective may be to generate experimental 
data with high information content, thereby further reducing the uncertainty of the parameter estimates. 
The LSA analysis conducted in the present study indicates that experiments where the breakthrough 
concentration surpasses at least 50% of the initial concentration represent the most informative 
experiments, exhibiting the highest parameter sensitivity. Nevertheless, the optimization of the 
experimental design for parameter estimation falls outside of the scope of the present work. 

3.1.2 Global sensitivity analysis 
Selection of parameter subset for GSA 

Based on the LSA results, two parameters, as detailed in Table 2, were excluded from the GSA: 𝑞3, which 
was assumed to be zero in this study, and 𝐷! , whose quasi-zero sensitivity corresponds to the common 
plug-flow assumption and the reason why the di_usion term in Equation (1) is often neglected in 
practice. Figure 5 illustrates the Sobol sensitivity indices for 10% breakthrough concentrations across 
the ten selected parameters. Both the total and first-order sensitivity indices are plotted for each 
parameter, accompanied by uncertainty bands. First-order sensitivity indices are analogous to local 
sensitivities, but they are calculated over the entire parameter space. Two parameters with the largest 
indices, 𝐷  and 𝐿 , are regarded as design parameters, both having a considerable impact on 
breakthrough, as they determine the total volume of e_luent treated and the volume of resin available.  

Subsequently, 𝑟2  and 𝑞./0  are the parameters that exert the greatest influence on the breakthrough 
curve. The bed porosity (𝜀) has a smaller e_ect than anticipated by LSA when the full range of parameter 
values is considered. Conversely, the inlet flow rate,𝑄 , has a more pronounced e_ect on the 
breakthrough concentration than anticipated by LSA. This is due to an increase in the value of 𝑄 
reduces the residence time in the column, which in turn leads to a lower adsorption e_iciency. The 
Langmuir constant 𝐾1  has a negligible e_ect on the breakthrough concentration across the entire range 
of values considered. Consequently, the equilibrium parameter 𝑞./0 , which is considerably more 
sensitive, should be given precedence in model calibration. This implies that both isotherm parameters 
should not be estimated simultaneously. Lastly, we selected an arbitrary cut-o_ value of 0.02 for 
parameters exhibiting minimal global sensitivity. The density and the intraparticle di_usivity have low 
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indices, indicating that these parameters can be excluded from the calibration process initially. 

 

Figure 5. Sobol global sensitivity indices for the parameters listed in Table 2: total-order indices (blue) 
and first-order indices (orange). The analysis was performed for a breakthrough concentration of 10%. 

Figure 5 additionally illustrates the total-order sensitivity indices for each parameter. The observation 
that the sum of the first-order indices is 1.04, which is slightly di_erent from 1, suggests that this model 
exhibits some degree of nonlinearity. This is also evidenced by the discrepancy between total-order and 
first-order e_ects, which suggests the presence of higher-order interactions or correlations between 
each pair of parameters. The parameters that exhibit the most significant discrepancy between total 
and first-order indices indicate the highest degree of interaction with other parameters. The SAlib library 
further allows the calculation of second-order sensitivity indices with supplementary parameter values 
sampled, thus necessitating additional computational resources and e_ort. Figure 6 depicts the 
second-order sensitivity indices, which illustrate the interactions between pairs of parameters. The 
largest interactions are observed for the isotherm parameters, indicating that the adsorption may be 
particularly influenced by these parameters. 
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Figure 6. Second-order sensitivity indices. Parameters 𝑞./0, 𝐾1, 𝜀 and 𝐶3 show the largest interactions. 

Refined parameter subset for GSA 
Based on these results, a more refined analysis can be conducted, focusing exclusively on the most 
sensitive parameters. The design parameters 𝐷 and 𝐿 can now be excluded, given that their values are 
frequently fixed for existing columns. With regard to the manipulable variable 𝑄, its value is typically 
fixed for operational reasons. The parameters 𝜌2  and 𝐷2  have overall a negligible influence on the 
breakthrough concentration and will thus be excluded from further consideration. In this study, the inlet 
concentration 𝐶3  is maintained at a constant value, despite the fact that it is often variable in the 
e_luent. Accordingly, it will be retained for subsequent analysis to ascertain the impact of its variability 
on the breakthrough prediction. Furthermore, parameter 𝑟2 exhibits the most significant influence on 
the breakthrough concentration, likely due to the extensive range of validity considered, 60%. In the 
subsequent analysis, the range was limited to 20% in order to compensate for the parameter’s high 
sensitivity and to remove the distortion caused by this.  
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Figure 7. Refined global sensitivity analysis of breakthrough concentration with respect to parameters 
𝐶3, 𝜀, 𝑟2, 𝑞./0, and 𝐾1: total-order and first-order indices. All parameters are subject to 20% variation. 
The calibration of 𝐾1  with 𝑞./0  is common, but the low sensitivity suggests this might not be optimal. 

Figure 7 depicts the results of the refined analysis. 448 additional simulations were performed. As can 
be observed, the particle size 𝑟2  no longer demonstrates the greatest sensitivity to changes, having 
been superseded by the isotherm parameter 𝑞./0 . This illustrates that the range of validity under 
consideration has a significant influence on the sensitivity ranking and, as a result, has the potential to 
modify it. Accordingly, if the values of the parameters are constrained to the selected range of 20% 
variability, the first parameter to be estimated would be 𝑞./0, as this exerts the greatest influence on 
the breakthrough concentration. Additionally, it can be observed that both 𝜀 and 𝐾1  exert a negligible 
impact on the breakthrough concentration. Accordingly, these two parameters should not be calibrated 
initially. Moreover, the inlet concentration, 𝐶3, which is assumed to be constant in this study, may have 
a relatively minor impact on the prediction of breakthrough. Consequently, the particle size, 𝑟2, should 
also be estimated. These results suggest that the calibration of these two parameters, specifically 𝑞./0  
and 𝑟2, should be conducted initially. 

3.2 Model calibration 
In light of the results of the refined GSA presented in Figure 7, it becomes evident that only a limited 
subset of parameters will undergo calibration. The final subset will exclude parameter 𝐶3 due to the 
relatively minor influence on breakthrough and assumed constant. Furthermore, the inclusion of 𝐾1  
serves to illustrate the fact that this parameter exhibits a markedly low sensitivity, which ultimately 
precludes the possibility of estimating it with a high degree of accuracy. This is because such an 
estimation would necessitate considerable changes in its value in order to produce a significant change 
in the objective function. We identified thus the final subset of parameters to be estimated with the 
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calibration data set defined in section 2.3 and RMSE and AIC as fitness criteria. The results are 
summarized in Table 3 below.  

Table 3. Results of the parameter estimation for up to four parameters in di_erent calibration subsets. 
The values indicate the estimated parameter values, the corresponding 95% confidence intervals 
calculated with FIM (relative percentage), RMSE and AIC as fitness criteria. Initial estimates given by  𝜃3.  

𝑁!a 𝑁"b Min. c 𝑞#$%  𝑟! 𝜀 𝐾&  RMSE AIC 

1 10 LM, TR 0.323 ± 1.4%    0.0262 -143.6 
2 15 LM, TR 0.326 ± 1.4% 4.3·10-4  ± 8.4%   0.0207 -151.3 
3 34 LM 0.276 ± 72.4% 4.0·10-4 ± 31.5% 0.33 ± 43.1%  0.0206 -149.3 
 35 TR 0.312 ± 87.7% 4.2·10-4 ± 36.9% 0.36 ± 53.2%  0.0205 -149.4 

4 52 LM 0.430 ± 104 % 4.9·10-4 ± 34.8% 0.44 ± 56.1% 10.4 ± 107 % 0.0206 -147.2 
 40 TR 0.312 ± 105 % 4.2·10-4 ± 46.3% 0.36 ± 60.7% 1.25 ± 107 % 0.0205 -147.4 
𝜃' (initial values) 0.291 3.8·10-4 0.37 1.18 0.0864  

Bounds 
LM - - - -   
TR 0.2-0.35 (±20%) 1.5-6·10-4 (±20%) 0.3-0.44 (±20%) 0.9-1.4 (±20%)   

a Number of model parameters in the calibration subset. 
b Number of function evaluations of the minimization algorithm. 
c Minimization algorithm. LM: Levenberg-Marquardt (unconstrained); TR: Trust Region method (constrained). 

The calibration of only the most sensitive parameter, namely 𝑞./0, resulted in a 70% improvement in fit 
(RMSE of 0.0262 vs 0.0864) compared to the initial uncalibrated value of 0.291 (given by 𝜃3 in Table 3). 
The 95% confidence interval was estimated at ±1.4%, expressed as a relative percentage of the optimal 
value. After approximately 10 model evaluations, both minimization methods yielded identical results. 
Furthermore, the determined value of 0.323 is more closely aligned with the total phosphate loading on 
the resin of 10.2 mg P/g or 0.329 mmol P/g, as reported by O’Neal and Boyer (2015). Subsequently, the 
introduction of a second parameter, 𝑟2, to the estimation resulted in a further reduction in the root mean 
square error (RMSE) to 0.0207, representing a 21% decrease. Moreover, the estimated value and 
uncertainty for 𝑞./0  remained largely unchanged. The calculated 95% confidence interval for this 
second parameter is 8.4%, indicating that both parameters can be estimated with high confidence 
based on the available experimental data of breakthrough concentrations and with good agreement 
with the observed values. 

Figure 8(a) illustrates the fit of the model predictions to the experimental data of Zhang et al. (2015), 
showcasing both calibrated and uncalibrated parameter values. The calibrated values for parameter 
𝑞./0  from Table 3 are slightly higher than the initial reported values in the literature, resulting in a 
rightward shift of the breakthrough curve with respect to the uncalibrated model. Figure 8(b) depicts 
the residuals, defined as the absolute di_erence between the experimental data and both the 
calibrated and uncalibrated model predictions. As can be observed, calibration essentially reduces the 
residuals in the zone where the calibrated parameters are most sensitive, namely after breakthrough, 
around 4-10 bed volumes. This is the case for all parameter subsets, although for two and three 
calibrated parameters, the residuals are almost indistinguishable. The calibration of additional 
parameters does not significantly improve the fit to the experimental data, due to the phenomenon of 
overfitting or overparameterization. The uncalibrated model displays a tendency to overpredict the 
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breakthrough concentration. However, all models exhibit a comparable deficiency in accurately 
reproducing the initial time instants of the experimental data. This is a consequence of the low 
sensitivity of the parameters in this zone, which renders the model unable to accurately capture this 
aspect of the curve. 

 

Figure 8. Calibration of up to three model parameters (𝑞./0, 𝑟2, 𝜀): model fit to experimental data (a) 
and residual calculation (b). Data for fresh urine by Zhang et al. (2015). Increasing RSME is a better fit. 

Fitting an additional parameter, 𝜀, as illustrated in Table 3, shows that the uncertainties associated with 
both 𝑞./0  and 𝑟2 become significantly more pronounced, resulting in much larger confidence intervals 
for all parameters. Such uncertain estimation does not provide added value to the model prediction. 
This is corroborated by the larger value of AIC, which is -149.3, with the lowest value of -151.3 
corresponding to the calibration of only two parameters. The calibration of a fourth parameter results 
in a further deterioration in the precision of the estimation, as evidenced by the considerably broader 
confidence intervals (CIs) for all parameters, including those that were previously estimated with a high 
degree of accuracy. The incorporation of further parameters into the calibration subset results in 
overfitting without a significant reduction in RMSE. The substantial uncertainty suggests that the 
estimation problem has become ill-conditioned. This occurs when the choice of minimization method 
yields disparate solutions within the parameter space, with less sensitive parameters estimated at the 
expense of the certainty in the value of the most sensitive ones. The use of an unconstrained method 
yielded a value for 𝜀 of 0.44, which is at the limit of validity for this parameter. Similarly, parameter 𝐾1  is 
estimated as 10.4, which is nine times higher than the value reported in the literature. Nevertheless, an 
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alternative constrained method does yield valid values of 0.36 and 1.25, respectively, albeit with an 
increased uncertainty (the confidence intervals for all parameters are higher for this method) and an 
increased amount of model evaluations (40 vs 52). This is due to the fact that the constrained method 
employs information regarding the validity region of parameters to determine the step size and direction 
at each iteration of the optimization process. While unconstrained methods may converge more rapidly 
when in proximity to a local minimum, they may not yield physically realistic parameter estimates. 

The AIC indicates that reducing the RMSE is preferable for model selection, whereas the increase in the 
number of parameters is less favorable and therefore penalized. Consequently, the optimal model, as 
determined by the lowest value of the AIC, is obtained by calibrating only the two most sensitive 
parameters, 𝑞./0  and 𝑟2 . This example demonstrates the importance of exercising caution when 
estimating parameters with low sensitivity, as for subsets of more than two parameters, there exist 
infinite combinations of parameters that produce the same fit. Hence, these results confirm that only 
the most sensitive model parameters should be included in the calibration process. Furthermore, a 
robust calibration protocol is essential, where sensitivity and correlation of parameters are evaluated 
prior to calibration, to ensure the development of a reliable model with minimal uncertainty and optimal 
predictive power. 

3.3 Uncertainty analysis 
In addition to the quality of the parameter estimation provided by the confidence regions from Table 3, 
an uncertainty analysis of the model with two calibrated parameters is presented in Figure 9. The 
calibrated model output of the breakthrough curve is enclosed by a 95% confidence band. As illustrated, 
the uncertainty in the prediction is minimal at the initial and final stages of the operation but increases 
after breakthrough at approximately 2-4 bed volumes and subsequently decreases near the saturation 
point at around 10-12 bed volumes. Consequently, the width of the uncertainty band is dependent upon 
the quality of the model calibration step and thus determines the reliability of the model prediction. 

For two calibrated parameters, the uncertainty band is narrow and closely surrounds the calibration 
data set, indicating a highly accurate prediction. However, the initial instants of the process are not 
captured by the model as indicated in Section 3.2. Nevertheless, the 10% breakthrough time is in good 
agreement with the value of 3.8 bed volumes, with an error of 7.8%. Furthermore, the model accurately 
predicts the saturation time, with an error of 2.2%. More details are provided in Table 4, see Section 3.4.   
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Figure 9. Uncertainty analysis of the breakthrough curve for a 95% confidence in the prediction interval. 
The uncertainty bands for two and three calibrated parameters are generated by the corresponding 
confidence intervals of Table 3. The lowest uncertainty is obtained with two calibrated parameters. 

3.4 Model validation 
Following calibration of the model with the accurate determination of the most sensitive parameters, 
the predictive power of the model can be tested against the validation data set. Figure 10 depicts the 
breakthrough curve of the second cycle, which demonstrates considerable agreement with the 
experimental data. As illustrated by the inset, the initial time instants of the experiment are accurately 
represented by the model, with a precise prediction of the 10% breakthrough time occurring at 
approximately 3.2 bed volumes (see Table 4). As demonstrated, the breakthrough time decreases as a 
consequence of resin fouling. Moreover, the saturation time, defined as the time required for a 
breakthrough concentration of 90% of the initial concentration, also decreases with fouling. However, 
the error in determining this point is less in agreement with the experimental data. Potential causes 
include interactions of the adsorbed ions onto the resin, which could result in increased adsorption 
capacity when the resin is close to saturation. This, in turn, could give rise to a delay in the breakthrough 
of the ions. It is possible that this trend may persist after additional regeneration cycles. However, 
further analysis is required to confirm this hypothesis, which is beyond the scope of the present work. 
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Figure 10. Model validation for 95% regenerated resin using column data from (O’Neal and Boyer, 2015). 
The inset shows that the initial time instants around 10% breakthrough are well captured by the model. 

 

Table 4. Breakthrough and saturation times (in bed volumes) from the model and the experimental data. 
The first cycle corresponds to the calibration data set and the second cycle to the validation data set. 

 Breakthrough time, 𝑡,3 Saturation time, 𝑡F3 

 Data Model Rel. error Data Model Rel. error 
First cycle (calibration) 3.8 4.1 7.8% 8.8 9.0 2.2% 
Second cycle (5% fouled, validation) 3.2 3.2 1.0% 10.3 8.1 21.0% 
Third cycle (50% fouled, not illustrated) 2.4 2.2 6.7% 9.3 7.2 22.6% 

 

4. Conclusions 
We present a framework for calibration of a dynamic model of fixed-bed column IX operation based on 
good modelling practice that can be followed for future modelling studies and practical model 
implementations. The local and global sensitivity analyses allowed us to identify the design and 
operational parameters that contribute most to the prediction of breakthrough curves. Specifically, the 
local sensitivity analysis revealed which time intervals during IX operation provide the most information 
for model calibration, thus enabling an initial screening to select highly sensitive parameters. The global 
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sensitivity analysis then allowed us to select a small subset of parameters for calibration. This 
approach showed that only two parameters, namely the maximum adsorption capacity isotherm 
parameter and the resin particle size, need to be thoroughly calibrated to obtain an accurate prediction 
of the breakthrough curve. Additionally, we demonstrated that uncertainty quantification for model 
calibration is crucial for establishing the reliability of the predictions. To this end, we conducted a 
confidence interval analysis of the parameter estimates and applied model selection criteria, such as 
AIC, to identify the optimal fit. Validation of the model was carried out using experimental data. Hence, 
we propose a sound calibration procedure, based on good modeling practice, that encompasses both 
sensitivity and uncertainty analysis and provides a basis for the optimization of the IX process with the 
aim of improving the accuracy of breakthrough prediction. 
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Appendix 

Discretization analysis with respect to numerical parameters 

 

Figure S1. Discretization analysis of model output (breakthrough concentration) with respect to 
numerical parameters: time step (left) and number of discretized column elements (right). A time step 
dt = 0.1 and Np = 100 elements provide su_icient accuracy in the numerical solution to predict 
breakthrough without significantly adding computational e_ort. This was assessed by subsequently 
performing simulations with time steps of 1, 0.75, 0.5, 0.25, 0.1 and 0.05 seconds with 100 grid points, 
followed by 5, 10, 25, 100, 200 and 500 grid points with a 0.1 second time step, and observing 
indistinguishable simulation results. All simulations require a computation time of under 1 minute. 
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