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The increased integration of photovoltaic (PV) systems in distribution grids reduces visibility and situational awareness
for utilities, because the PV systems’ power production is usually not monitored by them. To address this problem, a
method called Contextually Supervised Source Separation (CSSS) has been recently adapted for real-time estimation of
aggregate PV active power generation from aggregate net active and reactive power measurements at a point in a radially
configured distribution grid (e.g., substation). In its original version, PV disaggregation is formulated as an optimization
problem that fits linear regression models for the aggregate PV active power generation and true substation active
power load. This paper extends the previous work by adding regularization terms in the objective function to capture
additional contextual information such as smoothness, by adding new constraints, by introducing new regressors such
as ambient temperature, and by investigating the use of time-varying regressors. Furthermore, we perform extensive
parametric analysis to inform tuning of the objective function weighting factors in a way that maximizes performance
and robustness. The proposed PV disaggregation method can be applied to networks with either a single PV system
(e.g., MW scale) or many distributed ones (e.g., residential scale) connected downstream of the substation. Simulation
studies with real field recorded data show that the enhancements of the proposed method reduce disaggregation error by
58% in winter and 35% in summer compared with previous CSSS-based work. When compared against a commonly
used transposition model based approach, the reduction in disaggregation error is more pronounced (78% reduction
in winter and 45% in summer). Additional simulations indicate that the proposed algorithm is applicable also for PV
systems with time-varying power factors. Overall, our results show that – with appropriate modeling and tuning – it is
possible to accurately estimate the aggregated PV active power generation of a distribution feeder with minimal or no
additional sensor deployment.

I. INTRODUCTION

As the penetration of distributed photovoltaic (PV) gener-
ation continues to increase in the distribution network, op-
erators are facing new challenges in the management of ac-
tive distribution networks. Distributed PV systems are typ-
ically not monitored in real-time, and large aggregations of
these installations can result in large ramp rates and power
swings in the net demand at the substation. This work seeks
to alleviate the lack of visibility into the aggregated behav-
ior of these systems in order to provide system operators with
greater insight into the network behavior, and do so with min-
imal or no additional sensing and communication. In par-
ticular, we envisage that having accurate information on the
aggregated active power generation of a feeder will result in
better distributed PV generation forecasting given irradiance
forecasts and, consequently, reduce the over-procurement of
reserves (Palmintier et al., 2016). Additionally, it can help
system operators to intelligently re-tune regulation equipment
to minimize voltage deviations, while also maximizing the ex-
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pected lifetime of equipment (Mehmood et al., 2018).

The goal of this work is to estimate (or disaggregate) the in-
stantaneous aggregated PV active power generation of a dis-
tribution feeder or small geographic area. This is an alter-
native to recently proposed approaches that use smart meter
measurements to infer the PV generation of individual resi-
dences, an extension of traditional non-intrusive load monitor-
ing (Chen and Irwin, 2017; Kara et al., 2016; Dinesh et al.,
2017; Tabone, Kiliccote, and Kara, 2018). Due to the fo-
cus on aggregated instead of individual PV power estimation,
the approach proposed in this paper does not require access to
smart meter data but instead works with aggregated measure-
ments at the feeder head. PV power estimation can reduce
the need for real time communication with metered installa-
tions, but is particularity useful for the case of installations
which are not individually metered, i.e. behind-the-meter PV.
A number of methods have been recently proposed in the lit-
erature for estimating the PV generation of a feeder, namely
transposition model based approaches (Killinger et al., 2016),
data-driven based approaches (Shaker, Zareipour, and Wood,
2016b; Pierro et al., 2017; Sossan et al., 2018), and a hybrid
of these approaches (Bright et al., 2018).

Transposition model based approaches typically employ
Global Horizontal Irradiance (GHI) measurements, map these
measurements to both their Direct Normal Irradiance (DNI)
and Direct Horizontal Irradiance (DHI) components, and then
use a representative PV model to estimate power production.
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The inaccuracy in estimating DNI and DHI from GHI mea-
surements places an upper bound on the performance of these
models (Lave et al., 2015; Gueymard, 2010), which will be
compounded for choice of model parameters (representative
tilt, efficiency, etc.). For example, Ruf (2016) uses irradi-
ance data based on satellite images together with reference PV
models with known location and rated power, but with approx-
imate azimuth and tilt angles, to estimate the power output of
individual PV systems as well as the total PV power at the
distribution substation. The analysis gave a normalized root
mean squared error of 13% for the aggregate PV power, but
also revealed systematic errors that result in overestimation of
the total PV energy by approximately 22%.

Recently proposed methodologies to overcome the previ-
ously mentioned limitation have focused on data-driven ap-
proaches. In Shaker, Zareipour, and Wood (2016b), the au-
thors adapt an up-scaling approach. They first determine
geographic sub-regions of sufficient active power generation
similarity using a hybrid of k-means clustering and Principal
Component Analysis (PCA) proposed in Shaker, Zareipour,
and Wood (2016a). Then, having learned the statistical prop-
erties of the aggregated generation for each sub-region from
a sufficiently large subset of historical data, they use a small
number of sites in each sub-region to estimate its respective
total aggregate PV active power generation. The data used
in Shaker, Zareipour, and Wood (2016b) were 15-minute ac-
tive power generation data and subsequently exhibited tempo-
ral smoothing. The authors noted that new installations were
incorporated by updating the effective capacity of its closest
centroid cluster. The work in Pierro et al. (2017) clusters re-
gions of similar power generation patterns and then adapts a
neural network based approach to estimate either the PV ac-
tive power generation of each cluster or the total power gener-
ation across all clusters. The authors found that using an indi-
vidual neural network for each cluster achieved better perfor-
mance. The data used were hourly PV generation profiles and
therefore exhibited temporal smoothing. Additionally, the im-
pact of new PV installations was not discussed. Sossan et al.
(2018) considers higher frequency reporting and uses local
GHI measurements to identify PV production patterns in ag-
gregated net active power measurements of small geographic
areas. Although the algorithms exhibited good performance
for the cases considered, the authors noted that they expect
performance to deteriorate as the geographic area increases
due to the localized nature of GHI measurements.

In Bright et al. (2018) the authors adapt a hybrid approach
blending satellite-derived GHI estimates and reference PV
systems to estimate the PV generation of geographic areas.
The authors spatially interpolate the difference between the
measured PV output of the reference sites and the power pre-
dicted at those sites by satellite-derived GHI estimates. This
gives a correction factor for each site of interest that itself is
then spatially interpolated and applied to the satellite-derived
PV generation of each site to give an estimate of a site’s gen-
eration. The authors use satellite imagery from the state-of-
the-art Himawari-8 satellite with a scan-rate of 10 minutes,
which establishes the temporal resolution of the generation
estimates. In contrast, in this work we are interested in an ap-

proach which leverages existing data sources readily available
to system operators and minimizes additional data require-
ments, such as advanced satellite imagery. Additionally, we
are interested in more granular PV generation profiles than
currently attainable by satellite-derived GHI estimates in or-
der to understand short-term variability and its impact on the
operation of distribution voltage regulation equipment.

A related data-driven disaggregation approach is presented
in Wang et al. (2018) that focuses on forecasting of net load.
The authors decompose the net load measurements to actual
load, PV output and a residual, forecast the individual compo-
nents separately, and then add them to obtain the net load fore-
cast. This process involves estimating the power capacity, tilt
angle, and azimuth of a virtual equivalent PV system, which
is modeled to approximate the total output of all PV installa-
tions. Wang et al. (2018) showcases how PV disaggregation
methods can be useful not only for real-time estimation, but
also for forecasting purposes.

Particularly relevant to our work is Kara et al. (2018),
where the authors propose two methods to disaggregate PV
power using aggregate active and reactive power measure-
ments at a distribution substation. In addition, both meth-
ods require a rough estimate of irradiance called “irradiance
proxy", which can be for example measurements of generated
active power from a nearby monitored PV system. The first
method of Kara et al. (2018) is a multiple linear regression es-
timator, which assumes that the prediction error of PV power
is much larger than that of load power. The second method
is a variant of the Contextually Supervised Source Separa-
tion (CSSS) methodology originally proposed in Wytock and
Kolter (2014). CSSS is an optimization problem formulation
that relies on regression models to disaggregate a single aggre-
gate signal into a mixture of unobserved source signals. The
advantage of CSSS is that it allocates the overall estimation
error to each of the source signals systematically, by leverag-
ing contextual information about them (such as smoothness).
While Wytock and Kolter (2014) demonstrated CSSS for the
energy disaggregation problem, Kara et al. (2018) modified
CSSS for the PV disaggregation problem, where the aggregate
signal is the aggregate active power measured at the feeder
head and the source signals are the PV active power genera-
tion and load active power demand.

This paper builds on the results of Kara et al. (2018) and
its contribution is multifold. First, we extend the optimization
problem formulation of CSSS from Kara et al. (2018) by in-
cluding regularization terms and time-varying regressors for
PV and load power, as well as adding new regressors such
as ambient temperature. Since CSSS is a multi-objective op-
timization problem, our second contribution is a parametric
analysis to identify objective function weighting factors that
maximize disaggregation accuracy without compromising ro-
bustness of results. Furthermore, if not retrained, the algo-
rithm’s performance degradation with respect to total installed
PV power is lower than other data-driven approaches. This is
a practical advantage and also applies to Sossan et al. (2018),
which uses hyperparameters similar to our weighting factors.
Moreover, we test the algorithm’s performance in scenarios
where the PV inverter provides reactive power support using
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Volt-Var control. Finally, we investigate the performance of
CSSS in estimating the total PV generation of a number of dis-
tributed PV systems, as opposed to Kara et al. (2018) that only
considered a centralized large PV system. Our methodologi-
cal improvements and detailed analyses on a much larger data
set compared with Kara et al. (2018) allow us to thoroughly
characterize the potential of CSSS as a real-time PV disag-
gregation method and benchmark it against a commonly-used
transposition model-based approach.

The rest of this paper is organized as follows. In Sec-
tion II we introduce the assumed system setup and avail-
able data for both the centralized and distributed PV system
cases. Section III presents the regression models for PV and
load power, as well as the optimization problem formulation
for CSSS. Section IV discusses extensive simulation results
and provides recommendations for real-world implementa-
tion, whereas Section V concludes.

II. SYSTEM SETUP AND DATA

A. Overview

Estimation of total PV power from substation-level aggre-
gate power measurements improves situational awareness for
utilities but is a challenging task. Besides spatial variabil-
ity of solar irradiance due to cloud cover, the challenges are
also related to non-linearities in PV power output of different
systems at nearby locations due to differences in orientation
and/or tilt angle, shading, and diverse inverter DC/AC ratios.
In this paper, we consider two use cases: first, a single large
PV system; and second, many small-scale PV systems con-
nected downstream of a distribution substation. The second
use case is more interesting from a practical point of view,
however, the first case study is considered to enable an one-
to-one comparison with the previous work Kara et al. (2018).

B. Single PV System Case

As a first case study, we consider a substation feeder from
the territory of Riverside Public Utilities company (RPU) with
the structure of Fig. 1. The feeder includes a PV system with
7.5 MWp capacity, South orientation, and a 7.5◦ tilt angle
(see Table I). The PV system operates at a unity power fac-
tor, however, the effective power factor as seen from the grid
side is variable because the PV system is connected to the grid
through a transformer. In this setup, the PV system is the only
generation asset connected to the substation. We have access
to voltage and current phasor measurements at the feeder head
from a Phasor Measurement Unit (PMU) located at the substa-
tion (denoted as PMU 1 in Fig. 1). Our goal is to disaggregate
the PV power generation using the aggregate active and reac-
tive power values computed from the PMU 1 measurements.
Note that only data from PMU 1 are used as input to the real-
time disaggregation method, whereas data from PMU 2 are
only used for tuning optimization and performance evaluation
purposes.

Pagg

Qagg

Pproxy

FIG. 1. System setup with a single PV system (utility-scale) show-
ing the PMU locations. The proxy PV system is located nearby, but
is not connected to the considered feeder. The blue arrow indicates
that the power production of the unmonitored PV system is estimated
based on active power measurements from the proxy PV system. The
green arrow indicates that the total load power is estimated based on
aggregate reactive power measurements from the PMU at the substa-
tion. More information on these modeling dependencies is given in
Section III A.

TABLE I. Tilt and orientation (azimuth) information for PV systems.

Orientation (◦) Tilt (◦) Distance (miles)
Main PV system 180 (South) 7.5 -
Irradiance proxy 195 (South-South-West) 20 4.5

Besides PMU measurements, an irradiance proxy is also
needed for PV disaggregation. For example, measurements of
active PV power generation from another monitored nearby
PV system can be used as irradiance proxy. In our case study,
the irradiance proxy measurements come from a PV system
at the University of California Riverside’s (UCR) Center for
Environmental Research and Technology (CE-CERT) micro-
grid (Taylor et al., 2016), which is located approximately 4.5
miles away from the RPU PV system and connected to a dif-
ferent feeder. The proxy PV system has a South-South-West
orientation and a 20◦ tilt angle. Due to the small geograph-
ical distance between the two PV stations, the similar orien-
tations1, and the relatively small difference in tilt angles, this
use case is relatively simple and thus the disaggregation re-
sults might not be generalizable for more complicated system
setups. Nevertheless, this use case allows us to showcase the
superior performance of the proposed method to that of Kara
et al. (2018).

Unfortunately, no information on the DC/AC specifications
and power ratings of the RPU and UCR PV systems is avail-
able, but such information is in fact not needed by the dis-
aggregation method. However, without this information it is

1 The available orientation information for the two PV systems is qualitative,
i.e. we know that they both face generally towards the South, but the ex-
act azimuth values were not available to us. With reference to Fig. 5 there
is a shift in the solar peak, which indicates that in fact the azimuths are
not exactly the same. The orientation angles reported in Table I were esti-
mated using a data-driven approach in conjunction with visual inspection
in Google Earth.
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not possible to anticipate modified scaling factors between the
unmonitored and proxy PV systems due to inverter clipping,
especially in case of large DC/AC ratios. As a result, if in-
verter clipping occurs, PV disaggregation error is likely to in-
crease. Nevertheless, this problem can be circumvented by us-
ing time-varying regressors, as proposed in this paper, which
are expected to capture systematically modified PV scaling
ratios due to inverter clipping.

The CSSS-based PV disaggregation method developed in
this paper is validated on actual data measured by PMU 1 and
PMU 2 for the whole months of August 2016 and January
2017. This paper presents a more in-depth analysis of CSSS
performance in comparison with Kara et al. (2018), where a
small data set with three days in June 2016 was used. Al-
though the PMU data become available at a rate of 120 Hz,
we down-sample them to a 1-minute resolution for disaggre-
gation purposes. Note that the raw reactive power measure-
ments from PMU 1 are distorted by capacitor bank switching
events, which are filtered out from the reactive power time
series using the algorithm presented in Kara et al. (2018).

One of our goals is to investigate whether it is possible to
derive generic (or at least seasonal) parameterizations of the
PV disaggregation algorithm, which result in low disaggrega-
tion error for a broad range of input data, namely PV and load
profiles. For this reason, we generate ten training sets from the
January and August data by randomly sampling ten subsets of
fifteen days each from the full set of thirty-one days for each
month. Most of the analysis of Section IV will be repeated for
all ten training sets, as well as for the full data sets, in order
to investigate how consistent the optimal weighting factors of
the CSSS problem formulation are.

C. Distributed PV Systems Case

In practice, disaggregating PV power becomes more use-
ful in systems with many unmonitored, residential-scale PV
systems distributed along a feeder. To investigate CSSS per-
formance in such cases, we additionally consider the system
setup of Fig. 2, where we are interested in estimating the total
generated power from all PV systems. The aggregate power
measurements at the substation are the same as in the single
PV system case of Section II B. However, we now assume that
a small subset of all PV systems are monitored, and use their
active power measurements as irradiance proxies to estimate
the total PV power generation (which includes monitored and
unmonitored PV systems).

As a case study, we use the total load power from the RPU
substation feeder and 74 PV power profiles from the Pecan
Street data set (available at dataport.cloud). The individual
PV power profiles were scaled such that their total peak power
across each month matches the respective peak power of the
single 7.5 MWp PV system connected to the RPU feeder.
Therefore, the new substation active power load demand is
equal to the old load demand, minus the active PV power out-
put of the RPU system, plus the scaled active power output of
the distributed PV systems. Given that each installation was
a residential installation, we assumed each system to operate

Pagg

Qagg

Substation

Pproxy,i Pproxy,j

Total load power

Total PV power

FIG. 2. System setup with many PV systems distributed along the
feeder. A few PV systems are monitored (indicated with red-shaded
boxes) and their power measurements are used to estimate the total
PV power (shown with the blue-shaded box). This dependency is
graphically shown with the blue arrows. The total load power (in-
dicated with the green-shaded box) is estimated based on aggregate
reactive power measurements from the PMU, and this dependency is
shown with the green arrow. More information on these modeling
dependencies is given in Section III A.

TABLE II. Percentage of distributed PV systems with each of the
possible orientations.

Orientation SW S W WE SE E
Percentage 61.5% 21.7% 11.7% 1.7% 1.7% 1.7%

at unity power factor. Note that we did not consider the dif-
ference in power flow losses associated with having one large
PV installation close to the substation v.s. a large number of
smaller distributed installations. Using the same load power
profile and scaling the generated PV power enables compar-
isons between the single PV system and distributed PV cases.
The PV systems have various tilt angles (unknown) as well as
various orientations with South-West being the most common
(see Table II and note that exact azimuth information is not
available). Due to these variations and the larger geographical
dispersion, the results of this case study are more representa-
tive of real-world scenarios.

The 74 PV profiles were selected from a larger dataset by
identifying PV systems which were likely from a similar ge-
ographic region using a clustering approach. A combination
of dynamic time-warping (Keogh and Ratanamahatana, 2005)
and k−means clustering was used to select a subset of the PV
profiles to mimic the case of installations on the same distri-
bution feeder. Figure 3 shows the PV active power profile for
each of the 74 sites during a clear-sky day in August, where
it can be seen that there is significant variation in orientation
across the systems.

Previous studies show that high-frequency variations in PV
generation are less spatially correlated than lower-frequency
variations (Mills and Wiser, 2010). This is mostly due to
cloud movements that can create very localized sudden drops
in PV power production. Therefore, using the raw irradiance
proxy measurements might introduce error in estimating the
power of the unmonitored PV systems. To remove the ef-
fect of high-frequency variations in PV power generation, we
smooth out the individual irradiance proxy active power mea-
surements using a five-minute average filter. Note that if the
averaging period is set too high, then useful information in
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FIG. 3. Normalized power of all 74 PV systems for one clear-sky
day in August. The PV power is normalized by the maximum PV
generation of each site on that particular day.

the irradiance proxy measurements that would otherwise help
inform the PV disaggregation will be lost. We selected an av-
eraging period of five minutes because this was also the case
in the previous work Kara et al. (2018). Investigating the ef-
fect of the averaging period on algorithm performance is left
for future work.

D. Assumptions on Availability of Measurements

In Section III, five variants of the proposed PV disaggre-
gation method will be presented. All variants assume ac-
cess to real-time aggregate active and reactive power measure-
ments at the feeder head, as well as irradiance proxy measure-
ments (active power of one or more PV systems). Real-time
here is relative to the desired resolution of the disaggregated
PV profile. For example, to disaggregate PV power with 1
minute resolution, the measurements should be received ev-
ery 1 minute or faster. Two of the method variants additionally
assume access to ambient temperature measurements, which
of course can be updated at a lower frequency (e.g., every 15
minutes or 1 hour). Theoretically, the proposed method can
work with only the above mentioned measurements, i.e. even
if a large portion of the PV systems are not monitored at all.

However, as it will be shown in Sections III and IV, PV
disaggregation is formulated as a multi-objective optimization
problem and good performance is conditional on appropri-
ate tuning of the objective function’s weighing factors. For
weight tuning purposes, access to separate ground truth data
of aggregate PV active power and aggregate load active power
at the feeder head is essential. This requires active power data
to be collected locally at each PV station and sent periodically
to the central location hosting the PV disaggregation method.
Nevertheless, weight tuning and thus access to locally moni-
tored PV data is required very infrequently (e.g. on an annual
basis), which drastically reduces communication burden, as
discussed in Section IV I 2.

III. PV DISAGGREGATION METHOD

A. Basic Modeling

We use a linear model to capture the dependence between
the PV power PPV,t and the irradiance proxy φt (i.e. the active
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FIG. 4. Time series of dependent and independent variables of the
regression in January. Top: PV power vs irradiance proxy. Bottom:
Load active power vs aggregate reactive power.
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FIG. 5. Time series of dependent and independent variables of the
regression in August. Top: PV power vs irradiance proxy. Bottom:
Load active power vs aggregate reactive power.

power measurements from the nearby monitored PV system)

PPV,t =CPV,t φt + εPV,t , (1)

where CPV,t is the coefficient on the irradiance proxy, and εPV,t
is the error in PV predictions. Note that the regressor CPV,t
can be time-varying in general in order to capture any domi-
nant intra-day patterns. In principle, time-varying regressors
can help us work around systematic errors that occur in case
of inverter clipping or if the orientation, tilt, or shading condi-
tions of the irradiance proxy are significantly different to the
ones of the non-monitored PV system. For example, using
time-varying regressors allows us to correct for the fact that
the peak power of a non-monitored PV system with west ori-
entation will come later in the day compared with a nearby
PV system with east orientation.

The load active power consumption PL,t is modeled in a
similar way using

PL,t =CL,t QPMU1,t +RL,t + εL,t , (2)

where CL,t is the coefficient on the aggregate reactive power
measured by PMU 1 (QPMU1,t ), RL,t is an intercept term that



6

0.0 0.2 0.4 0.6
Feeder head reactive power (MVar)

2.5

3.0

3.5

Lo
ad

 a
ct

iv
e 

po
we

r (
M

W
)

R2 =0.35

January

0 20 40 60 80
Irradiance proxy (kW)

0

2

4

6

PV
 p

ow
er

 (M
W

)

R2 =0.76

January

FIG. 6. Testing of linear dependence hypothesis in January. Left:
Load power vs aggregate reactive power. Right: PV power vs irradi-
ance proxy.
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FIG. 7. Testing of linear dependence hypothesis in August. Left:
Load power vs aggregate reactive power. Right: PV power vs irradi-
ance proxy.

represents purely resistive load in the system, and εL,t is the
error in load predictions. The aggregate reactive power is a
good proxy for the load active power as it captures its depen-
dence on the power factor. Note that PL,t is assumed to be
positive and PPV,t negative in the rest of the paper.

To justify the used linear regression models, Figs. 4 and
5 plot the PV and load power (from the single PV system
case study) together with their respective regressors, whereas
Figs. 6 and 7 present the same data in the form of scatter plots.
It can be seen that the linear correlation between the PV power
and irradiance proxy is strong in August, and weaker in Jan-
uary (but still significant). Of course, there exist differences in
the patterns of PV power and irradiance proxy in both months
due to passing clouds and different orientations and tilt angles.
The dependence between the load power and reactive power at
the feeder head is notably linear in August, but rather weak in
January when the reactive power time series is noisy, as shown
in Fig. 4. These differences are expected to require separate
parameterization and tuning of the disaggregation problem for
each of the considered months.

B. Temperature as Additional Regressor

Model (2) assumes access to exactly the same data sources
as in Kara et al. (2018), namely Phasor Measurement Unit
(PMU) measurements. In this section, we add ambient tem-
perature Ta,t as an additional regressor, which leads to the fol-
lowing updated linear load model

PL,t =CL,t QPMU1,t +C̃L,t Ta,t +RL,t + εL,t , (3)

where C̃L,t is the ambient temperature linear coefficient. Note
that ambient temperature was also considered in the recent
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FIG. 8. Load active power versus ambient temperature in January
(top) and August (bottom).
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FIG. 9. Testing of linear dependence hypothesis between load active
power and ambient temperature. Left: January. Right: August.

work Tabone, Kiliccote, and Kara (2018), which focused on
the problem of estimating the production of individual behind-
the-meter PV systems using substation measurements and
data from Advanced Metering Infrastructure (AMI). In con-
trast, this paper focuses on estimation of aggregated PV power
at the substation level and thus AMI information is not re-
quired.

In Fig. 8 we plot the load power against ambient tempera-
ture data from a nearby weather station (we show only 3 days
for each month). The full monthly data are shown in the scat-
ter plots of Fig. 9. Note that the raw ambient temperature data
have a resolution of 1 hour, and are up-sampled to 1 minute us-
ing linear interpolation. Observe that the correlation between
ambient temperature and load power is positive and strong in
August, likely due to increased operation of air conditioning
loads. The correlation is negative and weaker in January, pos-
sibly due to operation of space heaters.

Even though the ambient temperature does not affect the
short-term variations in PV power, it can in principle improve
disaggregation performance by capturing any temperature-
dependent loads. In Section IV E 2, we will investigate in
simulation the benefit of adding ambient temperature as an
additional regressor in the load model only.
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C. Contextually Supervised Source Separation (CSSS)

PV and load disaggregation can be achieved by first com-
bining the models (1) and (2) to predict the aggregate active
power measured by PMU 1

PPMU1,t = PL,t +PPV,t (4)

using ordinary least squares, and then reconstructing the PV
and load profiles by assuming εL,t � εPV,t , as done in Kara
et al. (2018). The authors of Kara et al. (2018) present also an-
other approach to reconstruct the PV and load profiles, which
distributes εL,t and εPV,t systematically, and is based on the
CSSS methodology originally proposed in Wytock and Kolter
(2014). In the following, we modify the general formulation
from Kara et al. (2018); Wytock and Kolter (2014) for the PV
disaggregation problem at hand.

CSSS disaggregates the measured PPMU1,t to the unknown
signals (or sources) PL,t and PPV,t by solving the optimization
problem

min
x

αPV · `(εPV,t)+αL · `(εL,t) + (5a)

βPV ·h(CPV,t)+βL ·h(CL,t ,C̃L,t ,RL,t) + (5b)
γPV ·g(PPV,t)+ γL ·g(PL,t) (5c)

s.t. PPMU1,t = PL,t +PPV,t , ∀t (5d)
PPV,t ≤ 0, ∀t (5e)
PL,t ≥ 0, ∀t , (5f)

where x = {PPV,t ,PL,t ,CPV,t ,CL,t ,C̃L,t ,RL,t}. The objective
function consists of three terms. The function ` in (5a) is
called loss function and penalizes the error between the re-
constructed signals and the linear models (1) and (2). The
weighting factors αPV and αL are design parameters and de-
termine how much the modeling errors influence the objective
function. Specifically, a relatively higher αPV weight forces
the optimizer to trust the PV model more than the load model,
and vice versa. In contrast to Kara et al. (2018) that consid-
ered only the `2 norm, in this paper we consider both `1 and
`2 norms as loss functions. The function g in (5b) is a regu-
larization term that captures additional contextual information
on source signals, such as smoothness. The function h in (5c)
is another regularization term on the linear model parameters
to avoid overfitting, which is important in case time-varying
regressors are used. Expressions for the functions g and h will
be given in Sections IV C and IV D. The weighting factors
βPV, βL, γPV and γL are design parameters and reflect the level
of confidence on the contextual information on PV and load
profiles. Although included in the mathematical formulation,
the regularization functions g and h were not considered in the
numerical simulations presented in Kara et al. (2018).

Constraint (5d) ensures that the disaggregated signals re-
cover the measured aggregate signal. Constraint (5e) requires
that the PV signal is negative, whereas (5f) requires that the
load signal is positive, which is the convention used in this
paper. Note that constraints (5e) and (5f) were not included
in the formulation of Kara et al. (2018). In Section IV, we
will investigate the effect of adding these constraints on dis-

aggregation performance. Optimization problem (5) is im-
plemented in Python and solved using the MOSEK solver
through a CVXPY interface (Diamond and Boyd, 2016). Note
that only daytime is included in the optimization problem. Re-
sults on computational cost are reported in Section IV F.

D. CSSS for the Distributed PV Case with Multiple
Irradiance Proxies

As mentioned in Section II C, more than one irradiance
proxies might be used in case of distributed PV systems with
various orientations. In this case, the PV model will look like

PPV,t =C(1)
PV,t φ

(1)
t + . . .+C(Np)

PV,t φ
(Np)
t + εPV,t , (6)

where φ
(i)
t is the ith proxy and C(i)

PV,t is its regressor. Equation
(6) implies that only one source signal is used for the total
PV power production. An alternative approach would be to
consider separate PV source signals for each of the orienta-
tions modeled by the Np individual proxies. In that case, Np
different PV models would be needed

P(i)
PV,t =C(i)

PV,t φ
(i)
t + ε

(i)
PV,t , (7)

with i ∈ [1,Np]. The advantage of (7) is that it distributes the
prediction errors ε

(i)
PV,t separately for each orientation. The

disadvantage is an increased number of terms in the objective
function of (5) and the associated increased weight tuning bur-
den. One possible solution is to determine the weighting fac-
tors proportionally to the percentage of PVs with each orienta-
tion, however, orientation information might not be available
for all PVs. Due to these complexities, the simpler approach
of (6) was used in this paper.

IV. RESULTS

A. Error Metrics

The performance of PV disaggregation is evaluated using
the Root Mean Squared Error (RMSE) as a metric, which is
defined as

RMSE =

√
∑

T
t=1(P̂PV,t −PPV,t)2

T
, (8)

where PPV,t is the actual PV power, P̂PV,t is the estimated PV
power, and T is the number of data points. In addition, we
use two different definitions of the normalized Root Mean
Squared Error (nRMSE). In the first definition, the absolute
RMSE value is normalized by the average value of load power
in the considered period of time, P̄L, as follows

nRMSE1 =
RMSE

P̄L
. (9)
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FIG. 10. Dependence of disaggregation RMSE on the αL/αPV ratio,
with and without sign constraints. The top plots show results using
`1 norm as loss function, whereas the bottom plots use `2 norm. The
left plots are for January, whereas the right ones are for August.

In the second definition, the total installed PV power, PPV,inst,
is used for the normalization as follows

nRMSE2 =
RMSE
PPV,inst

. (10)

B. Choice of Loss Function

In this section, we investigate the dependence of disaggre-
gation performance on the choice of loss function (`1 or `2
norm) and the weighting factor values, as well as on whether
the sign constraints (5e) and (5f) are included or not. The anal-
ysis is performed separately for each month, which results in
four sets of simulations: (i) `1 norm in January, (ii) `2 norm in
January, (iii) `1 norm in August, and (iv) `2 norm in August.
For each of these cases, simulations are performed with and
without sign constraints, whereas the αL/αPV ratio is varied
in the range [10−3,103] (with min[αL,αPV] = 1). For the sim-
ulations of this section, the regularization terms (5b) and (5c)
are omitted.

The simulation results are presented in Fig. 10, where the
prediction RMSE is plotted as a function of the αL/αPV ratio.2

The solid lines correspond to the full set of thirty-one days for
each of the two months. The shaded areas show the RMSE
range covered by each of the considered ten training sets, as
described in Section II B. The best αL/αPV ratios and corre-
sponding minimum RMSEs for each case are summarized in
Table III.

A first observation is that larger αL/αPV ratios tend to de-
crease the prediction errors, which means that the linear re-

2 Timeseries results for the disaggregated PV and load signals will be shown
in Section IV F together with the other CSSS variants presented later in the
paper.

TABLE III. The best αL/αPV ratios and corresponding RMSEs (in
kW, in % of average load P̄L, and in % of installed PV power PPV,inst)
with `1 and `2 norm for loss function in January and August.

January August
sign constraints no yes no yes

` 1
no

rm RMSE (kW) 376 423 480 508
nRMSE1 (% of P̄L) 12.3 13.8 9.7 10.3

nRMSE2 (% of PPV,inst) 5.0 5.6 6.4 6.8
αL/αPV 5 5 1 1

sign constraints no yes no yes

` 2
no

rm RMSE (kW) 472 500 555 650
nRMSE1 (% of P̄L) 15.4 16.4 11.3 13.2

nRMSE2 (% of PPV,inst) 6.3 6.7 7.4 8.7
αL/αPV 5 5 1 1

gression model for the load should be generally trusted more
than that for the PV. The best αL/αPV ratio depends on the
month: it is 5 in January and 1 in August. Using a higher
αL/αPV ratio in January can be justified by the fact that the
linear dependence between the PV power and irradiance proxy
is weaker, as shown in Fig. 6, given increased short-term cloud
cover. A second observation is that using `1 norm as loss func-
tion gives consistently better results compared with `2 norm.
Specifically, using the average load power for each month
(3,056 kW in January and 4,931 kW in August) for nor-
malization, the normalized RMSE (nRMSE) decreases from
15.4% in January and 11.3% in August with `2 norm to 12.3%
in January and 9.7% in August with `1 norm. Table III addi-
tionally presents the normalized RMSEs obtained using the
installed PV power for normalization (7.5 MW). Note that the
nRMSEs in August are smaller than those in January due to
the stronger linear correlations in August, as shown in Sec-
tion II. Last, we find that omitting the sign constraints (5e)
and (5f) gives better results, which is counterintuitive.

Using an `2 norm without sign constraints is exactly the
same disaggregation method as the one implemented in Kara
et al. (2018), which reported an nRMSE of 6% (normalized
by the installed PV power). The nRMSEs computed here are
slightly higher (6.3% kW in January and 7.4% kW in August).
This discrepancy is due to the different data sets used in the
two works, as well as the fact that the PV data for the irradi-
ance proxy were filtered using a 5-minute filter before being
used in CSSS in Kara et al. (2018), but not in this paper.

C. Source Regularization

The goal of this section is to investigate to what extent
adding the source regularization terms (5c) improves perfor-
mance. Source regularization penalizes the difference be-
tween two consecutive values of the source signal3, and we

3 Recall that the CSSS optimization problem is formulated and solved con-
sidering only daytime. Therefore, the source signal time series include
discontinuities from evening of day d to morning of day d + 1. Special
care has been taken to avoid penalizing these discontinuities in (11).
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FIG. 11. The dependence of RMSE on load regularization factor γL,
with and without sign constraints. The top plots show results using
`1 norm, whereas the bottom plots use `2 norm. The left plots are for
January, whereas the right ones are for August.

consider both `1 norm and `2 norm as penalty functions, i.e.

g(PL,t) = diff(PS,t)∗ , (11)

where diff is the vector difference operator, PS,t is either PL,t
or PPV,t , and ∗ is either 1 or 2. Based on the results of Sec-
tion IV B, we use `1 norm as loss function and fix αL/αPV to
5 in January and 1 in August. Similarly to Section IV B, the
simulations are performed with and without sign constraints.

Preliminary simulations showed that source regularization
helps if applied only to the load demand but not the PV gener-
ation. This can be explained by the fact that (except for cloud-
free days) the load demand profile is generally smoother in
comparison with the PV power profile. Therefore, we set
γPV = 0, vary γL in the range [0,5] for `1 norm and in the
range [0,175] for `2 norm (these ranges were identified with
trial and error), and present the results in Fig. 11. The best γL
and corresponding RMSEs for each case are summarized in
Table IV.

TABLE IV. The best γL weighting factors for load power regulariza-
tion and the corresponding minimum RMSE (in kW, in % of average
load P̄L, and in % of installed PV power PPV,inst) values with `1 norm
and `2 norm for source regularization in January and August.

January August
sign constraints no yes no yes

` 1
no

rm RMSE (kW) 302 317 336 344
nRMSE1 (% of P̄L) 9.9 10.4 6.8 7.0

nRMSE2 (% of PPV,inst) 4.0 4.2 4.5 4.6
γL 1.25 4 1.75 1.75

sign constraints no yes no yes

` 2
no

rm RMSE (kW) 315 384 332 335
nRMSE1 (% of P̄L) 10.3 12.6 6.7 6.8

nRMSE2 (% of PPV,inst) 4.2 5.1 4.4 4.5
γL 110 130 40 40

Observe that the `1 norm for load regularization achieves
better results in January, whereas the `2 norm performs bet-
ter in August. Nevertheless, the `1 norm has smaller variance
in the γL values that achieve optimal performance in compar-
ison with the `2 norm, as shown in Table IV. Furthermore,
omitting the sign constraints gives better results (especially in
January), but the differences are small if the `1 norm is used.
However, note that adding the sign constraints increases ro-
bustness to non-optimal selection of the γL value: with refer-
ence to Fig. 11, the worst-case RMSEs with sign constraints
are smaller as γL approaches 5. Based on these findings, we
suggest using `1 norm for load regularization, and including
the sign constraints to reduce the risk of getting bad results.

D. Time-Varying Regressors and Regressor Regularization

In this section, we investigate the effect of using time-
varying regressors in the linear models (1) and (2), which were
assumed to be time-invariant in the analysis so far. For this
purpose, we split the day into a number of time windows and
allow the optimization to determine different regressor val-
ues for each window. Clearly, this gives an additional degree
of freedom when fitting the models, but at the same time in-
creases the risk of overfitting.4 Therefore, we penalize the
regressor changes from one window to the next one by using
the following regularization terms

h(CPV,t) = diff(CPV,t)1 (12a)
h(CL,t ,RL,t) = diff(CL,t)1 +diff(RL,t)1 . (12b)

We investigate the following cases of using time-varying
regressors: (i) only for the PV model, (ii) only for the load
model, and (iii) for both models. For each case, we run sim-
ulations with different number of windows while varying the
weighting factors βPV and/or βL in the range [0,106]. Note
that the ranges of βPV and βL are several orders of magni-
tude larger than those of αL, /αPV and γL, because they pe-
nalize regressors with numerical ranges smaller than those of
the source signals (load and PV profiles). To keep the to-
tal number of simulations reasonable, only the full data sets
in January and August are used in this investigation, i.e. the
training sets are not considered. The `1 norm is used as loss
function with αL/αPV fixed according to Table III, and source
regularization for load demand is also used as in Section IV C.

Fig. 12 presents the results for January and August with re-
gressor regularization applied only to the PV power profile.
In January, the lowest errors are obtained when using 2 win-
dows and weighting factors in the range 0− 104. In August,
2 windows and a weighting factor of 104 are the best options,
whereas increasing the number of windows reduces perfor-
mance significantly. Overall, the contribution of time-varying

4 In addition, non-negativity and non-positivity constraints were imposed to
the load power and PV power regressors, respectively. Adding these con-
straints in (5) did not have a major effect in the results; however, it was
shown to avoid unrealistic solutions if smaller data sets are used.
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FIG. 12. Disaggregation performance for different combinations of
time windows and regularization factors for solar power in January
(top) and August (bottom).

regressors is relatively small in this case study: in January,
RMSE reduces from 317 kW to 310 kW (2% improvement),
whereas in August, it reduces from 344 kW to 320 kW (7%
improvement).

Although some general patterns are visible in Fig. 12,
RMSE does not vary smoothly with βPV and the number of
windows, but instead local minima can be observed. For ex-
ample, six windows perform worse than five but better than
seven in August. Such local minima are more pronounced
with smaller βPV values and suggest overfitting issues. For a
given number of windows, when we increase βPV towards the
boundary value of 106 we approach the one-window solution,
which is to be expected due to the large penalty on regressor
value changes. Finally, using time-varying regressors for load
power only or for both PV and load power gives worse results,
which are omitted for brevity.

E. Additional Regressors

1. Overview

In this section, we investigate the performance of three vari-
ants of the CSSS optimization problem (5). The first variant
uses the extended load model with dependence on ambient

TABLE V. Disaggregation RMSE for the basic model, the model
with ambient temperature (T a) as a regressor, the model with sepa-
rate regressors for weekdays and weekends (Day-of-Week - DoW -
index), and the model with both T a and DoW. The cases A, B and C
are defined in Section IV E.
Case January (RMSE in kW) August (RMSE in kW)

Basic model T a DoW Both base case T a DoW Both
A 423 364 206 189 508 528 529 517
B 317 263 202 205 344 343 369 379
C 310 243 201 199 320 334 331 358

temperature, the second variant allows the optimal solution
to comprise different regressors for weekdays and weekends,
and the third variant is a combination of the first and second
variants.

The three CSSS variants are compared with the original
CSSS formulation that uses the basic model (2). The com-
parison is performed for the following cases of the CSSS op-
timization problem formulation:

(A): Loss function only

(B): A + Source regularization for load power

(C): B + Time-varying regressors + Regressor regularization
for PV power.

The weighting factors for loss function and regularization
terms, as well as the number of windows for time-varying re-
gressors, are fixed to the optimal values identified with the
previous analyses.

2. Ambient Temperature

Table V compares the solar disaggregation results of the ba-
sic load model (2) with those of the load model (3) with am-
bient temperature as an additional regressor. In January, using
ambient temperature reduces the RMSE in all cases (error re-
duction in the range 14− 23%), however, RMSE increases
slightly in August. With reference to Figs. 8 and 9, this result
might seem counterintuitive at the first glance, because the
linear dependence between load power and ambient temper-
ature is much stronger in August than in January. Neverthe-
less, this result can be explained by comparing the R2 values
shown in Figs. 6, 7 and 9. In August, the correlation of load
power with reactive power measured at feeder head is very
high (R2 = 0.93) and higher than the correlation with ambient
temperature (R2 = 0.79), and both correlations are positive. In
January, the correlation of load with reactive power is rather
low (R2 = 0.35), and even though the correlation with ambi-
ent temperature is lower (R2 = 0.2), the overall performance
improves because the correlation directions of the two inde-
pendent variables are opposite.
3. Separate Regressors for Weekdays and Weekends

Since there is typically a weekday-weekend pattern in load
demand, we investigate using different optimization variables
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TABLE VI. Parameters of the different linear models used in January (linear coefficients for aggregate reactive power and ambient temperature,
and intercept terms), RMSE and solution time.

Case Load model PV model RMSE Improve- Time
CL C̃L RL CPV,t (kW) ment (%) (s)

A 2.04 − 2812.64 −100.96 423 N/A 2.6
B 0.80 − 2945.60 −93.19 317 25.1 1.4
C 0.85 − 2927.79 −96.17 −89.36 310 26.7 1.4
D 0.94 −26.54 3212.23 −94.62 −85.78 243 42.6 1.6

E
1.24 ·10−6 −10.88 3400.90 −90.60 −85.90 199 53.0 1.7−1.68 ·10−6 3.15 2366.95

TABLE VII. Parameters of the different linear models used in August (linear coefficients for aggregate reactive power and ambient temperature,
and intercept terms), RMSE and solution time.

Case Load model PV model RMSE Improve- Time
CL C̃L RL CPV,t (kW) ment (%) (s)

A 2.55 − 1524.34 −107.08 508 N/A 2.5
B 2.48 − 1487.38 −104.28 344 32.3 1.9
C 2.31 − 1659.11 −107.08 −96.41 320 37.0 2.0
D 2.36 −7.51 1782.19 −106.91 −96.02 334 34.3 2.1

E
2.75 −49.03 2330.37 −106.39 −97.06 358 29.5 2.1
2.42 21.19 1110.97

for the regressors of weekdays and weekends. We simulate
cases A, B and C as described in Section IV E and report the
results in Table V. In August, the results are slightly worse
compared with the basic model, but in January they are sig-
nificantly better (also better than those obtained when using
ambient temperature as regressor). The reason is that the rel-
ative difference between average load power in weekdays and
weekends is larger in January (see Figs. 13 and 14). Finally,
Table V also shows simulation results with both modifications
of this section applied (ambient temperature and weekday-
weekend dependence). Note that combining the two modi-
fications does not improve performance in August. However,
there is a further improvement in the results in January.

F. Disaggregation and Computational Cost Results of
Selected Models

We present the fitted linear model parameters and time-
domain disaggregation results for cases A - C of Section IV E,
as well as for the following cases:

(D): C + Ambient temperature as additional regressor

(E): D + Separate regressors for weekdays and weekends.

The model parameters are given in Tables VI and VII for
January and August, respectively. The two values for CPV,t
for cases C, D and E correspond to the two time windows
used. The first row of case E shows the load model param-
eters for weekdays, whereas the second row corresponds to
weekends. The RMSE values are repeated for convenience
and the relative improvements with respect to Case A (sim-
plest formulation with loss function only) are computed.

The time needed to solve the CSSS disaggregation problem
for the full month is also shown in Tables VI and VII. The
optimization problem is solved using a laptop with 6 cores,
2.6 GHz processor base frequency, and 16 GB RAM. The fast
solution times allow the method to be used for nearly real-
time PV disaggregation purposes. It is interesting to note that,
besides improving disaggregation performance, the enhance-
ments of cases B - E also reduce solution time with respect
to the base formulation of case A, despite the fact that the
objective function is more complex and/or the decision vec-
tor is larger. This is due to the enhancements of cases B - E
that make the objective function “steeper" and increase con-
vergence rate to the optimal solution.

The load and PV measured data as well as the estimated
time series with CSSS for all five cases are plotted in Figs. 13
and 14 for January and August, respectively. We can see that
Case A results in the largest discrepancies between the esti-
mated and actual load and PV power. In January, the best
results are achieved in Case E, mainly by improving load dis-
aggregation on Saturday and Sunday. However, the applied
weighing factor for source regularization (γL = 4) might be
too high for Case E, as indicated by the flat lines in estimated
load power at daytime (especially on the weekend). Note that
the jumps in estimated power that often appear around 08:00
and 17:00 are due to the fact that CSSS disaggregation is ap-
plied for daytime only. In August, the PV and load profiles are
generally smoother. Note that disaggregation errors increase
in Case A at intervals with spikes in PV power output, e.g.,
around 09:00 - 10:00 on Thursday, August 4. On the other
hand, Cases B - E produce smoother results and reduce disag-
gregation error.

In summary, the proposed method’s RMSE is 3.5% on av-
erage (2.6% in January and 4.3% in August), which is lower
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FIG. 13. Actual and disaggregated load power (left plots) and PV power (right plots) for one week in January. Disaggregation results are
shown for cases A - E of Table VI.

compared with the earlier work Kara et al. (2018) that re-
ported an RMSE of 6% on a three-day dataset. The previously
mentioned RMSE values are normalized by the installed PV
power, which is 7.5 MW in both cases. Nevertheless, when

applying the method of Kara et al. (2018) on the dataset used
in this paper, the resulting RMSE was found to be 6.9% on av-
erage (6.3% in January and 7.4% in August). Therefore, the
proposed method was shown to improve disaggregation per-
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FIG. 14. Actual and disaggregated load power (left plots) and PV power (right plots) for one week in August. Disaggregation results are shown
for cases A - E of Table VII.

formance by approximately 50% compared with Kara et al.
(2018) under the same testing conditions.

G. Benchmarking against a Transposition Model

In order to benchmark the proposed approach against a
commonly used transposition model, we use PVLIB (Holm-
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TABLE VIII. RMSE for the proposed CSSS-based Case E and a
common transposition-based approach.

January RMSE (kW) August RMSE (kW)
Case E 199 358

Transposition 890 649

gren, Hansen, and Mikofski, 2018) to simulate the power out-
put for two tilt/azimuth configurations given by the main PV
system and the proxy shown in Table I. All other properties are
fixed using the Typical Meteorological Year (TMY) data sets
from the National Solar Radiation Data Base (Wilcox, 2007)
as input. The ratio of the simulated power generation profiles
defines the time varying correction factor

corrt =
Ptilt=7.5◦, azimuth=180◦

TMY,t

Ptilt=20◦, azimuth=195◦
TMY,t

. (13)

This correction factor time series is then interpolated to 1-
minute resolution and used to estimate the active power gen-
eration of the unmonitored PV system based on the recorded
power output of the PV proxy. The reasoning behind this
approach is that corrt compensates for the differences in
tilt/azimuth between our reference system and that we wish
to estimate. Therefore, estimation is performed using

PPV,t = η corrt φt , (14)

where η is a scaling parameter capturing the different power
ratings of the two PV systems. We place no assumptions
regarding the capacity of both systems but rather perform a
linear regression to determine the optimal value of η , given
the transposition corrected proxy measurements, corrt φt , as
the input and PPV,t = PPMU2,t as the output, i.e. the PMU-
measured power output of the main system. The RMSE of
the transposition approach is then given as the RMSE of this
fit. The scaling parameter η was allowed to be different for
January and August.

The performance of this transposition model is compared
to the CSSS-based Case E disaggregation method in Ta-
ble VIII. For both months the proposed approach outperforms
the transposition-based model with the performance differ-
ence larger in January due to the transposition suffering from
localized short-term cloud cover in both locations.

H. Effect of Dynamic Power Factor under Volt-Var Control

As the integration of smart PV inverters with advanced con-
trol capabilities (such as virtual inertia with grid-forming con-
trol or reactive power control for voltage regulation) is ex-
pected to increase, it is interesting to investigate the perfor-
mance of the proposed PV disaggregation method in such a
scenario. Specifically, the performance might decrease be-
cause the load model in (2) does not account for provision of
grid services by the PV systems.

In this paper, we focus on reactive power support in the
form of Volt-Var control based on local voltage measure-
ments. We assume that the inverter of the RPU PV system

TABLE IX. Comparison of disaggregation RMSE (kW) with and
without Volt-Var control in August.

Disaggregation Case
Simulation Scenario A B C D E

(I). No Volt-Var 508 344 320 334 358
(II). With Volt-Var 518 396 462 399 378

RMSE increase w.r.t. (I) in % 3.5 15.1 44.4 19.5 5.6

provides reactive power compensation up to 20% of its rated
apparent power capacity (i.e. Qmax = 1500 kVar), the voltage
setpoint is 0.99 p.u., and the Volt-Var deadband is±0.5%. On
the contrary, the irradiance proxy PV system does not react
to voltage measurements. As a result, the RPU PV operates
under a time-varying power factor and thus the scaling ratios
between the two PV systems will be affected. In addition,
the aggregate reactive power measurements at the feeder head
will be distorted and thus the PV disaggregation task will now
be harder. Using this setup, we run simulations for August
and report the results in Table IX and Fig. 15.
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FIG. 15. Simulation results for Case E in August with and without
Volt-Var (VV) control from the PV inverter. First plot: Voltage pro-
file and Volt-Var curve parameters. Second plot: Aggregate reactive
power at the feeder head. Third plot: Load disaggregation (the leg-
end corresponds to the naming convention of Table IX). Fourth plot:
PV disaggregation.

Scenario I in Table IX corresponds to the results of Ta-
ble VII which are repeated here for convenience, whereas Sce-
nario II assumes that the inverter provides Volt-Var control.
As expected, performance degrades under Volt-Var control,
especially in Case C. However, note that RMSE increases by
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not more than 20% for Cases B and D, and by not more than
6% for Cases A and E. Since Case E is the formulation pro-
posed for implementation, these results indicate that PV dis-
aggregation can also be applied for inverters operating under
dynamic power factors. In future work, it would be interesting
to investigate potential improvements by adding voltage mea-
surements as an additional regressor in the load demand model
of the PV disaggregation problem. This modeling is motivated
by the fact that the aggregate reactive power is affected by the
inverter’s reactive power injection, which in turns depends on
the voltage.

I. Disaggregation Performance with Distributed PV Systems

1. Analysis of Weighting Factors and Number of Proxies

In this section, we present simulation results for the case of
distributed PV systems. As a first step, we sweep the weight-
ing factors of CSSS problem for the distributed PV system
case to identify how their optimal values compare to those of
the single PV system case. To reduce the number of simu-
lations, we apply the load model with ambient temperature
and weekday-weekend dependence for all parameter sweeps,
use the `1 norm for the loss function and regularization, and
activate the sign constraints (5e), (5f). These settings are mo-
tivated by their superior performance in the single PV sys-
tem case. Furthermore, the analysis is performed with one PV
proxy with South-West orientation, i.e. we assume that only
one PV system is monitored. We sequentially sweep αL/αPV,
γL, and βPV and fix the optimal result of each parameter sweep
for the next one.

The results are shown in Figs. 16, 17 and 18. The opti-
mal values of αL/αPV turn out to be exactly the same as in
the single PV system case, i.e. 5 in January and 1 in August.
The optimal range for γL is 4− 5.75 in January and 1− 1.5
in August, which are close to the respective ranges for the
single PV system case. As far as the time-varying regressors
are concerned, RMSE is much less sensitive to the number of
time windows and the βPV factors compared with the results
of Fig. 12. In January, exactly the same optimal parameteriza-
tion with the centralized PV case is obtained (2 windows and
β = 0), and the minimum disaggregation RMSE is 197 kW,
i.e. practically the same with that of the centralized case (Ta-
ble VI). In August, 3 windows and β = 106 are optimal; how-
ever, note that the parameterization from the centralized case
(2 windows and β = 104) also improves performance com-
pared with using no time windows. Interestingly, the mini-
mum disaggregation RMSE in August is 234 kW, which is
significantly lower than that of the centralized PV case (Ta-
ble VII).

In a second step, we investigate how disaggregation per-
formance depends on the number of irradiance proxies, i.e.
on the number of monitored PV systems. Note that, besides
the total number of proxies, their orientation is also an im-
portant factor and it follows the distribution shown in Ta-
ble II. Out of the Norient = 6 possible orientations, the dom-
inant one is South-West, followed by South and West orien-
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FIG. 16. Dependence of disaggregation RMSE on the αL/αPV ratio
for the distributed PV system case in January and August.
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FIG. 17. Dependence of disaggregation RMSE on the γL factor for
the distributed PV system case in January and August.

tations, whereas there are only a few PV stations with other
orientations. Intuitively, one would expect that disaggregation
performance improves if: (i) the PV systems used as prox-
ies reflect the distribution of orientations from Table II; and
(ii) all possible orientations are included in the set of proxies.
For this purpose, we use the following sequential approach to
select the PV systems that will be used as proxies for each
simulated case of total number of proxies (Np, j):

• If Np, j ≤ Norient, then we select Np, j PV systems with
different orientations following the descending order of
Table II.

• If Np, j > Norient, then the set of proxies contains the
j−1 PV systems already selected for the previous case
(number of proxies equal to Np, j−1), as well as a new
PV system that is randomly sampled from the discrete
probability distribution of Table II.

The simulation results are shown in Fig. 19 for January and
August. In January, cases B - E considerably outperform the
base Case A for any percentage of monitored PV systems.
In August, however, the situation is different. Cases D and
E perform better than Case A up to an approximately 15%
percentage of monitored PV systems, whereas Case A is best
afterwards. With the exception of using only one proxy, Cases
B and C are worse than Case A. Furthermore, note that using
only 1 or 2 proxies gives the best results for both months. This
might be counter-intuitive, as one would expect the disaggre-
gation error to generally decrease with more irradiance prox-
ies. However, recall that the first and second proxies are PV
systems with South-West and South orientations, respectively,
which collectively represent the orientations of 83% of all PV
systems. Therefore, a few proxies are sufficient to estimate
the total PV power, whereas using additional proxies weighs



16

FIG. 18. Distributed PV system case: disaggregation performance
for different combinations of time windows and regularization fac-
tors for solar power in January (top) and August (bottom).

disproportionately uncommon orientations and consequently
distorts the predictions.

2. Practical Aspects of Weighing Factor Tuning

Overall, our results show that the developed PV disaggrega-
tion method works also for distributed PV systems and that the
disaggregation performance is similar, or even higher, com-
pared with the single PV system case. In particular, the op-
timal weighting factors are generally similar in the central-
ized and distributed PV system cases. As mentioned in Sec-
tion II D, tuning of weighting factors requires access to ag-
gregated PV generation profiles of specific feeders. Obtaining
power generation profiles for all PV installations, however,
may be impractical. Alternatively, a subset of profiles can be
used, with appropriate geographic smoothing (Marcos et al.,
2011; Lave, Kleissl, and Stein, 2013), and scaled up to the
total installed capacity for weight-tuning purposes.

Our results indicate that the optimal weighting factors will
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FIG. 19. Disaggregation results as a percentage of monitored PV
systems for cases A - E for January (top) and August (bottom).

be different for each season or even each month. In addition,
since PV disaggregation is formulated as a multi-objective op-
timization problem and the weighting factors are optimized
for a base-case system setup, disaggregation performance
might degrade if the same weighting factors are used for sig-
nificantly different system setups. Changes in system setup
include increase or decrease of total installed PV power and/or
number of distributed PV systems, changes in tilt or orienta-
tion of some PV systems, growth or reduction of load demand,
etc. Nevertheless, if the algorithm is insensitive to such sys-
tem changes, it would still be possible to come up with op-
timal weighting factors for each month of the year that are
updated infrequently, e.g., on an annual basis. We restrict
our attention to algorithm’s sensitivity to the total installed
PV power, which we vary in the range [−70%,+100%] of
the base case, i.e. the total installed PV power in our dataset.
We then simulate using the CSSS algorithm for Case E with
only one proxy, as this combination achieves very good per-
formance both in January and August.

The simulation results are presented in Fig. 20. In January,
the absolute RMSE increases only marginally for PV power
larger or smaller than the base case. In August, the abso-
lute RMSE consistently increases with the PV power. In both
months, the relative RMSE decreases for PV power larger
than the base case. Note that if the PV power changes within
±25% of the base case, the relative RMSE remains within
±1.25% of the base case’s RMSE. These results show that
the disaggregation performance is rather insensitive to the to-
tal installed PV power. Therefore, this is an indication that it
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FIG. 20. Sensitivity of disaggregation error to total PV power for
Case E using only one irradiance proxy. Top: absolute RMSE. Bot-
tom: RMSE normalized with total installed PV power.

would suffice to optimize the weighting factors infrequently,
e.g., on an annual basis.

V. CONCLUSION

In this paper, we presented a method to disaggregate PV
power from aggregate active and reactive power measure-
ments (e.g., from PMUs connected at the substation or feeder
head). The method also relies on active power measurements
from one or a few nearby monitored PV systems that are used
as irradiance proxies and, in some cases, measurements of am-
bient temperature. The disaggregation was formulated as a
multi-objective optimization problem, which minimizes pre-
diction error of linear regression models and integrates regu-
larization terms for time-varying regressors and the estimated
PV and load source signals. The paper also presented a thor-
ough parametric analysis to identify optimal values for the as-
sociated weighting factors in the objective function, as well as
their seasonal dependence. Simulation results showed that the
method provides accurate estimates of PV power for both the
centralized and distributed PV cases. Specifically, RMSE is
3.5% on average (normalized by installed PV power), which
is 50% lower than that of earlier work Kara et al. (2018). In
the following, we summarize the most important recommen-
dations for practical implementation based on the findings of
our analyses.

• Using the `1 norm for both loss function and regulariza-
tion terms was shown to give better results than the `2
norm.

• The best practice is to apply source regularization only
for the load signal, and use time-varying regressors and
regressor regularization only for the PV signal. Captur-
ing the weekday/weekend dependence of load as well

as its dependence on ambient temperature is recom-
mended.

• The weighting factors in the objective function are sea-
sonal and should be tuned separately for each month.
However, our results indicate that it suffices to perform
tuning infrequently (e.g., on an annual basis) because
the algorithm is not very sensitive to changes in in-
stalled PV power.

• Adding sign constraints for the source signals and re-
gressors was shown to reduce the risk of overfitting and
improve robustness of results.

• For the distributed PV case, it is preferable to use as ir-
radiance proxies only a few (one or two) monitored PV
systems, which represent the most common orientations
in the group of PVs.

Future work can focus on demonstrating the algorithm on
larger data sets that include shoulder months in fall and spring.
In addition, the temperature-dependent load model can be im-
proved by introducing a shifting matrix, or by using a piece-
wise linear model as in Tabone, Kiliccote, and Kara (2018);
Mathieu et al. (2011), to account for the fact that tempera-
ture typically affects load demand with some delay. Further-
more, it would be interesting to investigate the necessity of
using an averaging filter for the irradiance proxies in case of
distributed PV systems, and quantify the effect of the aver-
aging period on the algorithm’s performance. Even though
the results for the single PV system suggest that the method
works also with time-varying power factors, additional work
is needed to investigate its performance for distributed PV
systems with large variability in power factor due to smart
inverter operation for voltage control. Finally, further analy-
sis of the algorithm’s sensitivity to additional system changes,
such as the peak load demand, will help determine more spe-
cific requirements on how often the weighting factors need to
be tuned.
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