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Calculating Process Capability of Circular True Position Tolerances  
ABSTRACT:  There are many occasions where using a two dimensional, true position 

tolerance for a specifying the tolerance of a dimension is preferred to using a standard one-

dimensional plus/minus tolerance. Unfortunately, it is difficult to demonstrate process 

capability for such dimensions. The key challenge is determining the standard deviation of 

the data. For over 30 years, many efforts have been made to determine process capability for 

positional tolerances. In some cases, the authors do not address calculating the standard 

deviation and in others they make errors in the process. This paper calculates a one-

dimensional standard deviation in a non-typical but logical, methodical way, revealing a 

strategy to be easily determine the two-dimensional standard deviation. First find the center 

of the data and then the distance from each point to the center of the data. That distance can 

be used to calculate the standard deviation, but with a slight modification to the customary 

method. The end result is that the standard deviation for true position radius is the RSS of the 

standard deviation of the x and y components. That this technique is used in the field of 

geometric information systems supports its use for quality engineering.  

Keywords: process capability; true position: circular true position 
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1. Main Text Introduction 

 In the medical device industry and others, it is frequently a requirement to establish 

process capability for critical dimensions. Proving a process can operate with a process 

capability index of 1.33 is a common, although not universal, requirement and the method to do 

so for standard plus/minus dimensions is well established. This is not the case for circular true 

position tolerances and numerous attempts have been made. When properly reported in a 

metrology report, the tolerance is given as a diametral value, although often the measured basic 

component dimensions locating the feature are also given. The primary challenge is finding the 

standard deviation. For various reasons which will not be discussed, neither the diametral value 

nor the individual component dimensions can be used. This paper will focus on properly 

calculating the standard deviation for a 2D dataset and then using that to calculate process 

capability. 

a. Previous Attempts 

Many authors have described methods of calculating process capability for true position 

tolerances. Krishnamoorthi (1990) describes a method where he uses the larger standard 

deviation of the two components. He uses that to calculate the area of a circular region of natural 

variability which is a circle whose radius is 3σ. He defines the Cp as a ratio of the area of the 

tolerance region to the area of natural variability. When the area of those two circles are equal, or 

when the diameter of the tolerance region equals 6σ, Cp is 1, as expected. However, if σ is 

halved, we would expect the Cp to be 2 but his formula calculates it as 4. Additionally, the 

method this paper will describe for finding standard deviation yields a value that is larger than 

the standard deviation of either of the x or y components. Therefore, his standard deviation is 

low, overstating process capability. 
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Davis, Kaminsky, and Saboo (1992) establish of method of determining non-conforming 

parts per billion (NCPPB). In the process, they create what they describe as a new process 

capability index which is used to calculate a failure percentage. If desired, a Cpk could be 

extrapolated from the NCPPB but they do not explicitly indicate how to calculate standard 

deviation and it appears they use the value for a single component. Several others, Rodriguez-

Picon, et al (2019), consider the case where the data is not normally distributed and/or has a 

different variation for each axis. In each case, the method of calculating the standard deviation is 

not specified. Tahan and Levesque (2009) use Bothe’s (2006) method of determining the 

standard deviation, which will be shown to be flawed. Phillips and Cho (1998) use Davis, 

Kaminsky, and Saboo (1992) et al’s assumptions about σ. Grau (2009) addresses one sided 

tolerances. Although as reported, true position tolerances can be considered one-sided, when 

considering what they represent, they are not.  Knowles, March, and Anthony (2002) and 

Diplaris and Sfantsikopoulis (2004) look at the more complicated problem of true position 

tolerances that include a maximum material condition modifier. This proposed method does not 

address that case.  

Bothe (2006) proposes formulas for both Cp/Pp and Cpk/Ppk. To calculate short term 

performance capability, Bothe estimates standard deviation by first measuring the change in size 

of consecutively made holes. He then takes the average of those steps and divides by 1.128 to 

determine short term standard deviation. There are two reasons why this is not a good 

approximation. The first is that it depends on the order of the data. Because it measures the 

difference from point to point, if the data were analyzed in a different order, there would be a 

different result. However, since the data is random, this should not make a great difference. The 

more significant problem is that it weights a small movement the same as a large movement. 
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When calculating standard deviation, the distance of each point to the mean is squared so that 

points farther from the mean have a greater impact to the standard deviation. This makes the 

calculated standard deviation to be low. 

To determine long term performance capability, Bothe first calculates the distance from 

each point to the cluster’s (data’s) center, which this method agrees with. He then calculates the 

sample standard deviation and divides by the appropriate c4 factor. It is in his method of 

calculating the sample standard deviation that there is an error resulting in a low value. Two key 

formulas are: 

  σLT = 
1
𝑐ర

ඨ∑ (𝑟𝑖− 𝑟 )
2𝑘

𝑖=1
𝑘−1    (1) 

   and   

  𝜎ොLT,C = ට
∑ (௥಴,೔ି ௥಴ )మೖ

೔సభ

௞ିଵ
 (2) 

Formula (1) is for measuring performance capability (Bothe, 2006, 327) and formula (2) is for 

measuring potential capability (Bothe, 2006, 329). Above, r is the distance from a data point to 

nominal center and rC is the distance from a data point to the center of the data. These are the 

standard formulas for calculating standard deviation but should not be used for true position 

tolerances. To find the standard deviation for a set of data, you need to find the center of the data 

and the distance of each point to that center of the data. For a 1D dataset, the mean does this. For 

a 2D dataset, which a true position tolerance is, you need to find the center of the 2D dataset. In 

the first formula, Bothe calculates the standard deviation of the radial values by using the mean 

of the values instead of the center of the data. An easy way to understand the difference is to 

imagine four points whose values are (1,0), (0,1), (-1,0), and (0,-1). See figure 1. For each point, 
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the radius is 1. Using Bothe’s method, one would report the mean as 1. Looking at the graph, we 

can see the center of that dataset is at (0,0). 

 

Figure 1. 

 

In the second formula, he is closer because 𝑟஼,௜ is the distance from an individual data 

point to the data center. Let’s call it offset. Part of finding the standard deviation is to find that 

offset, which is what rC is, and then square it. Bothe starts in that direction but before squaring 

the offset, he subtracts from it the mean of the offsets, necessarily reducing the calculated value 

of standard deviation to something below the actual standard deviation.  

 Finally, it must be noted that Krystek (2010) arrives at functionally the same formula for 

calculating Cpk as the following approach describes. Unfortunately, he assumes a standard 

deviation in his paper but does not describe how to calculate the standard deviation for a 

particular set of true position data. This paper will provide an appropriate method to calculate 

standard deviation. It also describes an alternative method to derive the Cp and Cpk formulas 

showing their similarity to the 1D case. 
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2. Method 

 Given a standard deviation and tolerance, it is well known how to calculate the process 

capability indices. The formulas are: 

  Cp = 
୙ୗ୐ – ୐ୗ୐

଺஢
 , Cpk = 

min (USL−µ),( µ−LSL)

3σ
   (3,4) 

For convenience, this paper will use Cp and Cpk when referring to process capability in general, 

although the same method can be properly applied to Pp and Ppk. However, when seeking the 

standard deviation for a true position tolerance, because it is 2D data, the standard formula for 

calculating standard deviation cannot be used. To determine how to calculate the standard 

deviation for true position tolerances, this paper will describe the method of calculating process 

capability for standard dimensions but in an unorthodox and very methodical manner. In parallel, 

the method for calculating process capability of true position tolerances will be given to show 

that the two methods are in essence the same. In the process the method to calculate standard 

deviation is shown. 

 

A. Find Cp and Cpk. 

Step 1 - Define the Range of Acceptable Values, R 

 This is part of the process is extracting necessary data from the drawing specifications. 

For the standard method, the upper specification limit, USL, is the nominal value + tolerance. 

The lower specification limit, LSL is the nominal value – tolerance. Therefore, the range is: 

  R = USL – LSL (5) 

For the true position method, the limit is a circle centered at nominal whose diameter is the true 

position tolerance, TP. 
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  R = TP 

 (6) 

 

Step 2 - Find the mean/center of the data. 

Finding the mean of the data set is the first step in calculating standard deviation. Thus, 

for the standard method, the mean is: 

  µ = 
∑ ௫೔

௡
 (7) 

where xi is each measured value and n is the number of measurements. In the context of circular 

true position, we will call it the center instead of the mean. The center of the data is = ( x̅, y̅ ).  

The values for x̅ and y̅ are: 

  x̅ = 
∑ ௫೔

௡
,  y̅ = 

∑ ௬೔

௡
 (8,9) 

where xi and yi are the coordinates of each respective point.  

 

Step 3 - Find the distance from each data point to the mean or center of the data. 

 With the mean or center defined, the next step in finding the standard deviation is to find 

the distance, ri, from each data point to the mean/center. For the standard method,  

  ri = ABS|𝑥௜ −  µ| (10) 

and for the true position method,  

  ri = ඥ(𝑥௜ −  𝑥 )ଶ + (𝑦௜ −  𝑦 )ଶ (11) 

 

Step 4 - Find the standard deviation, σ. 
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This is the same for both cases. While is looks different from the typical standard deviation 

formula, given the definition of ri, it is the same. 

  σ = ට
∑ ௥೔

మ

௡ିଵ
 (12) 

 

Step 5 - Find the shortest distance from the mean/center to the defined limit, dcrit. 

This is required for finding Cpk but is not required for Cp. For the standard method, 

  dcrit = min[𝑈𝑆𝐿 − 𝑥, 𝑥 − 𝐿𝑆𝐿] (13) 

and for the true position method, 

  dcrit = 
்௉

ଶ
−  ඥ(𝑥௡௢௠ −  𝑥 )ଶ + (𝑦௡௢௠ −  𝑦 )ଶ  (14) 

 

Step 6 - Calculate Pp and Ppk 

We now have all of the necessary information to calculate Pp and Ppk for both methods, which 

after using slightly different terms in the first 5 steps, yields the same formulas.  

  Cp = 
ோ

଺ఙ
 , Cpk = 

ௗ೎ೝ೔೟

ଷఙ
 (15) 

When replacing R and dcrit with their defined values, more familiar and useful formulas are 

generated.  

Standard method: 

   Cp = 
௎ௌ௅ି௅ௌ௅

଺ఙ
,  Cpk = min ቂ

௎ௌ௅ି௫,

ଷఙ
,

௫ି௅ௌ௅

ଷఙ
ቃ  (16, 17) 

 

True position method:  
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   Cp = 
்௉

଺ఙ
,   Cpk = 

೅ು

మ
ି ඥ(௫೙೚೘ି ௫ )మା(௬೙೚೘ି ௬ )మ

ଷఙ
 (18, 19) 

 

3. Discussion 

A. Explanation 

 The first calculation to find any process capability value is to find the mean of the data 

set. One might be tempted to say that is not necessary because potential capability is independent 

of the nominal value and thus the mean’s relation to the nominal. However, the mean is required 

to calculate standard deviation.  

 The derivation of this approach was done using an electronic spreadsheet and as is often 

the case, the end result looks much simpler than all of the effort required to get there. What was 

also discovered and is not surprising is that the standard deviation data as calculated above can 

be found in another way. If σx and σy are treated as sides of a right triangle, then the hypotenuse 

yields the same result as (12) and can be re-written as:  

  σ = ඥ𝜎௫
ଶ +  𝜎௬

ଶ (20) 

Equations (18) and (19) are unchanged. This observation makes programming a spreadsheet to 

calculate the true position simpler because, as mentioned, the x and y coordinates are also 

typically reported along with the true position value. See the application section for details. 

 It must be noted that the method this paper uses to calculate the standard deviation of true 

position tolerances is also used to calculate geographic distributions. The company Esri uses it in 

their ArcGIS Pro software, where GIS stands for geographic information system. Instead of 

standard deviation, they call it standard distance and use it for 2D and 3D data fields. The 

formula they give on their website is:  
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 SD = ට
∑ (௫೔ି ௑ )మ೙

೔సభ

௡
+  

∑ (௬೔ି ௒ )మ೙
೔సభ

௡
+  

∑ (௭ି ௓ )మ೙
೔సభ

௡
  (21) 

where n is the total number of features. They do not use n-1 because they are looking at all of the 

features instead of a sample of them. It is functionally the same as (12) but accounts for a third 

axis and is stated in a different way. 

 

B. Application 

It is expected that when the method discussed here is used, often it will be calculated 

using an electronic spreadsheet. It is critical to recognize that in finding the standard deviation of 

the true position tolerance not to use the built-in standard deviation function. Here is one way to 

use a spreadsheet and the method described above to find standard deviation: 

(1) Enter the x and y values for each data point into two columns. 

(2) Find the mean of both the x values and the y values. This also defines the center of the 

data, ( 𝑥, 𝑦). 

(3) Find the standard deviation of the x values and y values, σx. and σy. 

(4) The standard deviation, σ, is the square root of the sum of the squares of σx. and σy. 

It is suggested to also calculate distance to the center point for each point to help identify which 

parts contribute the most to the standard deviation. The point that is farthest from the center 

might not be the same point that has the highest true position value.  
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C. Conclusion 

 This paper has shown that a methodical approach to calculating process capability and 

standard deviation for standard dimensions reveals, with slight modifications, a method to 

calculate process capability for true position tolerances. This method can easily be implemented 

on a spreadsheet using standard spreadsheet functions. It must be noted that this method has not 

been shown to apply when the tolerance includes a maximum material condition modifier, but it 

is expected that a modification can be found to incorporate that condition. As shown by usage in 

another industry, it also applies to three-dimensional data. Finally, it is interesting to observe that 

when determining process capability of the true position tolerance, the actual true position 

tolerance values are not used. 
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