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Abstract

Shorter development cycles, increasing complexity and cost pressure are driv-
ing the need for more efficient development processes. Especially in the field of
material development, the long and costly experiments are a major bottleneck.
To alleviate this, data driven models, supporting the decision making process,
have recently gained popularity. However, such models require a structured rep-
resentation of the development process to allow an efficient training. In this
work, a formalism for deriving an efficient representation of material development
processs (MDPs) is proposed, shown exemplary on the development of a high
modulus steel (HMS). The formalism is based on the combination of graph based
process models and the recently proposed concept of ”flowthings”. This allows to
efficiently derive a directed acyclic graph (DAG) representation of the MDP with
the acquired data. From this, a database for subsequent training of surrogate
models is derived, on which several black box models for the MDP are trained.
Best-in-class models are chosen based on the root mean squared error (RMSE)
on the test set and substantially used for the inverse optimization of the MDP to
maximize the specific modulus while meeting additional design constraints. This
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showcases the potential of the proposed formalism for expediting the MDP by
enabling data driven modeling.

Keywords: Process development, Surrogate modeling, Data driven decision making

1 Introduction

Increasing environmental and economical requirements accelerate the development of
novel technologies in the aviation industry [1]. This lead to a significant growth in
aircraft turbines overall but especially their bypass ratios [2]. The resulting loads,
which the turbine has to withstand, are so high that conventional materials cannot be
used anymore.

Hence, novel steel alloys with significantly increased specific Young’s modulus, so
called HMS, are being developed for the application in high bypass ratio turbines.
One approach that is being thoroughly investigated since 25 years is the formation of
microscopic ceramic particles that are embedded in the metallic matrix [3–6]. Espe-
cially the in-situ formation of the reinforcement particles is highly desirable, since it
allows the reduction of the number of process steps required until up to the final prod-
uct. This, however, introduces additional complexity, which, despite the substantial
research effort, is still the focus of current research [7, 8].

To better understand processes and inherent interdependencies of the plethora of
process parameters, the consistent monitoring and modeling of processes has been a
promising approach. Based on the structured foundations of product development pro-
cesses, i.e. summarized in [9], and the principle of an interactive design process [10],
process models have been proposed by many authors. Zhang et al. extended the Vee-
cycle to a system engineering base ”innovative design model”, that combines static
requirement analyses with dynamic response possibilites [11]. Schabacker et al. stream-
lined business process model and notation (BPMN), design structure matrix (DSM)
and a container model into one coherent solution, supporting the optimization of mod-
eled processes [12]. Stanković et al. proposed the representation of process chains by
directed multigraphs, incorporating expert knowledge by newly developed graph gram-
mar rules [13]. Khodabandelou et al. point out the importance of taking the intention
behind the modeling effort into account from the beginning to significantly enhance
the efficiency of the modeling process [14]. They leverage the intent for automated
process mining from logged information, leading to a fine-grained representation of the
observed processes which is coarse-grained in a second step, introducing a higher level
of abstraction. Jin and Liu proposed an extension of process monitoring, and thus
the basis of its modeling, for multistep processes with inherent parallelisms [15]. Al-
Fedaghi proposed an alternative to the BPMN by focusing on so called ”flowthings”,
general objects that are passed from one process step (PS) to the next and are pro-
cessed in each PS they pass [16]. Zitzewitz and Fieg showcase how a reliable process
model can enable the optimization of the underlying process and thus deepen the
understanding thereof [17]. Haider et at. subdivided individual process steps into
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related model, method and data, to further modularize PSs and thus formalize the
interface between individual PSs [18].

In recent years, the usage of data driven models to tackle complex tasks to save
on expensive experiments or simulations has become increasingly popular in the fields
of engineering and materials science. Tao et al. used Gaussian processes (GPs) to
optimize vehicle suspension for dynamic stability [19]. Sun et al. compiled a review on
the application of artificial neural networks (ANNs) as surrogate model in the design
of aerodynamic parts [20]. Hadidi et al. used a response surface model for reliability
analysis in high dimensional spaces [21]. Teng et al. approached a similar challenge
by training a model capable of assessing a system’s reliability by adding generative
adversarial theory to surrogate models [22]. Yan et al. employed a combination of
GPs and physically based methods to predict the mechanical properties of additively
manufactured alloys based on their composition and process parameters [23]. Building
on accurate models that can predict the results of a given process, there has been
research effort to flip this approach and utilize the inherent knowledge in order to
adapt the process to obtain desirable results. Jiang et al. used surrogate models for
the optimization of designs [24]. Gerritzen et al. proposed a constitutive model for
the out of plane shear behavior of fiber reinforced polymers derived from pure data
analysis [25]. They further facilitated its usage through an ANN based method for
direct parameter identification, capable of extracting the material parameters from
experimental stress-strain curves in one step [26].

Fürstenau et al. used smooth particle hydrodynamics (SPH) simulations to obtain
a virtual process map of an selective laser melting (SLM) process [27]. This was nec-
essary due to the high dimensionality of the parameter space the SLM process spans.
Similarly, Vohra et al. used simulation data as basis for surrogate model training.
They, however, combined the simulation with dimensionality reduction techniques for
best performance and sensitivity analyses [28]. Hürkamp et al. ran detailed process
simulations to obtain a good understanding. The results were trained into surrogate
models, which were used to transfer the gained knowledge to the operational phase
[29]. Pfrommer et al. did some process optimization using ANNs as surrogate models
[30] via iterative training on simulation data.

With the task of setting up a process comes always the challenge of of efficiently
finding a good set of parameters. Especially in high-dimensional cases, classical design
of experiment (DOE) approaches may lead to an unreasonable number of tests nec-
essary. In the additive manufacturing example [28], the input dimensionality is 12.
Using factorial based DOE algorithms, this would lead to a total of 128 (full facto-
rial, 2 steps) 4120 (central composite). Even though such approaches can give good
insights into the overall process behavior, their rigid form, i.e. not taking results from
previous tests into account, can lead to suboptimal DOEs.

Therefore, so called sequential experimental designs have been the focus of many
studies. Thompson laid the foundation for this in 1933 with the suggestion of even
taking information from two data points into account for further experimental planning
[31]. This idea was formalized in the 1950s , i.e. by Bellman [32] and Chernoff [33].
Since then, it received continuously increasing research attention, i.e. [34–36]. Since
1990 the number of publications every year focusing on this challenge has started
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accelerating quickly [37]. This underlines both its importance but also the complexity
and lack of final solution.

In this work, an approach for modeling a real world material manufacturing process
of an HMS, consisting of multiple steps, is presented. The goal is to transfer influen-
tial parameters into a representation that can be used for subsequent training of a
surrogate model. Here, several models are compared and the ”best-in-class” version
is chosen for final analyses. The chosen model is used for the efficient optimization
of the overall process objective, i.e. maximizing stiffness while meeting other design
allowables. This is carried out using the NSGA-II algorithm [38] to obtain a candidate
set of process parameters expected to yield an excellently performing material, that
should be tested next.

2 Formal process model

To efficiently capture and link all relevant data with their respective meta-data along
the development process, the ”flowthing” approach from [16] is adapted to the MDP.
Specifying the ”flowthing” in this context, the final material as well as its precursors
are collected under the term material object (MO). Each MO is characterized by its
features (Fs) and labeled with a unique identifier (UID). In PSs, the MO’s Fs are
changed, based on the present process parameters (PPs). The succession of multiple
PSs that lead to a finished material are represented by a DAG, with the PSs char-
acterized by a concrete set of PPs as its nodes and the MO being passed along its
edges. The resulting heterogeneous graph constitutes one material manufacturing pro-
cess (MMP). All MMPs that are carried out until design goal is met, combined with
the reasoning behind respective changes of PPs across different MMPs, comprise the
MDP. The formalized relationships are illustrated in Fig. 1.

describes

F

has_outputPS

PP

has_partMMPhas_partMDP
MO

is_input

describes modifies

modifies

Fig. 1 Relationships of material development process and its constituents

The formal relationships lay the foundation for a general database scheme capable
of storing data from diverse processes and sources. To ensure a lean database, it is
possible to reduce the tracked PPs in this step based on expert knowledge on the
process on hand.

From the proposed formalism, three approaches for establishing a surrogate model
of the process of interest can be followed:
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1. A PS based one, in which the property changes caused by each PS are modeled
explicitly and are propagated to the next PS. This allows the targeted use of
models for individual PSs, where existing knowledge can be incorporated directly.
However, this requires information on the current state of Fs after each PS,
imposing an enormous testing effort on the MDP.

2. A black box solution that aggregates PPs along the edges of the graph and
correlates them with the final Fs. This requires the least amount of tests per
MMP, but significantly hinders the possibility of including expert knowledge into
the process model.

3. A hybrid solution between 1. and 2., in which relevant Fs are determined based
on preexisting knowledge after steps that significantly influence them. This allows
for the abstraction of multiple PSs into one, enabling a usecase specific trade-off
between modeling fidelity and efficiency.

Having such a surrogate model allows to quickly estimate how changes to the
process will influence the resulting product. This can be used for inline process mon-
itoring to check if deviations from the intended PPs will be detrimental to the final
Fs. Additionally, such a model may be used for accelerating the MDP by black box
optimization. The model’s sequential evaluation with PPs obtained from established
optimization frameworks allows to quickly converge to an arbitrary objective or assess
the pareto frontier when multiple objectives have to be considered.

3 Investigation of the applicability to a real world
MDP of HMS

In this work, a manufacturing process for Fe-Ti-B-Cu HMS adapted from [39] is used
as example. Instead of liquid metallurgy and casting, a powder metallurgical approach
in combination with a hot isostatic pressing (HIP) process for the creation of ceramic
TiB2 particles is followed, as suggested in [40]. The final material is obtained by HIP
and subsequent heat treatment. For the HMS, physical properties Young’s modulus E
and density ϱ, as well as mechanical properties yield strength (YS), ultimate tensile
strength (UTS) and total elongation (TE) are of interest.

3.1 Building up graph representation of the MMPs

The powder production consists of the PSs melting, atomization and sieving .
The HIP process is considered an atomic PS. The final product is obtained by heat
treatment, consisting of hardening and aging. This leads to the graph representation
shown in Fig. 2.

For the further analyses, powder production is not taken into account, since no
data is available for the PPs of the PS melting, atomization and sieving.

3.2 Surrogate modeling of the MDP

Given the lack of data on changes in Fs throughout each MMP, a black box approach
is chosen for the surrogate models. Hence, for each MMP all PPs are accumulated
along the edges of the DAG and jointly correlated with the corresponding F obtained
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Fig. 2 Graph representation of an MMP for HMS

from the final MO. A total of 4 different chemical compositions were manufactured.
These were subjected to different HIP and heat treatment conditions, leading to a
total of 22 unique datapoints the MDP, which will be used for training the surrogate
models. However, the physical properties are expected to be purely dependent on the
chemical composition. Hence, only 4 experimental datapoints exist for these Fs. To
alleviate the lack of data for the physical properties, for E 25 datapoints obtained from
simulation1 and for ϱ the 14 datapoints from literature given in Tab. A1 are added.

Based on the available data, several surrogate models are investigated for predicting
individual Fs from chemical composition and PPs. Here, the following models from the
open source Python library scikit-learn [41] are compared: 1. linear model, 2. stochastic
gradient descent (SGD), 3. support vector regression (SVR), 4. GP and 5. multilayer
perceptron (MLP). For each of them, except for the linear model, hyperparameter
optimization (HPO) is carried out using the hyperopt library [42]. To do this, 15% of
the available data is withheld from training and used for validation. As an objective
function for HPO, the RMSE on the validation set is used. The resulting contamination
of the validation data has to be accepted, since the available data is too sparse to
allow for a separate test set. The RMSE normalized by the respective means of the
Fs is shown in Fig. 3 for each model.

From this it becomes clear, that different models are better suited for different
Fs. Especially for the physical properties, SGD performs significantly worse than the
other models. For the mechanical properties, models show very similar performance.
For the final analyses, the best-in-class model for each F is chosen based on the lowest
RMSE: 1. SVR for E, 2. GP for ϱ, 3. linear for YS, 4. linear for UTS and 5. SVR for
TE. The corresponding hyperparameters are shown in Tab. 1 along with the achieved
RMSE values.

For these best-in-class models, the comparison of actual and predicted values is
shown in Fig. 4 on normalized values. From this it becomes clear that the models show
overall very good performance. Especially for E, the SVR model excellently captures
the behavior of the data, seamlessly integrating the simulation data. With ϱ, the GP
model gives accurate predictions in spite of the literature data partly deviating from
the simplifying assumption of a pure dependency on the chemical composition. The

1Simulations were carried out by QuesTek Innovations LLC.
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Fig. 3 Comparison of the normalized RMSE obtained from investigated surrogate models evaluated
on validation data

Table 1 Hyperparameters and RMSE for the best-in-class surrogate models

Train Test
Property Model Hyperparameters RMSE r2 RMSE r2

E SVR

C 54.835

0.0198 0.95 0.0025 0.99
epsilon 0.2974
degree 5
kernel ”RBF”

ϱ GP
kernel ”RationalQuadratic”

0.0109 0.70 0.0093 0.76alpha 1
length scale 1

YS Linear − 0.1300 0.59 0.0983 0.70

UTS Linear − 0.0472 0.83 0.0324 0.82

TE SVR

C 12.241

0.2378 0.59 0.3436 0.40
epsilon 0.1011
degree 4
kernel ”Linear”

more complex strength based mechanical properties are also well captured by the
models. For the YS, an r2 score of 0.70 is achieved on the test set using the linear
model. Similarly, the UTS is predicted with an r2 score of 0.82. Solely for the TE,
the SVR model shows a lower performance, with an r2 score of 0.40. This can be
attributed to the high variability of the data in combination with the comparatively
low number of datapoints available for training.
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Fig. 4 Comparison of actual and predicted values for the best-in-class HMS surrogate models on
normalized values

3.3 Extraction optimal PP to maximize specific modulus of
the HMS

To optimize the material’s performance without additional experimental effort, the
determined models are used. Based on them, the target of maximizing specific
modulus, an objective is defined per O = E/ϱ.

This problem statement is implemented as ElementwiseProblem using the open
source python library pymoo . The actual optimization is carried out using the NSGA-
II algorithm with a population size of 40 and 20 generations. The normalized results
are shown in Fig. 5.

From this it becomes clear that initially, a very high specific modulus is pre-
dicted. However, this is achieved with a chemical composition leading to an undesirable
microstructure. Throughout the optimization a viable candidate is quickly identified in
generation 4, at a high cost of the objective. From that point forward, slight modifica-
tions to the candidates lead to a gradual improvement of the objective function whilst
remaining at the verge of the feasible region of the chemical composition. Through-
out the optimization, in each generation candidates not violating the constraints on
mechanical properties are achieved. Based on this, a combination of chemical compo-
sition and PPs is identified, that is predicted to have on par specific modulus with the
best tested results, while meeting all design constraints.
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addition to that, several constraints from the design process have to be considered:
for functionality, all mechanical properties have to exceed a certain threshold and to
ensure the desired microstructure, the ratio of Ti and B has to be in a defined range.
Fig. 5 Results from optimizing chemical composition and PP for maximum specific modulus

4 Conclusion

To model MDPs and enhance them by data driven guidance, two established concepts
for general process modeling were combined: 1. graph based representation of pro-
cesses and 2. attaching information to an object that is passed along the process. This
gave rise to a formalism for representing MDPs, which allows to efficiently derive a
DAG representation. The functionality has been shown exemplary on the MDP of an
HMS. Based on the derived DAG and available Fs, a database for subsequent training
of surrogate models was established. This database was extended using data from sim-
ulations and literature for the physical properties, since the assumption of them being
only influenced by the chemical composition lead to a severe reduction in available
data.

Based on the database, a multitude of black box models for each F were trained,
each representing one entire MMP. To obtain the best possible model, during this
stage HPO was carried out for each investigated model type. From those the best-in-
class model was chosen based on the RMSE on the test set for each F respectively.
The models showed good performance for all properties except the TE. Using the
established models, a candidate of chemical composition and PPs was identified that
is predicted to lead to a significant improvement of the specific Young’s modulus
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while meeting all design targets on the mechanical properties and ensures a favorable
microstructure. This should be the next point in the sequential design.
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Acronyms.
ANN artificial neural network
BPMN business process model and notation
DAG directed acyclic graph
DOE design of experiment
DSM design structure matrix
F feature
GP Gaussian process
HIP hot isostatic pressing
HMS high modulus steel
HPO hyperparameter optimization
MDP material development process
MLP multilayer perceptron
MMP material manufacturing process
MO material object
PP process parameter
PS process step
RMSE root mean squared error
SGD stochastic gradient descent
SLM selective laser melting
SPH smooth particle hydrodynamics
SVR support vector regression
TE total elongation
UID unique identifier
UTS ultimate tensile strength
YS yield strength
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Appendix A Enrichment of dataset

Table A1 Density values for HMS added from literature

Alloy-system density in g/cm3 Reference

Fe–13TiB2 –3.7 Fe2B 7.32 [43]
Fe–12.8TiB2 –5.1 Fe2B 7.32 [43]
Fe–13TiB2 –7.9 Fe2B 7.3 [43]

Fe–11.5B–5.1Ti 7.40 [7]
Fe–10.5B–5.2Cr 7.59 [7]
Fe–4.61Ti–1.78B 7.56 [44]

Fe–10.10Ti–3.86B 7.08 [44]
Fe–10.10Ti–3.86B (20% TiB2) 7.2 [45]
Fe–10.10Ti–3.86B (24% TiB2) 7.0 [45]
Fe–10.10Ti–3.86B (12% TiB2) 7.4 [45]

Fe–6.38Ti–2.4B 7.38 [46]
Fe–6.38Ti–2.4B 7.4 [46]

Fe–9.43Ti–3.74B 7.06 [39]
Fe–10.7Ti–3.74B–1.07Cu 7.26 [39]
Fe–9.32Ti–3.12B–2.07Cu 7.47 [39]

Fe–1.6B–18.8Cr 7.54 [47]
Fe–18.8Cr–1.6B–1Cu 7.40 [47]

Fe–1.80B–24.0Cr 7.43 [48]
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processes and technical process synthesis. Journal of Engineering Design 24(3),
211–238 (2013) https://doi.org/10.1080/09544828.2012.722193

[14] Khodabandelou, G., Hug, C., Salinesi, C.: A novel approach to process mining:
Intentional process models discovery. In: 2014 IEEE Eighth International Con-
ference on Research Challenges in Information Science (RCIS), pp. 1–12 (2014).
https://doi.org/10.1109/RCIS.2014.6861040

[15] Jin, R., Liu, K.: Multimode variation modeling and process monitoring for serial-
parallel multistage manufacturing processes. IIE Transactions 45(6), 617–629
(2013) https://doi.org/10.1080/0740817x.2012.728729

[16] Al-Fedaghi, S.: Flow-Based Process Modeling: Application in BPMN and Process-
Oriented Software Systems, pp. 86–98. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-67618-0 9 . http://dx.doi.org/10.1007/978-3-319-67618-0 9

[17] Zitzewitz, P., Fieg, G.: Multi-objective optimization superimposed model-based
process design of an enzymatic hydrolysis process. AIChE Journal 63(6), 1974–
1988 (2017) https://doi.org/10.1002/aic.15609

[18] Haider, D.R., Folprecht, F., Gerritzen, J., Krahl, M., Spitzer, S., Hornig,
A., Langkamp, A., Gude, M.: Contribution to Digital Linked Develop-
ment, Manufacturing and Quality Assurance Processes for Metal-Composite
Lightweight Structures, pp. 45–58. Springer, ??? (2021). https://doi.org/10.1007/
978-3-662-62924-6 5 . http://dx.doi.org/10.1007/978-3-662-62924-6 5

[19] Tao, S., Shintani, K., Bostanabad, R., Chan, Y.-C., Yang, G., Meingast, H., Chen,
W.: Enhanced Gaussian Process Metamodeling and Collaborative Optimization
for Vehicle Suspension Design Optimization. International Design Engineering
Technical Conferences and Computers and Information in Engineering Confer-
ence, vol. Volume 2B: 43rd Design Automation Conference, pp. 02–03039 (2017).
https://doi.org/10.1115/DETC2017-67976 . https://doi.org/10.1115/DETC2017-
67976

[20] Sun, G., Wang, S.: A review of the artificial neural network surrogate modeling

13 Preprint from November 15, 2024

https://doi.org/10.1016/j.ifacol.2016.07.805
https://doi.org/10.1080/09544828.2012.722193
https://doi.org/10.1109/RCIS.2014.6861040
https://doi.org/10.1080/0740817x.2012.728729
https://doi.org/10.1007/978-3-319-67618-0_9
https://doi.org/10.1007/978-3-319-67618-0_9
https://doi.org/10.1002/aic.15609
https://doi.org/10.1007/978-3-662-62924-6_5
https://doi.org/10.1007/978-3-662-62924-6_5
https://doi.org/10.1115/DETC2017-67976


in aerodynamic design. Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering 233(16), 5863–5872 (2019) https://
doi.org/10.1177/0954410019864485

[21] Hadidi, A., Azar, B.F., Rafiee, A.: Efficient response surface method for high-
dimensional structural reliability analysis. Structural Safety 68, 15–27 (2017)
https://doi.org/10.1016/j.strusafe.2017.03.006

[22] Teng, D., Feng, Y.-W., Lu, C., Keshtegar, B., Xue, X.-F.: Generative adversar-
ial surrogate modeling framework for aerospace engineering structural system
reliability design. Aerospace Science and Technology 144, 108781 (2024) https:
//doi.org/10.1016/j.ast.2023.108781

[23] Yan, F., Chan, Y.-C., Saboo, A., Shah, J., Olson, G.B., Chen, W.: Data-driven
prediction of mechanical properties in support of rapid certification of additively
manufactured alloys. Computer Modeling in Engineering & Sciences 117(3), 343–
366 (2018) https://doi.org/10.31614/cmes.2018.04452

[24] Jiang, P., Zhou, Q., Shao, X.: Surrogate-Model-Based Design and Opti-
mization, pp. 135–236. Springer, Singapore (2020). https://doi.org/10.1007/
978-981-15-0731-1 7 . https://doi.org/10.1007/978-981-15-0731-1 7
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