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Solar trajectory monitoring is a pivotal challenge in solar energy systems, underpinning applications such
as autonomous energy harvesting and environmental sensing. A prevalent failure mode in sustained solar
tracking arises when the predictive algorithm erroneously diverges from the solar locus, erroneously anchoring
to extraneous celestial or terrestrial features. This phenomenon is attributable to an inadequate assimilation of
solar-specific objectness attributes within the tracking paradigm. To mitigate this deficiency inherent in extant
methodologies, we introduce an innovative objectness regularization framework that compels tracking points
to remain confined within the delineated boundaries of the solar entity. By encapsulating solar objectness
indicators during the training phase, our approach obviates the necessity for explicit solar mask computation
during operational deployment. Furthermore, we leverage the high-DoF robot arm to integrate our method to
improve its robustness and flexibility in different outdoor environments.
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1 INTRODUCTION
In advanced robotics, the precise tracking of the solar trajectory presents a formidable challenge,
particularly within outdoor environments characterized by stochastic weather patterns and fluctu-
ating illumination conditions. High-DoF (Degrees of Freedom) robotic systems [1] endowed with
intricate kinematic architectures are uniquely positioned to address these complexities [2]. By
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harnessing the expansive maneuverability afforded by high-DoF configurations [3–5], robotic plat-
forms can dynamically adjust their orientation and positioning to maintain optimal alignment with
the sun, thereby ensuring sustained operational efficacy. The inherent flexibility of such systems
facilitates the accommodation of abrupt environmental perturbations, such as gusts of wind or
sudden cloud cover, which can otherwise disrupt conventional tracking mechanisms. Moreover, the
integration of high-DoF capabilities enables the deployment of sophisticated actuators and sensors
that can respond with sub-millisecond precision [6], thereby enhancing the overall resilience and
adaptability of the solar tracking process in unpredictable outdoor settings.
The synergistic incorporation of deep learning algorithms and advanced computer vision tech-

niques are central to the efficacy of high-DoF robotic sun tracking systems [7–13]. Deep neural
networks in high-DoF robotics applications like the work in [14] present a novel and critical
algorithm that can be meticulously trained to discern and predict the motion of a moving object by
analyzing vast datasets encompassing diverse external environments in robustness. Furthermore,
the first modulation method for non-stationary channels was introduced in [15], with a practical
implementation using neural networks presented in [16]. These approaches achieve optimal in-
terference cancellation for next-generation wireless systems with low complexity. These models
excel in extracting salient features from visual inputs [17–21], thereby enabling the robotic system
to accurately infer the sun’s position even amidst partial occlusions or transient atmospheric
disturbances. Concurrently, computer vision frameworks facilitate real-time image processing and
spatial analysis, ensuring the system can swiftly interpret and react to dynamic environmental
changes [4]. Specifically, the work in [22] applying computer vision to high-DoF robot arms in
complex manipulation tasks showcasing its potential for enhancing robotic precision and autonomy
and broader applications in industries ranging from military automation to complicated servicing
and repairing tasks in aerospace. By leveraging objectness priors and spatial continuity principles,
as delineated in contemporary point tracking methodologies, the robotic system can maintain
a coherent and uninterrupted tracking of the sun. This integration not only mitigates the risk
of tracking drift but also enhances the robustness of the system against common failure modes
associated with long-term tracking in volatile outdoor conditions.
The confluence of high-DoF robotics with deep learning and computer vision culminates in a

highly sophisticated and autonomous solar tracking apparatus capable of operating with minimal
human intervention [23]. Deploying contextual attention mechanisms within the deep learning
framework amplifies the system’s ability to focus on relevant solar cues, thereby refining the
accuracy of trajectory predictions. Additionally, employing objectness regularization techniques
during the training phase imbues the model with a nuanced understanding of solar object properties,
obviating the necessity for explicit segmentation during real-time operations. This streamlines
computational processes and significantly reduces latency, facilitating instantaneous adjustments to
the robotic configuration in response to environmental stimuli. Empirical evaluations underscore the
superiority of this integrated approach, demonstrating unparalleled performance metrics in terms
of tracking precision and operational stability across a spectrum of challenging outdoor conditions.
Consequently, the amalgamation of high-DoF robotics with state-of-the-art deep learning and
computer vision paradigms represents a transformative advancement in pursuing resilient and
efficient solar tracking systems for autonomous applications.

The main contributions of this paper are as follows:

• We present a novel framework that synergistically combines high-DoF robotic systems with
state-of-the-art deep learning algorithms and computer vision techniques to achieve precise
and dynamic solar tracking. This integration enables the robotic platform to execute complex
maneuvers and adjustments in real-time, thereby maximizing solar energy collection by
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maintaining optimal alignment with the sun’s trajectory. The high-DoF architecture facilitates
fine-grained control and adaptability, ensuring that the system can respond swiftly to the
sun’s movement across the sky, even in environments with intricate spatial constraints.
• Our methodology employs objectness loss exclusively during the training phase, eliminating
the need for computationally intensive object segmentation during real-time operations.
This strategic approach reduces latency and enhances the system’s responsiveness, enabling
instantaneous adjustments to the robotic configuration in response to environmental changes.
Additionally, the utilization of high-efficiency deep learning architectures and optimized
computer vision pipelines ensures that the solar tracking process operates seamlessly within
the computational constraints of autonomous robotic platforms, thereby maximizing energy
collection without compromising system performance.

2 RELATEDWORKS
Over the past three decades, sun tracking systems have undergone significant evolution, transi-
tioning from rudimentary mechanical assemblies to sophisticated, intelligence-driven mechanisms.
Early sun trackers predominantly relied on analog sensors and simple feedback loops to adjust the
orientation of solar panels in response to the sun’s movement. These systems, while foundational,
were limited by their lack of adaptability and precision, often struggling to maintain optimal
alignment under varying environmental conditions. The introduction of photovoltaic technologies
further underscored the necessity for enhanced tracking capabilities to maximize energy absorption,
thereby catalyzing research into more dynamic and responsive tracking methodologies.
The advent of computer vision and deep learning has markedly transformed the landscape of

solar tracking systems. Contemporary approaches leverage advanced image processing algorithms
and neural networks to achieve higher accuracy in solar position estimation. These methodologies
exploit visual data to accurately discern the sun’s trajectory, even in partial occlusions and fluc-
tuating lighting conditions. Pioneering works in this domain have demonstrated the efficacy of
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in predicting solar
movements, thereby enabling more resilient and efficient tracking mechanisms. Additionally, the
integration of machine learning models has facilitated the development of predictive analytics tools
that anticipate environmental changes, further enhancing the robustness of modern sun-tracking
systems.
High-Degree-of-Freedom (High-DoF) robotic systems have emerged as pivotal components

in the advancement of solar tracking technologies. These robotic platforms, characterized by
their intricate kinematic architectures and extensive maneuverability, offer unparalleled flexibility
in adjusting solar panel orientations with sub-millisecond precision. Research in this area has
focused on the synergistic integration of High-DoF robotics with intelligent control algorithms,
thereby enabling dynamic and adaptive responses to the sun’s movement. Notable studies have
explored the utilization of multi-jointed robotic arms and autonomous drones equipped with solar
arrays, demonstrating significant improvements in tracking accuracy and energy efficiency. The
enhanced dexterity and responsiveness of High-DoF systems facilitate the maintenance of optimal
solar alignment, even amidst complex spatial constraints and rapidly changing environmental
conditions.

Addressing the inherent challenges associated with outdoor sun tracking, such as unpredictable
weather patterns and transient visual obstructions, remains a critical focus of contemporary research.
Previous endeavors have explored various strategies to mitigate the impact of cloud cover, bird
interference, and lens occlusions, employing techniques ranging from adaptive filtering to real-
time anomaly detection. However, many of these solutions fall short in providing comprehensive
resilience against the multifaceted disturbances encountered in dynamic outdoor settings. Recent

, Vol. 1, No. 1, Article . Publication date: November 2024.



4 Trovato et al.

advancements have introduced objectness regularization and contextual attention mechanisms
within deep learning frameworks, enhancing the system’s ability to prioritize relevant solar features
while suppressing irrelevant noise. Furthermore, the incorporation of robust data augmentation
and domain adaptation techniques has enabled sun tracking systems to maintain high performance
across diverse and unpredictable meteorological scenarios. Collectively, these innovations signify a
paradigm shift towards more resilient and intelligent solar tracking solutions, capable of maximizing
energy collection under a wide array of challenging environmental conditions.

3 METHODOLOGY
3.1 Preliminary
The solar tracking challenge is articulated as follows: Given a sequence of environmental data
𝐸 ∈ R𝑇×𝐻×𝑊 ×𝐶 encompassing 𝑇 temporal instances, spatial dimensions 𝐻 ×𝑊 , and 𝐶 spectral
channels, alongside the initial solar position 𝑠1 ∈ R2 at the inaugural timestep, our objective is
to delineate the solar trajectory 𝑆 = {𝑠𝑡 }𝑇𝑡=1 ∈ R𝑇×2 across the entire temporal continuum. In
this section, we initially elaborate on the foundational architecture of high-DoF robotic systems
integrated with deep convolutional neural networks (CNNs) [24] and recurrent neural networks
(RNNs) [25], which underpin our solar tracking methodology. This architecture facilitates intricate
kinematic adjustments and real-time processing of visual and sensor data [26], thereby enabling
precise alignment with the sun’s dynamic path. Subsequently, we introduce our innovative ob-
jectness regularization framework, meticulously designed to enforce the adherence of tracking
points to the solar disc boundaries, thereby enhancing the fidelity of solar position estimation.
This is complemented by a sophisticated contextual attention mechanism that augments feature
extraction processes, ensuring heightened sensitivity to solar-specific cues amidst variable environ-
mental stimuli. Figure 5 encapsulates the schematic representation of our proposed methodological
paradigm.
Building upon this robust foundation, our methodology incorporates a multifaceted approach

to mitigate the adversities posed by unpredictable meteorological conditions and transient vi-
sual disturbances. We employ advanced deep learning models trained on expansive datasets that
encompass a wide spectrum of weather scenarios, including overcast skies with moving cloud
formations, thereby enabling the system to anticipate and compensate for occlusions that may
obscure solar visibility. Additionally, our framework integrates adaptive filtering techniques and
anomaly detection algorithms [27] to discern and rectify disruptions caused by external factors
such as avian intrusions or insect-induced lens obstructions. The contextual attention module
plays a pivotal role in enhancing the system’s resilience by dynamically prioritizing salient solar
features while suppressing irrelevant noise, thereby ensuring uninterrupted and accurate solar
tracking. Furthermore, the high-DoF robotic architecture is optimized for rapid reconfiguration,
allowing for seamless realignment in response to both gradual and abrupt environmental changes.
Collectively, these methodological innovations converge to deliver a highly resilient and efficient
solar tracking system, adept at maximizing solar energy collection under a myriad of challenging
outdoor conditions.

3.2 Object Detection Algorithm
To address the challenge of determining the sun’s position relative to the end-effector of the robot
arm, we propose a novel methodology that integrates the principle of spatial coherence in object
tracking tailored to the detection of solar positioning. Specifically, the end-effector’s orientation and
movement should consistently adhere to the perceived solar trajectory, ensuring the sun remains
within the tracked target’s vicinity. Traditional approaches often struggle with drift, where tracking
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points deviate from the intended solar location, leading to errors in estimating the sun’s position
relative to the robot’s end-effector. As illustrated in Figure 5, while both estimations may appear
equally distant from the actual solar location, yields a superior prediction due to its alignment
within the correct trajectory boundary, thus enhancing the fidelity of the solar tracking.

To counteract this drift phenomenon, we introduce a solar-positioning regularization technique
through an innovative object-alignment loss function, L𝑠𝑜𝑙 . This ensures that the predicted solar
points remain within the boundary of the perceived solar disc, enhancing the accuracy of sun-
tracking at the end-effector. For training, we leverage solar position ground truth data, where
different objects (e.g., background, noise) are distinguished from the sun’s location. Specifically,
the model is penalized when the predicted solar point diverges from the correct position along the
solar path. The solar alignment regularization, E𝑠 , is defined as:

E𝑠 =
1
𝑇

𝑁∑︁
𝑘=1

𝑑𝑠
𝑘
− 𝑑𝑈

𝑘


∞ , (1)

where 𝑑𝑠𝑡 and 𝑑𝐺𝑘 denote the predicted and ground-truth solar points, respectively. Misaligned
points outside this boundary are further penalized, driving the model to align the predicted point
with the solar trajectory by minimizing E𝑠𝑜𝑙 . In conjunction with E𝑠 , we incorporate an iterative
refinement loss [11], E𝑑 , inspired by [14], which assigns increasing weight to recent iterations,
thereby refining the solar tracking:

E𝑟 =
𝑁∏
𝑖=1

𝜒𝑁−𝑖E𝑠 , (2)

where 𝛾 < 1 denotes a decay factor favoring more recent updates. Since multiple solar points
may be tracked concurrently, the loss functions L𝑠𝑜𝑙,𝑖 and L𝑟𝑒 𝑓 ,𝑖 are generalized for the 𝑖-th tracked
point out of 𝑁 total points. Combining these two terms, our final training objective becomes:

E∑ =
1
𝑁

𝑁∑︁
𝑗=1
(𝛼E𝑠,𝑗 + 𝛽E𝑟, 𝑗 ), (3)

where 𝛼 and 𝛽 is a balancing hyperparameter. This formulation ensures precise and robust
detection of the sun’s position relative to the end-effector, significantly enhancing solar tracking in
dynamic environments.

3.3 Deep-Q Neural Network
The Deep Neural Network algorithm represents a fundamental approach within deep reinforcement
learning, originating from the traditional Neural Network framework used in classical reinforcement
paradigms. Neural Network itself revolves around the computation of the weights, which quantifies
the expected cumulative reward for selecting a particular action 𝑎 in a given state 𝑆 , and is expressed
under a given policy 𝜋 . Mathematically, the Q-value for an action-state pair (𝑠, 𝑎) under policy 𝜋 is
computed as:

N𝜋 (𝑠, 𝑎) = E𝜋

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )
��� 𝑠0 = 𝑠, 𝑎0 = 𝑎] (4)

Here, 𝛾 is the discount factor, 𝑟 (𝑠𝑡 , 𝑎𝑡 ) represents the reward at time step 𝑡 , and the expectation
E𝜋 is taken over the trajectory of states and actions under policy 𝜋 .
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Fig. 1. Smart Solar energy collection system using High-DoF robotics with.

The optimal Q-value, denoted by𝑄∗, represents the maximum expected reward attainable by any
policy from a given state-action pair, and the corresponding policy 𝜋∗ is considered optimal. DQN
employs a deep neural network to approximate the Q-value function, parameterized by 𝜃 , enabling it
to handle complex, high-dimensional state spaces. This approximation function, 𝑄𝜋 (𝑠, 𝑎;𝜃 ), allows
the algorithm to generalize across continuous and large-scale discrete environments.
Furthermore, DQN introduces key innovations such as the experience replay mechanism [10],

where past experiences are stored in a buffer and reused to break the correlation between consecutive
samples, thereby enhancing the sample efficiency. In addition, a target network, parameterized
by 𝜃 ′, is used to stabilize the training process by providing a relatively fixed set of Q-values when
updating the network. The target network’s Q-value is defined as:

𝑦 = 𝑟 + 𝛾 max
𝑎′

𝑄 (𝑠′, 𝑎′;𝜃 ′) (5)

where 𝑦 is the target Q-value for the next state-action pair (𝑠′, 𝑎′).
The overall objective is to minimize the difference between the predicted Q-values and the target

values, thereby transforming the problem into a supervised learning task. The parameters 𝜃 of the
Q-network are updated periodically by minimizing the loss function:

min
𝜃

∑︁
(𝑦 −𝑄 (𝑠, 𝑎;𝜃 ))2 (6)

Here, the network parameters 𝜃 are iteratively adjusted, with the target network’s parameters 𝜃 ′
being copied from the Q-network every few iterations to maintain stability during learning.

4 EXPERIMENT RESULTS
To validate the effectiveness of our proposed deep learning and computer vision algorithm for
optimizing solar energy collection, we employed a six-degree-of-freedom (6-DOF) robotic arm
integrated with a solar panel and a depth camera. The robotic arm was tasked with autonomously
adjusting the orientation of the solar panel to maximize energy absorption throughout the day. The
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Algorithm 1 Deep-Q Neural Network in High-DoF robotics Training
Initialize 𝑄 and target 𝑄 ′ with 𝜃 ∗ ← 𝜃

Allocate Replay buffer R
for episode 1, . . . , 𝑁𝜏 do

for 𝑘 = 1, . . . ,𝑇 do
Execute 𝑎𝑡 = 𝜁𝜃 (𝑠𝑡 )
Store in ℛ transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)
for iteration 𝑘 = 1, . . . , 𝐾𝑄 do

Sample minibatch of 𝑁𝑏 transitions from R
Set targets 𝑦 = 𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠′, 𝑎′;𝜃 ′)
Update 𝜃𝑄 by minimizing loss

E𝜃 =
1
𝑁𝑏

𝑁𝑏∑︁
𝑖=1

(
min
𝜃

∑︁
(𝑦𝑖 −𝑄 (𝑠, 𝑎;𝜃 ))2)

)2
Update target network

𝜃 ∗ ← 𝛿𝜃 + (1 − 𝛿)𝜃 ∗

end for
end for

end for

depth camera provided real-time spatial data of the environment, which our algorithm processed
to identify the optimal angles for the solar panel while avoiding physical obstructions. The system
was implemented using a mini 6-DoF robot arm from Amazon and programmed in Python utilizing
our algorithm. Experiments were conducted under varying environmental conditions, including
different lighting scenarios and dynamic obstacles, to assess the robustness and adaptability of the
system as shown in Fig.2.

The experimental results demonstrate that our method achieves a high success rate in both train-
ing(as shown in Fig3) and real-world implementation(as shown in Fig4), confirming its effectiveness.
During the training phase, the algorithm attained an accuracy of 81% in predicting the optimal
orientation angles for the solar panel based on environmental inputs. In practical deployment, the
robotic arm successfully adjusted the solar panel to the optimal position with a success rate of
58%, even in dynamic obstacles and changing lighting conditions. Furthermore, the solar energy
collection rate increased by an average of 34% compared to a static panel setup, highlighting our
approach’s feasibility and practical advantage. These improvements underscore the potential of
integrating deep learning and computer vision techniques for enhancing solar energy harvesting
in real-world applications, providing a scalable solution for autonomous energy optimization.

5 CONCLUSION
In this paper, we have presented a novel framework that integrates high-Degree-of-Freedom (DoF)
robotic systems with advanced deep learning algorithms, specifically focusing on maximizing solar
energy collection through precise and adaptive sun-tracking. By leveraging deep reinforcement
learning and computer vision techniques, our method ensures the high-DoF robotic platform
dynamically adjusts its orientation to maintain optimal alignment with the sun. This combination
allows real-time adaptability to environmental changes, enhancing energy efficiency, particularly in
challenging and variable outdoor conditions. The experimental results demonstrate the robustness
and efficacy of our proposed method.
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Fig. 2. Experimental testbed setup. Using a mini-robot arm(6 DoF) with a solar panel to collect solar energy
in the outdoor environment in Melbourne.

Fig. 3. Performance on success rate on tasks used for agent training.

The future step in this research will be to extend the application of this methodology to aerospace,
specifically in environments such as satellite and space station systems. These environments require
precise and continuous adjustments to maximize energy efficiency under extreme conditions, and
the developed framework offers promising adaptability and robustness. Furthermore, we will also
improve the adaptability and robustness of our high-DoF robotics system during the solar energy
collection task using adaptive control [28] to improve the efficiency when the manipulator faces
disturbance or dynamics changes in unpredictable space environments.
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