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Abstract  

Nonclassical continuum mechanics-based modeling of small-scale structures, such as micro- or 

nanobeams, is a prominent research topic that has been extensively investigated and is also beneficial for 

designing small-scale intelligent devices. The accuracy of size-dependent beam models remains untested 

in many instances within the literature due to the scarcity of experimental and molecular dynamics (MD) 

results at small scales. This paper aims to provide comprehensive MD benchmark solutions that facilitate 

verifying nonclassical continuum models for miniaturized beams under tension, bending, buckling, and 

free transverse vibration. Size-dependent Young’s moduli, bending stiffnesses, buckling loads, and 

natural frequencies are presented through large-scale MD simulations involving up to one million atoms 

for silicon (Si) nanobeams with square or rectangular cross-sections. The size effects that arise from the 

scaling effect (where all dimensions of the nanobeams change proportionally) and variations in thickness 

and length are systematically studied. The findings demonstrate that the size effect depends on the type 

of mechanical problem and the aspect ratio of the nanobeams. In all cases, the silicon nanobeams 

demonstrate a softer mechanical response as their dimensions decrease. 
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1. Introduction 

Miniaturization of electromechanical devices is a trend within the Engineering Science community that 

has significantly contributed to modern technology and is helping to shape a promising future. Thanks 

to this innovation, there are micro- and nanoelectromechanical systems (MEMS and NEMS) with critical 

applications in different fields that operate with minimal energy and perform multitasking with high 

precision [1,2]. Many of these smart systems include simple mechanical elements such as micro- or 

nanobeams. For instance, scientists can measure the weight of a single cell by using ultrasensitive 

nanomechanical mass sensors [3]. In this case, the mass sensor is often a micro- or nanocantilever. 
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The trend toward miniaturizing systems accounts for the extensive study of mechanical modeling of 

micro- and nanostructures such as beams[4–14]. The outcome of this line of research is the development 

of several advanced structural theories based on nonclassical continuum mechanics models, such as 

couple stress theory [15], strain gradient theory [16], micropolar theory [17], nonlocal elasticity [18], 

surface elasticity theory [19], theories based on fractional calculus [20], modified couple stress theory 

[21], modified strain gradient theory [22], and nonlocal strain gradient theory [23]. A detailed discussion 

of some of these theories can be found in [24]. The current trend involves integrating these models to 

benefit from a wider range of advantages. As a recent example, the mixture unified gradient theory of 

elasticity integrates the stress gradient model, the strain gradient model, and classical elasticity theory 

[25,26]. The common feature of these structural theories is their capability to capture size effects as the 

dimensions of structures decrease. 

Nevertheless, there is a critical issue that casts doubt on the efficacy of size-dependent structural theories, 

as most formulated models are neither validated against experimental results nor atomistic data obtained 

by, for instance, molecular dynamics (MD). Therefore, the question remains whether these nonclassical 

models predict accurate data that can be used confidently in the design of MEMS and NEMS. However, 

regarding experimental validations, this is understandable given the inherent difficulties of 

experimentation at small scales. Nevertheless, there are a limited number of works in the literature where 

experimental data has been used to validate size-dependent structural theories, for instance [22,27–33]. 

There are some articles in the literature in which the authors use atomistic results to calibrate their 

formulated size-dependent structural theory, e.g., [34]. In [35], natural frequencies of free transverse 

vibration of Ag, Cu, and Ni nanobeams with clamped-free and clamped-clamped boundary conditions 

are determined through MD simulations. The effect of variation in length, thickness, and width of the 

nanobeams on the frequencies is studied in some cases, and the MD results are used to verify beam 

formulations considering surface effects. A similar study on silicon nanobeams is presented in [36]. In 

[37], MD results are used to assess the accuracy of local and nonlocal Timoshenko beam formulations 

to determine the natural frequencies of free transverse vibration of single-walled carbon nanotubes 

(SWCNT). A set of MD simulations is conducted in [38] to investigate size-dependent elastic properties 

of silicon nanocantilevers. Calculations are based on flexural and longitudinal vibrations and tension 

tests. It is found that smaller silicon nanocantilevers are softer than larger ones. The frequencies of a 

circular nanoplate determined by MD simulations are used in [39] to study the performance of several 

size-dependent structural models based on nonclassical continuum mechanics. The nonlocal buckling 

formulations for SWCNTs are verified in [40,41] by comparing the analytical results with those predicted 

by MD simulations. 
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Although atomistic simulations such as MD modeling could have been used to verify size-dependent 

structural theories, surprisingly, a very low percentage of the published works include such verifications. 

The main reason is the lack of availability of comprehensive MD benchmark solutions for the size-

dependent mechanical response of small-scale structures. This work aims to address this gap by 

presenting a comprehensive set of MD benchmark solutions for the size-dependent tension, bending, 

buckling, and free transverse vibration of nanobeams. Given the wide application of silicon in MEMS 

and NEMS, the MD simulations are conducted on silicon nanobeams. Three distinct types of size effects 

are examined: (i) the scaling effect, in which the length, in-plane thickness, and out-of-plane width of 

the nanobeams change proportionally; (ii) the thickness effect, where only the in-plane thickness varies 

while the other dimensions remain fixed; and (iii) the length effect, where the length is altered while 

keeping the other dimensions constant. The size effect due to changes in the out-of-plane width is not 

explored. 

The present study has the following novelties, inter alia: 

• A comprehensive set of size-dependent results is presented for four different mechanical 

problems: tension, bending, buckling, and free transverse vibration. This makes the paper an appropriate 

reference for a wide range of formulations. 

• The paper presents results for nanobeams with different aspect ratios appropriate for beam 

formulations with consideration of shear deformations. 

• The paper presents results based on large-scale MD simulations containing up to a million atoms, 

which allows capturing a wider spectrum of the size effect. 

The rest of the paper is structured as follows. The MD simulations are described in detail in Section 2. 

The benchmark solutions are presented in Section 3. The results are presented separately for each of the 

four mechanical problems. The concluding remarks are presented in Section 4. 

 

2. Molecular Dynamics Simulations 

The classical molecular dynamics (MD) is used in this work to study the size-dependent response of the 

nanoscale beams under tension, bending, buckling, and transverse free vibration. The MD simulations 

are conducted using the Large Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [42] 

and the obtained results are visualized using the Visual Molecular Dynamics (VMD) software [43]. The 

simulations are conducted on silicon (Si) nanobeams with square or rectangular cross-sections. Due to 

its favorable mechanical, thermal, and electrical properties, silicon is a key material for fabricating 

elements in MEMS and NEMS systems. Several interatomic potentials, including the Tersoff [38], 

Modified Embedded Atom Method (MEAM) [44], Environment-Dependent Interatomic Potential 



4 
 

(EDIP) [36], and Stillinger-Weber (SW) [45] potentials are commonly used in the literature for MD 

modeling of the mechanical response of silicon. The SW potential is chosen in this study due to its 

balanced trade-off between computational efficiency and accuracy, making it well-suited for large-scale 

simulations. 

The simulations are run in a 3D domain using non-periodic (shrink-wrapped) boundary conditions in all 

three directions, which is appropriate for modeling the deformation of a finite beam with a rectangular 

cross-section. A time step of 1 fs is considered throughout the simulations. In the simulation setup, the 

lattice structure of the silicon beam is defined using a diamond cubic configuration with a lattice constant 

of 5.43 Å, oriented such that the x-axis is aligned with the 001     crystallographic direction, the y-axis 

with  010 , and the z-axis, along the length of the beam, with  100 (see Fig. 1). After defining the initial 

positions of the silicon atoms, the system is first minimized utilizing the conjugate gradient method using 

stopping tolerance for energy and force equal to 81 10  and 101 10 eV/Å, respectively. This 

minimization step helps to remove any residual stresses by relaxing the atomic positions to a local 

minimum energy configuration. Following minimization, the system is equilibrated for 100 ps at the 

temperature of 1 K using the NVT ensemble, where the temperature is controlled using a Nose-Hoover 

thermostat. The internal forces and dimensions of the system are computed and monitored during this 

phase to ensure the system is properly equilibrated before mechanical testing.  

 

2.1. Tension 

For the tension tests, the beam is divided into three different regions, namely, lower, middle, and upper, 

as shown in Fig. 1. The length of the beam along the x, y, and z axes is xL , yL , and zL . The lengths of 

the upper and lower regions are the same and equal to 0.1 zL . The atoms inside the upper region are moved 

with a constant velocity corresponding to the desired strain rate along the z-axis. At the same time, their 

movements along the other axes are restricted. The next section will present the applied strain rates for 

each case. The atoms inside the lower region remain fixed. This setup simulates the uniaxial tension 

along the z-axis, allowing the beam to elongate under displacement-controlled conditions. During the 

deformation, the temperature is kept constant and equal to 1 K using the NVT ensemble.  
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Fig. 1 Initial configuration of the silicon nanobeam for the tensile, bending, and buckling tests.  

During the simulation, strain and stress along the z-axis are calculated each time step. The strain is 

derived from the displacement of the upper region relative to the initial length of the beam, zL , while the 

stress is computed based on the force exerted on the upper or lower regions, normalized by the initial 

cross-sectional area of the beam, x yL L . Temperature, potential energy, kinetic energy, and other 

relevant properties are averaged over time intervals and recorded to track the evolution of the system 

under tensile loading. For all the conducted tensile simulations, the applied strain remains around 1% to 

ensure a linear elastic response. The undeformed and deformed silicon nanobeams are shown in Fig. 2. 

 

Fig. 2 Undeformed and deformed silicon nanobeam after the tensile deformation.  
 

The Young's modulus of silicon along the  100  crystallographic direction is determined using two 

methods. The first method calculates Young's modulus directly from the stress-strain curve. The second 

method determines the Young's modulus, E, using the following formula: 
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where x y zV L L L  is the volume of the beam. The parameters U and   represent the strain energy and 

the applied strain, respectively. The strain energy is obtained from the change in potential energy. Since 

the deformation remains within the linear elastic regime, a second-order polynomial curve is fitted to the 

strain energy-strain data points. This curve is then used to calculate the Young's modulus using Eq. (1). 

For all examined cases, the Young's modulus determined by both methods is within a 1% margin of 

difference. 

2.2. Bending 

The bending simulations are like the tension tests, with the difference being the direction of the applied 

displacement to the atoms in the upper region. In these simulations, the atoms in the upper region are 

displaced at a constant velocity corresponding to the desired deformation rate along the x-axis. At the 

same time, their movement in the other directions is constrained. During the deformation, the temperature 

is kept constant and equal to 1 K using the NVT ensemble. The deformation rate for each case will be 

presented in the next section. To maintain a linear elastic response, the displacement applied during the 

bending simulations is limited to less than 2.5% of the length of the beam. This configuration models the 

bending of a fixed-guided beam, as depicted in Fig. 3.   

 

Fig. 3 Undeformed and deformed silicon nanobeam after the bending deformation.  

The primary objective of the bending simulations is to determine the bending stiffness, defined as the 

force along the x-axis exerted on the upper region divided by the corresponding displacement. Similar to 

the calculation of Young modulus, two methods are employed to determine the bending stiffness of the 
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silicon nanobeams. In the direct method, the bending stiffness is obtained as the slope of the load-

displacement curve. In the second method, the bending stiffness, k, is calculated using the following 

formula: 

2

2

d U
k

d
  (2) 

where U and   represent the strain energy and the applied displacement, respectively. Similar to the 

tension simulations, a second-order polynomial curve is fitted to the strain energy-displacement data 

points. The bending stiffnesses determined by both methods are similar. The bending stiffnesses 

presented in the next section are calculated using Eq. (2). 
 

2.3. Buckling 

The buckling simulations are conducted similarly to the tensile simulations, with the difference being 

that the applied displacement is compressive rather than tensile and is applied to both ends of the 

nanobeam. The simulations correspond to the buckling problem of fixed-fixed nanobeams, as depicted 

in Fig. 4. The applied compressive strain rates for each case will be presented in the next section. The 

displacements of atoms in the upper and lower regions along the x- and y-axis are constrained. During 

the deformation, the temperature is kept constant and equal to 1 K using the NVT ensemble. 

 

Fig. 4 Undeformed and deformed silicon nanobeam after the compressive deformation.  

The onset of buckling is identified by the point at which the strain energy-strain or force-strain curves 

experience a sudden drop. This depicted in Fig. 5 for a silicon nanobeam with 27.15zL   nm, 3.258xL   
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nm, and 2.715xL   nm. The buckling load is the force exerted on the upper or lower regions when 

buckling begins.  

 

Fig. 5 Strain energy-strain and force-strain curves during the compression of a silicon nanobeam with 

27.15zL   nm, 3.258xL   nm, and 2.715xL   nm. 

 

2.4. Free Transverse Vibration 

The fundamental natural frequencies of free transverse vibration in cantilever silicon nanobeams are 

investigated. For this analysis, the atoms within the simulation box are divided into fixed, mobile, and 

excitation regions, as illustrated in Fig. 6.  

 

 

Fig. 6 Configuration of the transverse vibration simulation.  

All degrees of freedom of the atoms in the fixed region are constrained, replicating the boundary 

conditions of a cantilever beam. The atoms in the excitation region are located on the exterior cross-

section at the middle of the thickness. To initiate the first mode of vibration within the linear elastic 
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regime, the atoms in the excitation region are displaced up to 0.015 zL  at a constant velocity along the y-

axis, while their movement in other directions is restricted. Throughout the deformation process, the 

temperature is maintained at 1 K using the NVT ensemble. After this, all atoms, except those in the fixed 

region, are allowed to vibrate freely under the NVE ensemble. 

During the free vibration of the nanobeam, the coordinates of the atoms along the y-axis within the 

excitation region are recorded over time t. Since the nanobeam is allowed to vibrate freely, a sinusoidal 

function of the form  3
1 1sin 2 10b t b    is fitted to the recorded coordinates, where   represents the 

vibration frequency of the cantilever beam in GHz. This procedure for the determination of the natural 

frequency of the silicon nanobeam with 21.72zL   nm, and 2.715x yL L   nm is illustrated in Fig. 7. 

 

 

Fig. 7 The amplitude of vibration predicted by the MD simulation and the corresponding fitted curve showing 

the frequency of 5.258 GHz. The results refer to the silicon beam with 21.72zL   nm, and 2.715x yL L   nm. 

Time is measured relative to the onset of free vibration. 

 

3. Results and Discussion 

A comprehensive set of benchmark solutions is presented in this section for the size-dependent tension, 

bending, buckling, and free transverse vibration of silicon nanobeams. Three different types of size 

effects are investigated: (i) the scale effect, where the length, in-plane thickness, and out-of-plane width 

of the beams remain proportional; (ii) the thickness effect, where only the thickness varies while the 

other dimensions remain constant; and (iii) the length effect, where the length changes while the other 

dimensions are held constant. The size effect related to variations in the out-of-plane width is not studied. 

The data presented in this section can be used to verify size-dependent beam models based on 
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nonclassical continuum mechanics theories. Note that the specified dimensions given for the nanobeams 

refer to their dimensions before the initiation of the MD simulations, as these dimensions slightly change 

during the equilibrium phase of the simulations. 

 

3.1. Scale Effect 

This section analyzes beams with different aspect ratios to study the scale effect. The results for these 

slender and short beams provide essential data for verifying advanced models based on Euler-Bernoulli 

and Timoshenko beam theories.  

 

3.1.1 Tension 

Silicon nanobeam with the dimensions of 0x yL L Sa   and 015zL Sa  where 0a  is the lattice constant 

equal to 5.43 Å are considered. Fig. 8 illustrates the variation of the Young modulus of the nanobeam 

along  100  crystallographic direction as the scale factor S varies from 2 to 20. The applied strain rate is 

equal to 3.25×106 s-1. The smallest and largest nanobeams have lengths of 16.29 nm and 162.9 nm, 

respectively. The simulations of these nanobeams involve 1,489 and 1,182,001 silicon atoms. It is evident 

from the figure that Young modulus decreases by more than 25% as the nanobeam size decreases. The 

largest silicon beam, with dimensions of 162.9 × 10.86 × 10.86 nm3, exhibits a Young modulus of 99.16 

GPa, which is very close to the value of 100.16 GPa reported in [46] for bulk silicon along the  100  

crystallographic direction using MD simulations and the Stillinger-Weber potential. 

 

 

Fig. 8 Young modulus of silicon nanobeams with 0x yL L Sa   and 015zL Sa  where 0a  is the lattice constant 

equal to 5.43 Å on varying the scale factor, S. 
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To investigate the effect of aspect ratio on the size-dependent Young's modulus, tensile simulations are 

performed on short silicon beams with the dimensions of 0x yL L Sa   and 06zL Sa . The applied strain 

rate is equal to 3.25×106 s-1. The Young moduli of short beams with an aspect ratio of 6 are shown in 

Fig. 9. Comparing Fig. 8 and Fig. 9 shows that the aspect ratio slightly affects Young's modulus. 

 

Fig. 9 Young modulus of silicon nanobeams with 0x yL L Sa   and 06zL Sa  where 0a  is the lattice constant 

equal to 5.43 Å on varying the scale factor, S. 

 

3.1.2 Bending 

Silicon nanobeams with the cross-section of 0x yL L Sa   and lengths of 015zL Sa  and 06zL Sa where 

0a  is the lattice constant equal to 5.43 Å are considered under bending. The applied deformation rates 

along the x-axis for the long and short beams are equal to 534×106 and 213.6×106 Å s-1, respectively. 

The bending stiffnesses obtained from the MD simulations are tabulated in Table 1.  

 

Table 1 The bending stiffnesses (N/m) obtained from the MD simulations of silicon nanobeams with the cross-

section of 0x yL L Sa  , where 0a  is the lattice constant equal to 5.43 Å. Results are presented for two 

different nanobeams with lengths of 015zL Sa  and 06zL Sa . The applied deformation rates along the x-axis 

for the long and short beams are equal to534×106 and 213.6×106 Å s-1, respectively. 

S 
015zL Sak 

(N/m) 

06zL Sak   

(N/m) 
 S 

015zL Sak 

(N/m) 

06zL Sak   

(N/m) 

2 0.016189 0.290744  11 0.166892 2.535021 

3 0.035919 0.536150  12 0.190265 2.771907 

4 0.052568 0.789245  13 0.210648 2.951399 

5 0.071684 0.971311  14 0.225935 3.252475 
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6 0.088088 1.307966  15 0.232337 3.519845 

7 0.108635 1.540450  16 0.245133 3.767374 

8 0.114329 1.769943  18 0.288071 - 

9 0.146385 1.943139  20 0.333253 - 

10 0.149012 2.204328  - - - 

 

To demonstrate the size effect on bending stiffness, the ratios between the MD results and those predicted 

by the classical beam model are illustrated in Fig. 10, with the scale factor S varying from 2 to 20. The 

closed-form solution for the bending stiffness of a fixed-guided beam on the x-z plane, based on the 

classical beam model, is given by  3

large y x zk EL L L . Here, E represents the Young modulus of a 

sufficiently large silicon beam along the z-axis, determined to be 99.16 GPa (see Fig. 8). The bending 

stiffnesses of the long and short silicon nanobeams based on the classical beam model are given by 

0.01595 S  and 0.24929 S  N/m, respectively. Note that this closed-form solution neglects the 

contributions of shear deformations. 
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Fig. 10 The ratios between the bending stiffnesses predicted by the MD simulations and those determined by the 

classical beam model on varying the scale factor, S, for the beams with aspect ratios (a) 15, and (b) 6. 

 

The results presented in Fig. 10 illustrate that the bending stiffness of both long and short silicon 

nanobeams is size-dependent. In both cases, the MD results deviate more from the classical beam model 

as the scale factor decreases, consistent with the observations made for the tensile simulations. As the 

scale factor increases, the MD and classical beam model predictions for the long beam nearly coincide. 

However, for the short beam at high scale factor values, the results of the MD simulations slightly differ 

from those of the classical beam model due to the neglect of shear deformations. The results also confirm 

that the size effect in the bending stiffness depends on the aspect ratio of the nanobeam. 
 

3.1.3 Buckling 

Silicon nanobeams with the cross-section of 0x yL L Sa   and lengths of 015zL Sa  and 08zL Sa where 

0a  is the lattice constant equal to 5.43 Å are considered under buckling loading. The applied compressive 

strain rates along the z-axis for the long and short beams equal 3.07×106 s-1 and 9.21×106 s-1, respectively. 

These strain rates are selected to ensure quasi-static loading conditions while maintaining affordable 

computational costs. 

The buckling loads are normalized using Euler's formula and the results are shown in Fig. 11. The Euler's 

formula is given in the figure, where E represents the Young modulus of a sufficiently large silicon beam 

along the z-axis, determined to be 99.16 GPa (see Fig. 8). For both aspect ratios, smaller beams, i.e., 

those with lower scale factors, buckle at significantly lower forces than predicted by the classical model, 

due to the size effect. As the scale factor increases, the results of the MD simulations converge with those 

of Euler's formula. For beams with the higher aspect ratio, the predictions of both models nearly coincide 

for scale factors greater than 9. However, a gap remains between the MD simulations and Euler's formula 

for beams with the lower aspect ratio, even at larger scale factors, primarily because Euler's formula 

neglects the contribution of shear deformations in the buckling behavior of beams with low aspect ratios. 
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Fig. 11 The ratios between the buckling loads predicted by the MD simulations and those determined by the 

classical beam model on varying the scale factor, S, for the beams with aspect ratios (a) 15, and (b) 8. 

 

3.1.4 Free Transverse Vibration 

Free transverse vibration simulations are performed on silicon nanobeams with the cross-section of 

0x yL L Sa   and lengths of 015zL Sa  and 06zL Sa where 0a  is the lattice constant equal to 5.43 Å. To 

highlight the size effect on beam frequency, the MD results are normalized against the closed-form 

solution based on the classical beam model, as shown in the figure. The Young's modulus and silicon 

density are 99.16 GPa and 2330 kg/m³, respectively. The results are presented in Fig. 12. The discrepancy 

between the frequencies predicted by the MD simulations and the classical beam model is greater for 

nanobeams with smaller scale factors, reflecting a stronger size effect. 
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Fig. 12 The ratios between the natural frequencies predicted by the MD simulations and those determined by the 

classical beam model on varying the scale factor, S, for the beams with aspect ratios (a) 15, and (b) 6. 

 

A comparison of the figures presented in Section 3.1 reveals an important insight: the softening size 

effect in silicon nanobeams depends on both the aspect ratio of the beam and the type of problem, whether 

it involves bending, buckling, or vibration. 

 

3.2. Thickness Effect 

This section examines size effect resulting from variations in in-plane thickness. As in the previous 

section, simulations are conducted for the tension, bending, buckling, and transverse vibration of silicon 

nanobeams. The data presented here is especially important for verifying models that account for 

through-thickness size effects, such as those based on surface elasticity.  
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3.2.1 Tension 

Silicon nanobeams with dimensions 0xL Xa , 05yL a  and 050zL a  where 0a  is the lattice constant 

equal to 5.43 Å, are considered. A set of tensile simulations is performed by varying the in-plane 

thickness parameter, X, while keeping the length and out-of-plane width of the nanobeams constant. The 

measured Young's modulus of the nanobeam along the  100 crystallographic direction is shown in Fig. 

13, with X ranging from 2 to 10. In all simulations, the atoms in the upper region of the nanobeams, as 

shown in Fig. 1, are displaced upward at a constant velocity of 109 Å s-1. The figure clearly illustrates 

the size effect on the Young's modulus of the nanobeams. 

 

 

Fig. 13 Young moduli of silicon nanobeams with 0xL Xa , 05yL a  and 050zL a  where 0a  is the lattice 

constant equal to 5.43 Å on varying the thickness parameter, X. 

 

3.2.2 Bending 

To illustrate the thickness-dependent size effect on bending stiffness, silicon nanobeams with dimensions 

0xL Xa , 05yL a  and 050zL a  where 0a  is the lattice constant equal to 5.43 Å, are simulated. The 

applied deformation rate along the x-axis is 109 Å/s. The bending stiffness values obtained from the MD 

simulations, MDk , along with the predictions from the classical model, classicalk , are shown in Fig. 14. The 

closed-form solution derived from the classical model, assuming Young's modulus of 99.16 GPa for 

silicon along the  100 crystallographic direction, is shown in the figure. As evident from the figure, the 

MD data deviate from the classical model predictions due to the size effect. Unlike the trend observed in 

the previous section for the scale effect, the ratios between the results of the MD simulations and classical 
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models, MD classicalk k , do not follow a consistent pattern. In the cases considered, this ratio ranges from 

0.83 to 0.90. 

 

Fig. 14 Bending stiffnesses of silicon nanobeams with 0xL Xa , 05yL a  and 050zL a  where 0a  is the 

lattice constant equal to 5.43 Å on varying X. Beams are deformed in the x-z plane, so that xL  represents the in-

plane thickness. 

 

3.2.3 Buckling 

Silicon nanobeams with dimensions 0xL Xa , 010yL a  and 050zL a  where 0a  is the lattice constant 

equal to 5.43 Å are considered under buckling loading. Simulations are conducted for the thickness 

parameter X, ranging from 2 to 8. In all cases, since x yL L , the nanobeams buckle in the x-z plane. Since 

the buckling strain increases significantly with increasing X, it is not feasible to use the same applied 

deformation rate for all simulations. To manage computational costs, the applied deformation rate is 

increased with X to ensure that the nanobeams buckle within 3.5 ns of simulation. For example, the 

buckling of the shortest nanobeam with X = 2 is simulated by displacing the atoms in the upper and lower 

regions at a velocity of 250×106 Å/s towards each other. For the nanobeam with X = 8, the velocity is 

16.5 times higher. 

The measured buckling loads, along with those predicted by Euler's formula, are shown in Fig. 15. Euler's 

formula, presented in the figure, assumes Young's modulus of 99.16 GPa. The figure illustrates the 

thickness-dependent size effect on the critical buckling loads, as the results from the two models diverge. 
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Fig. 15 Buckling loads of silicon nanobeams with 0xL Xa , 010yL a  and 050zL a  where 0a  is the lattice 

constant equal to 5.43 Å on varying X. Beams buckle in the x-z plane, so that xL  represents the in-plane 

thickness. 

 

3.2.4 Free Transverse Vibration 

Silicon nanobeams with dimensions 05xL a , 0yL Xa  and 050zL a  where 0a  is the lattice constant 

equal to 5.43 Å, are simulated to investigate the effect of thickness on natural frequencies. The 

frequencies predicted by MD simulations for nanobeams with thickness parameter X, ranging from 2 to 

10, are shown in Fig. 16, alongside the predictions from the classical model. Both models predict a linear 

variation in frequency as the thickness parameter X changes; however, the results diverge due to the 

thickness size effect. 

 

 

Fig. 16 Natural frequencies of silicon nanobeams with 05xL a , 0yL Xa  and 050zL a  where 0a  is the 

lattice constant equal to 5.43 Å on varying X. Beams vibrate in the x-z plane, so that xL  represents the thickness. 
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3.3. Length Effect 

The size effect associated with variations in nanobeam length is examined in this section. Simulations are 

conducted for tension, bending, buckling, and transverse vibration of silicon nanobeams, with their lengths varied 

while the other dimensions remain constant.  

 

3.3.1 Tension 

Results presented in Fig. 17 refer to the Young modulus of silicon nanobeams with 05xL a , 05yL a  

and 020zL Xa  where 0a  is the lattice constant equal to 5.43 Å on varying the length parameter, X. The 

applied strain rate is equal to 3.96×106 s-1. It is evident that changing only the length of the nanobeam 

slightly reduces the Young modulus of silicon nanobeams. 

 

 

Fig. 17 Young moduli of silicon nanobeams with 05xL a , 05yL a  and 020zL Xa  where 0a  is the lattice 

constant equal to 5.43 Å on varying the length parameter, X. 

3.3.2 Bending 

The bending stiffness of silicon nanobeams with dimensions 05xL a , 05yL a  and 020zL Xa  where 

0a  is the lattice constant equal to 5.43 Å, are presented in Fig. 18 by varying the length parameter, X, 

from 1 to 6. The applied deformation rate along the x-axis is X×430×106 Å/s. Both the bending stiffnesses 

obtained from the MD simulations and the classical model are presented. For the classical model, a 

closed-form solution is derived, as shown in the figure, assuming Young's modulus of 99.16 GPa. Note 

that the vertical axis is presented on a logarithmic scale. The discrepancy between the results of the two 

models is attributed to the length-dependent size effect. 

 



20 
 

 

Fig. 18 Bending stiffnesses of silicon nanobeams with 05xL a , 05yL a  and 020zL Xa  where 0a  is the 

lattice constant equal to 5.43 Å on varying the length parameter, X. Note that the vertical axis is presented on a 

logarithmic scale. 

 

3.3.3 Buckling 

For the buckling simulations, the same silicon nanobeams with dimensions 05xL a , 05yL a  and 

020zL Xa  where 0a  is the lattice constant equal to 5.43 Å, are considered. The buckling loads 

determined by the MD simulations are shown in Fig. 19 for the length parameter X, ranging from 2 to 6. 

As the buckling strain decreases with increasing X, the applied deformation rate is reduced for longer 

nanobeams. For example, the buckling of the shortest nanobeam with X = 2 is simulated by displacing 

the atoms in the upper and lower regions at a velocity of 2×109 Å/s. For the longest nanobeam with X = 

6, the velocity is reduced to 240×106 Å/s. The buckling loads predicted by Euler's formula are also 

presented in Fig. 19, assuming Young's modulus of 99.16 GPa. The figure illustrates the length-

dependent size effect on the critical buckling loads, with the results from the two models showing a clear 

deviation. 
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Fig. 19 Buckling loads of silicon nanobeams with 05xL a , 05yL a  and 020zL Xa  where 0a  is the lattice 

constant equal to 5.43 Å on varying the length parameter, X. 

 

3.3.4 Free Transverse Vibration 

The MD simulations are applied to determine the natural frequencies of silicon nanobeams with 

dimensions 05xL a , 05yL a  and 020zL Xa  where 0a  is the lattice constant equal to 5.43 Å. Fig. 20 

presents the results for nanobeams with the length parameter X, ranging from 1 to 6. The predictions 

from the classical model are also included to emphasize the length-dependent size effect on the natural 

frequencies. 

 

 

Fig. 20 Natural frequencies of silicon nanobeams with 05xL a , 05yL a  and 020zL Xa  where 0a  is the 

lattice constant equal to 5.43 Å on varying the length parameter, X. 

 

4. Conclusions 

Size-dependent mechanical response of nanobeams has been intensively studied in the literature. This 

well-investigated research line resulted in the development of numerous nonclassical continuum 

mechanics-based beam theories. However, in many cases, the application of such theories in the design 

of the nanobeams in smart devices is hindered due to lack of a proper verification. In this paper, the 

classical MD method has been applied to generate comprehensive atomistic benchmark results for the 

tension, bending, buckling, and free transverse vibration of silicon nanobeams with square or rectangular 

cross-sections. Large-scale MD simulations, involving up to one million atoms allowed us to study three 

different kinds of size effects. First, the length, thickness, and width of the nanobeams are kept 

proportional and MD modeling is conducted while the scale of the beam changes. Second, nanobeams 

are modeled by changing only their length or thickness. The numerical values of the Young’s moduli, 
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bending stiffnesses, buckling loads, and natural frequencies are presented confirming a softening size 

effect in the mechanical response of the silicon nanobeams with smaller dimensions. It has been 

confirmed that the type of the mechanical problem and the length-to-thickness ratios change the size 

effect intensity.  

The comprehensive MD benchmark solutions presented in this work facilitate the verification and 

refinement of nonclassical continuum-based modeling approaches for miniaturized beams. Therefore, 

this study contributes to enhancing the design and performance of smart miniaturized devices that use 

micro- or nanobeams. 
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