Linear programming with vector coefficients in the constraints

Somdeb Lahiri

(Former Professor) PD Energy University, Gandhinagar (EU-G), India.

ORCID: https://orcid.org/0000-0002-5247-3497

somdeb.lahiri@gmail.com

November 15, 2024.

Abstract

We provide a model of linear programming in which all the parameters of the constraints are vectors. We define the dual of the problem and obtain a necessary and sufficient condition for an optimal solution. We also prove the analogous version of Farkas' lemma in this more general framework.

Keywords: linear programming, vector coefficients, duality theory, Farkas' lemma

AMS Subject Classification: 90C05, 90C46

JEL Classification: C61

Framework of analysis

In what follows we consider a generalization of the standard model of linear programming in Dorfman, Samuelson and Solow (1958) (i.e., DOSSO) and considerably more concisely in chapter 3 of Lancaster (1968) and chapters 5 and 22 of Mote and Madhavan (2016).

For positive integers r, s and S a non-empty subset of \mathbb{R} , let $\mathbb{S}^{r \times s}$ denote the set of all r×s matrices with entries in S.

Given positive integers m, n an m×n matrix A and $j \in \{1, ..., n\}$ let A^j denote the mdimensional jth column vector of A.

For a positive integer n, let $E^{(n,i)}$ denote the n-dimensional column unit vector, i.e., the n-dimensional column vector whose ith coordinate is 1 and all other coordinates are 0.

Given a positive integer n and a square matrix, A of size 'n' (i.e., $n \times n$ matrix A) the trace of A denoted trace (A) = $\sum_{i=1}^{n} E^{(n,i)^{T}} A E^{(n,i)}$, i.e., the sum of the diagonal elements of A.

Given positive integers m, n, K, let $\langle A^{(k)} | k = 1, ..., K \rangle$ be an array of m×n matrices let B be an m×n matrix and p be a K-dimensional column vector.

For each $i \in \{1, ..., m\}$, let B_i denote the ith row of B and $A_i^{(k)}$ the ith row of A^(k) for k = 1, ..., K,

For $\mathbf{x} \in \mathbb{R}^{K}$ let \mathbf{x}_{k} denote the kth coordinate of x.

The problem that we are concerned with here denoted (P1) is the following:

Maximize $p^{T}x$, subject to $\sum_{k=1}^{K} A_{i}^{(k)} x_{k} = B_{i}, i = 1, ..., m, x \in \mathbb{R}_{+}^{K}$.

Such a problem is referred to as **linear programming problem with vector coefficients** (LP-VC). The reason for such a nomenclature is that for each equation in the 'm' linear constraints, for all $k \in \{1, ..., K\}$, the coefficient of the variable x_k is a row vector and the right-hand side of each equation is a row vector too.

We will refer to a system of linear equations such as $\sum_{k=1}^{K} A_i^{(k)} x_k = B_i$, i = 1, ..., m, as **linear** equations with vector coefficients (LE- VC).

An equivalent way of stating (P1) is the following:

Maximize $p^T x$, subject to $\sum_{k=1}^{K} A^{(k)} x_k = B$, $x \in \mathbb{R}_+^K$.

Given positive integers m, n an m×n matrix A can be expressed as an m×n dimension column vector $\mathcal{A}(A)$ such the for each $j \in \{1, ..., n\}$, its coordinates numbered (j-1)m + 1, ..., jm form the column vector A^{j} .

Thus (P1) is equivalent to the following linear programming problem denoted (\wp 1).

Maximize $p^{T}x$, subject to $\sum_{k=1}^{K} \mathcal{A}(A^{(k)}) x_{k} = \mathcal{A}(B), x \in \mathbb{R}_{+}^{K}$.

It is easily verified that if $C \in \mathbb{R}^{r \times s}$ and $D \in \mathbb{R}^{s \times r}$ then trace $(CD) = \mathcal{A}(C^T)^T \mathcal{A}(D)$.

Thus, the dual of $(\wp 1)$ denoted (Dual- $\wp 1$) is the following linear programming problem.

Minimize $\mathcal{A}(\mathbf{Y}^{\mathrm{T}})^{\mathrm{T}}\mathcal{A}(\mathbf{B})$ subject to $\mathcal{A}(\mathbf{Y}^{\mathrm{T}})^{\mathrm{T}}\mathcal{A}(A^{(k)}) \ge p_{\mathrm{k}}$ for all $\mathrm{k} = 1, ..., \mathrm{K}, \mathrm{Y} \in \mathbb{R}^{n \times m}$.

An equivalent way of stating (Dual- \wp 1) is the following problem denoted (Dual-P1).

Maximize trace (YB) subject to trace $(YA^{(k)}) \ge p_k$ for all $k = 1, ..., K, Y \in \mathbb{R}^{n \times m}$.

Duality theory for LP-VC

From Topic 2 of Lahiri (2020) we know that x^* solves (P1) <u>if and only if</u> there exists $Y^* \in \mathbb{R}^{n \times m}$ such that the following is satisfied:

(i) $\sum_{k=1}^{K} A^{(k)} x_k^* = B$ and $\mathbf{x}^* \in \mathbb{R}_+^K$.

(ii) trace $(Y^*A^{(k)}) \ge p_k$ and $(trace (Y^*A^{(k)}) - p_k)x_k^* = 0$ for all k = 1, ..., K.

From (i) and (ii) it follows that $p^T x^* = \sum_{k=1}^K p_k x_k^* = \sum_{k=1}^K \text{trace } (Y^* A^{(k)}) x_k^* = \sum_{k=1}^K \mathcal{A}(Y^{*T}) \mathcal{A}(A^{(k)}) x_k^* = \mathcal{A}(Y^{*T}) \mathcal{A}(B) = \text{trace } (Y^* B).$

Farkas' Lemma for LE-VC

We provide below a statement and proof of Farkas' lemma for linear equations with vector coefficients.

Theorem 1: Either [there exists $x \in \mathbb{R}_+^K$ such that $\sum_{k=1}^K A^{(k)} x^{(k)} = B$] or [there exists a n×m matrix Y, such that trace $(YA^{(k)}) \le 0$ for all k = 1, ..., K and trace (YB) > 0], but never both.

Proof: $\mathbf{x}^* \in \mathbb{R}^K_+$ solves $\sum_{k=1}^K A^{(k)} \mathbf{x}^{(k)} = \mathbf{B}$ <u>if and only if</u> it solves $\sum_{k=1}^K \mathcal{A}(A^{(k)}) \mathbf{x}^{(k)} = \mathcal{A}(\mathbf{B})$.

By Farkas' lemma (see Topic 3 in Lahiri (2020)), <u>either</u> [there exists $x \in \mathbb{R}_+^K$ such that $\sum_{k=1}^{K} \mathcal{A}(A^{(k)}) x^{(k)} = \mathcal{A}(B)$] <u>or</u> [there exists an m×n dimensional column vector y whose

coordinates numbered (j-1)m + 1, ..., jm is denoted by the m dimensional column vector y^j such that $y^T \mathcal{A}(A^{(k)}) \le 0$ for all k = 1, ..., K and $y^T \mathcal{A}(B) > 0$] but never both.

$$y^{T} \mathcal{A}(A^{(k)}) = \sum_{j=1}^{n} y^{j^{T}} A^{(k)^{j}}$$
 for all $k = 1, ..., K$ and $y^{T} \mathcal{A}(B) = \sum_{j=1}^{n} y^{j^{T}} B^{j}$.

Let Y be the n×m matrix whose jth row is y^{j^T} . For all j = 1, ..., n, $y^{j^T}B^j$ is the jth diagonal element of YB and $y^{j^T}A^{(k)j}$ is the jth diagonal element of YA^(k) for k ∈ {1, ..., K}.

Thus, $y^T \mathcal{A}(B) = \text{trace (YB)}$ and $y^T \mathcal{A}(A^{(k)}) = \text{trace (YA^{(k)})}$. for $k \in \{1, ..., K\}$.

This proves the theorem. Q.E.D.

References

1. Dorfman, R., Samuelson, P.A. and Solow, R. (1958): Linear Programming and Economic Analysis. The RAND Corporation.

2. Lahiri, S. (2020): The essential appendix on Linear Programming. (Available <u>https://drive.google.com/file/d/1MQx8DKtqv3vTj5VqPNw4wzi2Upf7JfCm/view?usp=sharing</u> and/or <u>https://www.academia.edu/44541645/The essential appendix on Linear Programming</u>).

nupoli w www.ueudennu.edu + 19 110 19 1110_05001001_0ppendix_01_Direu_110grunni

3. Lancaster, K. (1968): Mathematical Economics. Macmillan, New York.

4. Mote, V. L. and T. Madhavan (2016): Operations Research. Wiley India Private Ltd.