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Abstract 

We provide a model of linear programming in which all the parameters of the constraints are 
vectors. We define the dual of the problem and obtain a necessary and sufficient condition for 
an optimal solution. We also prove the analogous version of Farkas’ lemma in this more 
general framework.  
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Framework of analysis  

In what follows we consider a generalization of the standard model of linear programming in 
Dorfman, Samuelson and Solow (1958) (i.e., DOSSO) and considerably more concisely in 
chapter 3 of Lancaster (1968) and chapters 5 and 22 of Mote and Madhavan (2016).  

For positive integers r, s and 𝕊 a non-empty subset of ℝ, let 𝕊 ௦ denote the set of all rs 
matrices with entries in 𝕊.  

Given positive integers m, n an mn matrix A and j{1, …, n} let Aj denote the m-
dimensional jth column vector of A. 

For a positive integer n, let E(n,i) denote the n-dimensional column unit vector, i.e., the n-
dimensional column vector whose ith coordinate is 1 and all other coordinates are 0. 

Given a positive integer n and a square matrix, A of size ‘n’ (i.e., n n matrix A) the trace of 

A denoted trace (A) = ∑ 𝐸(,)்
𝐴𝐸(,)

ୀଵ , i.e., the sum of the diagonal elements of A. 

Given positive integers m, n, K, let <A(k)|k = 1, … , K> be an array of mn matrices let B be 
an mn matrix and p be a K-dimensional column vector. 

For each i{1, …, m}, let Bi denote the ith row of B and 𝐴
() the ith row of A(k) for k = 1, …, 

K, 

For xℝ  let xk denote the kth coordinate of x. 

The problem that we are concerned with here denoted (P1) is the following: 

Maximize pTx, subject to ∑ 𝐴
()

ୀଵ 𝑥 = Bi, i = 1, …, m, xℝା
 . 



Such a problem is referred to as linear programming problem with vector coefficients 
(LP-VC). The reason for such a nomenclature is that for each equation in the ‘m’ linear 
constraints, for all k{1, …, K}, the coefficient of the variable xk is a row vector and the 
right-hand side of each equation is a row vector too. 

We will refer to a system of linear equations such as ∑ 𝐴
()

ୀଵ 𝑥 = Bi, i = 1, …, m, as linear 
equations with vector coefficients (LE- VC).  

An equivalent way of stating (P1) is the following: 

Maximize pTx, subject to ∑ 𝐴()
ୀଵ 𝑥 = B, xℝା

 . 

Given positive integers m, n an mn matrix A can be expressed as an mn dimension column 
vector 𝒜(A) such the for each j{1, …, n}, its coordinates numbered (j-1)m + 1, …, jm form 
the column vector Aj. 

Thus (P1) is equivalent to the following linear programming problem denoted (℘1).  

Maximize pTx, subject to ∑ 𝒜(𝐴())
ୀଵ 𝑥 = 𝒜(B), xℝା

. 

It is easily verified that if Cℝ ௦ and Dℝ௦  then trace (CD) = 𝒜(CT)T𝒜(D). 

Thus, the dual of (℘1) denoted (Dual-℘1) is the following linear programming problem. 

Minimize 𝒜(YT)T𝒜(B) subject to 𝒜(YT)T𝒜(𝐴())  pk for all k = 1, …, K, Yℝ . 

An equivalent way of stating (Dual-℘1) is the following problem denoted (Dual-P1). 

Maximize trace (YB) subject to trace (YA(k))  pk for all k = 1, …, K, Yℝ . 

Duality theory for LP-VC 

From Topic 2 of Lahiri (2020) we know that x* solves (P1) if and only if there exists 

Y*ℝ  such that the following is satisfied: 

(i) ∑ 𝐴()
ୀଵ 𝑥

∗  = B and x*ℝା
 . 

(ii) trace (Y*A(k))  pk and (trace (Y*A(k)) - pk)𝑥
∗  = 0 for all k = 1, …, K. 

From (i) and (ii) it follows that pTx* = ∑ 𝑝𝑥
∗

ୀଵ  = ∑ trace (Y∗A(୩))x୩
∗

ୀଵ  = 

∑ 𝒜(Y∗்)𝒜(A(୩))x୩
∗

ୀଵ  = 𝒜(Y∗்) ∑ 𝒜(A(୩))x୩
∗

ୀଵ  = 𝒜(Y∗்)𝒜(𝐵) = trace (Y*B). 

Farkas’ Lemma for LE-VC  

We provide below a statement and proof of Farkas’ lemma for linear equations with vector 
coefficients.  

Theorem 1: Either [there exists xℝା
  such that ∑ 𝐴()

ୀଵ 𝑥() = B] or [there exists a nm 
matrix Y, such that trace (YA(k))  0 for all k = 1, …, K and trace (YB) > 0], but never both. 

Proof: x*ℝା
  solves ∑ 𝐴()

ୀଵ 𝑥() = B if and only if it solves ∑ 𝒜(𝐴())
ୀଵ 𝑥() = 𝒜(B). 

By Farkas’ lemma (see Topic 3 in Lahiri (2020)), either [there exists xℝା
  such that 

∑ 𝒜(𝐴())
ୀଵ 𝑥() = 𝒜(B)] or [there exists an mn dimensional column vector y whose 



coordinates numbered (j-1)m + 1, …, jm is denoted by the m dimensional column vector yj 
such that yT 𝒜(𝐴())  0 for all k = 1, …, K and yT 𝒜(B) > 0] but never both. 

yT 𝒜(𝐴()) = ∑ 𝑦்
𝐴()

ୀଵ  for all k = 1, …, K and yT 𝒜(B) = ∑ 𝑦்
𝐵

ୀଵ . 

Let Y be the nm matrix whose jth row is 𝑦்
. For all j = 1, …, n, 𝑦்

𝐵 is the jth diagonal 

element of YB and 𝑦்
𝐴()

 is the jth diagonal element of YA(k) for k{1, …, K}. 

Thus, yT 𝒜(B) = trace (YB) and yT 𝒜(𝐴()) = trace (YA(k)). for k{1, …, K}. 

This proves the theorem. Q.E.D.   
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