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Abstract: The P versus NP problem is a cornerstone of theoretical computer science, asking whether problems that

are easy to check are also easy to solve. "Easy" here means solvable in polynomial time, where the computation

time grows proportionally to the input size. While this problem’s origins can be traced to John Nash’s 1955 letter,

its formalization is credited to Stephen Cook and Leonid Levin. Despite decades of research, a definitive answer

remains elusive. Central to this question is the concept of NP-completeness. If even one NP-complete problem,

like SAT, could be solved efficiently, it would imply that all NP problems could be solved efficiently, proving

P=NP. This research proposes a groundbreaking claim: SAT, traditionally considered NP-complete, can be solved

in polynomial time, establishing the equivalence of P and NP.
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1. Introduction

The P versus NP problem is a fundamental question in computer science that asks whether
problems whose solutions can be easily checked can also be easily solved [1]. “Easily” here means
solvable in polynomial time, where the computation time grows proportionally to the input size [1,2].
Problems solvable in polynomial time belong to the class P, while NP includes problems whose
solutions can be verified efficiently given a suitable “certificate” [2].

The central question is whether P and NP are the same. Most researchers believe that P is a strict
subset of NP, meaning that some problems are inherently harder to solve than to verify. Resolving this
problem has profound implications for fields like cryptography and artificial intelligence [3,4]. The
P versus NP problem is widely considered one of the most challenging open questions in computer
science. Techniques like relativization and natural proofs have yielded inconclusive results, suggesting
the problem’s difficulty [5,6].

Resolving the P versus NP problem is often described as a “holy grail” of computer science. A
positive resolution could revolutionize our understanding of computation and potentially lead to
groundbreaking algorithms for critical problems. The problem is listed among the Millennium Prize
Problems. While recent years have seen progress in related areas, such as finding efficient solutions to
specific instances of NP-complete problems, the core question of P versus NP remains unanswered [3].
A polynomial-time algorithm for any NP-complete problem would directly imply P equals NP [7].
Our work focuses on presenting such an algorithm for a well-known NP-complete problem.

2. Background and ancillary results

NP-complete problems are the Everest of computational challenges. Despite the ease of verifying
proposed solutions with a succinct certificate, finding these solutions efficiently remains an elusive
goal. A problem is classified as NP-complete if it satisfies two stringent criteria within computational
complexity theory:

1. Efficient Verifiability: Solutions can be quickly checked using a concise proof [7].
2. Universal Hardness: Every problem in the class NP can be reduced to this problem without

significant computational overhead [7].

The implications of finding an efficient algorithm for a single NP-complete problem are profound. Such
a breakthrough would serve as a master key, unlocking efficient solutions for all problems in NP, with
transformative consequences for fields like cryptography, artificial intelligence, and planning [3,4].

Illustrative examples of NP-complete problems include:
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• Boolean Satisfiability (SAT) Problem: Given a logical expression in conjunctive normal form,
determine if there exists an assignment of truth values to its variables that makes the entire
expression true [8].

• Boolean 3-Satisfiability (3SAT) Problem: Given a Boolean formula in conjunctive normal form
with exactly three literals per clause, determine if there exists a truth assignment to its variables
that makes the formula evaluate to true [8].

• Not-All-Equal 3-Satisfiability (NAE-3SAT) Problem: Given a Boolean formula in conjunc-
tive normal form with exactly three literals per clause, decide if there exists a satisfying truth
assignment such that each clause has at least one true variable and at least one false variable [8].

• Exact K-Coloring Problem: Given a graph G and a positive integer k, determine if there exists
a valid coloring of G such that exactly k vertices have the same color and no adjacent vertices
have the same color. This problem is equivalent to finding an independent set of size k, an
NP-complete problem [8].

The provided examples represent a small subset of the extensively studied NP-complete problems
relevant to our current work. The following problem is in P [8]:

Definition 1. Exact Cover Packing by 2-Sets (X2SCP) Problem
INSTANCE: A universe set U, a collection of C = S1, . . . , Sn of 2-elements sets with Si ⊆ U and a

positive integer k ≤ n, where every element in U appears exactly twice in the collection C and the induced graph
on U with edges defined by the sets in C is bipartite.

QUESTION: Is there a partition of k sets S′
1, . . . , S′

k such that S′
i ∩ S′

j = ∅ for 1 ≤ i ̸= j ≤ k and
S′

1 ∪ . . . ∪ S′
k = U?

REMARKS: By employing matching techniques, both the Set Packing and Exact Cover problems, where
each set contains exactly two elements, can be efficiently solved in polynomial time [8].

An independent set V′ is a subset of vertices in a graph G where no two vertices in the set are
connected by an edge. In addition, a vertex cover (sometimes called a node cover) of a graph G is
a subset of its vertices, denoted by V′, such that every edge in G has at least one endpoint in V′. A
bipartite graph, denoted as B = (U, V, E), is an undirected graph characterized by the existence of two
node sets U, V and edges in E that only connect nodes from opposite sets.

Definition 2. Exact Independent Vertex Cover (XIVC) Problem
INSTANCE: An undirected graph G = (V, E) and a positive integer k.
QUESTION: Is there set V′ of exactly k vertices such that V′ is both a vertex cover and an independent set

in G?
REMARKS: The XIVC problem is reducible to the problem of finding a 2-coloring of a bipartite graph with

a specified color class size of k. Given the polynomial-time solvability of the 2-coloring problem for bipartite
graphs, the XIVC problem can also be solved in polynomial time.

Formally, a Boolean formula ϕ is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as

∧(AND), ∨(OR), ¬(NOT), ⇒(IMPLICATION), ⇔(IF AND ONLY IF);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a mapping from the variables of ϕ to the Boolean
values {true, false}. A truth assignment is satisfying if it makes ϕ evaluate to true. A Boolean formula is
satisfiable if it has at least one satisfying truth assignment. A literal is a Boolean variable or its negation.
A Boolean formula is in Conjunctive Normal Form (CNF) if it is a conjunction (AND) of clauses, where
each clause is a disjunction (OR) of one or more literals [7]. The SAT problem asks whether a given



3 of 9

Boolean formula in CNF is satisfiable [8]. A 3CNF formula is a CNF formula in which each clause
contains exactly three distinct literals [7]. For example, the following formula is in 3CNF:

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ x2) ∧ (¬x1 ∨ ¬x3 ∨ x2)

The first clause, (x1 ∨ ¬x2 ∨ x3), contains the three literals x1, ¬x2 and x3. The version of SAT where
formulas are in 3CNF is called 3SAT [7]. We formally define the following problem:

Definition 3. Monotone Not-All-Equal 3-Satisfiability (NAE-3MSAT) Problem
INSTANCE: A Boolean formula in 3CNF with monotone clauses (meaning the variables are never negated).
QUESTION: Is there exists a satisfying truth assignment such that each clause has at least one true

variable and at least one false variable?
REMARKS: This problem is complete for NP [9]. Here, the certificate is an appropriate satisfying truth

assignment, meaning it satisfies the NAE-3MSAT condition for each clause.

In addition, a 2CNF formula is a Boolean formula in conjunctive normal form with exactly two
distinct literals per clause. Now, we introduce the last problem:

Definition 4. Exact Monotone XOR 2-Satisfiability (XX2MSAT) Problem
INSTANCE: An n-variable 2CNF formula with monotone clauses (meaning the variables are never

negated) using XOR logic operators ⊕ (instead of using the operator ∨) and a positive integer k.
QUESTION: Is there exists a satisfying truth assignment in which exactly k of the variables are true?

By presenting the NP-completeness and a polynomial time algorithm to SAT, we would establish
a proof that P equals NP.

3. Main Result

Even though the following reductions are widely known, we will rely on them as supporting
results in our analysis [8].

Theorem 1. The problem SAT can be reduced to 3SAT in polynomial time.

Proof. We will not delve into the specific steps of this reduction, as it is a standard technique in
computer science [7]. To reduce a general SAT instance to a 3SAT formula, we can follow these steps:

1. Expand Clauses with Few Literals: To ensure that all clauses contain exactly three literals, we
introduce two new variables and expand clauses with at most two literals into clauses with
three literals by considering all possible combinations of the new variables, both negated and
positive. For instance, consider the two new variables A and B. A single-literal clause (x) can be
equivalently expressed as:

(x ∨ A ∨ B) ∧ (x ∨ ¬A ∨ ¬B) ∧ (x ∨ A ∨ ¬B) ∧ (x ∨ ¬A ∨ B).

Similarly, a two-literal clause (x ∨ y) is equivalent to:

(x ∨ y ∨ A) ∧ (x ∨ y ∨ ¬A) ∧ (x ∨ y ∨ B) ∧ (x ∨ y ∨ ¬B).

Note that the same variables A and B are used in both cases.
2. Identify Long Clauses: Find all clauses with more than three literals.
3. Introduce New Variables: For a clause with n literals (where n > 3), introduce n − 3 new

variables.
4. Create New Clauses: Create a chain of clauses with three literals each, using the original literals

and the new variables. Ensure that the satisfiability of the original clause is preserved in this
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chain of new clauses. To exemplify, consider a clause containing four literals, (x ∨ y ∨ z ∨ w).
By introducing a single additional variable, D, this clause can be logically represented as the
conjunction of the following two clauses:

(x ∨ y ∨ ¬D) ∧ (D ∨ z ∨ w).

By systematically applying this reduction to each clause, we can transform any SAT instance into an
equivalent 3SAT formula. This reduction demonstrates that 3SAT is at least as hard as the general SAT
problem, and thus, it is an NP-complete problem.

Theorem 2. The problem 3SAT can be reduced to NAE-3SAT in polynomial time.

Proof. Any 3SAT formula ϕ can be reduced to an equivalent NAE-3SAT instance. This reduction
involves the following steps:

• Variable Introduction:

1. Global Variable: Introduce a new variable w that does not appear in ϕ.
2. Clause Variables: For each clause ci = (x ∨ y ∨ z) in ϕ, introduce a new variable ai.

• Clause Construction:

– Clause Reduction: For each clause ci = (x ∨ y ∨ z), construct two NAE-3SAT clauses:

* (x ∨ y ∨ ai) ∧ (z ∨ ¬ai ∨ w).

By construction, a satisfying truth assignment for ϕ corresponds to an appropriate satisfying truth
assignment for the NAE-3SAT instance when w is assigned the value false, and vice versa. When w is
true, we can obtain a satisfying truth assignment for ϕ by negating all the values in an appropriate
satisfying truth assignment for the NAE-3SAT instance. This reduction demonstrates that NAE-3SAT
is NP-complete.

Theorem 3. The problem NAE-3SAT can be reduced to NAE-3MSAT in polynomial time.

Proof. It is well-known that any Boolean formula ϕ in NAE-3SAT can be reduced to an equivalent
NAE-3MSAT instance. This reduction involves the following steps:

• Variable Introduction:

1. Literal Variables: For each variable x in ϕ, introduce two variables: x+ representing the
positive literal x and x− representing the negative literal ¬x. Additionally, we introduce
three new variables ax, bx, and cx for each variable x in ϕ.

• Clause Construction:

1. Clause Reduction: For each clause ci = (x ∨ y ∨ z), construct one NAE-3MSAT clause:

– (xsx ∨ ysy ∨ zsz), where sv is + if literal v ∈ {x, y, z} is positive and − otherwise.
2. Variable Consistency: For each variable x in ϕ, construct four NAE-3MSAT clauses:

– (x+ ∨ x− ∨ ax), (x+ ∨ x− ∨ bx), (x+ ∨ x− ∨ cx), and (ax ∨ bx ∨ cx). These clauses ensure
that exactly one of x+ and x− is true.

By construction, a satisfying truth assignment for ϕ corresponds to an appropriate satisfying truth
assignment for the NAE-3MSAT instance, and vice versa. Thus, this reduction proves that NAE-3MSAT
is NP-complete.

This is a significant result.
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Theorem 4. The problem NAE-3MSAT can be reduced to X2SCP in polynomial time.

Proof. To better visualize this polynomial time reduction, we will use a graphical representation of
the sets involved. To represent a NAE-3MSAT formula ϕ as a collection of sets C over a universe
U, we introduce a gadget for each variable x in ϕ. To enforce consistency, we connect all positive
literals of a variable x to the logical constraints of the clauses where they appear. This ensures that
if a positive literal of x is chosen in one clause, all other positive literals of x must also be selected,
effectively "covering" all occurrences of x. The connection between variable x and clauses ch, ci, and cj
is illustrated in Figures 1 and 2. These figures correspond to selecting the sets

{¬xh, vh,i}, {¬xi, vi,j}, {¬xj, vj,h},

{¬vh,i, xi}, {¬vi,j, xj}, {¬vj,h, xh},

{vh,i, wh,j}, {wh,j,¬vi,j},

{vi,j, wi,h}, {wi,h,¬vj,h},

{vj,h, wj,i}, {wj,i,¬vh,i},

after of introducing the new elements vh,i, vi,j, vj,h, ¬vh,i, ¬vi,j, ¬vj,h, wh,j, wi,h, and wj,i, where dashed
vertices correspond to the literals of x that are absent from clauses ch, ci, cj in ϕ.

xh¬xj

xi

¬xh

xj

¬xi

¬vh,i

vh,i

vj,h

¬vj,h

¬vi,j

vi,j

Figure 1. x-gadget for the occurrences of x in clauses ch, ci, cj of ϕ.

vh,i

¬vj,h

vj,h

¬vi,j

vi,j

¬vh,i wh,j

wi,h

wj,i

Figure 2. Covering all occurrences of x.
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The topology of the gadget ensures consistency. The construction (e.g., Figures 1 and 2) guarantees
that if any positive vertex is matched with some vertices outside of the gadget then all negative vertices
can only be matched inside this gadget, and vice versa. Thus, the "availability" of a vertex to be
matched by an outside vertex corresponds to the truth assignment.

To represent each clause ci = (x ∨ y ∨ z) in ϕ, we define three sets:

{¬xi, yi}, {¬yi, zi}, {¬zi, xi}.

By ensuring that exactly one of these sets is chosen, we satisfy the NAE-3MSAT condition for clause ci.
If all variables in ci have the same truth assignment, none of these sets can be selected. Conversely, if ci
is satisfied under the NAE-3MSAT condition, then exactly one of these sets can be covered.

A Boolean formula ϕ satisfies the NAE-3MSAT constraints if and only if its corresponding
collection of sets C can be partitioned into 7 · m disjoint sets, where m is the number of clauses in ϕ.
This equivalence follows directly from the construction of C, which is designed to faithfully represent
the logical structure of ϕ over the universe U.

The collection of sets C incorporates two types of set:

1. Variable Sets: The construction depicted in Figures 1 and 2 enables the selection of two sets
for each variable occurrence within a clause of ϕ. Since each clause comprises three distinct
variables, there are precisely 6 · m such sets.

2. Clause Sets: The final step enforces the NAE-3MSAT condition by requiring each clause in ϕ to
choose exactly one set. This guarantees the existence of precisely m clause sets that induce an
appropriate satisfying truth assignment for ϕ.

Hence, an appropriate satisfying truth assignment for ϕ directly corresponds to a partition of C
into 7 · m disjoint sets: 6 · m variable sets and m clause sets. Conversely, any such partition of C can
be interpreted as an appropriate satisfying truth assignment for ϕ. This one-to-one correspondence
establishes the equivalence between the appropriate satisfiability of ϕ and the existence of 7 · m disjoint
sets in C covering U, where each element in U belongs to exactly two sets in C. Additionally, the graph
constructed from U and the sets in C is bipartite, as there are no cycles of odd length in this graph. The
proof is hereby concluded.

This is a main insight.

Theorem 5. The problem X2SCP can be reduced to XX2MSAT in polynomial time.

Proof. We present a reduction from the X2SCP problem to the XX2MSAT problem. Given an instance
(U, C, k) of X2SCP, we construct an equivalent XX2MSAT instance as follows:

1. Formula Construction:

• Variables: For each set Si ∈ C, introduce a Boolean variable xi.
• Clauses: For every pair of sets Si, Sj ∈ C that share a common element u ∈ U, create a

clause (xi ⊕ xj).

2. Equivalence of Solutions:

• A solution to the X2SCP instance, consisting of k mutually disjoint sets that cover U, directly
corresponds to a truth assignment to the XX2MSAT instance where k variables are true.

• Conversely, a truth assignment to the XX2MSAT instance with k true variables corresponds
to a selection of k sets in C that are mutually disjoint and cover U.

To see why, consider the following:
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• Covering the Universe: The clause structure ensures that every element in U is covered by
exactly one selected set. If an element is not covered, then the corresponding clause would
be unsatisfied.

• Mutual Disjointness: The XOR clauses between pairs of intersecting sets enforce mutual
disjointness. If two sets with a common element are both selected, the corresponding clause
would be unsatisfied.

• Satisfiability Criterion: Given that the induced graph on U with edges defined by the sets
in C is bipartite, the constructed 2CNF formula employing XOR operators is satisfiable.

Therefore, the X2SCP problem and the XX2MSAT problem are equivalent, and a solution to one can be
efficiently transformed into a solution to the other.

These are the main theorems.

Theorem 6. XIVC ∈ P.

Proof. Given the efficient solvability of the 2-coloring problem in bipartite graphs, we claim that
the XIVC problem can be accomplished within polynomial time. This is a straightforward dynamic
programming algorithm similar to solve subset sum: Let (A1, B1), (A2, B2) . . . , (Ap, Bp) be the sides of
partitions Ai and Bi in a connected component i of the bipartite graph B = (U, V, E), such that every
vertex in a single partition has the same color.

Now, we create a dynamic programming table DP[i, t] that stores whether it is possible to have a
bipartite graph with exactly t vertices on one color using the i first components. The bi-dimensional
boolean array DP, having dimensions (p + 1) by (k + 1) and zero-based indexing. All elements are
assigned the value false, with the exception of the element at index (0, 0) which is assigned the value
true (i.e., DP[0, 0] = true). Using the recurrence

DP[i, t] = DP[i − 1, t− | Ai |] ∨ DP[i − 1, t− | Bi |],

we correctly decide whether there exists an entire partitioning of exactly k vertices with the same color
after by examining DP[p, k], where | . . . | is the cardinality set function. The recurrence evaluates
DP[i, t] as false for any i and t that do not satisfy 0 ≤ i ≤ p and 0 ≤ t ≤ k. This is a polynomial time
algorithm since the running time is bounded by O(| U | + | V | + | E | +p · (k + 1)). Identifying
2-color partitions takes O(| U | + | V | + | E |) time using breadth-first search algorithm (BFS), while
finding k vertices of the same color requires O(p · (k + 1)) iterations. We can easily determine if a
graph is two-colorable by performing a breadth-first search and assigning alternating colors to the
nodes. Every connected component is partitioned into two sets using two colors. For isolated vertices,
one of the sets is empty. Similarly, the dynamic programming algorithm to solve subset sum (in this
specific variation) can be solved by systematically checking all possible values from 0 to k using each
pair of partitions for every connected component.

Theorem 7. XX2MSAT ∈ P.

Proof. There is a connection between finding a satisfying truth assignment in XX2MSAT with exactly
k true variables and finding a set of k vertices that is both a vertex cover and an independent set in a
specific graph construction.

Here’s a breakdown of the equivalence:

1. Graph Construction:

• Each vertex in the new graph represents a variable in the XX2MSAT formula.
• Edges are created between variables based on the structure of the 2CNF clauses: If two

variables appear in a clause (e.g., (x ⊕ y)), then an edge is drawn between the corresponding
vertices in the graph.
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2. XX2MSAT and the Graph:

• A truth assignment in XX2MSAT where exactly k variables are true directly translates to a
set of k vertices in the constructed graph where true variables correspond to the vertices
included in the set.

• The properties of XX2MSAT clauses ensure that:

– Vertex Cover: The chosen vertices cover all the edges (due to the structure of the clauses
and the way edges are formed). This satisfies the vertex cover condition.

– Independent Set: The chosen vertices don’t have any edges connecting them (because
the variables are connected in the graph, and only one variable from each clause can be
true). This satisfies the independent set condition.

Therefore, finding a satisfying truth assignment with exactly k true variables in XX2MSAT is indeed
equivalent to finding a set of k vertices that fulfills both vertex cover and independent set requirements
in the corresponding graph. However, we know the problem of finding a set of k vertices that is both a
vertex cover and an independent set can be solved in polynomial time. Consequently, the instances of
the problem XX2MSAT can be solved in polynomial time as well.

This is a key finding.

Theorem 8. SAT ∈ P.

Proof. This follows directly from Theorems 1, 2, 3, 4, 5, 6, and 7.

This is the definitive result.

Theorem 9. P = NP.

Proof. Cook’s Theorem states that every NP problem can be reduced to SAT in polynomial time [8].
Given that SAT is an NP-complete problem, a polynomial time algorithm for it, as presented here,
would directly imply P equals NP.

4. Conclusion

A definitive proof that P equals NP would fundamentally reshape our computational landscape.
The implications of such a discovery are profound and far-reaching:

• Algorithmic Revolution.

– The most immediate impact would be a dramatic acceleration of problem-solving capabili-
ties. Complex challenges currently deemed intractable, such as protein folding, logistics
optimization, and certain cryptographic problems, could become efficiently solvable [10].
This breakthrough would revolutionize fields from medicine to cybersecurity. Moreover,
everyday optimization tasks, from scheduling to financial modeling, would benefit from
exponentially faster algorithms, leading to improved efficiency and decision-making across
industries [10].

• Scientific Advancements.

– Scientific research would undergo a paradigm shift. Complex simulations in fields like
physics, chemistry, and biology could be executed at unprecedented speeds, accelerating
discoveries in materials science, drug development, and climate modeling [10]. The ability to
efficiently analyze massive datasets would provide unparalleled insights in social sciences,
economics, and healthcare, unlocking hidden patterns and correlations [10].

• Technological Transformation.
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– Artificial intelligence would be profoundly impacted. The development of more powerful
AI algorithms would be significantly accelerated, leading to breakthroughs in machine
learning, natural language processing, and robotics [10]. While the cryptographic landscape
would face challenges, it would also present opportunities to develop new, provably secure
encryption methods [10].

• Economic and Societal Benefits.

– The broader economic and societal implications are equally significant. A surge in inno-
vation across various sectors would be fueled by the ability to efficiently solve complex
problems. Resource optimization, from energy to transportation, would become more
feasible, contributing to a sustainable future [10].

In conclusion, a proof of P = NP would usher in a new era of computational power with transformative
effects on science, technology, and society. While challenges and uncertainties exist, the potential
benefits are immense, making this a compelling area of continued research.
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