Article

SAT in Polynomial Time: A Proof of P = NP

Frank Vega

Information Physics Institute, Miami, Florida, United States; vega.frank@gmail.com

Abstract: The P versus NP problem is a cornerstone of theoretical computer science, asking whether problems that
are easy to check are also easy to solve. "Easy" here means solvable in polynomial time, where the computation
time grows proportionally to the input size. While this problem’s origins can be traced to John Nash’s 1955 letter,
its formalization is credited to Stephen Cook and Leonid Levin. Despite decades of research, a definitive answer
remains elusive. Central to this question is the concept of NP-completeness. If even one NP-complete problem,
like SAT, could be solved efficiently, it would imply that all NP problems could be solved efficiently, proving
P=NP. This research proposes a groundbreaking claim: SAT, traditionally considered NP-complete, can be solved

in polynomial time, establishing the equivalence of P and NP.

Keywords: complexity classes; graph; polynomial time; completeness; reduction

1. Introduction

The P versus NP problem is a fundamental question in computer science that asks whether
problems whose solutions can be easily checked can also be easily solved [1]. “Easily” here means
solvable in polynomial time, where the computation time grows proportionally to the input size [1,2].
Problems solvable in polynomial time belong to the class P, while NP includes problems whose
solutions can be verified efficiently given a suitable “certificate” [1,2]. Alternatively, P and NP can
be defined in terms of deterministic and non-deterministic Turing machines with polynomial-time
complexity [1,2].

The central question is whether P and NP are the same. Most researchers believe that P is a strict
subset of NP, meaning that some problems are inherently harder to solve than to verify. Resolving this
problem has profound implications for fields like cryptography and artificial intelligence [3,4]. The
P versus NP problem is widely considered one of the most challenging open questions in computer
science. Techniques like relativization and natural proofs have yielded inconclusive results, suggesting
the problem’s difficulty [5,6]. Similar problems, such as the VP versus VNP problem in algebraic
complexity, remain unsolved [7].

The P versus NP problem is often described as a “holy grail” of computer science. A positive
resolution could revolutionize our understanding of computation and potentially lead to groundbreak-
ing algorithms for critical problems. The problem is listed among the Millennium Prize Problems.
While recent years have seen progress in related areas, such as finding efficient solutions to specific
instances of NP-complete problems, the core question of P versus NP remains unanswered [3]. A
polynomial-time algorithm for any NP-complete problem would directly imply P equals NP [8]. Our
work focuses on presenting such an algorithm for a well-known NP-complete problem.

2. Background and ancillary results

NP-complete problems are the Everest of computational challenges. Despite the ease of verifying
proposed solutions with a succinct certificate, finding these solutions efficiently remains an elusive
goal. A problem is classified as NP-complete if it satisfies two stringent criteria within computational
complexity theory:

1. Efficient Verifiability: Solutions can be quickly checked using a concise proof [8].
2. Universal Hardness: Every problem in the class NP can be reduced to this problem without
significant computational overhead [8].

2 0f9

The implications of finding an efficient algorithm for a single NP-complete problem are profound. Such

a breakthrough would serve as a master key, unlocking efficient solutions for all problems in NP, with

transformative consequences for fields like cryptography, artificial intelligence, and planning [3,4].
[lustrative examples of NP-complete problems include:

¢ Boolean Satisfiability (SAT) Problem: Given a logical expression in conjunctive normal form,
determine if there exists an assignment of truth values to its variables that makes the entire
expression true [9].

* Boolean 3-Satisfiability (3SAT) Problem: Given a Boolean formula in conjunctive normal form
with exactly three literals per clause, determine if there exists a truth assignment to its variables
that makes the formula evaluate to true [9].

* Not-All-Equal 3-Satisfiability (NAE-3SAT) Problem: Given a Boolean formula in conjunc-
tive normal form with exactly three literals per clause, decide if there exists a satisfying truth

assignment such that each clause has at least one true variable and at least one false variable [9].
¢ Exact K-Coloring Problem: Given a graph G and a positive integer k, determine if there exists

a valid coloring of G such that exactly k vertices have the same color and no adjacent vertices
have the same color. This problem is equivalent to finding an independent set of size k, an
NP-complete problem [9].

The provided examples represent a small subset of the extensively studied NP-complete problems
relevant to our current work. An independent set V' is a subset of vertices in a graph G where no
two vertices in the set are connected by an edge. In addition, a vertex cover (sometimes called a node
cover) of a graph G is a subset of its vertices, denoted by V’, such that every edge in G has at least one
endpoint in V’. A bipartite graph, denoted as B = (U, V, E), is an undirected graph characterized by
the existence of two node sets U, V and edges in E that only connect nodes from opposite sets. The
following problems can be solved in polynomial time:

Definition 1. Exact Independent Vertex Cover (XIVC) Problem

INSTANCE: An undirected graph G = (V, E) and a positive integer k.

QUESTION: Is there set V' of exactly k vertices such that V' is both a vertex cover and an independent set
in G?

REMARKS: The XIVC problem is reducible to the problem of finding a 2-coloring of a bipartite graph with
a specified color class size of k. Given the polynomial-time solvability of the 2-coloring problem for bipartite
graphs, the XIVC problem can also be solved in polynomial time.

Definition 2. Exact 2-Cover By Sets (X2SC) Problem

INSTANCE: A universe set U, a collection of n sets C = S1, Sy, ..., Sy with S; C U and a positive integer
k < n, where each element in U appears exactly twice in C.

QUESTION: Is there a partition of exactly k sets S, ..., S} such that S; N S; =Qforl1 <i#j<kand
Sju...us . =uz

Formally, a Boolean formula ¢ is composed of:

—_

Boolean variables: x1, x5, ..., xy;

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as
A(AND), V(OR), =(NOT), = (IMPLICATION), < (IF AND ONLY IF);

3. and parentheses.

A truth assignment for a Boolean formula ¢ is a mapping from the variables of ¢ to the Boolean
values {true, false}. A truth assignment is satisfying if it makes ¢ evaluate to true. A Boolean formula is
satisfiable if it has at least one satisfying truth assignment. A literal is a Boolean variable or its negation.
A Boolean formula is in Conjunctive Normal Form (CNF) if it is a conjunction (AND) of clauses, where
each clause is a disjunction (OR) of one or more literals [8]. The SAT problem asks whether a given

30f9

Boolean formula in CNF is satisfiable [9]. A 3CNF formula is a CNF formula in which each clause
contains exactly three distinct literals [8]. For example, the following formula is in 3CNF:

(Xl V —xp V X3) AN (—|x1 Vx3V Xz) A (—|JC1 V —x3 V XZ).

The first clause, (x1 V —x; V x3), contains the three literals x1, —x; and x3. The version of SAT where
formulas are in 3CNTF is called 3SAT [8]. In addition, a 2CNF formula is a Boolean formula in
conjunctive normal form with exactly two distinct literals per clause. We formally define the following
NP-complete problems:

Definition 3. Monotone Not-All-Equal 3-Satisfiability (NAE-3MSAT) Problem

INSTANCE: A Boolean formula in 3CNF with monotone clauses (meaning the variables are never negated).

QUESTION: Is there exists a satisfying truth assignment such that each clause has at least one true
variable and at least one false variable?

REMARKS: This problem is complete for NP [10]. Here, the certificate is a valid satisfying truth assign-
ment, meaning it satisfies the NAE-3MSAT condition for each clause.

Definition 4. Exact Monotone XOR 2-Satisfiability (X2MXSAT) Problem

INSTANCE: A Boolean formula in 2CNF with monotone clauses (meaning the variables are never negated)
using XOR logic operators @ (instead of using the operator \/) and a positive integer k.

QUESTION: Is there exists a satisfying truth assignment in which exactly k of the variables are true?

By presenting the NP-completeness and a polynomial-time solution to SAT, we would establish a
proof that P equals NP.

3. Main Result

Even though the following reductions are widely known, we will rely on them as supporting
results in our analysis [9].

Theorem 1. The problem SAT can be reduced to 3SAT in polynomial time.

Proof. We will not delve into the specific steps of this reduction, as it is a standard technique in
computer science [8]. To reduce a general SAT instance to a 3SAT formula, we can follow these steps:

1. Expand Clauses with Few Literals: To ensure that all clauses contain exactly three literals, we
introduce two new variables and expand clauses with at most two literals into clauses with
three literals by considering all possible combinations of the new variables, both negated and
positive. For instance, consider the two new variables A and B. A single-literal clause (x) can be
equivalently expressed as:

(xVAVB)A(xV=AV-B)A(xVAV-B)A(xV-AVB).
Similarly, a two-literal clause (x V y) is equivalent to:
(xVyVA)AN(xVyV-A)AN(xVyVB)A(xVyV-B).

Note that the same variables A and B are used in both cases.

2. Identify Long Clauses: Find all clauses with more than three literals.

3. Introduce New Variables: For a clause with n literals (where n > 3), introduce n — 3 new
variables.

4. Create New Clauses: Create a chain of clauses with three literals each, using the original literals
and the new variables. Ensure that the satisfiability of the original clause is preserved in this
chain of new clauses. To exemplify, consider a clause containing four literals, (x Vy Vz V w).

40f9

By introducing a single additional variable, D, this clause can be logically represented as the
conjunction of the following two clauses:

(xVyVv-D)A(DVzVuw).

By systematically applying this reduction to each clause, we can transform any SAT instance into an
equivalent 35AT formula. This reduction demonstrates that 3SAT is at least as hard as the general SAT
problem, and thus, it is an NP-complete problem. [

Theorem 2. The problem 3SAT can be reduced to NAE-3SAT in polynomial time.

Proof. Any 3SAT formula ¢ can be reduced to an equivalent NAE-3SAT instance. We assume that no
clause contains a literal and its negation. Such tautological clauses can be removed. We also remove
clauses containing literals whose negations do not appear in the 3SAT instance. This reduction involves
the following steps:

e Variable Introduction:

1. Global Variable: Introduce a new variable w that does not appear in ¢.
2. Clause Variables: For each clause ¢; = (x Vy V z) in ¢, introduce a new variable a;.

¢ Clause Construction:

- Clause Reduction: For each clause ¢; = (x V y V z), construct two NAE-3SAT clauses:
+ (xVyVa)A(zV-a;Vw).
By construction, a satisfying truth assignment for ¢ corresponds to a valid satisfying truth assignment
for the NAE-3SAT instance when w is assigned the value false, and vice versa. When w is true,
we can obtain a satisfying truth assignment for ¢ by negating all the values in a valid satisfying

truth assignment for the NAE-3SAT instance. This reduction demonstrates that NAE-3SAT is NP-
complete. O

Theorem 3. The problem NAE-3SAT can be reduced to NAE-3MSAT in polynomial time.

Proof. It is well-known that any Boolean formula ¢ in NAE-3SAT can be reduced to an equivalent
NAE-3MSAT instance. This reduction involves the following steps:

e Variable Introduction:

1. Literal Variables: For each variable x in ¢, introduce two variables: x representing the
positive literal x and x_ representing the negative literal —x. Additionally, we introduce
three new variables ay, by, and cy for each variable x in ¢.

¢ Clause Construction:

1. Clause Reduction: For each clause ¢; = (x V y V z), construct one NAE-3MSAT clause:

- (x5, V Ysy V zg_), where s, is + if literal v € {x, y,z} is positive and — otherwise.
2. Variable Consistency: For each variable x in ¢, construct four NAE-3MSAT clauses:

= (x4 Vx_Vay), (x4 Vx_Vby), (x4 Vx_ Vcy),and (ay V by V ¢y). These clauses ensure

that exactly one of x4 and x_ is true.

By construction, a valid satisfying truth assignment for ¢ corresponds to a valid satisfying truth
assignment for the NAE-3MSAT instance, and vice versa. Thus, this reduction proves that NAE-
3MSAT is NP-complete. [

These are key findings.

50f9

Theorem 4. XIVC € P.

Proof. Given the efficient solvability of the 2-coloring problem in bipartite graphs, we claim that
the XIVC problem can be accomplished within polynomial time. This is a straightforward dynamic
programming algorithm similar to solve subset sum: Let (A1, B1), (A, B2) ..., (Ap, Bp) be the sides of
partitions A; and B; in a connected component i of the bipartite graph B = (U, V, E), such that every
vertex in a single partition has the same color.

Now, we create a dynamic programming table DP][i, t] that stores whether it is possible to have a
bipartite graph with exactly f vertices on one color using the i first components. The bi-dimensional
boolean array DP, having dimensions (p + 1) by (k + 1) and zero-based indexing. All elements are
assigned the value false, with the exception of the element at index (0,0) which is assigned the value
true (i.e., DP[0,0] = true). Using the recurrence

DP[i,f] = DP[i —1,t— | A; ||V DP[i —1,t— | B; |],

we correctly decide whether there exists an entire partitioning of exactly k vertices with the same color
after by examining DP[p, k], where | ... | is the cardinality set function. The recurrence evaluates
DPJi, t] as false for any i and t that do not satisfy 0 <i < pand 0 < t < k. This is a polynomial time
algorithm since the running time is bounded by O(| U | + | V| + | E | +p - (k+1)). Identifying
2-color partitions takes O(| U | + | V | + | E |) time using breadth-first search algorithm (BFS), while
finding k vertices of the same color requires O(p - (k + 1)) iterations. We can easily determine if a
graph is two-colorable by performing a breadth-first search and assigning alternating colors to the
nodes. Every connected component is partitioned into two sets using two colors. For isolated vertices,
one of the sets is empty. Similarly, the dynamic programming algorithm to solve subset sum (in this
specific variation) can be solved by systematically checking all possible values from 0 to k using each
pair of partitions for every connected component. [

Theorem 5. X2MXSAT < P.

Proof. There is a connection between finding a satisfying truth assignment in X2MXSAT with exactly
k true variables and finding a set of k vertices that is both a vertex cover and an independent set in a
specific graph construction.

Here’s a breakdown of the equivalence:

1. Graph Construction:

¢ Each vertex in the new graph represents a variable in the X2MXSAT formula.
* Edges are created between variables based on the structure of the 2CNF clauses: If two

variables appear in a clause (e.g., (x @ y)), then an edge is drawn between the corresponding
vertices in the graph.

2. X2MXSAT and the Graph:

* A truth assignment in X2MXSAT where exactly k variables are true directly translates to a
set of k vertices in the constructed graph where true variables correspond to the vertices
included in the set.

* The properties of X2MXSAT clauses ensure that:

— Vertex Cover: The chosen vertices cover all the edges (due to the structure of the clauses

and the way edges are formed). This satisfies the vertex cover condition.
- Independent Set: The chosen vertices don’t have any edges connecting them (because

the variables are connected in the graph, and only one variable from each clause can be
true). This satisfies the independent set condition.

Therefore, finding a satisfying truth assignment with exactly k true variables in X2MXSAT is indeed
equivalent to finding a set of k vertices that fulfills both vertex cover and independent set requirements

6 0f 9

in the corresponding graph. However, we know the problem of finding a set of k vertices that is both a
vertex cover and an independent set can be solved in polynomial time. Consequently, the instances of
the problem X2MXSAT can be solved in polynomial time as well. [

Theorem 6. The problem X2SC can be reduced to X2MXSAT in polynomial time.

Proof. Given an instance of X2SC defined by a universe U = {uy,uy, ..., u,} and a collection C =
51,52,...,54 of sets S; C U, where each element in U appears exactly twice in C, and the goal is to
select exactly k mutually disjoint sets from C that cover U, we construct an equivalent instance of
X2MXSAT as follows:

1. Formula Construction:

* Variables: For each element 1y € U, we introduce variables u; 1) and 1; 5). For each set S;

in C, we create a corresponding variable s;.
* Clauses: For every pair of sets S;, S; € C that share a common element uy € U, create the

following element-formula:

Fe=(si D ug)) A (5] D uga)) A (M) © o))

* Formula: The complete X2MXSAT instance is the conjunction of all element-formulas Fy:
m
p=/N\NFE=FRANRANFBA...AF,q1NFy,
i=1

where m is the number of elements in U.
Mapping between X2SC solutions and X2MXSAT assignments:

* A satisfying truth assignment in the X2MXSAT formula corresponds to a partition of k sets
covering U if:

— Set variables s; assigned true represent the sets inside of the partition.
— Set variables s; assigned false represent the sets outside of the partition.
— The satlsflabllfty of clause (1) © 1)) indicates that the corresponding element 1

has been covered.

2. Equivalence of Solutions:

* A solution to the X2SC instance, consisting of k mutually disjoint sets that cover U, directly

corresponds to a truth assignment to the X2MXSAT instance where k 4 m variables are true.
* Conversely, a truth assignment to the X2MXSAT instance with k + m true variables corre-

sponds to a selection of k sets in C that are mutually disjoint and cover U.
To see why, consider the following;:

¢ Covering the Universe: The element-formula structure ensures that every element in U is
covered by exactly one selected set. If an element 1 is not covered, then the corresponding

element-formula F;, would be unsatisfied.
* Mutual Disjointness: The element-formula structure enforces mutual disjointness between

pairs of intersecting sets. If two sets with a common element u; are both selected, the
corresponding element-formula F;, would be unsatisfied.

Therefore, the X25C problem and the X2MXSAT problem are equivalent, and a solution to one can be
efficiently transformed into a solution to the other. [J

This is a Main Insight.

Theorem 7. The problem NAE-3MSAT can be reduced to X2SC in polynomial time.

7 of 9

Proof. To better visualize this polynomial-time reduction, we will use a graphical representation of
the sets involved. To represent a NAE-BMSAT formula ¢ as a collection of set C over a universe U,
we introduce a gadget for each variable x in ¢. This gadget consists of 2 - ¢ triangles, where t is the
larger of the number of occurrences of x in ¢. Each triangle in the gadget corresponds to a possible
truth assignment for the variable x. The apexes of the triangles are labeled with x; or —x; to denote the
truth assignment required for clause ¢; in ¢.

The topology of the gadget ensures consistency. The construction (e.g., Figure 1) guarantees that
if any positive vertex is matched with some vertices outside of the gadget then all negative vertices
can only be matched by the triangles inside this gadget, and vice versa. Thus, the "availability" of a
vertex to be matched by an outside vertex corresponds to the truth assignment. For instance, in Figure
1, these sets would be:

{xi/ aX/ bx}/ {_‘xi/ bX/ dx}/
{xj/ dy, ex}/ {_‘xj/ ex/fx}/
{xh/fx/gx}/ {_'xh/gX/ ax};

where dashed vertices correspond to the literals of x that are absent from clauses ¢;, ¢j, cj, in ¢.

Figure 1. Variable gadget for the occurrences of x in clauses c;, ¢;, ¢, of ¢.

To represent each clause ¢; = (x V y V z) in ¢, we employ a gadget consisting of three sets:
{~xi,yit Ay zit A~z xi}-

- N s AN s N
! . .

\—|$i) /\—|y1) l\—|z,L \
~ 4 ~ ,/ ~ //

Figure 2. Clause gadget corresponding to the clause ¢; = (x Vy V z) in ¢.

This gadget, illustrated in Figure 2, is used to encode each clause within the overall construction,
where dashed vertices correspond to the literals that are absent in ¢;. By ensuring that exactly one
of these sets is chosen, we satisfy the NAE-3MSAT condition for clause c;. If all variables in ¢; have
the same truth assignment, none of these sets can be selected. Conversely, if c; is satisfied under the
NAE-3MSAT condition, then exactly one of these sets can be covered.

A Boolean formula ¢ satisfies the NAE-3MSAT constraints if and only if its corresponding
collection of sets C can be partitioned into exactly 4 - m disjoint sets, where m is the number of clauses
in ¢. This equivalence follows directly from the construction of C, which is designed to faithfully

8of9

represent the logical structure of ¢ over the universe U. The collection of sets C incorporates two types
of set:

1. Variable Sets: The construction depicted in Figure 1 enables the selection of exactly one set for
each variable occurrence within a clause of ¢. Since each clause comprises three distinct variables,
there are precisely 3 - m such sets.

2. Clause Sets: The final step in Figure 2 ensures the NAE-3MSAT condition by requiring each
clause in ¢ to choose exactly one set. This guarantees the existence of precisely m clause sets that
induce a valid satisfying truth assignment for ¢.

Hence, a valid satisfying truth assignment for ¢ directly corresponds to a partition of C into
exactly 4 - m disjoint sets: 3 - m variable sets and m clause sets. Conversely, any such partition of C can
be interpreted as a valid satisfying truth assignment for ¢. This one-to-one correspondence establishes
the equivalence between the valid satisfiability of ¢ and the existence of 4 - m disjoint sets in C covering
U, where each element in U belongs to exactly two setsin C. [

This is the Main Theorem.
Theorem 8. SAT < P.

Proof. This follows directly from Theorems 1,2,3,4,5,6,and 7. [

This is the definitive result.
Theorem 9. P = NP.

Proof. Cook’s Theorem states that every NP problem can be reduced to SAT in polynomial time [9].
Given that SAT is an NP-complete problem, a polynomial-time solution for it, as presented here, would
directly imply P equals NP. [

4. Conclusion

A definitive proof that P equals NP would fundamentally reshape our computational landscape.
The implications of such a discovery are profound and far-reaching:

¢ Algorithmic Revolution.

— The most immediate impact would be a dramatic acceleration of problem-solving capabili-
ties. Complex challenges currently deemed intractable, such as protein folding, logistics
optimization, and certain cryptographic problems, could become efficiently solvable [3,4].
This breakthrough would revolutionize fields from medicine to cybersecurity. Moreover,
everyday optimization tasks, from scheduling to financial modeling, would benefit from
exponentially faster algorithms, leading to improved efficiency and decision-making across
industries [3,4].

¢ Scientific Advancements.

- Scientific research would undergo a paradigm shift. Complex simulations in fields like
physics, chemistry, and biology could be executed at unprecedented speeds, accelerating
discoveries in materials science, drug development, and climate modeling [3,4]. The ability
to efficiently analyze massive datasets would provide unparalleled insights in social sciences,
economics, and healthcare, unlocking hidden patterns and correlations [3,4].

¢ Technological Transformation.

90f9

- Artificial intelligence would be profoundly impacted. The development of more powerful
Al algorithms would be significantly accelerated, leading to breakthroughs in machine
learning, natural language processing, and robotics [3,4]. While the cryptographic landscape
would face challenges, it would also present opportunities to develop new, provably secure
encryption methods [3,4].

¢ Economic and Societal Benefits.

— The broader economic and societal implications are equally significant. A surge in inno-
vation across various sectors would be fueled by the ability to efficiently solve complex
problems. Resource optimization, from energy to transportation, would become more
feasible, contributing to a sustainable future [3,4].

In conclusion, a proof of P = NP would usher in a new era of computational power with
transformative effects on science, technology, and society. While challenges and uncertainties exist, the
potential benefits are immense, making this a compelling area of continued research.

Acknowledgements

The author would like to thank Iris, Marilin, Sonia, Yoselin, and Arelis for their support.

References

1. Cook, S.A. The P versus NP Problem, Clay Mathematics Institute. https://www.claymath.org/wp-
content/uploads/2022/06/pvsnp.pdf, 2022. Accessed December 20, 2024.

2. Sudan, M. The P vs. NP problem. http://people.csail. mit.edu/madhu/papers/2010/pnp.pdf, 2010.
Accessed December 20, 2024.

3. Fortnow, L. Fifty years of P vs. NP and the possibility of the impossible. Communications of the ACM 2022,
65, 76-85. doi:10.1145/3460351.

4. Aaronson, S. P = NP. Open Problems in Mathematics 2016, pp. 1-122. d0i:10.1007/978-3-319-32162-2_1.

5. Baker, T; Gill, J.; Solovay, R. Relativizations of the P =? NP Question. SIAM Journal on Computing 1975,
4,431-442. doi:10.1137/0204037.

6. Razborov, A.A.; Rudich, S. Natural Proofs. Journal of Computer and System Sciences 1997, 1, 24-35.
doi:10.1006/jcss.1997.1494.

7. Wigderson, A. Mathematics and Computation: A Theory Revolutionizing Technology and Science; Princeton
University Press, 2019.

8. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press, 2009.

9. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1 ed.; San
Francisco: W. H. Freeman and Company, 1979.

10. Schaefer, T.]. The complexity of satisfiability problems. STOC '78: Proceedings of the tenth annual ACM
symposium on Theory of computing, 1978, pp. 216-226. doi:10.1145/800133.804350.

https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
http://people.csail.mit.edu/madhu/papers/2010/pnp.pdf
https://doi.org/10.1145/3460351
https://doi.org/10.1007/978-3-319-32162-2_1
https://doi.org/10.1137/0204037
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1145/800133.804350

	Introduction
	Background and ancillary results
	Main Result
	Conclusion
	References

