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Abstract— Objectives: To automate online segmentation of 

cervical muscles from transverse ultrasound (US) images of the 

human neck during functional head movement. To extend 

ground-truth labelling methodology beyond dependence upon 

MRI imaging of static head positions required for application to 

participants with involuntary movement disorders. Method: We 

collected sustained sequences (> 3 minutes) of US images of 

human posterior cervical neck muscles at 25 fps from 28 healthy 

adults, performing visually-guided pitch and yaw head motions. 

We sampled 1,100 frames (approx. 40 per participant) spanning 

the experimental range of head motion. We manually labelled 

all 1,100 US images and trained deconvolutional neural 

networks (DCNN) with a spatial SoftMax regression layer to 

classify every pixel in the full resolution (525x491) US images, as 

one of 14 classes (10 muscles, ligamentum nuchae, vertebra, 

skin, background). We investigated ‘MaxOut’ and Exponential 

Linear unit (ELU) transfer functions and compared with our 

previous benchmark (analytical shape modelling). Results: 

These DCNNs showed higher Jaccard Index (53.2%) and lower 

Hausdorff Distance (5.7 mm) than the previous benchmark 

(40.5%, 6.2 mm). SoftMax Confidence corresponded with 

correct classification. ‘MaxOut’ outperformed ELU marginally. 

Conclusion: The DCNN architecture accommodates challenging 

images and imperfect manual labels. The SoftMax layer gives 

user feedback of likely correct classification. The ‘MaxOut’ 

transfer function benefits from near-linear operation, 

compatibility with deconvolution operations and the dropout 

regulariser. Significance: This methodology for labelling and 

training segmentation networks is applicable for dynamic 

segmentation of moving muscles and for participants with 

involuntary movement disorders who cannot remain still. 

 
Index Terms—cervical muscles, deep learning, dystonia, head 

movement, movement disorders, segmentation, ultrasound. 

I. INTRODUCTION 

nline segmentation of ultrasound (US) images of 

cervical muscles is required for visualisation, analysis of 

deep, muscle structure and function, and monitoring of 

patient specific treatment protocols [1]–[6]. Personalised 

muscle diagnosis is needed for neck/back pain/injury, work 

related disorders, myopathies and neuropathies. Specifically 

for cervical dystonia, online segmentation of neck muscles is 

required for automated diagnosis, for improving diagnosis 

and monitoring the delivery and effectiveness of botulinum 

toxin injections into individual deep muscles[1], [6]. 

Image segmentation can be very challenging [6]–[14], 

particularly medical image segmentation [15], [16], [25]–

[28], [17]–[24]. Recently, deep learning methods have solved 
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complicated segmentation tasks [29]–[34], in medical 

imaging [35]–[42], and US [43]–[46], but not in skeletal 

muscle US, though there are some applications to muscle US 

[47]–[49]. The lack of publicly available labelled data, 

benchmark methods and results hinder the development of 

this domain. A methodology for obtaining participant specific 

labelled data, suitable for patients with involuntary 

movement disorders should not require subjects to be still. 

This study uses direct manual annotation of US images to 

produce ground truth labels and tests whether the 

combination of US image quality, direct manual annotation 

of US images, and deep learning is sufficient to train a system 

for robust, accurate segmentation of cervical muscles from 

transverse US images of the human neck, during functional 

movement. We contribute a labelled dataset of 1,100 US 

images of the human posterior cervical muscles, with a 

description of the process used to create the labels (Fig. 1). 

We present reproducible, deep learning methods and a state-

of-the-art benchmark for full resolution segmentation of neck 

muscles during head movement. 

A. Background 

Previously, cross-domain magnetic resonance imaging 

(MRI)-to-US registration was used to obtain accurate ground-

truth labels of cervical US images [6]. MRI images provide 

higher quality tissue contrast enabling more accurate 

annotation of muscle boundaries which can subsequently be 

registered to linked US images. However, use of MRI for 

annotation limits application to static head, and to participants 

who can keep their head still during MRI acquisition 

(typically > 5 minutes). Participants with pain, and movement 

disorders such as dystonia, which cause unavoidable body 

movement and contractions in muscles of interest are 

excluded. Though more difficult, direct annotation of US 

images for ground truth allows a system to be trained for 

functional movement and for participants with involuntary 

movement disorders. US is also more available than MRI. 
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Figure 1. Axial cervical neck US image and segment categories. Left: 

Typical transverse cervical “C4-6”, US image, depth 5 cm, width 5.9 cm. 

Right: Manually annotated boundaries of 13 segments added. Image left 

indicates anatomical left. 
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US images highlight reflecting tissue boundaries and 

provide texture indicating tissue content (Fig. 1). All muscles 

have similar composition-texture and appear dark 

(hypoechoic). Collagenous tissue between and within 

muscles appears bright (echogenic). In US, the boundary 

between muscles is not always visible. Assuming a constant 

probe position, as the head moves, the shape of muscle 

boundaries changes and sometimes muscles are no longer 

present within the image. Further, the quality of the US image 

deteriorates with depth (Videos 1, 2, Supp. Material). 

Understanding the boundaries of muscles in the US image 

requires training. For training purposes, two annotators 

directly labelled 86 US images from 86 participants. For 77 

of these participants we collected linked MRI images from 

which annotators labelled MRI images, then registered MRI 

muscle boundaries to the US images, and then annotated US 

images directly using registered MRI and a 3D atlas [50] as a 

reference [6] (Fig A. Supp. Material). Once annotation was 

consistent and agreed between labellers, we proceeded to 

direct labelling of the current dataset. With this article, we 

publish a fully labelled dataset of 1,100 cervical muscle US 

images, from 28 healthy participants during functional head 

movement. For 20 of these participants, the annotators had 

MRI annotations, registered to linked US images of the 

participant in the MRI posture, available for reference. 

To provide a deep learning method and state of the art 

benchmark to automate online labelling of US images, we use 

a popular neural network architecture for semantic 

segmentation applications, namely the deconvolutional 

neural network (DCNN), (Fig. 2) [30], [51], [52]. Here the 

term deconvolution does not describe the linear algebra being 

used, but describes the aim and function of a DCNN to 

reverse the effects of convolution and reconstruct full-

resolution data/labels. The DCNN shows invariance to local 

transformations (through max-pooling and recovery of 

pooled vectors using un-pooling) and implements an up-

sampling route immediately after the convolutional and 

down-sampling part of the network. 

Within the DCNN architecture, we investigate two 

different transfer functions. We investigate the recently 

introduced Exponential Linear Unit (ELU), because it 

alleviates the ‘dying ReLU’ problem (where unit function 

derivatives are zero over the training set), is linear in the 

positive part, has smooth nonlinearities in the negative part, 

and has demonstrated computational efficiency and superior 

performance over the popular alternative batch normalization 

method [53]. Second, we investigate the MaxOut unit, since 

it too alleviates ‘dying ReLU’, is theoretically capable of 

approximating any transfer function, and it has unit 

derivatives almost everywhere. We predict these units are 

naturally applicable to DCNNs since the popular dropout 

regulariser is more suited at test time to the linear response of 

each MaxOut subunit. With respect to deconvolutions, we 

predict MaxOut units have more flexibility than ELU because 

they can encode two different positions (with respect to units 

with only 2 components) with a single MaxOut unit, therefore 

theoretically increasing the model capacity within the 

decoder architecture. 

II. METHODS 

A. Data Collection 

Using a probe attached to the posterior neck, US images 

were recorded from 28 healthy adults (19 male, mean 31.4, 

s.d. 8.9) during head movement tasks (Fig. B Supp. Material). 

The tasks defined a range of pitch and yaw head rotations 

from which to sample axial images of the cervical muscles. 

These experiments, performed in the Cognitive Motor 

Function laboratory, Dept. of Healthcare Science, were 

approved by the Research Ethics Committee of the Faculty of 

Science and Engineering, Manchester Metropolitan 

University. Participants gave written, informed consent to 

these experiments, which conformed to the standards set by 

the latest revision of the Declaration of Helsinki.  

Participants were strapped at the chest to a vertical support. 

A projector displayed a moving target on a screen 1 m in front 

of the participants. Participants were instructed to allow their 

head to turn within a comfortable range to follow the target 

with the tip of their nose. “Horizontal”, “vertical” and 

“combined” trials contained respectively horizontal motion 

of the target, vertical motion of the target and a combination 

of independent horizontal and vertical components similar to 

[49]. These independent components included sines of 

multiple frequencies leading to transiently correlated and un-

correlated intervals. A Vicon MX motion capture system, 

with 10 infrared cameras recorded the 3D spatial location of 

9 retroreflective markers, which were placed on the head 

(bilaterally on the zygomatic arch and inferior orbit, 

unilaterally on frontal bone) and thorax (manubrium, right 

clavicle, right and left acromion). A T-shaped US probe (7.5 

 
Figure 2. Neural network architecture. A DCNN is shown with a spatial SoftMax classification layer. On the far left, the raw US image is input to the encoder 

part of the DCNN, then a series of convolution filters are applied (first layer uses a stride of 2 x 2), immediately followed by 4 x 4 spatial MaxPooling. This 

pattern of convolution and pooling (2 x 2) is repeated a further 6 times, increasing the number of convolution filters with each repetition, and with the last 
pooling layer being 2 x 3 MaxPooling. This results in the entire image being encoded by a 1x1 (spatial) feature representation consisting of 729 real valued 

nonlinear units/neurons. The decoder part of the DCNN then unpacks the representation, layer by layer (mirroring the encoder), using the indices of each pooled 

unit response (MaxUnPooling) to reconstruct the position-accurate full spatial resolution of the feature representation with an appended depth of 15 (the number 
of segment categories). The SoftMax function is then executed in a depth-wise manner separately for each pixel, over the appended 15 units. Finally, on the far 

right we take the index of the maximum over the appended 15 units, for each pixel, to reveal the predicted pixel classifications. Our ELU nets had 14,297,174 

nodes, and 11,739,880 free parameters (weights), and our MaxOut nets had 23,872,834 nodes, and 23,479,760 free parameters (weights). 
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MHz, Aloka) was taped (Transpore medical tape) to the 

posterior neck at level C4-6, to allow free movement of the 

head and an image of 5 bilateral layers of muscles. Images 

were acquired at 25 Hz using a frame grabber card (Data 

Translation DT 3120) synchronised to the Vicon recording. 

B. Ultrasound Image Ground Truth 

Pitch and yaw rotations of the head relative to the trunk 

were computed from Vicon motion data using Visual 3D (C-

Motion). Forty US images were selected per participant to 

sample uniformly their range of pitch and yaw rotations 

giving 1,100 images. Two annotators, trained to recognise the 

cervical muscle boundaries (Fig. 1), used a custom Matlab 

graphical user interface to annotate approximately 550 

images each. The annotation procedure was to select a 

segment (trapezius, splenius, …, etc.) using the keyboard and 

mark the muscle side of the boundary of each segment, 

medial to lateral, in a clockwise manner, closing each 

segment. To aid visualisation of texture, annotators were able 

to adjust the local contrast by normalising on patches between 

(10 and 50 pixels). Local contrast normalization (LCN) was 

applied via the keyboard. Where segment boundaries were 

ambiguous or invisible, annotators used the general pattern 

informed by anatomical atlas [50] to complete each segment 

to the best estimate. For a given participant, if available the 

annotated MRI and partially registered MRI was presented 

for reference. Following the first annotation, each image was 

presented with the previous annotation for reference. 

Annotators usually cleared the existing annotation and 

annotated each segment boundary from scratch but had the 

option to update existing boundary points. 

C. Equipment and Software 

All software was developed entirely within the group at 

Manchester Metropolitan University, and all neural network 

code/software was written from scratch solely by Ryan 

Cunningham using C/C++ and CUDA-C (NVidia 

Corporation, Santa Clara, California). No libraries other than 

the standard C++ 11 library and standard CUDA libraries 

(runtime version 8.0 cuda.h, cuda_runtime.h, curand.h, 

curand_kernel.h, cuda_occupancy.h, and device_functions.h) 

were used. All 84 neural networks were trained on an Intel 

Xeon CPU E5-2697 v3 (2.60GHz), 64GB (2133 MHz), with 

two NVidia GTX 1080 Ti GPUs. 

D. Network Architecture 

Multiple network architectures were trained to investigate 

the effect of transfer functions on the deconvolutional (up-

sampling) part of the network. First, we applied the ELU) 

throughout the network (encoder and decoder parts). Second, 

we applied the ELU only in the encoder part or the network, 

where a linear transfer function was used in the decoder part. 

Finally, we applied MaxOut units throughout the network, 

where the transpose of the MaxOut function is used in the 

decoder part (argmax of corresponding units in the encoder 

part), therefore implements naturally a linear deconvolutional 

network with respect to the derivatives of the units. 

In the final deconvolutional (output) layer, we use the same 

spatial properties (stride, input/output dimensions) and 

number of units (feature channels) as the first convolutional 

(input) layer, but we modify the local field of each unit to 

have an extra channel of length n (where n = number of pixel 

categories). The SoftMax activation function is applied over 

this channel, separately, for every pixel in the output map, 

after all features have been deconvolved. This yields, for 

every pixel, n real (single precision) values between 0 and 1, 

which sum to 1. The maximum of these n values over a pixel 

reveals the most likely classification of that pixel with respect 

to the neural network. The second largest value yields the 

second most likely classification, and so on. 

All networks were initialized according to the following 

scheme, based on the literature and our experience of training 

neural networks. Linear, SoftMax and MaxOut unit weights 

were drawn from a real (single precision) uniform 

distribution in the range [−√
3

𝑓𝑎𝑛 𝑖𝑛
+√

3

𝑓𝑎𝑛 𝑖𝑛
]. ELU 

weights were drawn from a real (single precision) uniform 

distribution in the range [−√
6

𝑓𝑎𝑛 𝑖𝑛
+√

6

𝑓𝑎𝑛 𝑖𝑛
]. The fan in is 

the total number of the local (spatial) and feature inputs to any 

given unit in a layer. For deconvolutional layers, the fan in of 

a unit represents the total number of local (spatial) outputs 

(transposed inputs) to that unit. 

E. Network Optimization 

Adaptive moment estimation [54] (ADAM) was used with 

default β1 = 0.9 and β 2 = 0.999 parameters, but with a smaller 

(α = 0.00002) than suggested α = 0.002 parameter (learning 

rate) to account for non-batch (batch size of 1) learning. A 

small L2-norm weight penalty was used (5e-4) as 

recommended to aid convergence (rather than to regularize). 

All parameters were empirically selected using a subset of the 

data, to check for quick (with respect to weight updates) and 

stable (no ‘exploding gradients’) convergence. 

F. Data Augmentation 

 Each US image and corresponding label was reflected 

about the vertical line of symmetry, artificially doubling the 

size of the data set. The order of images was randomised 

before each pass of the entire training set. Each learning 

iteration includes a forward pass, an error calculation, a 

backward pass, and a weight/parameter update. Before each 

learning iteration the input image was normalized to unit 

variance and zero mean and subjected to a random 

transformation (horizontal and vertical translation, followed 

by a rotation). Translation and rotation parameters were 

sampled from a random real (single precision) uniform 

distribution in the ranges of [-25 +25] pixels and [-20 +20] 

degrees, respectively. Image and label pixels were resampled 

during transformation using bilinear, and nearest neighbour 

interpolation, respectively. 

G. Network Training and Validation 

Cross validation was executed with 14 folds. For each set 

of network parameters and properties (architecture/units) 14 

identical networks were trained separately using 26 of the 28 

participants’ images and labels; the remaining 2 participants’ 

images and labels were used to test each network. For each of 

the 14 networks, neither of the test participants’ images/labels 

were used to test any of the other 13 networks. This process 

yielded genuine held-out test results for all 28 participants. 

The cross-entropy cost function was used to minimize the 

training error between labels and network prediction. 

Training for each fold consisted of online learning, 

interrupted every quarter pass (550 learning iterations) 

through the training set, to record cross entropy test results 

from the 2 test sets. If the cross-entropy loss for either test set 

was lower than any previous recorded loss for that test set, the 
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network was saved to long term storage. When neither test set 

recorded a lower loss for 25 consecutive test iterations, 

training was terminated. Following training, the network 

associated with the lowest loss for test set 1 was loaded to 

acquire results for test set 2, and vice versa, yielding true held 

out optimal results for both test sets. The same configuration 

of test/train sets was used for all variations of network 

parameters and architecture. 

III. RESULTS 

A. Comparison of DCNN Architectures 

Three neural network architectures were trained to 

compare performance with different transfer functions. 

Performance was measured by Jaccard index (JI) on the 

complete set of labels (A), and on a reduced set of labels (B, 

no skin-ligament) to enable comparison with previous 

literature (Table 1). All networks were trained both with and 

without dropout using full 14-fold cross-validation, and 

results were computed over all 28 held out participants. 

Results were also calculated for top 2 and top 3 SoftMax 

outputs. Observation 1: results for the reduced class set (B) 

were notably more accurate than for the full class set (A) in 

all cases (set B: 49.6%-53.2%, set A: 45.1%-48.7%). 

Observation 2: adding dropout improved results for both sets 

(A, B), and for all networks (45.1%-52.2% without dropout; 

46.47%-53.18% with dropout). Observation 3: performance 
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Figure 3. Representative segmentation maps. 

Col 1: Good neural net segmentation, typical shape model segmentation. 
Col 2: Typical neural net segmentation, good shape model segmentation. 

Col 3: Challenging US image; both the human labeller (ground truth) and the neural net have moderate difficulty in correctly classifying regions (left side of 

the neck/image). 
Col 4: Challenging image; the neural net is mostly able to identify the correct regions, but the shape model [6] is not robust to the assymetry. 

Col 5: A very challenging US image, where most of the deep features are invisible, and the human labeller (ground truth) is able to identify the segments, but 

none of the automatic methods do very well, although the neural net does a better job than the shape modelling method. 
Representative results: Neural net method (Jaccard/Hausdorff in the range: 41-69(%)/2.8-7.8(mm); Shape Model method 14-50(%)/4.2-7.9(mm). 
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improved with more linearity used in the network: MaxOut 

networks were best at 53.18%, followed by ELU 

convolutions with linear deconvolution at 51.21%, followed 

finally by ELU convolutions with ELU deconvolutions at 

51.21%. Including top 2 and top 3 SoftMax outputs revealed 

the same general patterns, and performance increased from 

approximately 50% JI to 75% JI for top 2, and approximately 

88% JI for top 3. 

B. Comparison with the Benchmark 

These DCNNs are compared to the benchmark shape 

model method [6] and to agreement between annotators 

(Ground-Truth) from their training set of US images in the 

static (MRI) head position. 

Observation 4: For all segments grouped (Table 2), the 

DCNN methods perform best (JI 53 ± 14%, Hausdorff 

Distance (HD) 5.7 ± 2 mm) and lie close to the reference 

defined by ground truth (JI 58 ± 13%, HD 4.4 ± 2.1 mm). The 

benchmark initial segmentation method (pre) performs worst 

at 37.5% JI and 6.6 mm HD, then the optimised shape fitting 

(post) provides an improvement at 40.5% JI and 6.2 mm HD. 

Performance is better on the reduced class set B v A. 

Observation 5: Using JI, the DCNN method performs 

better on the vertebra and muscles segments than the skin and 

ligamentum nuchae, and performs better than the benchmark 

method excepting only the ligament (Table 3). Using HD, the 

DCNN method out performs the benchmark shape model on 

the vertebra and all muscles except trapezius (Table 3). 

Visual inspection of the resulting semantic maps (Fig. 3, 

Figs. C, D Supp. Material) reveals the inflexibility of the 

benchmark method, and the robustness of the DCNN method, 

which can segment very challenging held-out test images. 

IV. DISCUSSION 

A. Purpose of study 

The purpose of this study was to test whether the quality of 

US image obtained during head movement, the direct manual 

annotation of US images for ground truth, and deep machine 

learning is sufficient to meet our primary objective: to 

provide robust, accurate segmentation of cervical muscles 

from transverse US images of the human neck during 

functional head movement. 

The cervical muscles traverse a fundamental mechanical 

and sensory node within the human neuromuscular system 

[5]. Pain and dysfunction within this muscle group has 

profound consequences on quality of life [55], [56]. 

Personalised analysis and diagnosis of cervical muscles is 

under-developed, and so there is benefit to developing 

automatic segmentation, particularly for use during 

functional movement. Ultrasound is readily available in 

clinics and laboratories. Online segmentation of the cervical 

muscles allows visualisation and analysis of their dynamic 

structure and function and allows attribution of measurement 

and targeting of treatment to individual muscles. Muscle-

specific measurement and targeted injection is valuable, 

specifically for diagnosis and treatment of involuntary 

muscles contractions in cervical dystonia [1], [6]. 

Segmentation of cervical muscles within US images is 

challenging. Even, using a defined static head position, there 

is a limit to the accuracy with which muscle boundaries can 

be defined from US. In this study, using a high-quality 3D 

atlas of the head and neck muscles, and using participant 

specific MRI defined boundaries, trained human labellers 

agreed muscle boundaries to a JI of 58 ± 13% and a HD of 

4.4 ± 2.1 mm. Head movement beyond the MRI-defined head 

position increases variability in the appearance of muscles 

and their boundaries. These results demonstrate that DCNNs 

provide segmentation of muscles in moving heads to an 

accuracy comparable with the agreement achieved by trained 

humans in less challenging static images (Tables 2, 3). 

For neural networks to generalise successfully, the data 

must contain features which exist consistently across training 

and testing cases and those features must associate 

consistently with ground-truth labels. The accuracy of 

muscle-vertebra segmentation (JI 53 ± 14%, HD 5.7 ± 1.9 

mm) validates the combination of US image quality, inherent 

information content, ground-truth labelling and deep learning 

to achieve our objective: to provide robust, accurate 

segmentation of cervical muscles during functional head 

movement. 

B. Relationship of contribution to current literature 

This study introduces deep learning to the problem of 

automatic labelling of US images of skeletal muscle, and 

provides a public data set to stimulate continued development 

of this field. This application to a challenging modality [15], 

requires accurate, online segmentation of 10 muscles, the 

vertebra, skin and ligamentum nuchae in full resolution 

Table 1. Comparison of proposed neural network methods.  
Shows mean Jaccard Index (x 102), JI, over all segments, for the 3 neural 

network methods. 

Class set A includes skin, muscles, vertebra and Ligamentum Nuchae. 

Class set B includes only the muscles and vertebra. 

Top 1-3 results are presented: top 1 is the result if we take the max class over 

the SoftMax units; top 2 is the result if we can take either the max or the 
second max (whichever is the correct class) over the SoftMax units; and so 

on. 

Method 
Class 

Set 

JI ± σ (%) 

Top 1 Top 2 Top 3 

MaxOut + dropout 0.5 

B 

53.2 ± 14.2 75.8 ± 13.3 88.0 ± 11.7 

MaxOut 52.2 ± 14.4 75.0 ± 13.5 87.5 ± 12.0 

ELU conv, linear deconv + 
dropout 0.5 

51.2 ± 12.4 76.2 ± 12.6 88.7 ± 10.8 

ELU conv, linear deconv 50.5 ± 14.1 73.7 ± 14.6 86.6 ± 14.1 

ELU conv/deconv + dropout 
0.5 

51.2 ± 12.4 76.2 ± 12.6 88.7 ± 10.8 

ELU conv/deconv 49.6 ± 13.4 74.5 ± 13.1 87.3 ± 10.7 

MaxOut + dropout 0.5 

A 

48.7 ± 12.6 74.7 ± 11.8 86.7 ± 10.8 

MaxOut 47.8 ± 12.6 74.1 ± 11.8 86.3 ± 10.8 

ELU conv, linear deconv + 

dropout 0.5 
46.5 ± 10.9 75.3 ± 11.2 87.3 ± 10.0 

ELU conv, linear deconv 45.9 ± 12.6 72.5 ± 13.5 85.1 ± 13.2 

ELU conv/deconv + dropout 

0.5 
46.5 ± 10.9 75.3 ± 11.2 87.3 ± 9.9 

ELU conv/deconv 45.1 ± 12.3 73.4 ± 12.2 85.6 ± 10.5 

     

Table 2. Comparison of proposed neural network with the benchmark. 

Shows Jaccard Index (x 102), JI, and Hausdorff Distance, HD, mean ± S.D. 

for all segments. 
Neural Net: DCNN method. 

Benchmark: Shape model method [6]: (pre) shows results of an initial 

segmentation (zero fitting iterations); (post) represents the results of a refined 
segmentation (25 fitting iterations). 

Static labels: Agreement between labelers for ground truth training images 

(class set A). N.B. subset of 25 participants collected using same US machine 
(Aloka). 

Method 
Class 

Set 
JI ± σ (%) HD ± σ (mm) 

Neural Net 

B 

53.1 ± 14 5.74 ± 1.9 

Benchmark (post) 40.5 ± 13 6.29 ± 2.06  

Benchmark. (pre) 37.5 ± 14 6.66 ± 2.24 

Neural Net 

A 
48.7 ± 12.6 5.84 ± 1.8 

Benchmark (post) 36.4 ± 11.3 5.96 ± 2.0 

Benchmark (pre) 34.2 ± 12.2 6.21 ± 2.1 

Static labels  - 58 ± 13 4.4 ± 2.1 
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(525x491) b-mode US images of the posterior neck. Given 

the lack of public data, there is a lack of literature in this 

domain. Our previous method [6] requires MRI for the 

generation of an accurate US texture-shape dictionary 

covering the intended range of head positions and participant 

conditions. This requirement for MRI proved fatal to our 

current need for a method (i) applicable to participants with 

cervical dystonia who cannot remain still within an MRI 

machine, and (ii) to cover a range of head positions not 

available from MRI scanning (iii) requiring large volumes of 

labelled data. The application of deep learning, combined 

with direct annotation of US images within the required range 

or head positions, overcomes these limitations and provides 

additional benefits. Deep neural networks are robust to 

dropout of large regions of the image, can predict missing 

segments and can communicate high-resolution regional 

confidence. 

Deconvolutional neural network (DCNN) architectures are 

appropriate for our application. Within our investigation of 

different DCNN architectures, we tested different activation 

transfer functions. ELUs have smooth derivatives near the 

mean activation and are linear for positive input. ELU units 

address the ‘dying ReLU’ problem more efficiently [57] than 

other popular methods like batch (re)normalisation [53], [58]. 

We explored MaxOut units with 2 linear components 

because, without introducing further nonlinearity, they can 

up-sample more than 1 local texture map per spatial location. 

Results confirmed MaxOut units gave superior performance, 

JI > 53%, compared with the best ELU architecture, 51.2% 

(Table 1). Use of ELUs in the deconvolutional part of the 

network reduced performance and we observed consistent 

performance, between ELU/ELU and ELU/Linear, both with 

and without dropout (Table 1). For DCNNs, MaxOut units 

increase model complexity, and in a way that is highly 

regularized. The convolutional (encoder) part of the network, 

is a piecewise linear function which behaves like any other 

nonlinear network transfer function. The hidden complexity 

lies in the storage of multiple reconstruction pathways 

 

Table 3. Group results for individual segments. Shows Jaccard Index (JI), and Hausdorff Distance (HD), mean ± S.D. for individual segments. 

Neural Net: DCNN method. 

Benchmark: Shape model method [6]: (post as above). 

Static labels: Ground-truth training images as above: agreement between labelers. 

 
 

Method Metric Vertebra Multifidus 
Spinalis 

Cervicis 

Spinalis 

Capitis 
Splenius Trapezius 

Ligamentum 

Nuchae 
Skin 

Neural Net JI 

(%) 

78.1 ± 14 55.4 ± 14 49.5 ± 20 53.3 ± 17 50.6 ± 21 44.7 ± 25 14.2 ± 10 33.5 ± 15 

Benchmark 69.9 ± 15 34.9 ± 17 33.15 ± 17 44.84 ± 15 40.99 ± 19 33.86 ± 23 19.75 ± 11 7.37 ± 17 
Static labels   81 ± 6 62 ± 9 59 ± 8 60 ± 13 58 ± 14 54 ± 20 37 ± 17 52 ± 18 

Neural Net HD 

(mm) 

6.29 ± 4.57 6.53 ± 3.52 6.02 ± 3.89 5.98 ± 4.97 5.65 ± 3.32 4.23 ± 3.33 7.36 ± 4.27 5.51 ± 5.38 

Benchmark 7.44 ± 3.31 7.59 ± 2.95 6.61 ± 3.42 6.59 ± 3.19 6.02 ± 4.44 4.06 ± 2.40 5.74 ± 2.58 2.62 ± 3.16 

Static labels  5.0 ± 1.5 4.8 ± 1.4 5.2 ± 3.0 6.6 ± 3.8 5.5 ± 3.6 2.3 ± 1.4 4.5 ± 1.9 1.0 ± 0.4 

 
a 

  
b 

 

 
c 

  
d 

Figure 4. Utility of the SoftMax Confidence. 

Left: (a)-(d) refer to the same US image and segmentation seen in Fig. 3 column 3. (a) neural net segmentation. (b) max for each pixel, of the raw SoftMax 

output layer of the neural net, as a heat map with the neural net segmentation superimposed. (c) ground truth segmentation. (d) same heat map as in (b), with 
the ground truth segmentation superimposed. On the left hand side of the US image, the neural net has some difficulty in identifying the regions belonging to 

the muscles, and in fact completely misses out the left trapezius muscle. Observation of the SoftMax output (b & c) (which we can think of as the 

probability/confidence of the correct classification of each pixel) reveals that where the network is incorrect on the left (Spinalis Cervicis, splenius, and 
trapezius), it has relatively low confidence, and where it is correct, the network has relatively high confidence. On the right hand side of the US image, the 

network is mostly correct: where it is not correct (e.g. far right side of multifidus, or lower-right side of Spinalis Capitis) the confidence is relatively low. 

Confidence is a useful diagnostic value to assess whether to accept the segmentation given by the neural net, or to optimize the image by positioning the 
probe, or changing image settings on the US machine. 

Right: shows, for the entire held-out dataset (2,200 images), for all pixels (2,200x525x491 = 567,105,000 pixels) the max of the raw output of the SoftMax 

layer of the neural net, binned into correct or incorrect class histograms. The two distributions are clear; for misclassified the majority of the pixels are 
associated with relatively lower SoftMax confidence, whereas for correct class the majority of the pixels are associated with relatively higher SoftMax 

confidence. 
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exploited by the deconvolutional part, yet learning is fully 

controlled by the convolutional part. 

The benchmark shape modelling method [6] enforced 

patterns of segments. The shape model ensures smooth 

segment boundaries and no segment holes. The neural 

network can predict no visible class (class = background) and 

does not enforce explicit shapes. The higher dimensionality 

of the neural network prediction is useful for representing 

muscle specific changes from active contraction and from 

head rotation. However, segment holes and non-smooth 

boundaries are a weakness for thin segments (e.g. skin, 

trapezius). For example, the neural network could predict 

holes in skin across the entire segment (Fig. 3, row 3, col 4). 

In contrast, the shape model produces a smooth shape but any 

small vertical position error causes minimal overlap with 

ground truth. For skin and trapezius segments, the shape 

model gave better HD and worse JI values (Table 3). 

The neural network produces a ‘segmentation confidence 

map’ (Fig. 4) for any given segmentation. This intrinsic 

feature of the SoftMax layer gives a measure of confidence 

between 0 and 1 for every pixel. A value close to 1 means the 

network is confident in its prediction for that pixel. A value 

close to 0 means the neural network is confident that pixel 

could be one of multiple classes. Figure 4 shows that higher 

confidence is associated with correct classification. This 

confidence provides online, operator feedback of the quality 

of an image segmentation. For example, if a clinician needs 

to target a muscle for injection (standard treatment for 

cervical dystonia), the clinician would optimise the 

placement of the probe, and the US machine settings to 

increase the confidence of the neural network in the target 

muscle. The clinician would then target an injection point to 

the centre of a contiguous cluster of high confidence, and 

appropriately classified pixels (equal to target muscle) within 

the target muscle. 

As described in the methods, the 1,100 images and their 

labels were sampled from a larger data set of full-articulated 

head motion, containing hundreds of thousands of images 

without associated labels. Our segmentation neural network 

will be useful for automatically generating labels for these 

images for analysis of muscle behaviour and also for pre-

training neural-networks. 

V. CONCLUSIONS 

Online segmentation of US images of cervical muscles during 

functional head movement is required for visualisation, 

analysis of deep muscle structure and function, and 

monitoring of patient specific treatment protocols for 

neck/back pain/injury, work related disorders, myopathies, 

neuropathies and movement disorders. The lack of publicly 

available labelled data, benchmark methods and results, 

hinders development of this domain. This study contributes a 

labelled dataset of 1,100 US images of the human posterior 

cervical muscles, with a description of the process we 

followed to create the labels. For the first time, we have 

applied deep learning methods, DCNNs, to this application 

and we demonstrate superior performance and flexibility over 

the current published technique (shape modelling and 

heuristic contour fitting). We have shown that MaxOut 

networks outperform ELU networks in the deconvolutional 

architecture, which will influence future research on this data. 

This proof of principal shows that a robust, accurate, bespoke 

muscle US segmentation system can be constructed with deep 

learning, and with a little as 1,100 annotated images. This 

data set stimulates further development in this domain. This 

methodology for labelling ground-truth and training 

automated labelling networks is applicable for dynamic 

segmentation of moving muscles and for participants with 

involuntary movement disorders who cannot be still. This 

contribution is relevant in healthcare for conditions such as 

cervical dystonia, and with future development, will likely 

lead to clinical software systems for guiding and monitoring 

of treatment, and training of doctors, nurses and 

radiographers. 
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