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Abstract

A hypergraph extends this idea by allowing edges, referred to as hyperedges, to connect any number of
vertices [30]. This paper explores superhypergraphs, an extension of hypergraphs incorporating superedges
and supervertices. For example, Arboreal Superhypergraphs, Molecular superhypergraphs, and Probabilistic
SuperHyperGraphs illustrate diverse structural types that can be modeled using superhypergraphs. We introduce
the Generalized n-th Powerset, a formalized framework enabling broader mathematical applications while
preserving the traditional n-th powerset structure. And we provide a brief exploration of Natural Hyperlanguage
Processing, an extended framework of Natural Language Processing that leverages the concept of hyperlanguage
for advanced applications. By extending hypergraph concepts to superhypergraphs, this work aims to advance
their study and practical applicability.
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1 Short Introduction

1.1 Hypergraph and Superhypergraph

A graph is a mathematical structure used to represent relationships between entities through vertices and
edges [85,87]. Numerous applications of graph theory have been extensively studied [25,41,83,142]. In graph
theory, various graph classes have been extensively studied to suit the characteristics and structures of specific
graphs [50].

A hypergraph extends this idea by allowing edges, referred to as hyperedges, to connect any number of
vertices [30]. This structure can be seen as analogous to the power set in set theory. Hypergraphs are
extensively studied and have found applications across a wide range of fields, including databases [171],
neural networks [69, 100, 126], chemistry [230, 374], image representation [53, 179, 182], and VLSI design
[60, 136, 193, 265, 300, 337]. Similar to general graphs, hypergraphs have been the subject of extensive
research, with studies focusing on algorithms [124,206,276,296], graph classes [7,10,13,225,226], and graph
parameters [3, 4, 138, 140].

A superhypergraph extends the concept of a hypergraph by incorporating superedges and supervertices [114,
308,309]. This structure can be likened to the n-th power set in set theory. Similarly, research has been conducted
on algorithms [116], graph classes [112, 120, 151], and specific applications of superhypergraphs [118].

Due to their significance, superhyperstructures have been studied in contexts beyond graph theory as well [285,
311, 313, 315]. As a more abstracted graph concept compared to hypergraphs, the study of superhypergraphs
is equally critical, and the author believes that further applications of superhypergraphs are highly promising.

1.2 Our Contribution in This Paper

This paper outlines our contributions to the field. While superhypergraphs have been explored in various
studies, detailed research into their specific structures remains in its early stages. To address this, we aim to
extend well-established hypergraph concepts to superhypergraphs. The natural progression from graphs to
hypergraphs, with their mathematical structures and applications already being studied, makes it intuitive to
further extend these concepts to superhypergraphs.

Some of the graph concepts discussed in this paper are listed below. Please refer to each subsection of the
paper for further details.
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• Arboreal SuperHypergraph: An Arboreal SuperHypergraph is a superhypergraph with a tree-like struc-
ture, representing hierarchical relationships among supervertices and superedges.

• Superhypergraph Morphism and Superhypergraph Isomorphism: Superhypergraph Morphism maps
supervertices and superedges between superhypergraphs, preserving structure. Superhypergraph Iso-
morphism ensures structural equivalence between two superhypergraphs.

• Molecular n-superhypergraph: A Molecular n-SuperHypergraph extends molecular hypergraphs, mod-
eling hierarchical molecular structures with n-level supervertices and superedges.

• Signed n-SuperHypergraph: A Signed n-SuperHypergraph assigns a positive or negative sign to each
superedge, representing complex relationships in n-level superhypergraphs.

• Probabilistic SuperHyperGraph: A Probabilistic SuperHyperGraph assigns probabilities to superedges,
modeling uncertainty and stochastic relationships in superhypergraph structures.

• Independent Set in a Superhypergraph: An Independent Set in a Superhypergraph is a subset of super-
vertices with no superedges fully contained within the subset.

• SuperHypergraph Ramsey numbers: SuperHypergraph Ramsey numbers determine the minimum super-
vertex count in a superhypergraph ensuring specific monochromatic substructures under edge-colorings.

• Multipartite SuperHypergraph: A Multipartite SuperHypergraph partitions supervertices into disjoint
sets, ensuring no superedges connect supervertices within the same partition.

• SuperHypergraphic Sequence: A SuperHypergraphic Sequence lists supervertex degrees in a superhy-
pergraph, representing the distribution of connections across its structure.

• Query n-superhypergraph: A Query n-SuperHypergraph models hierarchical query relationships, with
supervertices representing data queries and dependencies.

• Superhypergraph Energy Functions: Superhypergraph Energy Functions measure the energy of a super-
hypergraph, derived from eigenvalues of its adjacency or incidence matrices.

• Transversal SuperHypergraph: A Transversal SuperHypergraph represents sets intersecting all su-
peredges, modeling coverage relationships among supervertices in a superhypergraph.

• SuperHypernetwork: A SuperHypernetwork generalizes superhypergraphs, integrating supervertices
and superedges to model multi-layered, interconnected systems and relationships.

Furthermore, we introduce the concept of the Generalized n-th Powerset to facilitate its application in various
areas of mathematics. While the Generalized n-th Powerset retains the core mathematical framework of the
traditional n-th powerset, it distinguishes itself by explicitly defining its structure, thereby enhancing its clarity
and adaptability to a broader range of mathematical contexts. Finally, we provide a brief exploration of Natural
Hyperlanguage Processing, an extended framework of Natural Language Processing that leverages the concept
of hyperlanguage for advanced applications.

We hope that these contributions will support the development and dissemination of superhypergraph research
and provide a solid foundation for future advancements in this field.

1.3 The Structure of the Paper

The format of this paper is described below.
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1.1 Hypergraph and Superhypergraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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2 Preliminaries and Definitions

This section introduces the essential background and definitions required for the concepts discussed in this
paper. Readers interested in a more comprehensive understanding of graph theory are encouraged to explore
standard references such as [85–87,346]. Additionally, fundamental notions from set theory, which are relevant
to this work, can be found in sources like [103, 155, 161, 176, 208]. For specific details about the operations
and topics presented here, the cited references provide further elaboration.

2.1 Basic Concepts: Graphs and Hypergraphs

Graph theory is a pivotal mathematical tool for analyzing relationships between entities, represented as nodes
(vertices) and their pairwise connections (edges). Hypergraphs expand upon this by introducing hyperedges,
which can connect any number of vertices, making them suitable for representing more complex relationships
[21, 22, 30, 139–141]. Below, we outline the definitions of graphs, subgraphs, and hypergraphs.

Definition 2.1 (Graph). [87] A graph 𝐺 is a mathematical structure represented as 𝐺 = (𝑉, 𝐸), where:

• 𝑉 (𝐺): The set of vertices (nodes).

• 𝐸 (𝐺): The set of edges, where each edge connects two vertices, representing a relationship or interaction.

Definition 2.2 (Subgraph). [87] Let 𝐺 = (𝑉, 𝐸) be a graph. A subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) of 𝐺 is defined as
follows:

• 𝑉𝐻 ⊆ 𝑉 : The vertex set of 𝐻 is a subset of the vertex set of 𝐺.

• 𝐸𝐻 ⊆ 𝐸 : The edge set of 𝐻 is a subset of the edge set of 𝐺.

• Every edge in 𝐸𝐻 connects vertices within 𝑉𝐻 .

Definition 2.3 (Hypergraph). [30] A hypergraph 𝐻 = (𝑉, 𝐸) generalizes the concept of a graph and is defined
as:

3



• 𝑉 : A set of vertices.

• 𝐸 : A set of hyperedges, where each hyperedge 𝑒 ∈ 𝐸 is a subset of 𝑉 , i.e., 𝑒 ⊆ 𝑉 .

Properties:

• The hyperedge set 𝐸 is a subset of the power set of 𝑉 , i.e., 𝐸 ⊆ P(𝑉), where P(𝑉) is the collection of
all subsets of 𝑉 .

• Unlike in traditional graphs, where edges connect exactly two vertices, hyperedges can connect any
number of vertices, including a single vertex or the entire vertex set.

Proposition 2.4. A hypergraph generalizes the concept of a graph by allowing edges, referred to as hyperedges,
to connect more than two vertices.

Proof. In a standard graph, each edge connects exactly two vertices. In contrast, a hypergraph extends this
notion by permitting hyperedges to connect any subset of vertices, including sets with more than two elements.
This broader structure encompasses traditional graphs as a special case where all hyperedges are limited to two
vertices, thereby demonstrating the generalization. □

2.2 SuperHyperGraph

This subsection provides an overview of SuperHyperGraphs. A SuperHyperGraph is a class of graphs that
achieves a higher level of generalization by utilizing superedges and supervertices. It serves as an extension
of fundamental concepts such as graphs and hypergraphs (cf. [112, 112, 114, 117, 120, 131, 149, 151, 275, 308–
310, 312, 315, 315, 316]). An n-SuperHyperGraph explicitly extends this concept, offering a more generalized
framework for graph theory. The definitions and related concepts are detailed below.

Definition 2.5 (Powerset). [279] The powerset of a set 𝑆, denoted P(𝑆), is the set of all subsets of 𝑆, including
the empty set and 𝑆 itself. Formally,

P(𝑆) = {𝐴 | 𝐴 ⊆ 𝑆}.

Definition 2.6 (𝑛-th powerset). (cf. [301,316]) The 𝑛-th powerset of 𝐻, denoted 𝑃𝑛 (𝐻), is defined recursively
as:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)) for 𝑛 ≥ 1.

Similarly, the 𝑛-th non-empty powerset of 𝐻, denoted 𝑃∗
𝑛 (𝐻), is defined as:

𝑃∗
1 (𝐻) = 𝑃

∗ (𝐻), 𝑃∗
𝑛+1 (𝐻) = 𝑃

∗ (𝑃∗
𝑛 (𝐻)).

Proposition 2.7. A 𝑛-th powerset is a generalized concept of a powerset.

Proof. This is evident. □

Definition 2.8 (𝑛-SuperHyperGraph). (cf. [308, 309]) Let 𝑉0 be a finite set of base vertices. Define the 𝑛-th
iterated power set of 𝑉0 recursively as:

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
,

where P(𝐴) denotes the power set of set 𝐴.

An 𝑛-SuperHyperGraph is an ordered pair 𝐻 = (𝑉, 𝐸), where:

• 𝑉 ⊆ P𝑛 (𝑉0) is the set of supervertices, which are elements of the 𝑛-th power set of 𝑉0.

• 𝐸 ⊆ P𝑛 (𝑉0) is the set of superedges, also elements of P𝑛 (𝑉0).

Each supervertex 𝑣 ∈ 𝑉 can be:
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• A single vertex (𝑣 ∈ 𝑉0),

• A subset of 𝑉0 (𝑣 ⊆ 𝑉0),

• A subset of subsets of 𝑉0, up to 𝑛 levels (𝑣 ∈ P𝑛 (𝑉0)),

• An indeterminate or fuzzy set(cf. [360]),

• The null set (𝑣 = ∅).

Each superedge 𝑒 ∈ 𝐸 connects supervertices, potentially at different hierarchical levels up to 𝑛.

Proposition 2.9. An 𝑛-SuperHyperGraph extends the concept of a hypergraph, incorporating higher-order
structures and hierarchical relationships.

Proof. The 𝑛-SuperHyperGraph generalizes a hypergraph by replacing vertices and edges with elements from
the 𝑛-th iterated PowerSet. This hierarchical structure allows for the representation of relationships at multiple
levels of abstraction, which directly extends the definition of a hypergraph. □

Proposition 2.10. An 𝑛-SuperHyperGraph is a natural extension of a graph, enabling the representation of
complex multi-level relationships.

Proof. By definition, an 𝑛-SuperHyperGraph encompasses the classical graph as a special case when 𝑛 = 0.
The vertices and edges in a graph correspond to base-level elements in the 𝑛-th PowerSet. This embedding of
graphs within 𝑛-SuperHyperGraphs demonstrates the generalization. □

Proposition 2.11. [114] The structure of an 𝑛-SuperHyperGraph is built on the 𝑛-th iterated PowerSet,
providing a robust framework for hierarchical modeling.

Proof. This follows directly from the formal definition of the 𝑛-SuperHyperGraph, which recursively constructs
its vertices and edges using the 𝑛-th PowerSet of a base set. For additional details, see [114]. □

A Superhypergraph and an n-SuperHyperGraph essentially share the same mathematical structure, with the
primary difference being whether n is explicitly defined. Note that this distinction depends on the assumptions
made in the paper.

We will now provide concrete examples of 𝑛-SuperHyperGraphs for 𝑛 = 0, 1, 2, 3.

Example 2.12 (Case 𝑛 = 0 of 𝑛-superhypergraph). Let 𝑉0 = {𝑎, 𝑏, 𝑐}. Then:

P0 (𝑉0) = 𝑉0 = {𝑎, 𝑏, 𝑐}.

An 0-SuperHyperGraph 𝐻 = (𝑉, 𝐸) has:

• 𝑉 ⊆ 𝑉0.

• 𝐸 ⊆ 𝑉0.

Let 𝑉 = {𝑎, 𝑏} and 𝐸 = {𝑐}.

Here, the supervertices are elements of 𝑉0, and the superedges are also elements of 𝑉0.

This case is basic, as both vertices and edges are simply elements of the base set 𝑉0.
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Example 2.13 (Case 𝑛 = 1 of 𝑛-superhypergraph). With the same 𝑉0 = {𝑎, 𝑏, 𝑐}, we have:

P1 (𝑉0) = P(𝑉0) = {∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}}.

An 1-SuperHyperGraph 𝐻 = (𝑉, 𝐸) has:

• 𝑉 ⊆ P(𝑉0).

• 𝐸 ⊆ P(𝑉0).

Let

• 𝑉 = {{𝑎}, {𝑏, 𝑐}}.

• 𝐸 = {{𝑎, 𝑏}, {𝑐}}.

In this case, the supervertices and superedges are subsets of 𝑉0. This corresponds to a traditional hypergraph,
where vertices are elements of P(𝑉0) (i.e., subsets of 𝑉0).
Example 2.14 (Case 𝑛 = 2 of 𝑛-superhypergraph). Again, with 𝑉0 = {𝑎, 𝑏, 𝑐}, we compute:

P2 (𝑉0) = P(P(𝑉0)).

First, list P(𝑉0) as before.

Then, P2 (𝑉0) is the set of all subsets of P(𝑉0).

An 2-SuperHyperGraph 𝐻 = (𝑉, 𝐸) has:

• 𝑉 ⊆ P2 (𝑉0).

• 𝐸 ⊆ P2 (𝑉0).

Let

• 𝑉 = {{{𝑎}, {𝑏}}, {{𝑐}, {𝑎, 𝑏}}}.

• 𝐸 = {{{𝑎, 𝑐}, {𝑏, 𝑐}}}.

Here, the supervertices are subsets of P(𝑉0), i.e., sets whose elements are subsets of 𝑉0.

For instance, {{𝑎}, {𝑏}} is a supervertex consisting of two subsets of 𝑉0: {𝑎} and {𝑏}.
Example 2.15 (Case 𝑛 = 3 of 𝑛-superhypergraph). With 𝑉0 = {𝑎, 𝑏, 𝑐}, we have:

P3 (𝑉0) = P (P (P(𝑉0))) .

Elements of P3 (𝑉0) are subsets of P2 (𝑉0), which themselves are subsets of P(𝑉0).

An 3-SuperHyperGraph 𝐻 = (𝑉, 𝐸) has:

• 𝑉 ⊆ P3 (𝑉0).

• 𝐸 ⊆ P3 (𝑉0).

Let

• 𝑉 = {{{{𝑎}, {𝑏}}, {{𝑐}}}}.

• 𝐸 = {{{{𝑎, 𝑏}}, {{𝑏, 𝑐}}}}.

In this case, the supervertices are sets of elements from P2 (𝑉0), which are themselves sets of subsets of 𝑉0.

For example, {{{𝑎}, {𝑏}}, {{𝑐}}} is a supervertex in 𝑉 , where each element is a set of subsets of 𝑉0.
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3 Results in This Paper: Some Concepts for SuperHyperGraphs

In this section, we describe the results presented in this paper. We examine whether several hypergraph
concepts can be extended to superhypergraphs. It is our hope that experts in the field will further explore
practical applications of these extensions in the future.

3.1 Arboreal Superhypergraph

An Arboreal Hypergraph is a hypergraph with a tree-like structure, often used to model hierarchical relationships
[30,52,78]. We extend this concept using superhypergraphs. The related definitions and theorems are provided
below.

Definition 3.1 (Arboreal Hypergraph). [30, 52, 78] A hypergraph 𝐻 = (𝑉, 𝐸), where 𝑉 is the set of vertices
and 𝐸 is the set of hyperedges, is called an arboreal hypergraph if it satisfies the following conditions:

1. 𝐻 has the Helly property, meaning that for any collection of pairwise intersecting hyperedges, the entire
collection has a non-empty intersection [88, 267].

2. For every cycle in 𝐻 of length at least 3, there exist three hyperedges in the cycle that have a non-empty
intersection.

Definition 3.2 (Co-Arboreal Hypergraph). [52, 78] A hypergraph 𝐻 = (𝑉, 𝐸) is called a co-arboreal hyper-
graph if it is the dual of an arboreal hypergraph. Formally:

1. 𝐻 is conformal, i.e., every clique of the line graph of 𝐻 corresponds to a hyperedge of 𝐻.

2. For every cycle in 𝐻 of length at least 3, there exist three vertices in the cycle that are contained in the
same hyperedge of 𝐻.

Definition 3.3 (Arboreal 𝑛-SuperHyperGraph). An 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸), where 𝑉 is the set of
supervertices and 𝐸 is the set of superedges, is called an Arboreal 𝑛-SuperHyperGraph if it satisfies the
following conditions:

1. 𝐻 has the Helly property, meaning that for any collection of pairwise intersecting superedges, the entire
collection has a non-empty intersection.

2. For every cycle in 𝐻 of length at least 3, there exist three superedges in the cycle that have a non-empty
intersection.

Definition 3.4 (Co-Arboreal 𝑛-SuperHyperGraph). An 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸) is called a Co-
Arboreal 𝑛-SuperHyperGraph if it is the dual of an Arboreal 𝑛-SuperHyperGraph. Formally:

1. 𝐻 is conformal, i.e., every clique of the line graph of 𝐻 corresponds to a superedge of 𝐻.

2. For every cycle in 𝐻 of length at least 3, there exist three supervertices in the cycle that are contained in
the same superedge of 𝐻.

Theorem 3.5. An Arboreal 𝑛-SuperHyperGraph generalizes the concept of an Arboreal Hypergraph.

Proof. An Arboreal Hypergraph 𝐻 = (𝑉, 𝐸) satisfies the Helly property and has the condition that every
cycle of length at least 3 contains three hyperedges with a non-empty intersection. In the case of an Arboreal
𝑛-SuperHyperGraph, 𝑉 and 𝐸 are extended to elements of P𝑛 (𝑉0), which encompasses standard vertices and
edges as a special case when 𝑛 = 0. Therefore, the conditions for the Helly property and cycles of length
at least 3 are directly extended to the 𝑛-SuperHyperGraph structure, reducing to the original definition when
𝑛 = 0. Thus, Arboreal 𝑛-SuperHyperGraphs generalize Arboreal Hypergraphs. □

Theorem 3.6. A Co-Arboreal 𝑛-SuperHyperGraph generalizes the concept of a Co-Arboreal Hypergraph.
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Proof. A Co-Arboreal Hypergraph 𝐻 = (𝑉, 𝐸) is the dual of an Arboreal Hypergraph and satisfies the
conditions of conformality and that every cycle of length at least 3 contains three vertices in the same
hyperedge. In a Co-Arboreal 𝑛-SuperHyperGraph, the vertices and edges are elements of P𝑛 (𝑉0), thus
extending the structural hierarchy. When 𝑛 = 0, this structure naturally collapses to the definition of a Co-
Arboreal Hypergraph. Therefore, Co-Arboreal 𝑛-SuperHyperGraphs generalize Co-Arboreal Hypergraphs. □

Theorem 3.7. An Arboreal 𝑛-SuperHyperGraph is an 𝑛-SuperHyperGraph.

Proof. An 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸) has supervertices 𝑉 ⊆ P𝑛 (𝑉0) and superedges 𝐸 ⊆ P𝑛 (𝑉0). The
definition of an Arboreal 𝑛-SuperHyperGraph imposes additional structural constraints on 𝐻, such as the Helly
property and specific cycle intersection conditions. These properties do not alter the fundamental structure of
𝐻 as an 𝑛-SuperHyperGraph because the elements of 𝑉 and 𝐸 remain subsets of P𝑛 (𝑉0). Thus, an Arboreal
𝑛-SuperHyperGraph is an 𝑛-SuperHyperGraph. □

Theorem 3.8. A Co-Arboreal 𝑛-SuperHyperGraph is an 𝑛-SuperHyperGraph.

Proof. The dual of an Arboreal 𝑛-SuperHyperGraph, called a Co-Arboreal 𝑛-SuperHyperGraph, retains the su-
pervertex and superedge structure of the original 𝑛-SuperHyperGraph. The dual operation swaps supervertices
and superedges but does not modify their membership in P𝑛 (𝑉0). Consequently, the structure of a Co-Arboreal
𝑛-SuperHyperGraph aligns with that of an 𝑛-SuperHyperGraph. □

3.2 Superhypergraph Morphism and Superhypergraph Isomorphism

A graph morphism is a mapping between graphs that preserves their structure and relationships [260, 262].
A graph isomorphism is a bijective mapping between graphs that preserves vertex adjacency [19, 20, 77, 101,
195,235,236,274,328]. These concepts have been extended to hypergraphs as hypergraph morphism [52] and
hypergraph isomorphism [52, 99, 224, 249].

In this subsection, we investigate whether these notions can be further generalized to n-superhypergraphs. The
related definitions and theorems are provided below.

Definition 3.9 (Hypergraph Morphism). [52] Let 𝐻 = (𝑉, 𝐸) and 𝐻′ = (𝑉 ′, 𝐸 ′) be two hypergraphs without
repeated hyperedges. A morphism of hypergraphs is a map 𝑓 : 𝑉 → 𝑉 ′ such that for every hyperedge 𝑒 ∈ 𝐸 ,
the image 𝑓 (𝑒) ⊆ 𝑉 ′ under 𝑓 satisfies 𝑓 (𝑒) ∈ 𝐸 ′.

Definition 3.10 (Bijection). (cf. [172]) A bijection is a function 𝑓 : 𝐴 → 𝐵 between two sets 𝐴 and 𝐵 that
satisfies the following conditions:

• Injective (One-to-One): For all 𝑥1, 𝑥2 ∈ 𝐴, if 𝑓 (𝑥1) = 𝑓 (𝑥2), then 𝑥1 = 𝑥2.

• Surjective (Onto): For every 𝑦 ∈ 𝐵, there exists at least one 𝑥 ∈ 𝐴 such that 𝑓 (𝑥) = 𝑦.

Definition 3.11 (Hypergraph Isomorphism). [52] Two hypergraphs 𝐻 = (𝑉, 𝐸) and 𝐻′ = (𝑉 ′, 𝐸 ′) are
isomorphic, denoted 𝐻 � 𝐻′, if there exists:

• A bijection 𝑓 : 𝑉 → 𝑉 ′, and

• A bijection 𝜋 : 𝐼 → 𝐽 (where 𝐼 and 𝐽 are the index sets of 𝐸 and 𝐸 ′, respectively),

such that the induced map 𝑔 : 𝐸 → 𝐸 ′ defined by 𝑔(𝑒𝑖) = 𝑒′𝜋 (𝑖) satisfies:

𝑔(𝑒𝑖) = { 𝑓 (𝑥) | 𝑥 ∈ 𝑒𝑖} for all 𝑒𝑖 ∈ 𝐸.

In this case, the pair ( 𝑓 , 𝑔) is called an isomorphism of hypergraphs.

Definition 3.12 (Hypergraph Automorphism). [52] An automorphism of a hypergraph 𝐻 = (𝑉, 𝐸) is an
isomorphism ( 𝑓 , 𝑔) from 𝐻 to itself. The set of all automorphisms of 𝐻, denoted Aut(𝐻), forms a group under
composition.

8



Definition 3.13 (𝑛-SuperHyperGraph Morphism). Let𝐻 = (𝑉, 𝐸) and𝐻′ = (𝑉 ′, 𝐸 ′) be two 𝑛-SuperHyperGraphs.
A morphism 𝑓 : 𝑉 → 𝑉 ′ between 𝐻 and 𝐻′ is a function such that for every superedge 𝑒 ∈ 𝐸 , the image
𝑓 (𝑒) = { 𝑓 (𝑣) | 𝑣 ∈ 𝑒} ⊆ 𝑉 ′ satisfies 𝑓 (𝑒) ∈ 𝐸 ′.

In other words, 𝑓 maps supervertices to supervertices and superedges to superedges via the induced map on
edges.

Definition 3.14 (𝑛-SuperHyperGraph Isomorphism). Two 𝑛-SuperHyperGraphs𝐻 = (𝑉, 𝐸) and𝐻′ = (𝑉 ′, 𝐸 ′)
are isomorphic, denoted 𝐻 � 𝐻′, if there exists:

• A bijection 𝑓 : 𝑉 → 𝑉 ′,

such that:

• For every superedge 𝑒 ∈ 𝐸 , the image 𝑓 (𝑒) = { 𝑓 (𝑣) | 𝑣 ∈ 𝑒} ∈ 𝐸 ′.

• For every superedge 𝑒′ ∈ 𝐸 ′, there exists 𝑒 ∈ 𝐸 such that 𝑓 (𝑒) = 𝑒′.

In this case, 𝑓 induces a bijection between 𝐸 and 𝐸 ′, and 𝑓 is called an isomorphism of 𝑛-SuperHyperGraphs.

Definition 3.15 (𝑛-SuperHyperGraph Automorphism). An automorphism of an 𝑛-SuperHyperGraph 𝐻 =

(𝑉, 𝐸) is an isomorphism 𝑓 : 𝑉 → 𝑉 from 𝐻 to itself. The set of all automorphisms of 𝐻, denoted Aut(𝐻),
forms a group under composition.

Theorem 3.16. An 𝑛-SuperHyperGraph Morphism generalizes the concept of a hypergraph morphism.

Proof. When 𝑛 = 0, the 𝑛-th iterated power set is P0 (𝑉0) = 𝑉0, so the supervertices are simply the base vertices
𝑉0, and the superedges are subsets of 𝑉0.

In this case, an 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸) reduces to a standard hypergraph. The definition of an
𝑛-SuperHyperGraph morphism 𝑓 : 𝑉 → 𝑉 ′ requires that for every edge 𝑒 ∈ 𝐸 , 𝑓 (𝑒) ∈ 𝐸 ′. This matches
exactly the definition of a hypergraph morphism.

Therefore, 𝑛-SuperHyperGraph morphisms generalize hypergraph morphisms. □

Theorem 3.17. An 𝑛-SuperHyperGraph Isomorphism generalizes the concept of a hypergraph isomorphism.

Proof. Again, when 𝑛 = 0, the 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸) becomes a standard hypergraph with vertices
𝑉0 and edges 𝐸 ⊆ P(𝑉0).

An 𝑛-SuperHyperGraph isomorphism 𝑓 : 𝑉 → 𝑉 ′ is a bijection such that 𝑓 (𝑒) ∈ 𝐸 ′ for all 𝑒 ∈ 𝐸 , and every
edge in 𝐸 ′ is the image of an edge in 𝐸 . This coincides with the definition of a hypergraph isomorphism, where
there is a bijection between the vertex sets that induces a bijection between the edge sets.

Therefore, 𝑛-SuperHyperGraph isomorphisms generalize hypergraph isomorphisms. □

Theorem 3.18. An 𝑛-SuperHyperGraph Automorphism generalizes the concept of a hypergraph automorphism.

Proof. When 𝑛 = 0, an 𝑛-SuperHyperGraph automorphism 𝑓 : 𝑉 → 𝑉 is a bijection from the vertex set to
itself such that 𝑓 (𝑒) ∈ 𝐸 for all 𝑒 ∈ 𝐸 , meaning 𝑓 maps edges to edges within the same hypergraph.

This matches the definition of a hypergraph automorphism, which is an isomorphism from a hypergraph to
itself.

Therefore, 𝑛-SuperHyperGraph automorphisms generalize hypergraph automorphisms. □
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3.3 Molecular n-superhypergraph

A Molecular Graph represents the structural formula of a molecule, modeling atoms as labeled nodes and bonds
as labeled edges [128, 180, 194, 233, 263, 358, 367]. Molecular Graphs are closely related to Chemical Graphs
[40, 127, 270, 329, 335]. A Molecular Hypergraph extends this concept, representing atoms as hyperedges and
bonds as nodes connecting them [65, 185, 196, 198, 199, 253].

The formal definition is provided below.

Definition 3.19 (Atom). (cf. [209,336]) An atom is the basic unit of matter, consisting of a nucleus of protons
and neutrons surrounded by electrons. In the context of molecular graphs, an atom is represented as a vertex
labeled with its chemical symbol [343], such as 𝐻 (hydrogen [177]) or 𝐶 (carbon [327]).

Definition 3.20 (Bond). (cf. [261,287]) A bond is a connection between two atoms, representing the chemical
interaction that holds them together. In molecular graphs, bonds are represented as edges labeled with their
type, such as single, double, or triple bonds.

Definition 3.21. (cf. [194, 233, 263, 367]) A Molecular Graph is a graph 𝐺 = (𝑉, 𝐸) that represents the
structural formula of a molecule. In this representation:

• 𝑉 : The vertex set represents the atoms in the molecule.

• 𝐸 : The edge set represents the chemical bonds between pairs of atoms.

Each vertex 𝑣 ∈ 𝑉 may have additional labels to denote the chemical element it represents (e.g., hydrogen,
carbon, oxygen), and each edge 𝑒 ∈ 𝐸 may have labels indicating the type of bond (e.g., single, double, or
triple bonds).

Definition 3.22 (molecular hypergraph). (cf. [65,185,196,198,199,253]) A molecular hypergraph is a node and
hyperedge-labeled hypergraph that models a molecule’s atomic and bonding structure. Formally, a molecular
hypergraph 𝐻 is defined as an ordered quadruple 𝐻 = (𝑉𝐻 , 𝐸𝐻 , ℓ

(𝑉 )
𝐻
, ℓ

(𝐸 )
𝐻

), where:

• 𝑉𝐻 is a finite set of nodes, representing bonds between atoms.

• 𝐸𝐻 is a finite set of hyperedges, where each hyperedge 𝑒 ∈ 𝐸𝐻 is a subset of 𝑉𝐻 that represents an atom
and its associated bonds.

• ℓ (𝑉 )
𝐻

: 𝑉𝐻 → 𝐿
(𝑉 )
𝐻

is a node-labeling function, assigning a label to each node from a set 𝐿 (𝑉 )
𝐻

of bond
types.

• ℓ (𝐸 )
𝐻

: 𝐸𝐻 → 𝐿
(𝐸 )
𝐻

is a hyperedge-labeling function, assigning a label to each hyperedge from a set 𝐿 (𝐸 )
𝐻

of atomic properties.

Definition 3.23 (Molecular 𝑛-SuperHyperGraph). Let 𝑉0 be a finite set of base vertices representing bonds in
a molecule. We define the 𝑛-th iterated power set of 𝑉0 recursively as:

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
,

where P(𝐴) denotes the power set of set 𝐴.

An Molecular 𝑛-SuperHyperGraph is defined as an ordered quadruple 𝐻 = (𝑉𝐻 , 𝐸𝐻 , ℓ
(𝑉 )
𝐻
, ℓ

(𝐸 )
𝐻

), where:

• 𝑉𝐻 ⊆ P𝑛 (𝑉0) is a finite set of supernodes, representing bonds or collections of bonds.

• 𝐸𝐻 ⊆ P𝑛 (𝑉0) is a finite set of superhyperedges, where each superhyperedge 𝑒 ∈ 𝐸𝐻 connects elements
of 𝑉𝐻 at various hierarchical levels.

• ℓ (𝑉 )
𝐻

: 𝑉𝐻 → 𝐿
(𝑉 )
𝐻

is a node-labeling function, assigning labels from a set 𝐿 (𝑉 )
𝐻

of bond types or
properties.
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• ℓ (𝐸 )
𝐻

: 𝐸𝐻 → 𝐿
(𝐸 )
𝐻

is a superedge-labeling function, assigning labels from a set 𝐿 (𝐸 )
𝐻

of atomic or
molecular properties.

Each supernode 𝑣 ∈ 𝑉𝐻 can be:

• A single bond (𝑣 ∈ 𝑉0),

• A subset of bonds (𝑣 ⊆ 𝑉0),

• A higher-level collection up to 𝑛 levels (𝑣 ∈ P𝑛 (𝑉0)),

• An indeterminate or fuzzy set (cf. [360]),

• The null set (𝑣 = ∅).

Theorem 3.24. A Molecular 𝑛-SuperHyperGraph generalizes the concept of a Molecular Hypergraph.

Proof. When 𝑛 = 0, the 𝑛-th iterated power set reduces to P0 (𝑉0) = 𝑉0. Thus, the supernodes 𝑉𝐻 ⊆ 𝑉0 are
simply the base nodes representing bonds, and the superhyperedges 𝐸𝐻 ⊆ 𝑉0 represent connections between
these bonds.

In this case, the Molecular 𝑛-SuperHyperGraph 𝐻 = (𝑉𝐻 , 𝐸𝐻 , ℓ
(𝑉 )
𝐻
, ℓ

(𝐸 )
𝐻

) reduces to a standard Molecular
Hypergraph, where:

• Nodes 𝑉𝐻 represent bonds between atoms.

• Hyperedges 𝐸𝐻 represent atoms connected via these bonds.

• Labeling functions ℓ (𝑉 )
𝐻

and ℓ (𝐸 )
𝐻

assign appropriate bond and atomic properties.

Therefore, the Molecular 𝑛-SuperHyperGraph encompasses the Molecular Hypergraph as a special case when
𝑛 = 0, thereby generalizing it. □

Theorem 3.25. Molecular 𝑛-SuperHyperGraphs are 𝑛-SuperHyperGraphs.

Proof. A Molecular 𝑛-SuperHyperGraph𝐻 = (𝑉𝐻 , 𝐸𝐻 , ℓ
(𝑉 )
𝐻
, ℓ

(𝐸 )
𝐻

) satisfies the structure of an 𝑛-SuperHyperGraph
as follows:

1. By definition, 𝑉𝐻 ⊆ P𝑛 (𝑉0), where P𝑛 (𝑉0) is the 𝑛-th iterated power set of the base vertex set 𝑉0.
Hence, 𝑉𝐻 comprises supervertices that adhere to the hierarchical structure up to 𝑛 levels.

2. Similarly, 𝐸𝐻 ⊆ P𝑛 (𝑉0), meaning that 𝐸𝐻 contains superedges that align with the structure of 𝑛-
SuperHyperGraphs.

3. The labeling functions ℓ (𝑉 )
𝐻

and ℓ (𝐸 )
𝐻

assign additional properties to vertices and edges but do not alter
the structural definition of 𝑛-SuperHyperGraphs.

Thus, 𝐻 meets all structural requirements of an 𝑛-SuperHyperGraph. □
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3.4 Signed n-superhypergraph

A signed graph is a graph where each edge is assigned a positive or negative sign, modeling relationships
with polarity [84, 164, 184, 227, 368]. The hypergraph counterpart is known as a signed hypergraph [152, 292,
293, 347, 359]. We extend these concepts using superhypergraphs. The related definitions and theorems are
provided below.

Definition 3.26. [292] The incidence matrix of𝐻, denoted byΦ(𝐻), is a matrix of dimensions |𝑉 (𝐻) |×|𝐸 (𝐻) |,
where the entry Φ(𝐻)𝑖, 𝑗 = 𝜑(𝑣𝑖 , 𝑒 𝑗 ) indicates the incidence relationship between the 𝑖-th vertex and the 𝑗-th
edge.

Definition 3.27. [292] A signed hypergraph 𝐻 is formally defined as an ordered triple 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻), 𝜑),
where:

• 𝑉 (𝐻) is a nonempty finite set of vertices.

• 𝐸 (𝐻) is a nonempty finite set of edges, where each edge 𝑒 ∈ 𝐸 (𝐻) is a subset of 𝑉 (𝐻), i.e., 𝑒 ⊆ 𝑉 (𝐻).

• 𝜑 : 𝑉 (𝐻) ×𝐸 (𝐻) → {−1, 0, 1} is an incidence function, which assigns a value to each pair (𝑣, 𝑒), where:

– 𝜑(𝑣, 𝑒) = 1: 𝑣 is positively incident with 𝑒.
– 𝜑(𝑣, 𝑒) = −1: 𝑣 is negatively incident with 𝑒.
– 𝜑(𝑣, 𝑒) = 0: 𝑣 is not incident with 𝑒.

Example 3.28. (cf. [292]) In the context of signed hypergraphs, the following special cases are well-known:

• A signed graph is a specific instance of a signed hypergraph where all edges have exactly two incident
vertices, i.e., 𝛿(𝑒) = 2 for all 𝑒 ∈ 𝐸 (𝐻).

• A hypergraph is a particular case of a signed hypergraph where the incidence function satisfies 𝜑(𝑣, 𝑒) ∈
{0, 1} for all (𝑣, 𝑒), meaning all incidences are positive.

Definition 3.29. Let 𝑉0 be a finite set of base vertices. Define the 𝑛-th iterated power set of 𝑉0 recursively as
before.

A Signed 𝑛-SuperHyperGraph is defined as an ordered triple 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻), 𝜑), where:

• 𝑉 (𝐻) ⊆ P𝑛 (𝑉0) is a nonempty finite set of supervertices.

• 𝐸 (𝐻) ⊆ P𝑛 (𝑉0) is a nonempty finite set of superedges.

• 𝜑 : 𝑉 (𝐻) × 𝐸 (𝐻) → {−1, 0, 1} is an incidence function, assigning a value to each pair (𝑣, 𝑒), where:

– 𝜑(𝑣, 𝑒) = 1: 𝑣 is positively incident with 𝑒.
– 𝜑(𝑣, 𝑒) = −1: 𝑣 is negatively incident with 𝑒.
– 𝜑(𝑣, 𝑒) = 0: 𝑣 is not incident with 𝑒.

Theorem 3.30. A Signed 𝑛-SuperHyperGraph generalizes the concept of a Signed Hypergraph.

Proof. When 𝑛 = 0, 𝑉 (𝐻) ⊆ P0 (𝑉0) = 𝑉0 and 𝐸 (𝐻) ⊆ P0 (𝑉0) = 𝑉0. In this scenario, the supervertices and
superedges are elements of the base set 𝑉0.

The incidence function 𝜑 : 𝑉0 × 𝑉0 → {−1, 0, 1} defines the relationships between vertices and edges as in a
standard Signed Hypergraph.

Thus, the Signed 𝑛-SuperHyperGraph reduces to a Signed Hypergraph when 𝑛 = 0, and therefore generalizes
it. □

Theorem 3.31. Signed 𝑛-SuperHyperGraphs are 𝑛-SuperHyperGraphs.
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Proof. A Signed 𝑛-SuperHyperGraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻), 𝜑) satisfies the structure of an 𝑛-SuperHyperGraph
as follows:

1. By definition, 𝑉 (𝐻) ⊆ P𝑛 (𝑉0), where P𝑛 (𝑉0) is the 𝑛-th iterated power set of the base vertex set 𝑉0.
Hence, 𝑉 (𝐻) comprises supervertices that satisfy the hierarchical structure up to 𝑛 levels.

2. Similarly, 𝐸 (𝐻) ⊆ P𝑛 (𝑉0), meaning that 𝐸 (𝐻) contains superedges that conform to the structure of
𝑛-SuperHyperGraphs.

3. The incidence function 𝜑 : 𝑉 (𝐻) × 𝐸 (𝐻) → {−1, 0, 1} introduces signed relationships between super-
vertices and superedges but does not alter their structural definitions.

Thus, 𝐻 meets all structural requirements of an 𝑛-SuperHyperGraph. □

3.5 Probabilistic 𝑛-SuperHyperGraph

A Probabilistic Graph is a graph where edges are assigned probabilities, capturing uncertainty in connections
(cf. [96,105,154,197,203,290]). The Probabilistic Hypergraph is an extension of this concept to hypergraphs,
where hyperedges are associated with probabilities [166, 202, 217, 222, 248]. Various studies have explored
its applications and properties. This concept is further generalized to n-SuperHyperGraphs. The related
definitions and theorems are outlined below.

Definition 3.32. (cf. [178, 281]) Probability is a measure quantifying the likelihood of an event occurring,
ranging from 0 (impossible) to 1 (certain).

Definition 3.33 (Probabilistic Graph). [105,197] A Probabilistic Graph is defined as a triplet 𝐺 = (𝑉, 𝐸, 𝐴),
where:

• 𝑉 is a finite set of vertices.

• 𝐸 ⊆
(𝑉

2
)

is a set of edges, where each 𝑒 ∈ 𝐸 is an unordered pair of vertices from 𝑉 .

• 𝐴 : 𝑉 × 𝑉 → [0, 1] is an affinity matrix or probability matrix, where 𝐴(𝑖, 𝑗) represents the probability
or weight of connection between vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 .

Edge Weight: For each edge 𝑒 = {𝑣𝑖 , 𝑣 𝑗 } ∈ 𝐸 , the weight 𝑤(𝑒) is defined as:

𝑤(𝑒) = 𝐴(𝑣𝑖 , 𝑣 𝑗 ).

Vertex Degree: The degree of a vertex 𝑣 ∈ 𝑉 is defined as:

𝑑 (𝑣) =
∑︁

𝑢∈𝑉,{𝑣,𝑢}∈𝐸
𝑤({𝑣, 𝑢}).

Adjacency Matrix: The adjacency matrix 𝑀 of the probabilistic graph is given by:

𝑀 (𝑖, 𝑗) =
{
𝐴(𝑣𝑖 , 𝑣 𝑗 ), if {𝑣𝑖 , 𝑣 𝑗 } ∈ 𝐸,
0, otherwise.

Definition 3.34 (Centroid in Hypergraphs). [166] Let 𝑉 be a finite set of vertices, and 𝐴 : 𝑉 ×𝑉 → [0, 1] be
a similarity matrix, where 𝐴(𝑖, 𝑗) quantifies the similarity between vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 .

A vertex 𝑣 𝑗 ∈ 𝑉 is called the centroid of a hyperedge 𝑒 ⊆ 𝑉 if:

1. 𝑣 𝑗 is chosen based on a predefined criterion, such as:
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• Maximum similarity to other vertices:

𝑣 𝑗 = arg max
𝑣∈𝑉

∑︁
𝑣𝑖∈𝑒

𝐴(𝑣, 𝑣𝑖).

• Predefined property, such as an initial label or domain-specific ranking.

2. The hyperedge 𝑒 is formed as:

𝑒 = {𝑣 𝑗 } ∪ {𝑣𝑖 | 𝑣𝑖 ∈ neighbors of 𝑣 𝑗 based on a similarity threshold or 𝑘-nearest neighbors}.

Definition 3.35 (Probabilistic Hypergraph). [166] A Probabilistic Hypergraph is defined as a triplet 𝐺 =

(𝑉, 𝐸, 𝐴), where:

• 𝑉 is a finite set of vertices.

• 𝐸 ⊆ P(𝑉) is a set of hyperedges, where each 𝑒 ∈ 𝐸 is a subset of 𝑉 .

• 𝐴 : 𝑉 ×𝑉 → [0, 1] is an affinity matrix that quantifies the similarity or probability of connection between
vertices. Specifically, 𝐴(𝑖, 𝑗) represents the similarity between vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 .

The incidence matrix 𝐻 of the probabilistic hypergraph is a |𝑉 | × |𝐸 | matrix defined as:

𝐻 (𝑖, 𝑗) =
{
𝐴(𝑣 𝑗 , 𝑣𝑖), if 𝑣𝑖 ∈ 𝑒 𝑗 and 𝑣 𝑗 is the centroid of 𝑒 𝑗 ,
0, otherwise.

Hyperedge Weight: For each hyperedge 𝑒 ∈ 𝐸 , the weight 𝑤(𝑒) is computed as:

𝑤(𝑒) =
∑︁
𝑣𝑖∈𝑒

𝐴(𝑣 𝑗 , 𝑣𝑖),

where 𝑣 𝑗 is the centroid vertex of the hyperedge 𝑒.

Vertex Degree: The degree of a vertex 𝑣 ∈ 𝑉 is defined as:

𝑑 (𝑣) =
∑︁
𝑒∈𝐸

𝑤(𝑒) · 𝐻 (𝑣, 𝑒).

Hyperedge Degree: The degree of a hyperedge 𝑒 ∈ 𝐸 is given by:

𝛿(𝑒) =
∑︁
𝑣∈𝑒

𝐻 (𝑣, 𝑒).

Definition 3.36 (Probabilistic 𝑛-SuperHyperGraph). Let 𝑉0 be a finite set of base vertices. Define the 𝑛-th
iterated power set of 𝑉0 recursively as:

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
,

where P(𝐴) denotes the power set of the set 𝐴.

An 𝑛-SuperHyperGraph is an ordered pair 𝐻 = (𝑉, 𝐸), where:

• 𝑉 ⊆ P𝑛 (𝑉0) is the set of supervertices.

• 𝐸 ⊆ P𝑛 (𝑉0) is the set of superedges.

A Probabilistic 𝑛-SuperHyperGraph is defined as a triplet 𝐺 = (𝑉, 𝐸, 𝐴), where:
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• 𝑉 and 𝐸 are as defined above.

• 𝐴 : 𝑉 ×𝑉 → [0, 1] is an affinity function assigning a probability or similarity measure between pairs of
supervertices.

The incidence matrix 𝐻 is a |𝑉 | × |𝐸 | matrix defined by:

𝐻 (𝑖, 𝑗) =
{
𝐴(𝑣 𝑗 , 𝑣𝑖), if 𝑣𝑖 ∈ 𝑒 𝑗 and 𝑣 𝑗 is the centroid of 𝑒 𝑗 ,
0, otherwise.

superedge Weight: For each superedge 𝑒 ∈ 𝐸 , the weight 𝑤(𝑒) is calculated as:

𝑤(𝑒) =
∑︁
𝑣𝑖∈𝑒

𝐴(𝑣 𝑗 , 𝑣𝑖),

where 𝑣 𝑗 is the centroid supervertex of the superedge 𝑒.

Vertex Degree: The degree of a vertex 𝑣 ∈ 𝑉 is defined as:

𝑑 (𝑣) =
∑︁
𝑒∈𝐸

𝑤(𝑒) · 𝐻 (𝑣, 𝑒).

superedge Degree: The degree of a superedge 𝑒 ∈ 𝐸 is given by:

𝛿(𝑒) =
∑︁
𝑣∈𝑒

𝐻 (𝑣, 𝑒).

Theorem 3.37. A Probabilistic 𝑛-SuperHyperGraph is an 𝑛-SuperHyperGraph.

Proof. By definition, a Probabilistic 𝑛-SuperHyperGraph 𝐺 = (𝑉, 𝐸, 𝐴) possesses supervertices 𝑉 ⊆ P𝑛 (𝑉0)
and superedges 𝐸 ⊆ P𝑛 (𝑉0), fulfilling the criteria of an 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸). The introduction
of the affinity function 𝐴 and the probabilistic incidence matrix 𝐻 adds probabilistic characteristics but does
not alter the fundamental structure of supervertices and superedges. Therefore, 𝐺 retains the structure of an
𝑛-SuperHyperGraph. □

Theorem 3.38. A Probabilistic 𝑛-SuperHyperGraph generalizes the Probabilistic HyperGraph.

Proof. When 𝑛 = 0, the 𝑛-th iterated power set simplifies to P0 (𝑉0) = 𝑉0, so the supervertices and superedges
reduce to elements and subsets of the base vertex set𝑉0. In this scenario, the Probabilistic 𝑛-SuperHyperGraph
𝐺 = (𝑉, 𝐸, 𝐴) becomes a Probabilistic HyperGraph with vertex set 𝑉0, hyperedge set 𝐸 ⊆ P(𝑉0), and affinity
function 𝐴 : 𝑉0×𝑉0 → [0, 1]. The definitions of the incidence matrix 𝐻, hyperedge weights 𝑤(𝑒), and degrees
𝑑 (𝑣) and 𝛿(𝑒) coincide with those in the Probabilistic HyperGraph. Thus, the Probabilistic 𝑛-SuperHyperGraph
generalizes the Probabilistic HyperGraph. □

Question 3.39. Is it possible to define a Bayesian n-superhypergraph as an extension of Bayesian hypergraphs
[174, 175, 342]? Additionally, can the concept of a Markov chain in hypergraphs [49, 220] be extended to
n-superhypergraphs? What are the potential mathematical structures and applications of such an extension?

3.6 Independent Set in a Superhypergraph

An independent set in a graph is a set of vertices such that no two vertices in the set are connected by
an edge [144, 223]. Similarly, an independent set in a hypergraph is a subset of vertices that does not
contain any hyperedge as a subset, extending the concept of independence to higher-dimensional relationships
[23, 42, 153, 181, 201]. This concept can be further defined in the context of a superhypergraph. The relevant
definitions and theorem are presented below.
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Definition 3.40 (Independent Set in a Hypergraph). [23] Let 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) be a hypergraph, where
𝑉 (𝐻) is the set of vertices and 𝐸 (𝐻) ⊆ 2𝑉 (𝐻 ) is the set of hyperedges. A subset 𝐼 ⊆ 𝑉 (𝐻) is called an
independent set in 𝐻 if 𝐼 does not contain any hyperedge of 𝐻 as a subset. Formally,

𝐼 is independent ⇐⇒ ∀𝑒 ∈ 𝐸 (𝐻), 𝑒 ⊈ 𝐼 .

Definition 3.41 (Independent Set in an 𝑛-SuperHyperGraph). Let 𝐻 = (𝑉, 𝐸) be an 𝑛-SuperHyperGraph. A
subset 𝐼 ⊆ 𝑉 is called an independent set in 𝐻 if 𝐼 does not contain any superedge 𝑒 ∈ 𝐸 as a subset. Formally,

𝐼 is independent ⇐⇒ ∀𝑒 ∈ 𝐸, 𝑒 ⊈ 𝐼 .

Theorem 3.42. The concept of an independent set in an 𝑛-SuperHyperGraph generalizes the notion of an
independent set in a hypergraph. In particular, a hypergraph is equivalent to a 1-SuperHyperGraph.

Proof. Let 𝐻 = (𝑉, 𝐸) be a hypergraph. By definition, 𝑉 ⊆ 𝑉0 and 𝐸 ⊆ 2𝑉0 , where 𝑉0 is the base set of
vertices. A hypergraph can be interpreted as a 1-SuperHyperGraph, since:

P1 (𝑉0) = P(𝑉0).

For a 1-SuperHyperGraph 𝐻 = (𝑉, 𝐸), the vertices and edges satisfy 𝑉, 𝐸 ⊆ P1 (𝑉0), and the independence
condition 𝐼 ⊆ 𝑉 with 𝑒 ⊈ 𝐼 for all 𝑒 ∈ 𝐸 is exactly the same as the definition of independence in a hypergraph.

For 𝑛 > 1, the vertices and edges 𝑉, 𝐸 ⊆ P𝑛 (𝑉0) involve higher levels of hierarchical relationships. However,
the independence condition 𝑒 ⊈ 𝐼 remains consistent across all levels of 𝑛. Thus, the definition of independence
in 𝑛-SuperHyperGraphs generalizes the concept from hypergraphs.

Therefore, a hypergraph is specifically a 1-SuperHyperGraph, and the concept of independence is naturally
extended to 𝑛-SuperHyperGraphs for 𝑛 ≥ 1. □

3.7 𝑛-SuperHypergraph Ramsey numbers

The Graph Ramsey Number is the smallest 𝑁 such that any red-blue edge coloring of 𝐾𝑁 contains a red
𝐾𝑠 or a blue 𝐾𝑡 [28, 64, 97, 143, 268]. The Hypergraph Ramsey Number is the smallest 𝑁 such that any
red-blue coloring of 𝑘-element subsets of [𝑁] contains a monochromatic 𝑘-uniform hypergraph of size 𝑠 or
𝑡 [75, 76, 89, 200, 244, 245]. These concepts are extended to superhypergraphs. The relevant definitions and
theorems are presented below.

Definition 3.43 (Complete Graph). (cf. [2, 68]) A complete graph, denoted 𝐾𝑛, is a graph where:

• The vertex set 𝑉 (𝐾𝑛) consists of 𝑛 vertices: 𝑉 (𝐾𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}.

• The edge set 𝐸 (𝐾𝑛) contains all possible
(𝑛
2
)

edges, where each edge connects two distinct vertices 𝑣𝑖
and 𝑣 𝑗 (𝑖 ≠ 𝑗).

In 𝐾𝑛, every vertex has a degree of 𝑛 − 1, and the graph is maximally connected.

Definition 3.44 (Graph edge coloring). [58, 160, 371] In general, graph edge coloring is the assignment of
colors to the edges of a graph such that no two edges sharing the same vertex have the same color.

Definition 3.45 (Graph Ramsey Number). [28,64,97,143,268] The Graph Ramsey Number, denoted 𝑅(𝑠, 𝑡),
is the smallest positive integer 𝑁 such that any red-blue coloring of the edges of a complete graph 𝐾𝑁 on 𝑁
vertices contains:

• A red 𝐾𝑠 (a complete subgraph of 𝑠 vertices with all edges colored red), or

• A blue 𝐾𝑡 (a complete subgraph of 𝑡 vertices with all edges colored blue).
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Formally,
𝑅(𝑠, 𝑡) = min {𝑁 | ∀ red-blue edge colorings of 𝐾𝑁 , ∃ a red 𝐾𝑠 or a blue 𝐾𝑡 } .

Definition 3.46 (𝑘-Uniform Hypergraph). [76, 159, 247, 278] A 𝑘-uniform hypergraph 𝐻 = (𝑉, 𝐸) is a
hypergraph where:

• 𝑉 is the set of vertices.

• 𝐸 ⊆
(𝑉
𝑘

)
, the set of all 𝑘-element subsets of 𝑉 . Each 𝑒 ∈ 𝐸 is called a 𝑘-uniform hyperedge.

Definition 3.47 (Monochromatic 𝑘-Uniform Hypergraph). [76] A 𝑘-uniform hypergraph 𝐻 = (𝑉, 𝐸) is said
to be monochromatic under a coloring if all hyperedges 𝑒 ∈ 𝐸 are assigned the same color.

More formally, let 𝜒 :
(𝑉
𝑘

)
→ {𝑐1, 𝑐2, . . . , 𝑐𝑚} be a coloring function assigning one of 𝑚 colors to each 𝑘-tuple

of𝑉 . The 𝑘-uniform hypergraph 𝐻 = (𝑉, 𝐸) is monochromatic if there exists a color 𝑐 ∈ {𝑐1, 𝑐2, . . . , 𝑐𝑚} such
that:

∀𝑒 ∈ 𝐸, 𝜒(𝑒) = 𝑐.

Definition 3.48 (Monochromatic Subset in a 𝑘-Uniform Hypergraph). [76] Given a 𝑘-uniform hypergraph
𝐻 = (𝑉, 𝐸) with a coloring 𝜒 :

(𝑉
𝑘

)
→ {𝑐1, 𝑐2, . . . , 𝑐𝑚}, a subset 𝑆 ⊆ 𝑉 is called a monochromatic subset if:

∀𝑒 ∈
(
𝑆

𝑘

)
, 𝜒(𝑒) = 𝑐,

for some fixed color 𝑐 ∈ {𝑐1, 𝑐2, . . . , 𝑐𝑚}.

Definition 3.49 (Hypergraph Ramsey Numbers). [76] Let 𝑘 , 𝑠, and 𝑛 be positive integers. The 𝑘-uniform
hypergraph Ramsey number, denoted 𝑟𝑘 (𝑠, 𝑛), is the smallest positive integer 𝑁 such that, for every red-blue
coloring of the 𝑘-element subsets of an 𝑁-element set [𝑁], one of the following holds:

1. There exists a subset 𝑆 ⊆ [𝑁] with |𝑆 | = 𝑠 such that every 𝑘-tuple of 𝑆 is red.

2. There exists a subset 𝑇 ⊆ [𝑁] with |𝑇 | = 𝑛 such that every 𝑘-tuple of 𝑇 is blue.

Formally,

𝑟𝑘 (𝑠, 𝑛) = min
{
𝑁 | ∀ red-blue coloring of

(
[𝑁]
𝑘

)
, ∃ monochromatic 𝑘-uniform hypergraph with size 𝑠 or 𝑛

}
.

Definition 3.50 (k-Uniform n-SuperHypergraph). Let 𝑛 ≥ 1 and 𝑘 ≥ 1 be integers, and let 𝑉0 be a finite set.
Let 𝑉 = P𝑛−1 (𝑉0) be the set of vertices.

A k-uniform n-SuperHypergraph is a hypergraph 𝐻 = (𝑉, 𝐸), where:

• 𝑉 = P𝑛−1 (𝑉0) is the vertex set.

• 𝐸 ⊆
(𝑉
𝑘

)
, the set of all 𝑘-element subsets of 𝑉 .

Definition 3.51 (Monochromatic k-Uniform n-SuperHypergraph). Let𝐻 = (𝑉, 𝐸) be a k-uniform n-SuperHypergraph,
and let 𝜒 :

(𝑉
𝑘

)
→ {𝑐1, 𝑐2, . . . , 𝑐𝑚} be a coloring function assigning one of 𝑚 colors to each edge 𝑒 ∈ 𝐸 . We

say that 𝐻 is monochromatic if there exists a color 𝑐 ∈ {𝑐1, 𝑐2, . . . , 𝑐𝑚} such that:

∀𝑒 ∈ 𝐸, 𝜒(𝑒) = 𝑐.

Definition 3.52 (n-SuperHypergraph Ramsey Numbers). Let 𝑛 ≥ 1, 𝑘 ≥ 1, and 𝑠, 𝑡 be positive integers. The
𝑛-SuperHypergraph Ramsey number, denoted 𝑟 (𝑘 )𝑛 (𝑠, 𝑡), is the smallest positive integer 𝑁 such that, for every
red-blue coloring 𝜒 of the edges in

(𝑉
𝑘

)
with 𝑉 = P𝑛−1 (𝑉0) and |𝑉0 | = 𝑁 , one of the following holds:

1. There exists a subset 𝑆 ⊆ 𝑉 with |𝑆 | = 𝑠 such that all 𝑘-element subsets of 𝑆 are colored red.
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2. There exists a subset 𝑇 ⊆ 𝑉 with |𝑇 | = 𝑡 such that all 𝑘-element subsets of 𝑇 are colored blue.

Formally,

𝑟
(𝑘 )
𝑛 (𝑠, 𝑡) = min

{
𝑁

���� ∀ red-blue coloring 𝜒 of
(
𝑉

𝑘

)
, ∃ monochromatic 𝑘-uniform 𝑛-SuperHypergraph of size 𝑠 or 𝑡

}
.

Theorem 3.53. The concept of 𝑛-SuperHypergraph Ramsey numbers generalizes hypergraph Ramsey numbers.
In particular, when 𝑛 = 1, the 𝑛-SuperHypergraph Ramsey number 𝑟 (𝑘 )1 (𝑠, 𝑡) coincides with the classical
hypergraph Ramsey number 𝑟𝑘 (𝑠, 𝑡).

Proof. When 𝑛 = 1, we have:
P𝑛−1 (𝑉0) = P0 (𝑉0) = 𝑉0.

Thus, the vertex set is 𝑉 = 𝑉0.

The edge set is 𝐸 ⊆
(𝑉
𝑘

)
=
(𝑉0
𝑘

)
.

This corresponds exactly to a classical 𝑘-uniform hypergraph on the vertex set 𝑉0.

In the classical hypergraph Ramsey problem, we consider the smallest integer 𝑁 such that any red-blue coloring
of the edges of the complete 𝑘-uniform hypergraph on 𝑁 vertices contains a monochromatic complete 𝑘-uniform
hypergraph of size 𝑠 in red or 𝑡 in blue.

Therefore, 𝑟 (𝑘 )1 (𝑠, 𝑡) = 𝑟𝑘 (𝑠, 𝑡).

This shows that the 𝑛-SuperHypergraph Ramsey numbers generalize the classical hypergraph Ramsey numbers.
□

Question 3.54. Is it possible to propose Anti-Ramsey theorems [95] in the context of n-SuperHypergraphs?

3.8 Tripartite n-SuperHypergraph and Multipartite n-SuperHypergraph

In general, a tripartite graph is a graph in which the vertex set is divided into three disjoint subsets, with no
edges connecting vertices within the same subset [251, 291, 373, 380]. Tripartite graphs have been extensively
studied for practical applications in fields such as personalized recommendation systems [221,373]. A tripartite
graph can also be viewed as an extended version of a bipartite graph [17, 90, 145]. A multipartite graph is a
graph where the vertex set is partitioned into k disjoint subsets, ensuring that no two vertices within the same
subset are adjacent [46,81,98]. These concepts, when extended to hypergraphs, lead to the notions of Tripartite
Hypergraphs [133,134,170,216,372] and Multipartite Hypergraphs [1,47]. A more structured version, the k-
Uniform Multipartite Hypergraph, has also been widely studied in this context [47]. This subsection introduces
a further generalization of these concepts to superhypergraphs, as described below. It is worth noting that
in this paper, the definition of a tripartite hypergraph follows the user–item–tag tripartite hypergraph model
proposed in [372].

Definition 3.55 (Tripartite Hypergraph). [372] A tripartite hypergraph is a hypergraph 𝐺 = (𝑉, 𝐻) where:

• 𝑉 = 𝑈 ∪ 𝑅 ∪ 𝑇 , where 𝑈, 𝑅, and 𝑇 are disjoint vertex sets representing users, resources, and tags,
respectively.

• 𝐻 ⊆ 𝑈 × 𝑅 × 𝑇 , the set of hyperedges, where each hyperedge ℎ = (𝑢, 𝑟, 𝑡) consists of one user 𝑢 ∈ 𝑈,
one resource 𝑟 ∈ 𝑅, and one tag 𝑡 ∈ 𝑇 .

Definition 3.56 (Properties of a Tripartite Hypergraph). [372] Given a tripartite hypergraph 𝐺 = (𝑉, 𝐻):

• The hyperdegree of a node 𝑣 ∈ 𝑉 is the number of hyperedges in 𝐻 that contain 𝑣.
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• The clustering coefficient of a node 𝑣 ∈ 𝑉 is the ratio of the actual number of hyperedges involving 𝑣 to
the maximum possible number of such hyperedges, based on the degrees of its neighbors [36, 289].

• The average distance is the average shortest path length between two random nodes in 𝐺, considering
paths that traverse hyperedges [71, 72].

Definition 3.57 (k-Uniform Multipartite Hypergraph). (cf. [47]) A 𝑘-uniform multipartite hypergraph is a
hypergraph 𝐻 = (𝑉, 𝐸), where:

• 𝑉 = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘 is the vertex set, partitioned into 𝑘 disjoint subsets𝑉1, 𝑉2, . . . , 𝑉𝑘 , called the vertex
classes.

• 𝐸 ⊆ 𝑉1 × 𝑉2 × · · · × 𝑉𝑘 , the set of hyperedges, where each hyperedge 𝑒 ∈ 𝐸 is a 𝑘-tuple such that
|𝑒 ∩𝑉𝑖 | = 1 for all 𝑖 = 1, 2, . . . , 𝑘 .

Definition 3.58 (Tripartite 𝑛-SuperHypergraph). Let 𝑉0 be a finite set. The 𝑛-th iterated power set of 𝑉0,
denoted P𝑛 (𝑉0), is defined recursively as:

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
, for 𝑘 ≥ 0,

where P(𝐴) denotes the power set of the set 𝐴.

And let 𝑛 ≥ 1, and let 𝑈0, 𝑅0, and 𝑇0 be finite, disjoint base sets representing users, resources, and tags,
respectively.

Define the vertex classes:

𝑈 = P𝑛−1 (𝑈0), 𝑅 = P𝑛−1 (𝑅0), 𝑇 = P𝑛−1 (𝑇0).

A Tripartite 𝑛-SuperHypergraph is a hypergraph 𝐺 = (𝑉, 𝐻), where:

• 𝑉 = 𝑈 ∪ 𝑅 ∪ 𝑇 is the vertex set, partitioned into three disjoint classes.

• 𝐻 ⊆ 𝑈 × 𝑅 × 𝑇 is the set of hyperedges, where each hyperedge ℎ = (𝑢, 𝑟, 𝑡) consists of one supervertex
𝑢 ∈ 𝑈, one supervertex 𝑟 ∈ 𝑅, and one supervertex 𝑡 ∈ 𝑇 .

Definition 3.59 (𝑘-Uniform Multipartite 𝑛-SuperHypergraph). Let 𝑛 ≥ 1, 𝑘 ≥ 1, and let𝑉0,1, 𝑉0,2, . . . , 𝑉0,𝑘 be
finite, disjoint base sets.

Define the vertex classes:
𝑉𝑖 = P𝑛−1 (𝑉0,𝑖), for 𝑖 = 1, 2, . . . , 𝑘 .

A 𝑘-Uniform Multipartite 𝑛-SuperHypergraph is a hypergraph 𝐻 = (𝑉, 𝐸), where:

• 𝑉 = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘 is the vertex set, partitioned into 𝑘 disjoint classes.

• 𝐸 ⊆ 𝑉1 × 𝑉2 × · · · × 𝑉𝑘 is the set of hyperedges, where each hyperedge 𝑒 = (𝑣1, 𝑣2, . . . , 𝑣𝑘) consists of
one supervertex 𝑣𝑖 ∈ 𝑉𝑖 from each vertex class.

Theorem 3.60. The concept of a Tripartite 𝑛-SuperHypergraph generalizes that of a Tripartite Hypergraph.
Specifically, when 𝑛 = 1, a Tripartite 𝑛-SuperHypergraph reduces to a Tripartite Hypergraph.

Proof. When 𝑛 = 1, we have:

P𝑛−1 (𝑈0) = P0 (𝑈0) = 𝑈0, P𝑛−1 (𝑅0) = 𝑅0, P𝑛−1 (𝑇0) = 𝑇0.

Therefore, the vertex classes are:
𝑈 = 𝑈0, 𝑅 = 𝑅0, 𝑇 = 𝑇0.

The hyperedges are subsets of𝑈 × 𝑅×𝑇 , where each hyperedge ℎ = (𝑢, 𝑟, 𝑡) consists of one element from each
of𝑈0, 𝑅0, and 𝑇0.

This matches the definition of a Tripartite Hypergraph, where 𝑉 = 𝑈0 ∪ 𝑅0 ∪ 𝑇0, and 𝐻 ⊆ 𝑈0 × 𝑅0 × 𝑇0.

Therefore, the Tripartite 𝑛-SuperHypergraph with 𝑛 = 1 is equivalent to a Tripartite Hypergraph. □
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Theorem 3.61. The concept of a 𝑘-Uniform Multipartite 𝑛-SuperHypergraph generalizes that of a 𝑘-Uniform
Multipartite Hypergraph. Specifically, when 𝑛 = 1, a 𝑘-Uniform Multipartite 𝑛-SuperHypergraph reduces to a
𝑘-Uniform Multipartite Hypergraph.

Proof. When 𝑛 = 1, we have:

𝑉𝑖 = P𝑛−1 (𝑉0,𝑖) = P0 (𝑉0,𝑖) = 𝑉0,𝑖 , for 𝑖 = 1, 2, . . . , 𝑘 .

Therefore, the vertex classes are 𝑉𝑖 = 𝑉0,𝑖 , and the vertex set is 𝑉 = 𝑉0,1 ∪𝑉0,2 ∪ · · · ∪𝑉0,𝑘 .

The hyperedges are subsets of 𝑉1 × 𝑉2 × · · · × 𝑉𝑘 , where each hyperedge 𝑒 = (𝑣1, 𝑣2, . . . , 𝑣𝑘) consists of one
element from each 𝑉0,𝑖 .

This matches the definition of a 𝑘-Uniform Multipartite Hypergraph, where the vertex set is partitioned into 𝑘
classes, and each hyperedge consists of one vertex from each class.

Therefore, the 𝑘-Uniform Multipartite 𝑛-SuperHypergraph with 𝑛 = 1 is equivalent to a 𝑘-Uniform Multipartite
Hypergraph. □

3.9 SuperHypergraphic Sequence

In this subsection, we explore the concept of a SuperHypergraphic Sequence. In mathematics, a sequence is
an ordered list of elements, typically numbers, following a specific rule [129, 205]. The degree sequence of
a graph or hypergraph is defined as the list of vertex degrees, where each degree represents the number of
edges incident to the corresponding vertex [37, 63, 237, 238, 241]. A hypergraphic sequence is a sequence of
non-negative integers that satisfies specific combinatorial conditions, ensuring the existence of a corresponding
hypergraph [218,218,239,283]. We extend these notions to n-SuperHyperGraphs. The related definitions and
theorems are presented below.

Definition 3.62 (Degree (Recall)). [283] The degree of a vertex 𝑣 ∈ 𝑉 , denoted as 𝑑 (𝑣), is the number of
hyperedges in 𝐸 that contain 𝑣, formally defined as:

𝑑 (𝑣) = |{𝑒 ∈ 𝐸 | 𝑣 ∈ 𝑒}|.

Definition 3.63. [283] A hypergraph 𝐻 is called simple if it contains no repeated hyperedges. Moreover, if
every hyperedge in 𝐸 contains exactly 𝑟 vertices, the hypergraph is called an 𝑟-uniform hypergraph.

Definition 3.64. [283] The degree sequence of a hypergraph 𝐻 is the vector of degrees of all vertices,
represented as:

𝑑 (𝐻) = (𝑑 (𝑣1), 𝑑 (𝑣2), . . . , 𝑑 (𝑣𝑛)).

Given an 𝑛-dimensional integer vector 𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝑛), it is said to be a hypergraphic sequence if there
exists a simple hypergraph 𝐻 with 𝑑 (𝐻) = 𝑑.

Definition 3.65 (Degree of a Supervertex). In an 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸), the degree of a supervertex
𝑣 ∈ 𝑉 , denoted 𝑑 (𝑣), is defined as the number of superedges in 𝐸 that contain 𝑣:

𝑑 (𝑣) = |{𝑒 ∈ 𝐸 | 𝑣 ∈ 𝑒}|.

Definition 3.66 (𝑛-SuperHypergraphic Sequence). Given a finite set 𝑉 of supervertices, an 𝑚-tuple of non-
negative integers 𝑑 = (𝑑 (𝑣1), 𝑑 (𝑣2), . . . , 𝑑 (𝑣𝑚)) is called an 𝑛-SuperHypergraphic Sequence if there exists
an 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸) such that for each supervertex 𝑣𝑖 ∈ 𝑉 , the degree 𝑑 (𝑣𝑖) equals the given
degree in the sequence, i.e.,

𝑑 (𝑣𝑖) = |{𝑒 ∈ 𝐸 | 𝑣𝑖 ∈ 𝑒}| for 𝑖 = 1, 2, . . . , 𝑚.

Theorem 3.67. An 𝑛-SuperHypergraphic Sequence generalizes the concept of a hypergraphic sequence.
Specifically, when 𝑛 = 0, the 𝑛-SuperHypergraphic Sequence reduces to a hypergraphic sequence.
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Proof. Case 1 (𝑛 = 0): When 𝑛 = 0, the 𝑛-th iterated power set is P0 (𝑉0) = 𝑉0. Thus, the supervertices are
the base vertices 𝑉 = 𝑉0, and the superedges are subsets of 𝑉0, i.e., 𝐸 ⊆ P(𝑉0).

An 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸) becomes a standard hypergraph in this case. The degree of each vertex
𝑣 ∈ 𝑉 is calculated as:

𝑑 (𝑣) = |{𝑒 ∈ 𝐸 | 𝑣 ∈ 𝑒}|,
which matches the definition of vertex degrees in hypergraphs.

Therefore, the degree sequence 𝑑 = (𝑑 (𝑣1), 𝑑 (𝑣2), . . . , 𝑑 (𝑣𝑚)) is a hypergraphic sequence.

Case 2 (𝑛 > 0): For 𝑛 > 0, the supervertices 𝑉 ⊆ P𝑛 (𝑉0) include higher-order elements from the iterated
power set. The degrees of supervertices are defined similarly:

𝑑 (𝑣) = |{𝑒 ∈ 𝐸 | 𝑣 ∈ 𝑒}| for all 𝑣 ∈ 𝑉.

This extends the concept of a degree sequence to 𝑛-SuperHyperGraphs, capturing the degrees of supervertices
at various hierarchical levels.

Since the definition of an 𝑛-SuperHypergraphic Sequence encompasses the standard hypergraphic sequence
when 𝑛 = 0, and generalizes it for 𝑛 > 0, it follows that the 𝑛-SuperHypergraphic Sequence is a generalization
of the hypergraphic sequence. □

3.10 Query n-superhypergraph

A Query Hypergraph is a mathematical structure utilized in information retrieval to represent relationships
between query concepts [29, 322, 370]. This concept is extended to n-SuperHyperGraphs, resulting in the
definition of a Query n-SuperHyperGraph. The related definitions and theorems are provided below.

Definition 3.68. [29] A Query Hypergraph 𝐻 = (𝑉, 𝐸, 𝜑) is defined as follows:

• Vertices (𝑉): The vertex set 𝑉 = 𝑄 ∪ {𝐷}, where:

– 𝑄 is the set of query concepts, which may include terms, phrases, or other linguistic structures
derived from a query 𝑄.

– 𝐷 represents a document in the retrieval corpus.

• Hyperedges (𝐸): A hyperedge 𝑒 ∈ 𝐸 connects a subset of query concepts 𝑘 ⊆ 𝑄 with the document 𝐷.
Formally:

𝑒 = (𝑘, 𝐷), 𝑘 ⊆ 𝑄.

• Weights (𝜑): Each hyperedge 𝑒 = (𝑘, 𝐷) is associated with a weight 𝜑(𝑒), which represents the relevance
or importance of the relationship between the query concept set 𝑘 and the document 𝐷.

Definition 3.69 (Query 𝑛-SuperHyperGraph). Let 𝑉0 be the base set of query concepts derived from a query
𝑄, and let 𝐷 represent a document in the retrieval corpus. Define the 𝑛-th iterated power set of 𝑉0 recursively
as:

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
.

The Query 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸, 𝜑) is defined as follows:

• Vertices (𝑉): The vertex set 𝑉 consists of supervertices, which are elements of the 𝑛-th iterated power
set of the base set 𝑉0 augmented with the document 𝐷:

𝑉 = P𝑛 (𝑉0) ∪ {𝐷}.

• Superedges (𝐸): The superedge set 𝐸 consists of subsets of 𝑉 , connecting supervertices at various
hierarchical levels. Each superedge 𝑒 ∈ 𝐸 is defined as:

𝑒 = (𝑘, 𝐷), 𝑘 ∈ P𝑛 (𝑉0).
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• Weights (𝜑): Each superedge 𝑒 = (𝑘, 𝐷) is associated with a weight 𝜑(𝑒), representing the relevance or
importance of the relationship between the supervertex set 𝑘 and the document 𝐷.

Theorem 3.70. The Query 𝑛-SuperHyperGraph generalizes the Query Hypergraph.

Proof. When 𝑛 = 0, the 𝑛-th iterated power set reduces to P0 (𝑉0) = 𝑉0, the base set of query concepts. In this
case:

• The vertices 𝑉 become 𝑉 = 𝑉0 ∪ {𝐷}, matching the vertex set in the Query Hypergraph.

• The superedges 𝐸 are defined as 𝑒 = (𝑘, 𝐷) with 𝑘 ∈ P0 (𝑉0) = 𝑉0, so 𝑘 ⊆ 𝑉0. This matches
the hyperedges in the Query Hypergraph, which connect subsets of query concepts 𝑘 ⊆ 𝑄 with the
document 𝐷.

• The weights 𝜑(𝑒) remain unchanged.

Therefore, the Query 𝑛-SuperHyperGraph reduces to the Query Hypergraph when 𝑛 = 0. For 𝑛 > 0, it extends
the structure to include higher-level supervertices and superedges, thus generalizing the Query Hypergraph. □

Theorem 3.71. A Query 𝑛-SuperHyperGraph possesses the structure of an 𝑛-SuperHyperGraph.

Proof. By definition, an 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸) consists of:

• Vertices (𝑉): Elements of the 𝑛-th iterated power set P𝑛 (𝑉0), where 𝑉0 is the base set.

• Edges (𝐸): Subsets of P𝑛 (𝑉0), connecting supervertices at different hierarchical levels.

For a Query 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸, 𝜑), we have:

• Vertices (𝑉): Defined as P𝑛 (𝑉0) ∪ {𝐷}, where 𝑉0 is the set of query concepts and 𝐷 is the document.
The additional element 𝐷 does not alter the hierarchical structure of P𝑛 (𝑉0), as it can be treated as a
singleton set {𝐷} ⊆ P𝑛 (𝑉0).

• Superedges (𝐸): Defined as 𝑒 = (𝑘, 𝐷) for 𝑘 ∈ P𝑛 (𝑉0). These superedges are subsets of 𝑉 and connect
elements within P𝑛 (𝑉0) ∪ {𝐷}, preserving the hierarchical structure of P𝑛 (𝑉0).

The weights 𝜑(𝑒) do not affect the structural composition of the vertices and superedges, as they are additional
metadata associated with each superedge.

Thus, the Query 𝑛-SuperHyperGraph𝐻 = (𝑉, 𝐸, 𝜑) satisfies the structural requirements of an 𝑛-SuperHyperGraph
𝐻′ = (𝑉 ′, 𝐸 ′), with:

𝑉 ′ = P𝑛 (𝑉0), 𝐸 ′ = P𝑛 (𝑉0).

Therefore, a Query 𝑛-SuperHyperGraph possesses the structure of an 𝑛-SuperHyperGraph. □

22



3.11 Superhypergraph Energy Functions

Hypergraph Energy Functions are mathematical tools designed to quantify relationships in hypergraphs by
optimizing node and edge embeddings for downstream tasks [61, 341]. This concept is extended to superhy-
pergraphs, and the corresponding definitions are provided below.

Definition 3.72 (Hyperedge Regularization). (cf. [338, 341]) Hyperedge Regularization is a technique that
enforces similarity or consistency among nodes within the same hyperedge in a hypergraph. Mathematically,
for a hypergraph 𝐻 = (𝑉, 𝐸), the regularization term for a hyperedge 𝑒 ∈ 𝐸 is often defined as:

𝑅(𝑒) =
∑︁
𝑖, 𝑗∈𝑒

∥y𝑖 − y 𝑗 ∥2,

where y𝑖 and y 𝑗 are embeddings of nodes 𝑖 and 𝑗 , and ∥ · ∥ denotes the norm. This term penalizes differences
in embeddings among nodes within the hyperedge 𝑒, promoting structural coherence.

Definition 3.73 (Hypergraph Energy Function). [341] Let 𝐻 = (𝑉, 𝐸) be a hypergraph, where 𝑉 is the set of
nodes, 𝐸 is the set of hyperedges, and 𝐵 ∈ R |𝑉 |× |𝐸 | is the binary incidence matrix such that 𝐵𝑖𝑘 = 1 if node
𝑣𝑖 ∈ 𝑒𝑘 , and 𝐵𝑖𝑘 = 0 otherwise. Define:

• 𝑌 ∈ R |𝑉 |×𝑑: Node embeddings where each row 𝑦𝑖 represents the embedding of node 𝑣𝑖 .

• 𝑍 ∈ R |𝐸 |×𝑑: Hyperedge embeddings where each row 𝑧𝑘 represents the embedding of hyperedge 𝑒𝑘 .

• 𝑔1 (𝑌 ): A node regularization term ensuring smoothness or specific properties of 𝑌 .

• 𝑔2 (𝑍): A hyperedge regularization term ensuring smoothness or specific properties of 𝑍 .

• 𝑔3 (𝑌, 𝑍): A structural term that encodes the relationships between nodes and hyperedges in the hyper-
graph.

The hypergraph energy function is defined as:

L(𝑌, 𝑍) = 𝑔1 (𝑌 ) + 𝑔2 (𝑍) + 𝑔3 (𝑌, 𝑍),

where 𝑔3 (𝑌, 𝑍) can take the form:

𝑔3 (𝑌, 𝑍) = 𝜆0
∑︁
𝑒𝑘 ∈𝐸

∑︁
𝑣𝑖 ,𝑣 𝑗 ∈𝑒𝑘

∥𝑦𝑖 − 𝑦 𝑗 ∥2 + 𝜆1
∑︁
𝑒𝑘 ∈𝐸

∑︁
𝑣𝑖∈𝑒𝑘

∥𝑦𝑖 − 𝑧𝑘 ∥2.

Here, 𝜆0 and 𝜆1 are weighting factors that balance the contributions of the terms.

Definition 3.74 (n-SuperHypergraph Energy Function). Let 𝐻 = (𝑉, 𝐸) be an 𝑛-SuperHyperGraph, where 𝑉
is the set of supervertices and 𝐸 is the set of superedges. Let 𝑑 be the dimensionality of the embeddings.

• For each supervertex 𝑣 ∈ 𝑉 , let 𝑦𝑣 ∈ R𝑑 be its embedding.

• For each superedge 𝑒 ∈ 𝐸 , let 𝑧𝑒 ∈ R𝑑 be its embedding.

• Let 𝑥𝑣 ∈ R𝑑𝑣 be the feature vector associated with supervertex 𝑣.

• Let 𝑢𝑒 ∈ R𝑑𝑒 be the feature vector associated with superedge 𝑒.

• Let 𝑓𝑣 (·;𝑊𝑣) and 𝑓𝑒 (·;𝑊𝑒) be learnable functions (e.g., neural networks) parameterized by weights𝑊𝑣

and𝑊𝑒, mapping features to embeddings in R𝑑 .

The n-SuperHypergraph Energy Function is defined as:

L(𝑌, 𝑍) =
∑︁
𝑣∈𝑉

∥𝑦𝑣 − 𝑓𝑣 (𝑥𝑣;𝑊𝑣)∥2+
∑︁
𝑒∈𝐸

∥𝑧𝑒 − 𝑓𝑒 (𝑢𝑒;𝑊𝑒)∥2+𝜆0
∑︁
𝑒∈𝐸

∑︁
𝑣,𝑤∈𝑒

∥𝑦𝑣 − 𝑦𝑤 ∥2+𝜆1
∑︁
𝑒∈𝐸

∑︁
𝑣∈𝑒

∥𝑦𝑣 − 𝑧𝑒∥2 ,

where 𝜆0 and 𝜆1 are non-negative hyperparameters controlling the importance of each term.
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Theorem 3.75. The n-SuperHypergraph Energy Function generalizes the hypergraph energy function. Specif-
ically, when 𝑛 = 0, the n-SuperHypergraph Energy Function reduces to the standard hypergraph energy
function.

Proof. When 𝑛 = 0, the 𝑛-th iterated power set reduces to P0 (𝑉0) = 𝑉0. Thus, the supervertices and superedges
become elements and subsets of the base vertex set 𝑉0, respectively.

In this case:

• The set of supervertices 𝑉 ⊆ 𝑉0 is simply the set of vertices in the hypergraph.

• The set of superedges 𝐸 ⊆ P(𝑉0) is the set of hyperedges in the hypergraph.

• The embeddings 𝑦𝑣 for 𝑣 ∈ 𝑉 correspond to the node embeddings in the hypergraph.

• The embeddings 𝑧𝑒 for 𝑒 ∈ 𝐸 correspond to the hyperedge embeddings in the hypergraph.

The incidence matrix 𝐵 ∈ R |𝑉 |× |𝐸 | is defined as:

𝐵𝑣,𝑒 =

{
1, if 𝑣 ∈ 𝑒,
0, otherwise.

The energy function simplifies to:

L(𝑌, 𝑍) =
∑︁
𝑣∈𝑉

∥𝑦𝑣 − 𝑓𝑣 (𝑥𝑣;𝑊𝑣)∥2+
∑︁
𝑒∈𝐸

∥𝑧𝑒 − 𝑓𝑒 (𝑢𝑒;𝑊𝑒)∥2+𝜆0
∑︁
𝑒∈𝐸

∑︁
𝑣,𝑤∈𝑒

∥𝑦𝑣 − 𝑦𝑤 ∥2+𝜆1
∑︁
𝑒∈𝐸

∑︁
𝑣∈𝑒

∥𝑦𝑣 − 𝑧𝑒∥2 ,

which is exactly the standard hypergraph energy function.

Therefore, the n-SuperHypergraph Energy Function generalizes the hypergraph energy function. □

3.12 Transversal 𝑛-SuperHypergraph

A transversal graph is a type of graph where every edge intersects all subsets of edges, ensuring that no subset
remains disjoint from the edge set [31, 67, 147, 240].

Similarly, a transversal hypergraph is defined as a hypergraph where every hyperedge represents a minimal
hitting set that intersects all hyperedges of the original hypergraph [92, 93, 146, 148, 191, 323, 333].

This concept is extended to the domain of 𝑛-SuperHyperGraphs. The related definitions and theorems are
provided below.

Definition 3.76 (Transversal). (cf. [92, 93, 148, 191, 323]) Let 𝐻 = (𝑉, 𝐸) be a hypergraph. A set 𝑇 ⊆ 𝑉 is
called a transversal (or hitting set) of 𝐻 if:

𝑇 ∩ 𝐸𝑖 ≠ ∅, ∀𝐸𝑖 ∈ 𝐸.

A transversal 𝑇 is minimal if no proper subset 𝑇 ′ ⊂ 𝑇 is a transversal of 𝐻.

Definition 3.77 (Transversal Hypergraph). (cf. [92, 93, 148, 191, 323]) Let 𝐻 = (𝑉, 𝐸) be a hypergraph. The
transversal hypergraph of 𝐻, denoted Tr(𝐻), is defined as the hypergraph:

Tr(𝐻) = (𝑉,T),

where T is the family of all minimal transversals of 𝐻.

Definition 3.78 (Base Set). For any element 𝑥 ∈ 𝑉 ∪ 𝐸 of an 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸), the base set of
𝑥, denoted Base(𝑥), is defined recursively as:
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• If 𝑥 ∈ 𝑉0, then Base(𝑥) = {𝑥}.

• If 𝑥 is a set, i.e., 𝑥 ∈ P𝑘 (𝑉0) for 𝑘 ≥ 1, then:

Base(𝑥) =
⋃
𝑦∈𝑥

Base(𝑦).

Definition 3.79 (Incidence in 𝑛-SuperHyperGraph). In an 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸), a supervertex
𝑣 ∈ 𝑉 and a superedge 𝑒 ∈ 𝐸 are said to be incident if:

Base(𝑣) ∩ Base(𝑒) ≠ ∅.

Definition 3.80 (Transversal in 𝑛-SuperHyperGraph). A set 𝑇 ⊆ 𝑉 is called a transversal (or hitting set) of an
𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸) if for every superedge 𝑒 ∈ 𝐸 , there exists a supervertex 𝑣 ∈ 𝑇 such that 𝑣 is
incident to 𝑒; that is:

Base(𝑣) ∩ Base(𝑒) ≠ ∅.

A transversal 𝑇 is minimal if no proper subset 𝑇 ′ ⊂ 𝑇 is a transversal of 𝐻.

Definition 3.81 (Transversal 𝑛-SuperHyperGraph). Given an 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸), the Transversal
𝑛-SuperHyperGraph of 𝐻, denoted Tr(𝐻), is defined as:

Tr(𝐻) = (𝑉,T),

where T is the set of all minimal transversals of 𝐻.

Theorem 3.82. The Transversal 𝑛-SuperHyperGraph generalizes the Transversal Hypergraph. Specifically,
when 𝑛 = 0, the Transversal 𝑛-SuperHyperGraph reduces to the classical Transversal Hypergraph.

Proof. When 𝑛 = 0, the 𝑛-SuperHyperGraph 𝐻 = (𝑉, 𝐸) becomes a standard hypergraph:

• The 0-th iterated power set is P0 (𝑉0) = 𝑉0.

• The supervertices 𝑉 ⊆ 𝑉0 are simply the vertices of the hypergraph.

• The superedges 𝐸 ⊆ P0 (𝑉0) = 𝑉0 become subsets of 𝑉0, i.e., hyperedges.

The base set of any vertex 𝑣 ∈ 𝑉 is:

Base(𝑣) = {𝑣}, since 𝑣 ∈ 𝑉0.

The base set of any edge 𝑒 ∈ 𝐸 is:
Base(𝑒) =

⋃
𝑢∈𝑒

Base(𝑢) = 𝑒.

The incidence relation simplifies to:

Base(𝑣) ∩ Base(𝑒) = {𝑣} ∩ 𝑒 ≠ ∅ ⇐⇒ 𝑣 ∈ 𝑒.

Therefore, a transversal 𝑇 ⊆ 𝑉 satisfies:

𝑇 ∩ 𝑒 ≠ ∅, ∀𝑒 ∈ 𝐸,

which is the classical definition of a transversal (hitting set) in a hypergraph.

The minimal transversals in 𝐻 correspond to the minimal hitting sets in the hypergraph. Consequently, the
Transversal 𝑛-SuperHyperGraph Tr(𝐻) = (𝑉,T) reduces to the classical Transversal Hypergraph, where T is
the set of all minimal transversals.

Thus, the Transversal 𝑛-SuperHyperGraph generalizes the Transversal Hypergraph. □

Theorem 3.83. A Transversal 𝑛-SuperHyperGraph possesses the structural properties of an 𝑛-SuperHyperGraph.
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Proof. Let 𝐻 = (𝑉, 𝐸) be an 𝑛-SuperHyperGraph, where 𝑉 ⊆ P𝑛 (𝑉0) is the set of 𝑛-level supervertices, and
𝐸 ⊆ P𝑛 (𝑉0) is the set of 𝑛-level superedges.

By definition, the Transversal 𝑛-SuperHyperGraph Tr(𝐻) = (𝑉,T) is formed by computing the family T ,
which consists of all minimal transversals of 𝐻.

The vertices 𝑉 of Tr(𝐻) are identical to those of the original 𝑛-SuperHyperGraph 𝐻, and thus 𝑉 ⊆ P𝑛 (𝑉0).

Each edge 𝑇 ∈ T is a minimal transversal of 𝐻. A transversal 𝑇 ⊆ 𝑉 ensures that 𝑇 ∩ 𝑒 ≠ ∅ for every 𝑒 ∈ 𝐸 .
Since 𝑇 ⊆ 𝑉 and 𝑉 ⊆ P𝑛 (𝑉0), we have 𝑇 ⊆ P𝑛 (𝑉0). Hence, T ⊆ P𝑛 (𝑉0).

The set T is a subset of the 𝑛-th iterated power set P𝑛 (𝑉0), which aligns with the edge definition of an
𝑛-SuperHyperGraph. Therefore, Tr(𝐻) adheres to the structural constraints of an 𝑛-SuperHyperGraph.

Thus, Tr(𝐻) satisfies the vertex and edge definitions of an 𝑛-SuperHyperGraph, confirming that it retains the
structural properties of 𝑛-SuperHyperGraphs. □

3.13 n-SuperHypernetwork

A hypernetwork is a related concept to hypergraphs, employing similar principles to represent relationships in
networks [14, 16, 163, 264]. Extensive research has been conducted in this area. This concept is extended to
n-SuperHypernetworks, which provide a more general and hierarchical framework. Relevant definitions and
theorems are detailed below.

Definition 3.84 (Hypernetwork). [14,16,163] A hypernetwork is defined as a hypergraph𝐺 = (𝑉, 𝐸) equipped
with a node type mapping function 𝜑 : 𝑉 → 𝐴, where:

• 𝑉 is the set of nodes,

• 𝐸 is the set of hyperedges, where each 𝑒 ∈ 𝐸 is a non-empty subset of 𝑉 ,

• 𝐴 is the set of node types,

• 𝜑(𝑣) ∈ 𝐴 specifies the type of each node 𝑣 ∈ 𝑉 .

A hyperedge 𝑒 ∈ 𝐸 represents a tuplewise relationship among the nodes in 𝑒. The following additional
properties can be used to classify hypernetworks:

1. Homogeneous vs. Heterogeneous Hypernetwork:

• The hypernetwork is homogeneous if |𝐴| = 1, i.e., all nodes are of the same type.
• The hypernetwork is heterogeneous if |𝐴| > 1, i.e., nodes can belong to multiple types [162, 339,

369].

2. Uniformity:

• The hypernetwork is 𝑘-uniform if every hyperedge 𝑒 ∈ 𝐸 satisfies |𝑒 | = 𝑘 , i.e., all hyperedges
contain exactly 𝑘 nodes.

The neighbors of a node 𝑣 ∈ 𝑉 are defined as:

𝑁𝐺 (𝑣) = {𝑢 ∈ 𝑉 | ∃𝑒 ∈ 𝐸 such that 𝑣 ∈ 𝑒 and 𝑢 ∈ 𝑒}.

Definition 3.85 (Hypernetwork Representation). [14, 16, 163] Given a hypernetwork 𝐺 = (𝑉, 𝐸), the goal of
hypernetwork representation learning is to learn:

1. A node embedding function 𝑓 : 𝑉 → R𝑑 , which maps each node 𝑣 ∈ 𝑉 to a low-dimensional vector
𝑓 (𝑣) ∈ R𝑑 (cf. [59, 297]),
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2. A tuplewise similarity function 𝑠tuple : 𝑇 → [0, 1], where 𝑇 is the set of possible tuples of nodes in 𝑉 , to
measure the relationships among nodes in tuples (cf. [330, 381]).

The representation 𝑓 (𝑣) should preserve both global and local structural information of the hypernetwork,
including:

• Pairwise relationships, reflecting the similarity between two nodes(cf. [66, 350]),

• Tuplewise relationships, capturing the interactions among more than two nodes within a hyperedge.

Definition 3.86 (𝑛-SuperHypernetwork). Let 𝑉0 be a finite set of base nodes. The 𝑛-th iterated power set of 𝑉0
is defined recursively as:

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
,

where P(𝐴) denotes the power set of set 𝐴.

An 𝑛-SuperHypernetwork is an ordered triple 𝐻 = (𝑉, 𝐸, 𝜑), where:

• 𝑉 ⊆ P𝑛 (𝑉0) is the set of supernodes.

• 𝐸 ⊆ P𝑛 (𝑉0) is the set of superedges.

• 𝜑 : 𝑉 → 𝐴 is a node type mapping function, with 𝐴 being the set of node types.

Each supernode 𝑣 ∈ 𝑉 can be:

• A single node (𝑣 ∈ 𝑉0),

• A subset of 𝑉0 (𝑣 ⊆ 𝑉0),

• A subset of subsets of 𝑉0, up to 𝑛 levels (𝑣 ∈ P𝑛 (𝑉0)).

Similarly, each superedge 𝑒 ∈ 𝐸 connects supernodes, potentially at different hierarchical levels up to 𝑛.

Definition 3.87 (𝑛-SuperHypernetwork Representation). Given an 𝑛-SuperHypernetwork 𝐻 = (𝑉, 𝐸, 𝜑), the
goal of 𝑛-SuperHypernetwork representation learning is to learn:

1. A node embedding function 𝑓 : 𝑉 → R𝑑 , which maps each supernode 𝑣 ∈ 𝑉 to a low-dimensional vector
𝑓 (𝑣) ∈ R𝑑 .

2. A tuplewise similarity function 𝑠tuple : 𝑇 → [0, 1], where 𝑇 is the set of possible tuples (e.g., superedges)
in 𝑉 , to measure the relationships among nodes in tuples.

The representations aim to preserve both global and local structural information of the 𝑛-SuperHypernetwork,
including:

• Pairwise relationships, reflecting similarities between supernodes.

• Tuplewise relationships, capturing interactions among multiple supernodes within superedges.

Theorem 3.88. When 𝑛 = 0, the 𝑛-SuperHypernetwork reduces to a hypernetwork, and the 𝑛-SuperHypernetwork
representation reduces to the hypernetwork representation. Therefore, the definitions of 𝑛-SuperHypernetwork
and its representation generalize those of hypergraphs and hypernetworks.
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Proof. Consider 𝑛 = 0. Then, the 0-th iterated power set is:

P0 (𝑉0) = 𝑉0.

Thus, the set of supernodes and superedges become:

𝑉 ⊆ P0 (𝑉0) = 𝑉0, 𝐸 ⊆ P0 (𝑉0) = 𝑉0.

This means:

• The supernodes 𝑉 are simply elements of 𝑉0, i.e., the base nodes themselves.

• The superedges 𝐸 are subsets of𝑉0. Since 𝐸 ⊆ 𝑉0, each edge 𝑒 ∈ 𝐸 is a node in𝑉0, which does not align
with the standard hyperedge definition. This suggests that we should consider 𝑛 = 1 for a meaningful
hyperedge structure.

Now, consider 𝑛 = 1:
P1 (𝑉0) = P(𝑉0),

the standard power set of 𝑉0.

Then:
𝑉 ⊆ P1 (𝑉0) = P(𝑉0), 𝐸 ⊆ P1 (𝑉0) = P(𝑉0).

In this case:

• The supernodes 𝑉 are subsets of 𝑉0, i.e., sets of nodes.

• The superedges 𝐸 are subsets of 𝑉0, i.e., hyperedges in the classical sense.

If we restrict 𝑉 = 𝑉0, then the supernodes are the base nodes themselves, and the superedges 𝐸 ⊆ P(𝑉0) are
standard hyperedges connecting nodes in 𝑉0.

Thus, the 𝑛-SuperHypernetwork 𝐻 = (𝑉, 𝐸, 𝜑) with 𝑛 = 1 reduces to a traditional hypernetwork, where:

• 𝑉 ⊆ 𝑉0 is the set of nodes.

• 𝐸 ⊆ P(𝑉0) is the set of hyperedges.

• 𝜑 : 𝑉 → 𝐴 maps nodes to their types.

Regarding the representation, the 𝑛-SuperHypernetwork representation learning aims to learn embeddings
𝑓 : 𝑉 → R𝑑 and a tuplewise similarity function 𝑠tuple. When 𝑛 = 1, this reduces to learning node embeddings
and similarity functions for hypernetworks, as commonly done in hypernetwork representation learning.

Therefore, the definitions of 𝑛-SuperHypernetwork and 𝑛-SuperHypernetwork representation generalize the
classical definitions of hypergraphs and hypernetworks. □

Question 3.89. Can the relationships between the aforementioned network concepts and Graph Neural Net-
works [156–158, 288, 294, 351, 352, 369, 377, 378], Hypergraph Neural Networks [188, 210, 212, 214, 219,
341, 349, 357, 379], and Superhypergraph Neural Networks [118] be formalized into theorems and proven?
Additionally, is it possible to combine them to develop some form of practical applications?

3.14 Introduction to Other Known Superhypergraph Classes

Several other classes of superhypergraphs are already known. To facilitate the future development of research
in superhypergraphs, we present the definitions of these classes below for reference. These can be seen as
extensions of analogous concepts in hypergraphs.
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3.14.1 Directed Superhypergraph and Bidirected Superhypergraph

A Directed Graph is a graph in which orientations are assigned to edges in a standard graph [5,130]. Similarly,
in the context of hypergraphs, Directed Hypergraphs are well-studied structures [123]. A Directed Superhy-
pergraph is an extension of this concept, assigning orientations to the edges of a Superhypergraph. The formal
definition is provided below [120].

Definition 3.90 (Directed 𝑛-SuperHyperGraph). [120] A Directed 𝑛-SuperHyperGraph is defined as a tuple:

𝐻 = (𝑉, 𝐸),

where:

• 𝑉 ⊆ P𝑛 (𝑉0) is the set of supervertices, where 𝑉0 is a finite set of base vertices and P𝑛 (𝑉0) represents
the 𝑛-th iterated power set of 𝑉0.

• 𝐸 ⊆ {(𝑇, 𝐻) | 𝑇, 𝐻 ⊆ 𝑉} is the set of directed superhyperedges, where each 𝑒 = (𝑇, 𝐻) satisfies:

– 𝑇 ⊆ 𝑉 : the tail set, representing source supervertices.
– 𝐻 ⊆ 𝑉 : the head set, representing target supervertices.

A directed superhyperedge 𝑒 = (𝑇, 𝐻) generalizes the concept of edges in directed graphs and hypergraphs,
allowing connections between multiple source and target supervertices.

Question 3.91. Can the superhypergraph classes introduced in this paper be extended to Directed Superhy-
pergraphs? Furthermore, what potential mathematical structures and applications could arise from such an
extension?

A mixed graph combines undirected and directed edges, enabling both two-way and one-way connections
between vertices [108, 282]. This framework has been further generalized to mixed hypergraphs [326], which
adapt the concept to hypergraphs, with their mathematical characteristics studied extensively.

Definition 3.92 (Mixed 𝑛-SuperHyperGraph). [120] A Mixed 𝑛-SuperHyperGraph is defined as a tuple:

𝐻 = (𝑉, 𝑆, 𝐸, 𝐴),

where:

• 𝑉 ⊆ P𝑛 (𝑉0) is the set of supervertices.

• 𝑆 ⊆ P𝑛 (𝑉0) is the set of subsets of supervertices, called supervertex sets.

• 𝐸 ⊆ P(𝑆) is the set of undirected superedges.

• 𝐴 ⊆ {(𝑍, 𝑧) | 𝑍 ⊆ 𝑆, 𝑧 ∈ 𝑆, 𝑍∩{𝑧} = ∅} is the set of directed superedges, where each directed superedge
𝑎 = (𝑍, 𝑧) consists of:

– 𝑍: the tail set, a non-empty subset of supervertex sets.
– 𝑧: the head, a supervertex set.

Mixed superhypergraphs combine undirected and directed edges, allowing flexible representation of both
directional and non-directional relationships.

The idea of a bidirected graph [15, 91, 130] has gained attention in recent years. To expand on this, we outline
the definitions of bidirected hypergraphs and bidirected superhypergraphs, which extend the principles of
bidirected graphs.
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Definition 3.93 (Bidirected 𝑛-SuperHyperGraph). [120] A Bidirected 𝑛-SuperHyperGraph is defined as a
triple:

𝐻 = (𝑉, 𝐸, 𝜏),

where:

• 𝑉 ⊆ P𝑛 (𝑉0) is the set of supervertices.

• 𝐸 ⊆ P(𝑉) is the set of superedges.

• 𝜏 : 𝑉×𝐸 → {−1, 0, 1} is the bidirection function, assigning orientations to the incidence of supervertices
and superedges:

– 𝜏(𝑣, 𝑒) = 1: Superedge 𝑒 is directed toward supervertex 𝑣.
– 𝜏(𝑣, 𝑒) = −1: Superedge 𝑒 is directed away from supervertex 𝑣.
– 𝜏(𝑣, 𝑒) = 0: Supervertex 𝑣 is not incident to superedge 𝑒.

This structure allows independent orientations for each supervertex with respect to each incident superedge,
generalizing the concept of bidirectionality in graphs.

3.14.2 Multi-Superhypergraph and Pseudo-Superhypergraph

A notable type of graph is the multigraph, characterized by its allowance for multiple edges (often called
parallel edges) connecting the same pair of vertices [62, 102, 204, 234]. This concept is further extended to
hypergraphs, resulting in the multi-hypergraph, which permits the existence of parallel hyperedges. Both
multigraphs and multi-hypergraphs are widely utilized across various fields, including the study of neural
networks [32,207,213,259,321,345]. This idea has been extended to superhypergraphs, leading to the concept
of the multi-superhypergraph, which was defined in [120]. The formal definition is provided below.

Definition 3.94 (Multi-𝑛-SuperHyperGraph). [120] A Multi-𝑛-SuperHyperGraph is defined as a triple:

𝐻 = (𝑉, 𝑆, 𝐸),

where:

• 𝑉 ⊆ P𝑛 (𝑉0) is a finite set of supervertices, where𝑉0 is a finite set of base vertices and P𝑛 (𝑉0) represents
the 𝑛-th iterated power set of 𝑉0.

• 𝑆 is a multiset of non-empty subsets of 𝑉 , called multi-supervertices. Each multi-supervertex 𝑠 ∈ 𝑆

satisfies 𝑠 ⊆ 𝑉 , and multiple occurrences of the same subset 𝑠 are permitted in 𝑆.

• 𝐸 is a multiset of non-empty subsets of 𝑆, called multi-superedges. Each multi-superedge 𝑒 ∈ 𝐸 satisfies
𝑒 ⊆ 𝑆, and multiple occurrences of the same subset 𝑒 are permitted in 𝐸 .

This structure extends the 𝑛-SuperHyperGraph by allowing repeated subsets within the sets of supervertices
and superedges, enabling richer modeling of relationships and connections.

A pseudograph is a graph variant that permits both parallel edges and self-loops, where an edge connects a
vertex to itself [24,48,204]. This flexibility allows for the depiction of more intricate relationships and complex
network structures compared to traditional graph models [334,353]. By extending this concept to hypergraphs,
a pseudo-hypergraph is introduced, enabling the representation of even more sophisticated connections and
interactions [18, 51, 211]. Building on these advancements, the notion of a pseudo-superhypergraph, which
generalizes the pseudo-hypergraph to superhypergraphs, has been defined in [120]. The formal definition is
provided below.
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Definition 3.95 (Pseudo-𝑛-SuperHyperGraph). [120] A Pseudo-𝑛-SuperHyperGraph is defined as a triple:

𝐻 = (𝑉, 𝑆, 𝐸),

where:

• 𝑉 ⊆ P𝑛 (𝑉0) is a finite set of supervertices, where𝑉0 is a finite set of base vertices and P𝑛 (𝑉0) represents
the 𝑛-th iterated power set of 𝑉0.

• 𝑆 is a multiset of elements from 𝑉 , called pseudo-supervertices. Each pseudo-supervertex 𝑠 ∈ 𝑆 is a
multiset of supervertices from 𝑉 , allowing:

– Repetition of the same supervertex within a pseudo-supervertex 𝑠.
– Repetition of the same pseudo-supervertex across 𝑆.

• 𝐸 is a multiset of elements from 𝑆, called pseudo-superedges. Each pseudo-superedge 𝑒 ∈ 𝐸 is a multiset
of pseudo-supervertices from 𝑆, allowing:

– Repetition of the same pseudo-supervertex within a pseudo-superedge 𝑒.
– Repetition of the same pseudo-superedge across 𝐸 .

This structure generalizes the 𝑛-SuperHyperGraph by incorporating multisets, enabling repeated elements at
multiple levels of the hierarchy.

3.14.3 Dynamic Superhypergraph

In fields such as Neural Networks, dynamic graph concepts like Dynamic Graphs [26,27,192,340] and Dynamic
Hypergraphs [189,332,356,375] are well-known. Extending these concepts to superhypergraphs, the Dynamic
Superhypergraph has also been introduced [118]. The definition is presented below.

Definition 3.96. [118] A Dynamic SuperHypergraph is a sequence of 𝑛-SuperHyperGraphs {𝐻 (𝑙) = (𝑉 (𝑙) , 𝐸 (𝑙) )}𝐿
𝑙=0,

where each layer 𝑙 represents a SuperHyperGraph at a specific time or iteration, and:

• 𝑉 (𝑙) ⊆ P𝑛 (𝑉0) is the set of supervertices at layer 𝑙, where 𝑉0 is the base set of vertices, and P𝑛 (𝑉0) is
the 𝑛-th iterated power set of 𝑉0.

• 𝐸 (𝑙) ⊆ P𝑛 (𝑉0) is the set of superedges at layer 𝑙.

The evolution of the SuperHyperGraph from layer 𝑙 to 𝑙 + 1 may depend on the features or embeddings of the
supervertices at layer 𝑙.

Question 3.97. Inspired by the concept of HyperStorylines in Dynamic Hypergraphs, is it possible to explore
the application of SuperHyperStorylines within Dynamic Superhypergraphs?

3.14.4 Quasi superhypergraph

A Quasi-SuperHyperGraph is a graph that is almost a Quasi-SuperHyperGraph [150]. The formal definition is
provided below.

Definition 3.98 (Quasi-𝑛-SuperHyperGraph). [150] A Quasi-𝑛-SuperHyperGraph is a triple:

𝐻 = (𝑉, 𝑆,Φ),

where:

• 𝑉 ⊆ P𝑛 (𝑉0) is a set of supervertices, where𝑉0 is a finite base set, and P𝑛 (𝑉0) represents its 𝑛-th iterated
power set.

• 𝑆 = {𝑆𝑖}𝑘𝑖=1 ⊆ P(𝑉) is a family of subsets of 𝑉 , called super-supervertices.

• Φ = {𝜑𝑖, 𝑗 | 𝑖 ≠ 𝑗} is a set of mappings 𝜑𝑖, 𝑗 : 𝑆𝑖 → 𝑆 𝑗 , called quasi-superedges, representing directed
connections between super-supervertices.
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3.14.5 Superhypertree

A Superhypertree is the tree version of a Superhypergraph. In recent years, the graph width parameter known
as Superhypertree-width has also been defined and studied. The formal definition is provided below [112].

Definition 3.99 (𝑛-SuperHyperTree). [112, 131] An 𝑛-SuperHyperTree is an 𝑛-SuperHyperGraph SHT =

(𝑉, 𝐸) satisfying the following conditions:

1. Host Tree Condition: There exists a tree 𝑇 = (𝑉𝑇 , 𝐸𝑇 ), called the host tree, such that:

• The vertex set of 𝑇 is 𝑉𝑇 = 𝑉 .
• Each superedge 𝑒 ∈ 𝐸 corresponds to a connected subtree of 𝑇 .

2. Acyclicity Condition: The host tree 𝑇 is acyclic, ensuring that SHT does not contain cycles.

3. Connectedness Condition: For any 𝑣, 𝑤 ∈ 𝑉 , there exists a sequence of superedges 𝑒1, 𝑒2, . . . , 𝑒𝑘 ∈ 𝐸
such that:

𝑣 ∈ 𝑒1, 𝑤 ∈ 𝑒𝑘 , and 𝑒𝑖 ∩ 𝑒𝑖+1 ≠ ∅ for 1 ≤ 𝑖 < 𝑘.

3.15 General Plithogenic 𝑛-SuperHyperGraph

The concept of a Plithogenic Graph [106, 108, 187, 298, 299, 306, 325] serves as a generalization of various
types of graphs, including Fuzzy Graphs [33,125,135,190,243,252,277,280,324,344], Neutrosophic Graphs
[11, 12, 57, 111, 113, 165, 186, 284], Vague Graphs [8, 9, 43–45, 271, 272, 286], Intuitionistic Fuzzy Graphs
[6, 173, 331, 376], and Pentapartitioned Neutrosophic Graphs [79, 167, 168, 266]. It is particularly known for
its flexibility in handling uncertainty by allowing a customizable number of parameters to represent various
degrees of vagueness and ambiguity. The General Plithogenic Graph is an extended framework that relaxes the
constraints of a Plithogenic Graph, thereby offering a more versatile graph structure [111, 250]. The General
Plithogenic n-SuperHyperGraph is a further extension, applying the principles of the General Plithogenic Graph
to the domain of SuperHyperGraphs, thus combining the hierarchical structure of n-SuperHyperGraphs with
the flexibility of Plithogenic Graphs [107, 309].

Definition 3.100 (General Plithogenic 𝑛-SuperHyperGraph). [107] Let 𝑉0 be a finite set of base vertices.
Define the 𝑛-th iterated power set of 𝑉0 recursively as:

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
,

where P(𝐴) denotes the power set of the set 𝐴.

A General Plithogenic 𝑛-SuperHyperGraph is an octuple:

𝐻 (𝑛)𝐺𝑃 = (𝑉, 𝐸, 𝐴𝑉 , 𝐴𝐸 ,DAF𝑉 ,DAF𝐸 ,DCF𝑉 ,DCF𝐸),

with the following conditions:

• 𝑉 ⊆ P𝑛 (𝑉0) is the set of supervertices, where each supervertex is an element of the 𝑛-th iterated power
set of 𝑉0. Thus, a supervertex can be:

– A single vertex 𝑣 ∈ 𝑉0,
– A subset of 𝑉0,
– A subset of subsets of 𝑉0, up to 𝑛 levels, i.e., 𝑣 ∈ P𝑛 (𝑉0),
– An indeterminate or fuzzy set (cf. [360]),
– The null set ∅.

• 𝐸 ⊆ P𝑛 (𝑉0) is the set of superedges, where each superedge is also an element of P𝑛 (𝑉0). Each superedge
connects supervertices potentially at multiple hierarchical levels up to 𝑛.

• 𝐴𝑉 is a finite set of attributes associated with the supervertices.
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• 𝐴𝐸 is a finite set of attributes associated with the superedges.

• DAF𝑉 : 𝑉 × 𝐴𝑉 → [0, 1]𝑠 is the Degree of Appurtenance Function for supervertices, assigning to each
pair (𝑣, 𝑎𝑉 ), with 𝑣 ∈ 𝑉 and 𝑎𝑉 ∈ 𝐴𝑉 , a membership degree in [0, 1]𝑠 .

• DAF𝐸 : 𝐸 × 𝐴𝐸 → [0, 1]𝑠 is the Degree of Appurtenance Function for superedges, assigning to each
pair (𝑒, 𝑎𝐸), with 𝑒 ∈ 𝐸 and 𝑎𝐸 ∈ 𝐴𝐸 , a membership degree in [0, 1]𝑠 .

• DCF𝑉 : 𝐴𝑉 × 𝐴𝑉 → [0, 1]𝑡 is the Degree of Contradiction Function for vertex attributes, satisfying:

DCF𝑉 (𝑎, 𝑎) = 0, DCF𝑉 (𝑎, 𝑏) = DCF𝑉 (𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝐴𝑉 .

• DCF𝐸 : 𝐴𝐸 × 𝐴𝐸 → [0, 1]𝑡 is the Degree of Contradiction Function for edge attributes, satisfying:

DCF𝐸 (𝑎, 𝑎) = 0, DCF𝐸 (𝑎, 𝑏) = DCF𝐸 (𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝐴𝐸 .

The degrees of appurtenance assigned by DAF𝑉 and DAF𝐸 may be adjusted or interpreted through the DCF𝑉

and DCF𝐸 functions, reflecting plithogenic synthesis of attributes, where multiple conditions (attributes)
combine, potentially with contradictory influences, to determine the final membership degrees of supervertices
and superedges.

Example 3.101. (cf. [111]) The following examples illustrate specific cases of General Plithogenic 𝑛-
SuperHyperGraphs:

• When 𝑠 = 𝑡 = 1, the 𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Fuzzy 𝑛-SuperHyperGraph.

• When 𝑠 = 2, 𝑡 = 1, the 𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Intuitionistic Fuzzy 𝑛-SuperHyperGraph. Also
the 𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Vague 𝑛-SuperHyperGraph.

• When 𝑠 = 3, 𝑡 = 1, the 𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Neutrosophic 𝑛-SuperHyperGraph.

• When 𝑠 = 4, 𝑡 = 1, the𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Quadripartitioned Neutrosophic 𝑛-SuperHyperGraph
(cf. [169, 269, 295]).

• When 𝑠 = 5, 𝑡 = 1, the𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Pentapartitioned Neutrosophic 𝑛-SuperHyperGraph
(cf. [35, 80, 229]).

• When 𝑠 = 6, 𝑡 = 1, the𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Hexapartitioned Neutrosophic 𝑛-SuperHyperGraph
(cf. [254]).

• When 𝑠 = 7, 𝑡 = 1, the𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Heptapartitioned Neutrosophic 𝑛-SuperHyperGraph
(cf. [56, 246]).

• When 𝑠 = 8, 𝑡 = 1, the𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Octapartitioned Neutrosophic 𝑛-SuperHyperGraph.

• When 𝑠 = 9, 𝑡 = 1, the𝐺𝑃𝐺𝑆𝐻 is called a Plithogenic Nonapartitioned Neutrosophic 𝑛-SuperHyperGraph.

4 Discussion: Generalized n-th Powerset (Power Mathematical structure)

This section briefly introduces the concept of the Generalized n-th Powerset. We believe that this structure can
be applied not only in graph theory and set theory but also in other fields. It is our hope that further studies
will explore its applications and implications. Relevant definitions and theorems are provided below.

Definition 4.1 (Generalized 𝑛-th Powerset). Let 𝐻 be a set or a mathematical structure, and let 𝑃(𝐻) denote
the classical powerset of 𝐻. Define the 𝑛-th generalized powerset of 𝐻, denoted 𝐺𝑛 (𝐻), recursively as:

𝐺1 (𝐻) = 𝐺 (𝐻),

𝐺𝑛+1 (𝐻) = 𝐺
(
𝐺𝑛 (𝐻)

)
for 𝑛 ≥ 1,

where𝐺 (𝐻) is a generalized powerset operator that incorporates additional constraints, properties, or structures.
Examples of 𝐺 (𝐻) include:
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• Labeled subsets: 𝐺 (𝐻) = {(𝐴, ℓ𝐴) | 𝐴 ⊆ 𝐻, ℓ𝐴 ∈ 𝐿}, where 𝐿 is a set of labels.

• Weighted subsets [354]: 𝐺 (𝐻) = {(𝐴, 𝑤𝐴) | 𝐴 ⊆ 𝐻, 𝑤𝐴 ∈ R}, where weights 𝑤𝐴 are assigned to
subsets.

• Soft subsets [242]: Let𝑈 be a universe and 𝐸 a set of parameters. A soft subset over𝑈 is a pair (𝐹, 𝐴),
where 𝐴 ⊆ 𝐸 and 𝐹 : 𝐴 → 𝑃(𝑈). For each 𝑒 ∈ 𝐴, 𝐹 (𝑒) ⊆ 𝑈 represents the set of elements satisfying
parameter 𝑒.

• Graph subsets: 𝐺 (𝐻) = {(𝐺,𝑉𝐺 , 𝐸𝐺) | 𝑉𝐺 ⊆ 𝑉 (𝐻), 𝐸𝐺 ⊆ 𝐸 (𝐻)}, where 𝐺 = (𝑉𝐺 , 𝐸𝐺) is a subgraph
of 𝐻.

• Structured subsets: Subsets with internal structures, such as orderings, multisets, or graph-like properties.

• Filtered subsets: Subsets satisfying a predicate 𝑃(𝐴), such that 𝐺 (𝐻) = {𝐴 ⊆ 𝐻 | 𝑃(𝐴)}.

• Fuzzy subsets [360]: 𝐺 (𝐻) = {(𝐴, 𝜇𝐴) | 𝐴 ⊆ 𝐻, 𝜇𝐴 : 𝐴 → [0, 1]}, where 𝜇𝐴 defines the degree of
membership for each element in 𝐴.

• Rough subsets [255]: Defined in terms of lower and upper approximations, 𝐺 (𝐻) = {(𝐴, 𝐴, 𝐴) | 𝐴 ⊆
𝐻}, where:

𝐴 = {𝑥 ∈ 𝐻 | 𝑃(𝑥) is definitely true}, 𝐴 = {𝑥 ∈ 𝐻 | 𝑃(𝑥) is possibly true}.

• Neutrosophic subsets [302]: 𝐺 (𝐻) = {(𝐴,𝑇𝐴, 𝐼𝐴, 𝐹𝐴) | 𝐴 ⊆ 𝐻,𝑇𝐴, 𝐼𝐴, 𝐹𝐴 : 𝐴→ [0, 1]}, where:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝐴,

and 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degrees of truth, indeterminacy, and falsity, respectively.

• Plithogenic subsets [307, 318]: 𝐺 (𝐻) = {(𝐴, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹) | 𝐴 ⊆ 𝐻}, where:

– 𝑣 is an attribute.
– 𝑃𝑣 is the range of possible values for 𝑣.
– 𝑝𝑑𝑓 : 𝐴 × 𝑃𝑣 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF).
– 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF) satisfying:

𝑝𝐶𝐹 (𝑎, 𝑎) = 0, 𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎) for all 𝑎, 𝑏 ∈ 𝑃𝑣.

Theorem 4.2. The Generalized 𝑛-th Powerset can represent the structure of supervertices and superedges in
an 𝑛-SuperHyperGraph.

Proof. Let 𝐻 = 𝑉0 be the base set of vertices in a graph or hypergraph. The 𝑛-th powerset 𝑃𝑛 (𝐻) recursively
defines the 𝑛-level structure of subsets of 𝑉0, where:

𝑃1 (𝐻) = 𝑃(𝑉0), 𝑃2 (𝐻) = 𝑃(𝑃(𝑉0)), . . . , 𝑃𝑛 (𝐻) = 𝑃(𝑃𝑛−1 (𝐻)).

Each level 𝑃𝑘 (𝐻) contains subsets that correspond to vertices, supervertices, or higher-level structures.

Similarly, consider the set 𝐸 (𝐻) of edges or hyperedges in 𝐻. The 𝑛-th powerset 𝑃𝑛 (𝐸 (𝐻)) describes the
hierarchical structure of edges, superedges, and their generalizations.

By including additional constraints, such as graph structures (𝑉𝐺 , 𝐸𝐺) for each subset, we can construct subsets
that represent specific subgraphs or induced structures within the 𝑛-th powerset hierarchy.

For example:

• At 𝑛 = 0, the vertices are elements of 𝑉0 and edges are subsets of 𝑉0.

• At 𝑛 = 1, 𝑃(𝑉0) defines supervertices as subsets of 𝑉0, and 𝑃(𝐸 (𝐻)) defines superedges as subsets of
𝐸 (𝐻).
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• At 𝑛 = 2, 𝑃(𝑃(𝑉0)) includes higher-order structures, such as subsets of supervertices, which are
themselves subsets of 𝑉0.

Since the 𝑛-th generalized powerset incorporates additional structures like labels, weights, and fuzzy member-
ships, it can represent complex relationships within supervertices and superedges, generalizing their structure.

Thus, the Generalized 𝑛-th Powerset fully encapsulates the hierarchy of supervertices and superedges. □

Definition 4.3 (Generalized Non-Empty 𝑛-th Powerset). Define the 𝑛-th generalized non-empty powerset of
𝐻, denoted 𝐺∗

𝑛 (𝐻), recursively as:
𝐺∗

1 (𝐻) = 𝐺
∗ (𝐻),

𝐺∗
𝑛+1 (𝐻) = 𝐺

∗ (𝐺∗
𝑛 (𝐻)

)
,

where 𝐺∗ (𝐻) is the non-empty subset operator under the generalized powerset 𝐺 (𝐻), satisfying 𝐺∗ (𝐻) ⊆
𝐺 (𝐻) \ {∅}.

Definition 4.4 (Fuzzy, Neutrosophic, and Plithogenic 𝑛-th Powerset). (cf. [309]) Let𝐻 be a set or a mathematical
structure. Define the 𝑛-th fuzzy, neutrosophic, and plithogenic powersets of 𝐻, denoted 𝐹𝑛 (𝐻), 𝑁𝑛 (𝐻), and
𝑃𝑛𝑛 (𝐻), respectively, as follows:

𝐹1 (𝐻) = 𝐹 (𝐻), 𝐹𝑛+1 (𝐻) = 𝐹 (𝐹𝑛 (𝐻)),

𝑁1 (𝐻) = 𝑁 (𝐻), 𝑁𝑛+1 (𝐻) = 𝑁 (𝑁𝑛 (𝐻)),

𝑃𝑛1 (𝐻) = 𝑃𝑛(𝐻), 𝑃𝑛𝑛+1 (𝐻) = 𝑃𝑛(𝑃𝑛𝑛 (𝐻)).

Here:

• 𝐹 (𝐻) = {(𝐴, 𝜇𝐴) | 𝐴 ⊆ 𝐻, 𝜇𝐴 : 𝐴→ [0, 1]}.

• 𝑁 (𝐻) = {(𝐴,𝑇𝐴, 𝐼𝐴, 𝐹𝐴) | 𝐴 ⊆ 𝐻,𝑇𝐴, 𝐼𝐴, 𝐹𝐴 : 𝐴→ [0, 1]}.

• 𝑃𝑛(𝐻) = {(𝐴, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹) | 𝐴 ⊆ 𝐻}, with attributes and functions as defined above.

Example 4.5. Let 𝐻 = {𝑎, 𝑏, 𝑐}. Define 𝐺 (𝐻) as the set of labeled subsets:

𝐺 (𝐻) = {(𝐴, ℓ) | 𝐴 ⊆ 𝐻, ℓ ∈ 𝐿},

where 𝐿 = {”red”, ”blue”}. The first generalized powerset 𝐺1 (𝐻) is given by:

𝐺1 (𝐻) = {(∅, ℓ), ({𝑎}, ℓ), ({𝑏}, ℓ), ({𝑎, 𝑏}, ℓ), · · · | ℓ ∈ 𝐿}.

For higher 𝑛, the elements of 𝐺𝑛 (𝐻) are labeled subsets of 𝐺𝑛−1 (𝐻), creating hierarchical structures with
additional labels.

Example 4.6. Let 𝐻 = {𝑎, 𝑏, 𝑐}. Define 𝐹 (𝐻) as the set of fuzzy subsets:

𝐹 (𝐻) = {(𝐴, 𝜇𝐴) | 𝐴 ⊆ 𝐻, 𝜇𝐴 : 𝐴→ [0, 1]}.

For example:
(𝐴, 𝜇𝐴) =

(
{𝑎, 𝑏}, 𝜇𝐴

)
, 𝜇𝐴(𝑎) = 0.8, 𝜇𝐴(𝑏) = 0.5.

5 Future Tasks

This section outlines the future directions of this research. Building upon the various graph concepts introduced
earlier, we aim to explore their applications and underlying mathematical structures in greater depth.
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5.1 Adding Conditions of Uncertain Sets to Superhyperconcepts

We plan to examine how these concepts evolve when incorporating the frameworks of Fuzzy Sets [280,360–366],
Neutrosophic Sets [110, 111, 119, 121, 122, 302–304, 317], Soft Sets [228, 242], Hypersoft Sets [109, 115, 305,
314], superhypersoft sets [55, 82, 285, 313, 319], Hyperfuzzy sets [114, 132, 183, 320], HyperNeutrosophic
sets [114], and Rough Sets [255–257, 257, 258]. These extensions will provide valuable insights into the
theoretical and practical implications of these graph structures.

5.2 𝑛-Superhyperword and 𝑛-Superhyperlanguage

In this subsection, we define the notions of a hyperlanguage and an 𝑛-superhyperlanguage. Intuitively, a
hyperlanguage [38, 39, 104] generalizes the concept of a language by allowing its elements to be sets of words
rather than individual words. We then extend this idea hierarchically to 𝑛-superhyperlanguages, which are
based on iterated power sets of the set of words. Although this definition is still in its conceptual stage, it
is formally presented below. We anticipate that future research will explore the mathematical structures and
applications of these concepts.

Definition 5.1 (Hyperword and Hyperlanguage). [38,39,104,273] Let Σ be a finite alphabet, and let Σ∗ denote
the set of all finite words over Σ.

1. A hyperword over Σ is a nonempty subset of Σ∗. In other words, a hyperword is an element of the power set
P(Σ∗).

2. A hyperlanguage over Σ is a set of hyperwords over Σ. Thus, a hyperlanguage 𝐻 is a subset of P(Σ∗).
Formally:

𝐻 ⊆ P(Σ∗).

A hyperlanguage can therefore be viewed as a set of sets of words over Σ.

Definition 5.2 (𝑛-Superhyperword and 𝑛-Superhyperlanguage). We now generalize this construction to multiple
levels. Define the iterated power sets as follows:

P0 (Σ∗) := Σ∗, P𝑘+1 (Σ∗) := P(P𝑘 (Σ∗)), for all 𝑘 ≥ 0.

1. An 𝑛-superhyperword over Σ is an element of P𝑛 (Σ∗). In particular:

P1 (Σ∗) = P(Σ∗) consists of hyperwords,

P2 (Σ∗) = P(P(Σ∗)) consists of sets of hyperwords, and so forth.

2. An 𝑛-superhyperlanguage over Σ is a subset of P𝑛 (Σ∗). Formally:

𝐿 ⊆ P𝑛 (Σ∗).

Thus, an 𝑛-superhyperlanguage is a set of (𝑛−1)-superhyperwords, generalizing the concept of a hyperlanguage
to 𝑛-th level power sets of words.

Theorem 5.3. The notion of an 𝑛-superhyperlanguage generalizes the notion of a hyperlanguage. In particular:

A hyperlanguage is precisely a 1-superhyperlanguage.

Proof. By Definition 5.1, a hyperlanguage is a subset of P(Σ∗). Note that P1 (Σ∗) = P(Σ∗). Thus, a
hyperlanguage 𝐻 ⊆ P(Σ∗) is exactly a 1-superhyperlanguage.

In other words, setting 𝑛 = 1 in Definition 5.2 recovers the definition of a hyperlanguage. Hence, 𝑛-
superhyperlanguages form a hierarchy of increasingly complex structures, with hyperlanguages occupying
the first level of this hierarchy. □
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5.3 Natural HyperLanguage Processing and n-superhyperlanguage Processing

Natural Language Processing (NLP) has been extensively studied in various contexts and applications [34, 54,
70, 73, 74, 94, 137, 215, 231, 232, 348, 355].

In this subsection, we introduce an extension of NLP utilizing the concepts of hyperlanguage and n-superhyperlanguage,
leading to the frameworks of Natural Hyperlanguage Processing and n-Superhyperlanguage Processing. Since
these definitions are currently at the conceptual stage, it is anticipated that future studies will explore more
refined definitions, as well as research and development into methods of implementation and practical applica-
tions.

Definition 5.4 (Natural Language Processing (NLP) ). (cf. [34,70,231]) Let Σ be a finite alphabet representing
the vocabulary of a natural language, and let Σ∗ denote the set of all finite sequences (words) over Σ. A
language L is a subset L ⊆ Σ∗.

An NLP system is a tuple:
N = (Σ,L,P,M,T),

where:

1. Σ: A finite alphabet of symbols.

2. L ⊆ Σ∗: The language, defined by some grammar G.

3. P : L → [0, 1]: A probability model [281] assigning probabilities to each 𝑤 ∈ L:

P(𝑤) = 𝑃(𝑤 | 𝜃),

where 𝜃 represents model parameters.

4. M : L → O: A mapping function that transforms each 𝑤 ∈ L into a structured output 𝑜 ∈ O (e.g., a
parse tree, a translation).

5. T : L × L → R: A similarity measure between pairs of words or sentences.

We now define Natural Hyperlanguage Processing, which extends NLP to operate on hyperlanguages rather
than languages.

Definition 5.5 (Natural Hyperlanguage Processing (NHP)). Let Σ be a finite alphabet, and let H ⊆ P(Σ∗) be
a hyperlanguage (a set of sets of words).

A Natural Hyperlanguage Processing system is a tuple:

N𝐻𝐿 = (Σ,H ,P𝐻𝐿 ,M𝐻𝐿 ,T 𝐻𝐿),

where:

1. Σ: A finite alphabet.

2. H ⊆ P(Σ∗): A hyperlanguage.

3. P𝐻𝐿 : H → [0, 1]: A probability model assigning probabilities to hyperwords 𝐻 ∈ H .

4. M𝐻𝐿 : H → O: A mapping function transforming each hyperword 𝐻 ∈ H into a structured output
𝑜 ∈ O.

5. T 𝐻𝐿 : H ×H → R: A similarity measure defined between pairs of hyperwords.

We further generalize to 𝑛-superhyperlanguages.
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Definition 5.6 (Natural 𝑛-Superhyperlanguage Processing (N𝑛SHP)). Let Σ be a finite alphabet, and let
H (𝑛) ⊆ P𝑛 (Σ∗) be an 𝑛-superhyperlanguage.

A Natural 𝑛-Superhyperlanguage Processing system is a tuple:

N (𝑛) = (Σ,H (𝑛) ,P (𝑛) ,M (𝑛) ,T (𝑛) ),

where:

1. Σ: A finite alphabet.

2. H (𝑛) ⊆ P𝑛 (Σ∗): An 𝑛-superhyperlanguage.

3. P (𝑛) : H (𝑛) → [0, 1]: A probability model assigning probabilities to 𝑛-superhyperwords.

4. M (𝑛) : H (𝑛) → O: A mapping function from 𝑛-superhyperwords to structured outputs.

5. T (𝑛) : H (𝑛) ×H (𝑛) → R: A similarity measure on 𝑛-superhyperwords.

Theorem 5.7. Natural Hyperlanguage Processing (NHP) generalizes Natural Language Processing (NLP).

Proof. Consider an NHP system N𝐻𝐿 = (Σ,H ,P𝐻𝐿 ,M𝐻𝐿 ,T 𝐻𝐿) where H ⊆ P(Σ∗).

If we restrict H so that every hyperword is a singleton set, i.e., for every 𝐻 ∈ H , 𝐻 = {𝑤} for some 𝑤 ∈ Σ∗,
then there is a bijection between hyperwords in H and words in a language L ⊆ Σ∗.

Under this restriction:
H � L, with 𝐻 = {𝑤} ↔ 𝑤.

In this case, N𝐻𝐿 reduces to:
(Σ,L,P𝐻𝐿 ,M𝐻𝐿 ,T 𝐻𝐿),

which is structurally identical to the NLP definition (Σ,L,P,M,T).

Thus, NLP is a special case of NHP, proving that NHP generalizes NLP. □

Theorem 5.8. Natural 𝑛-Superhyperlanguage Processing (N𝑛SHP) generalizes both NLP and NHP.

Proof. By definition, an 𝑛-superhyperlanguage H (𝑛) ⊆ P𝑛 (Σ∗).

For 𝑛 = 1, we have H (1) ⊆ P(Σ∗), which is a hyperlanguage. Thus, an N1SHP system:

N (1) = (Σ,H (1) ,P (1) ,M (1) ,T (1) )

coincides with an NHP system:
N𝐻𝐿 = (Σ,H ,P𝐻𝐿 ,M𝐻𝐿 ,T 𝐻𝐿).

Hence, NHP is a special case of N𝑛SHP at 𝑛 = 1.

From Theorem 5.7, we know NHP generalizes NLP. Since N𝑛SHP generalizes NHP, it also generalizes NLP.
Concretely, by setting 𝑛 = 1 and then restricting hyperwords to singletons, we recover the NLP scenario.

Thus, N𝑛SHP includes both NHP and NLP as special cases, proving that N𝑛SHP generalizes both NLP and
NHP. □
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[23] József Balogh, Robert Morris, and Wojciech Samotij. Independent sets in hypergraphs. Journal of the
American Mathematical Society, 28(3):669–709, 2015.

[24] Hans-Jürgen Bandelt and Henry Martyn Mulder. Pseudo-median graphs: decomposition via amalga-
mation and cartesian multiplication. Discrete mathematics, 94(3):161–180, 1991.

[25] Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications. Springer
Science & Business Media, 2008.

[26] Claudio DT Barros, Matheus RF Mendonça, Alex B Vieira, and Artur Ziviani. A survey on embedding
dynamic graphs. ACM Computing Surveys (CSUR), 55(1):1–37, 2021.

[27] Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. The state of the art in visualizing
dynamic graphs. EuroVis (STARs), 2014.

[28] Jozsef Beck. On size ramsey number of paths, trees, and circuits. i. Journal of Graph Theory, 7(1):115–
129, 1983.

[29] Michael Bendersky and W Bruce Croft. Modeling higher-order term dependencies in information
retrieval using query hypergraphs. In Proceedings of the 35th international ACM SIGIR conference on
Research and development in information retrieval, pages 941–950, 2012.

[30] Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984.

40



[31] Robert Berke. Colorings and transversals of graphs. PhD thesis, ETH Zurich, 2008.

[32] Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Brain multigraph prediction using topology-
aware adversarial graph neural network. Medical image analysis, 72:102090, 2021.

[33] Anushree Bhattacharya and Madhumangal Pal. A fuzzy graph theory approach to the facility location
problem: A case study in the indian banking system. Mathematics, 11(13):2992, 2023.

[34] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text
with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[35] Pranab Biswas, Surapati Pramanik, and Bibhas Chandra Giri. Single valued bipolar pentapartitioned
neutrosophic set and its application in madm strategy. 2022.

[36] Mindaugas Bloznelis. Degree and clustering coefficient in sparse random intersection graphs. 2013.

[37] B´ ela Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusnády. The degree sequence of a scale-free
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