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Abstract. Jolie is a service-oriented programming language which comes with
the formal specification of its type system. However, there is no tool to ensure that
programs in Jolie are well-typed. In this paper we provide the results of building a
type checker for Jolie as a part of its syntax and semantics formal model. We ex-
press the type checker as a program with dependent types in Agda proof assistant
which helps to ascertain that the type checker is correct.
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1 Introduction

Microservices architecture is a modern paradigm in software development using a com-
position of autonomous entities for creating systems [1]. It has been developed as the
answer to the problems arisen in applications built in monolith or Service-Oriented Ar-
chitecture styles including difficulties with scalability, complexity and dependencies of
the evolving application. Microservices implement only a limited and cohesive amount
of functionality, run their own processes, and use lightweight communication mecha-
nisms.

In the fast growing landscape of microservices, Jolie [2] appears to be a good can-
didate to play the role of paradigmatic programming language [3]. Since every program
in Jolie is a microservice, everything can be reused or recomposed for obtaining new
microservices making easy creation of as simple services as complex architectural com-
positions. This makes programs to scale easily, thus supports distributed architecture
with simple managing of components, reducing maintenance and lower development
costs.

However, communication between microservices in Jolie is obtained by means of
sending and receivingmessages whose types correspondence is checked only at runtime.
Having a formalized type system of programming language gives us an opportunity to
implement type checking mechanism and use it before the runtime.

Our idea is to augment Jolie with static type-checking mechanism based on type
system specification. Type system of Jolie, described byNielsen in [4], represents typing
rules for the core of programming language (excluding subtyping, recursive types and
some other primitives) and gives as a theoretical basis to reason about correctness of a
program in Jolie.



We decided to use Agda [5,6] as a proof assistant for implementing our type checker.
Agda is a functional programming based on dependent types. Agda represents ans exten-
sion to the Martin-Löf’s logical framework [7,8]. Thus we can introduce logical propo-
sitions as types by means of Curry-Howard isomorphism [9] and prove them writing
the type corresponding programs. Agda possesses concrete syntax and comes with rich
family of data types, pattern matching mechanism, termination checking, as well as with
the ordinary programming constructs.

The paper has the following structure. Section 2 provides a background for Jolie
programming language and presents a the subset of its formalization4 written in Agda.
We implement the syntax of the behavioral layer of Jolie, which describes the workflow
of service activities, in section 2, and in section 3 we provide the necessary subset of
typing rules. Section 4 contains the proof of ”Structural Congruence” lemma for be-
haviours showing the correctness of rules introduced. Finally, in section 5 we conclude
our paper and describe the possible directions of future work.

2 Jolie Formalization

Formal syntax and semantic of Jolie are based on SOCK process calculi [11,12]. SOCK
was created for designing service-oriented systems andwas inspired by notable𝜋-calculus
[13] and WS-BPEL [14]. Primitives in SOCK are able to express one-way and request-
response communication, parallel and sequential behavior of processes and control prim-
itives.

SOCK (so a formalization of Jolie program) comprises of three layers:

– Behavioral layer: specifies with internal actions of a process and communication
performs as seen from the process’ point of view.

– Service layer: it deals with underlying architectural instructions, states, service in-
stances and correlation sets.

– Network layer: is in charge of connecting and interacting of communicating ser-
vices.

At the current stage of research we have formalized the behavior level of Jolie. We
present our results and the detailed description of the behavioral level in the following
subsection.

2.1 Syntax of the behavioral layer
The most important type of statements in behavioral level regards performing commu-
nications and handling data.

Communications There are two types of communication statements in Jolie: input and
output statements, both can be uni-directional (one-way operations) and bi-directional
(request-response operations). In case of output statements, we use the notion of an
output port name (location) which is necessary for binding the communicated data to it.
The data is made use by communication statements as variable paths and expressions
described below.
4 The whole formalization is available here [10]



Handling data Communication messages in Jolie are represented by means of variable
paths structured as a tree. For example:

amount = 12
amount.fruit.apple = 2

amount.fruit.description = ”Apple”

To simplify further operations with variables, we propose their enumeration. Let 𝐽
be a Jolie program, 𝑉 = 𝑣𝑎𝑟𝑠(𝐽) – variables in 𝐽, then 𝑉𝑖 = 𝑖 where 𝑖 ∈ ℕ. Then the
example above will look like:

0 = 12
1 = 2

2 = ”Apple”

After this simplification the type of variables can be defined. The type of natural
numbers is located in standard library of Agda [15].

Variable ∶ Set

Variable = ℕ

Complete syntax of behavioral layer can be found in [4]. We do not need to consider
expressions’ structure to prove desired theorems therefore type Expr is left empty.

data Expr ∶ Set where

Operation names, channel names and locations are represented by strings.

Operation Location Channel ∶ Set

Operation = String

Location = String

Channel = String

The behavioural layer has both ordinary control–flow statements (’if-then-else’, ’while’,
’assign’) and special statements to control parallelism and communication (’inputchoice’,
’parallel’, ’input’, ’output’, etc).

data Behaviour ∶ Set where

if_then_else_ ∶ Expr → Behaviour → Behaviour → Behaviour

while[_]_ ∶ Expr → Behaviour → Behaviour

– Sequence
_⇒_ ∶ Behaviour → Behaviour → Behaviour

– Parallel
_∥_ ∶ Behaviour → Behaviour → Behaviour

– Assign



_≃_ ∶ Variable → Expr → Behaviour

nil ∶ Behaviour

– [η₁]{B₁}⋯[ηₐ]{Bₐ}
inputchoice ∶ List (η × Behaviour) → Behaviour

wait ∶ Channel → Operation → Location → Variable → Behaviour

exec ∶ Channel → Operation → Variable → Behaviour → Behaviour

input ∶ η → Behaviour

output ∶ η^ → Behaviour

– Input
data η where

– o(x) – One-way
_[_] ∶ Operation → Variable → η

– o(x)(x’){B} – Request-response
_[_][_]_ ∶ Operation → Variable → Variable → Behaviour → η

– Output
data η^ where

– o@l(e) – Notification
_at_[_] ∶ Operation → Location → Expr → η^

– o@l(e)(x) – Solicit-response
_at_[_][_] ∶ Operation → Location → Expr → Variable → η^

3 Jolie type system

Jolie type system consists of commonly-used native types as int, double, long,
boolean and string, Jolie also has the following types:

– raw, representing raw data streams as byte arrays.
– void, indicating no value.
– any, as a placeholder for any native types.

In order to be able to do type checking of a Jolie program, we need to provide imple-
mentation of types and typing rules in Agda.

3.1 Type declaration

We express main Jolie native types (excluding any) in the following way:



data Type ∶ Set where

bool int double long string raw void ∶ Type

Usually, the context of a program is a list of variables, but to service all three layers
(comprising communication of services) there is a special type called TypeDecl. It has
five constructors: the first two (unidirectional and bidirectional) are for output commu-
nication. The left part of such bindings consists of an operation name and a location
of a hosting service. The next two are for input communication and the last one is for
variables.

data TypeDecl ∶ Set where

– o@l : <T>
_at_∶<_> ∶ Operation → Location → Type → TypeDecl

– o@l : <T, T>
_at_∶<_, _> ∶ Operation → Location → Type → Type → TypeDecl

– o : <T>
_∶<_> ∶ Operation → Type → TypeDecl

– o : <T, T>
_∶<_, _> ∶ Operation → Type → Type → TypeDecl

– x : T
_∶_ ∶ Variable → Type → TypeDecl

Therefore, the type of context is a vector of TypeDecl.

Ctx ∶ ℕ → Set

Ctx = Vec TypeDecl

Although the type of context is defined, it’s not enough, because programs in Jolie
can be parallel. We define one more type called Context to cover such situations. It has
only two constructors: the first one just takes Ctx n and the second one consists of two
elements of itself.

data Context ∶ Set where

⋆ ∶ ∀ {n} → Ctx n → Context

& ∶ Context → Context → Context

The type of context is not a vector anymore, so we need to define such type that will
express the fact of presence of TypeDecl in Context.

infix 4 _∈_
data _∈_ ∶ TypeDecl → Context → Set where

here−⋆ ∶ ∀ {n} {x} {xs ∶ Ctx n}
→ x ∈ ⋆ (x ∷ xs)



there−⋆ ∶ ∀ {n} {x y} {xs ∶ Ctx n}
(x∈xs ∶ x ∈ ⋆ xs)

→ x ∈ ⋆ (y ∷ xs)

here−left−& ∶ ∀ {n m} {x} {xs ∶ Ctx n} {ys ∶ Ctx m}
→ x ∈ & (⋆ (x ∷ xs)) (⋆ ys)

here−right−& ∶ ∀ {n m} {x} {xs ∶ Ctx n} {ys ∶ Ctx m}
→ x ∈ & (⋆ xs) (⋆ (x ∷ ys))

there−left−& ∶ ∀ {n m} {x} {xs ∶ Ctx n} {ys ∶ Ctx m}
(x∈xs ∶ x ∈ & (⋆ xs) (⋆ ys))
→ x ∈ & (⋆ (x ∷ xs)) (⋆ ys)

there−right−& ∶ ∀ {n m} {x} {xs ∶ Ctx n} {ys ∶ Ctx m}
(x∈xs ∶ x ∈ & (⋆ xs) (⋆ ys))
→ x ∈ & (⋆ xs) (⋆ (x ∷ ys))

Since we don’t care about expressions at all, we introduce the empty type of a cor-
rectly typed expression with variables from context Γ.

data _⊢e_∶_ (Γ ∶ Context) ∶ Expr → Type → Set where

3.2 Typing rules

Finally, we can present the subset of the typing rules of the behavioural layer. The first
constructor is for nil behaviour. Since nil does nothing, the contexts before and after
are equal. The next two are rules for ordinary behaviours if_then_else and while.
Finally, the last two are for sequent and parallel statements.

data _⊢B_▹_ ∶ Context → Behaviour → Context → Set where

t−nil ∶ {Γ ∶ Context}
→ Γ ⊢B nil ▹ Γ

t−if ∶ {Γ Γ1 ∶ Context} {b1 b2 ∶ Behaviour} {e ∶ Expr}
→ Γ ⊢e e ∶ bool

→ Γ ⊢B b1 ▹ Γ1
→ Γ ⊢B b2 ▹ Γ1
→ Γ ⊢B if e then b1 else b2 ▹ Γ1

t−while ∶ {Γ ∶ Context} {b ∶ Behaviour} {e ∶ Expr}
→ Γ ⊢e e ∶ bool

→ Γ ⊢B b ▹ Γ
→ Γ ⊢B while[ e ] b ▹ Γ



t−seq ∶ {Γ Γ1 Γ2 ∶ Context} {b1 b2 ∶ Behaviour}
→ Γ ⊢B b1 ▹ Γ1
→ Γ1 ⊢B b2 ▹ Γ2
→ Γ ⊢B b1 ⇒ b2 ▹ Γ2

t−par ∶ {Γ1 Γ2 Γ′
1 Γ

′
2 ∶ Context} {b1 b2 ∶ Behaviour}

→ Γ1 ⊢B b1 ▹ Γ′
1

→ Γ2 ⊢B b2 ▹ Γ′
2

→ (& Γ1 Γ2) ⊢B b1 ∥ b2 ▹ (& Γ′
1 Γ

′
2)

4 Structural Congruence for Behaviours

According to the Curry-Howard isomorphism [9], types of the programs are propostions
and terms are proofs. For example, the type 𝐴 → 𝐵 correspond to the implication from
𝐴 to 𝐵 and such function 𝑓 that takes an element of type 𝐴 and returns an element of
type 𝐵 will be a proof of this theorem.

To demonstrate the correctness of the typing rules given above, we will prove the
lemma called ”Structural Congruence for Behaviours” [4,16]:

Let Γ ⊢ 𝐵1 B Γ′

If 𝐵1 ≡ 𝐵2
then Γ ⊢ 𝐵2 B Γ′

The proof is the case analysis of all possible 𝐵1 and 𝐵2.

– Case 𝐵1 ≡ 𝐵2

struct−cong−b1≡b2 ∶ {Γ Γ1 ∶ Context} {b1 b2 ∶ Behaviour}
→ Γ ⊢B b1 ▹ Γ1
→ b1 ≡ b2
→ Γ ⊢B b2 ▹ Γ1

struct−cong−b1≡b2 t refl = t

– Case 0; 𝐵 ≡ 𝐵

struct−cong−nil∶b→b ∶ {Γ Γ1 ∶ Context} {b ∶ Behaviour}
→ Γ ⊢B nil ⇒ b ▹ Γ1
→ Γ ⊢B b ▹ Γ1

struct−cong−nil∶b→b (t−seq t−nil x) = x

– Case 𝐵 ≡ 0; 𝐵

struct−cong−b→nil∶b ∶ {Γ Γ1 ∶ Context} {b ∶ Behaviour}
→ Γ ⊢B b ▹ Γ1
→ Γ ⊢B nil ⇒ b ▹ Γ1

struct−cong−b→nil∶b x = t−seq t−nil x



– Case 𝐵 ∥ 0 ≡ 𝐵

struct−cong−b∥nil→b ∶ {Γ1 Γ2 Γ′
1 Γ

′
2 ∶ Context} {b ∶ Behaviour}

→ & Γ1 Γ2 ⊢B (b ∥ nil) ▹ & Γ′
1 Γ

′
2

→ Γ1 ⊢B b ▹ Γ′
1

struct−cong−b∥nil→b (t−par x _) = x

– Case 𝐵 ≡ 𝐵 ∥ 0

struct−cong−b→b∥nil ∶ {Γ1 Γ2 Γ3 ∶ Context} {b ∶ Behaviour}
→ Γ1 ⊢B b ▹ Γ2
→ & Γ1 Γ3 ⊢B (b ∥ nil) ▹ & Γ2 Γ3

struct−cong−b→b∥nil x = t−par x t−nil

– Case 𝐵1 ∥ 𝐵2 ≡ 𝐵2 ∥ 𝐵1

struct−cong−par−comm ∶ {Γ1 Γ2 Γ′
1 Γ

′
2 ∶ Context} {b1 b2 ∶ Behaviour}

→ & Γ1 Γ2 ⊢B (b1 ∥ b2) ▹ & Γ′
1 Γ

′
2

→ & Γ2 Γ1 ⊢B (b2 ∥ b1) ▹ & Γ′
2 Γ

′
1

struct−cong−par−comm (t−par t1 t2) = t−par t2 t1

– Case (𝐵1 ∥ 𝐵2) ∥ 𝐵3 ≡ 𝐵1 ∥ (𝐵2 ∥ 𝐵3)

struct−cong−par−assoc ∶ {Γ1 Γ2 Γ3 Γ′
1 Γ

′
2 Γ

′
3 ∶ Context} {b1 b2 b3 ∶ Behaviour}

→ & (& Γ1 Γ2) Γ3 ⊢B (b1 ∥ b2) ∥ b3 ▹ & (& Γ′
1 Γ

′
2) Γ

′
3

→ & Γ1 (& Γ2 Γ3) ⊢B b1 ∥ (b2 ∥ b3) ▹ & Γ′
1 (& Γ′

2 Γ
′
3)

struct−cong−par−assoc (t−par (t−par t1 t2) t3) = t−par t1 (t−par t2 t3)

The proof for 𝐵1 ∥ (𝐵2 ∥ 𝐵3) ≡ (𝐵1 ∥ 𝐵2) ∥ 𝐵3 is similar.

5 Conclusions and future work

In this paper, we presented our approach in creating the static type-checker for Jolie
programming language which is currently dynamically type-checked. We developed the
formalization for the subset of Jolie by means of Agda proof assistant. We expressed
Jolie types and typing rules in order to be able to check the type correspondence of
messages which are used for interaction of microservices in Jolie.We have also provided
the proof of structural congruence lemma which means the correctness of type checker
itself.

However, our current implementation covers only the small subset of Jolie. We have
touched only the native types, though the type system of Jolie goes beyond it and includes
subtyping, linked types etc. Another important direction leads us to formalization of
the service and communication levels of Jolie. By accomplishing this, we would be
able to type-check Jolie program thoroughly and may even think about implementing of
verifiable compiler for Jolie similar to [17,18] .
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