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Abstract—The Twin Delayed Deep Deterministic Policy 

Gradient (TD3) algorithm offers a robust solution for the 

coverage path planning problem, where a robot must effectively 

and efficiently cover a designated area, ensuring minimal 

redundancy and maximum coverage. Traditional methods for 

path planning often lack the adaptability required for dynamic 

and unstructured environments. In contrast, TD3 utilizes twin Q-

networks to reduce overestimation bias, delayed policy updates 

for increased stability, and target policy smoothing to maintain 

smooth transitions in the robot's path. These features allow the 

robot to learn an optimal path strategy in real-time, effectively 

balancing exploration and exploitation. This paper explores the 

application of TD3 to coverage path planning, demonstrating that 

it enables a robot to adaptively and efficiently navigate complex 

coverage tasks, showing significant advantages over conventional 

methods in terms of coverage rate, total length, and adaptability. 
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I.  INTRODUCTION  

In recent years, the application of the Twin Delayed Deep 
Deterministic Policy Gradient (TD3) algorithm in coverage 
path planning has attracted increasing attention. Ma et al. 
conducted a study on real-time pill identification for visually 
impaired individuals using deep learning, significantly 
improving the accuracy and convenience of medication 
recognition[1]. Ma et al. carried out a comparative analysis of 
pneumonia X-ray image classification using deep learning 
algorithms, demonstrating the efficiency and accuracy of these 
techniques in medical diagnostics[2]. The core goal of 
coverage path planning is to enable a robot to efficiently and 
accurately cover a designated area, ensuring all target points or 
grid sections are visited or processed. This capability is 
essential in various applications, including home cleaning 
robots, agricultural monitoring, environmental inspection, and 
industrial equipment assessment[3][4]. The primary challenges 
in coverage path planning are to optimize the path for 
maximum coverage while minimizing redundant movements 
and overlap, ensuring minimal energy consumption and 
reduced task completion time[5]. 

Traditional path planning approaches often rely on rule-
based coverage patterns, graph search algorithms (such as the 
A* algorithm), or heuristic path generation methods[6]. 
However, these methods can struggle in unstructured or 
dynamically changing environments, limiting their 
adaptability[7]. TD3, as a deep reinforcement learning 
algorithm, enables robots to learn an optimal coverage strategy 
through real-time interaction with the environment, making it 
highly adaptive and efficient in complex and dynamic 
scenarios[8][9]. 

Due to several key features, TD3 is particularly well-suited 
for coverage path planning tasks[10]. First, TD3 uses twin Q-
networks, where two separate Q-networks estimate Q-values 
independently, and the minimum of the two is used to update 
the policy[11][12]. This reduces the common overestimation 
bias in traditional reinforcement learning, which is crucial in 
coverage path planning as it allows the robot to make more 
accurate assessments of each action’s effectiveness in covering 
new areas versus revisiting previously covered areas[13][14]. 
Second, TD3 incorporates delayed policy updates, meaning 
that the policy network is updated less frequently than the Q-
networks, typically after every two Q-network updates. This 
delayed policy update effectively reduces the variance in policy 
learning, allowing the Q-networks to stabilize before the policy 
is adjusted, thus avoiding unstable learning and ensuring a 
smoother, more balanced coverage path[15]. 

Furthermore, TD3 introduces a target policy smoothing 
mechanism to further stabilize the policy[16]. By adding small, 
clipped noise to the target action, TD3 makes the policy less 
sensitive to minor fluctuations in actions, encouraging 
smoother, continuous coverage[17]. In coverage path planning, 
this is particularly advantageous, as it allows the robot to 
maintain a stable and continuous path even when navigating 
dense or complex areas, avoiding a decrease in coverage 
quality due to minor action changes[18]. 

In a TD3-based coverage path planning framework, the 
robot’s policy network (actor) learns to maximize expected 
coverage rate, while the twin Q-networks (critics) evaluate the 
value of actions, balancing between exploring uncovered areas 



and minimizing redundant coverage of known regions. In 
complex coverage scenarios, especially those requiring real-
time decision-making in unstructured environments, TD3 
enables a robot to balance exploration and exploitation, 
optimizing its coverage path to achieve the highest possible 
coverage rate in the fewest steps. This approach significantly 
enhances the efficiency and intelligence of coverage path 
planning, showing tremendous potential in applications like 
navigating complex terrains and inspecting large monitoring 
areas. 

In summary, TD3 overcomes the instability and 
overestimation issues commonly found in traditional methods 
through its use of twin Q-networks, delayed policy updates, 
and target policy smoothing. These features allow a robot to 
adaptively learn in dynamic environments, balancing the 
exploration of new areas with efficient coverage of known 
regions. TD3 provides a robust and efficient solution for 
coverage path planning, making it highly effective in real-
world robotic applications and advancing the development of 
automated and intelligent coverage path planning systems. 

II. METHODOLOGY 

A. Problem Description 

In the domain of robot coverage path planning, the 
objective is to enable a robot to effectively cover a specified 
area, ensuring that all locations are visited or processed. This is 
critical in applications like cleaning robots, agricultural robots, 
and industrial inspection robots. The key challenge in coverage 
path planning is to optimize the path so that the area is covered 
in the shortest possible time while minimizing path overlap and 
unnecessary movements. Due to the uncertainty of 
environments and the dynamic nature of coverage demands, 
deep reinforcement learning (DRL) has shown significant 
advantages in addressing these challenges. 

Firstly, the coverage planning problem can be modeled as a 
Markov Decision Process (MDP), where the state space 
S represents the robot’s position on a 2D plane along with 

relevant environmental information. The action space 
A represents the basic actions that the robot can execute, such 

as moving forward, backward, or turning. At each time step t , 

the robot is in state ts S , takes an action ta A , and 

transitions to the next state 1ts + . The coverage rate tC at time 

t measures the extent of area covered by the robot, defined as 
the ratio of the covered area to the total area. Typically, we aim 
to maximize this coverage rate within a given number of steps. 

Within the DRL framework, the robot receives an 
immediate reward tr at each state ts . The design of the reward 

function ( ),  R s a is crucial for effective coverage planning. An 

appropriate reward function should encourage the robot to 
explore uncovered areas while avoiding excessive re-coverage. 
A typical reward function can be formulated as:    

 1 1( ) ( , )t t t t tr C C d s s − −=  − −   (1) 

Where 
1t tC C −− denotes the increase in coverage rate, and 

( )1,  t td s s − is the distance between consecutive states. The 

parameters   and   adjust the relative weighting of coverage 

efficiency and path optimization. 

In DRL, a deep neural network is used to approximate the 
policy function ( | ; )a s   and the value function ( ; )V s  , where 

  represents the network weights. The policy function 

( | ; )a s   outputs the probability distribution over actions, 

guiding the robot’s choice of actions in each state. To optimize 
the policy, policy-gradient-based algorithms such as Proximal 
Policy Optimization (PPO) or Deep Q-Network (DQN) are 
commonly employed. These algorithms update the parameters 
by minimizing the loss function: 

 2

1( ) ( ( ; ) ( ; ))t tL r V s V s   +
 = + −   (2) 

where   is the discount factor, balancing short-term and 

long-term rewards. 

During training, the DRL algorithm improves the robot’s 
coverage strategy through continual trial and error, maximizing 
cumulative rewards over time. To enhance coverage efficiency, 
the agent must balance exploration and exploitation. Initially, 
broad exploration of the environment is necessary, but as the 
coverage rate increases, the agent should focus on unexplored 
regions to converge on an optimal path. 

Due to the dynamic and unstructured nature of real-world 
environments, traditional methods often rely on prior 
information, whereas DRL-based methods can adaptively learn 
optimal strategies even in variable conditions. 

B. Twin Delayed Deep Deterministic Policy Gradient  

The Twin Delayed Deep Deterministic Policy Gradient 
algorithm is an advanced actor-critic algorithm designed to 
address the limitations of traditional reinforcement learning 
methods in continuous action spaces. Developed as an 
enhancement of the Deep Deterministic Policy Gradient 
(DDPG) algorithm, TD3 introduces several modifications to 
improve learning stability and prevent the overestimation of Q-
values, a common issue in value-based methods. TD3 has 
shown significant success in various continuous control tasks 
due to its robustness and efficiency. 

TD3 builds upon the DDPG framework, where an actor 
network ( ; )s    represents the policy that outputs actions 

based on the current state, and a critic network ( , ; )QQ s a   

estimates the value of taking action a in state s . The goal of 

TD3 is to learn an optimal policy by maximizing expected 
returns while addressing potential overestimation in the Q-
function. 

In DDPG, the value function is approximated with a single 
Q-network, which can lead to the overestimation of Q-values 
due to the maximization bias in value estimation. TD3 
mitigates this by using two Q-networks instead of one, each 

parameterized by separate weights 1Q  and 2Q . These 

networks independently estimate Q-values, and the minimum 
of the two Q-values is used for policy updates, reducing 
overestimation. 



TD3 utilizes two Q-networks 1

1( , ; )QQ s a   and 2

2( , ; )QQ s a  . 

The Q-value target is calculated by taking the minimum of 
these two Q-values to prevent overestimation: 

 1 2

1 2min( ( , ( ; ); ), ( , ( ; ))Q Qy r Q s s Q s s        = +   (3) 

where 's  is the next state,   is the discount factor, and r is 

the immediate reward. The policy update is based on 
minimizing the temporal difference (TD) error using the above 
target y . 

Another unique feature of TD3 is its delayed policy update 
mechanism. Instead of updating the policy at every time step, 
TD3 updates the policy (i.e., the actor network) and the target 
networks less frequently than the Q-networks. Typically, the 
policy is updated every two critic updates. This delay in policy 
updates reduces the variance in policy updates, providing more 
stable learning and allowing the Q-network to converge before 
updating the policy. 

TD3 introduces target policy smoothing to further improve 
stability, which adds a small amount of noise to the target 
action during the Q-value target calculation. This noise is 
clipped to ensure it remains within a feasible range. This 
technique smooths the value estimation by averaging over a 
small range of actions around the target action, making the 
policy less sensitive to minor action changes. The target action 
with noise added can be written as: 

 ( ; )a s   = +  (4) 

where ~ clip( (0, ), , )c c  − , with (0, ) representing 

Gaussian noise and c a constant for clipping. The Q-value 

target is then computed as: 

 1 2

1 2min( ( , ; ), ( , ; ))Q Qy r Q s a Q s a   = +   (5) 

The TD3 algorithm alternates between updating the Q-
networks and the policy network. The loss function for the Q-
networks is based on the mean squared error between the Q-
network predictions and the target Q-value: 

 2

( , , , )( ) ( ( , ; ) )i iQ Q

s a r s iL Q s a y 
 = −   (6) 

for   1,  2i = , where y is the Q-value target calculated as 

described above. After updating the Q-networks, if the policy 
update condition is met, the policy network is updated by 
maximizing the Q-value estimated by 

1Q , the first Q-network, 

to improve the expected return. 

 1

1 ( ; )
( ) ( , ; ) | ( ; )Q

s a a s
J Q s a s  

 

   
   

=
  =  
 

 (7) 

Lastly, TD3 employs soft updates for the target networks, 

where the parameters iQ
   and    of the target networks 'iQ  

and    are updated slowly with respect to the current networks: 

 
(1 )

(1 )

i i iQ Q Q

  

   

   

 

 

 + −

 + −
 (8) 

where   is a small constant controlling the update rate. 

III. EXPERIMENTS 

In order to use randomly generated maps during training 
and ensure the generalization of the algorithm, we set up 
random maps and generate random obstacles in the map. Our 
map is usually a square grid matrix containing several obstacles. 
During the obstacle generation process, as much as possible, it 
is ensured that they are kept at a certain distance from each 
other and do not block the path between obstacles. The map 
sizes range from 40*40 to 500*500 to ensure that the generated 
paths are suitable not only for small indoor environments but 
also for large outdoor venues. 

 

Fig 1. The path direction generated by the coverage planning algorithm. The 
black circle in the figure represents the starting point and the red circle 
represents the end point. 

As shown in the Fig. 1, the coverage path trained by our 
TD3 algorithm can completely cover the map, and the 
redundancy of the generated path is minimal. Among many 
algorithms, the total path length is the shortest.  

As shown in the Fig. 2, we used a joint simulation 
environment of ROS (Robot Operating System) and Gazebo to 
implement and verify the application of TD3 algorithm in robot 
coverage path planning. The experimental environment was 
built on the Ubuntu operating system. ROS was used as the 
robot operating system for task allocation and communication, 
while Gazebo was used for physical simulation to provide a 
realistic virtual environment. In Gazebo, we built a two-
dimensional simulation field with obstacles to simulate the 
complex environment and obstacle layout that robots may 
encounter in reality. 

 

Fig 2. Gazebo Simulation Environment 

 



 

 

 

Fig 3. Coverage rate and average length of the TD3 algorithm during training 
process 

TABLE I.  PERFORMANCE OF DIFFERENT ALGORITHMS 

Approach 
Total 

Length(m) 

Running 

Time(s) 
Coverage rate(%) 

Spiral 2076 0.12 100 

ACO 2434 3.78 98.3 

Greedy 

Search 
1875 42.37 100 

GA 1948 4.61 97.8 

DDPG 1864 0.75 100 

TD3  1652 0.64 100 

 

TableⅠ shows the performance indicators of different 

algorithms. Experiments show that the TD3-based method has 
obvious advantages over the traditional spiral method and 
intelligent optimization methods such as the ant colony 
algorithm (ACO) and genetic algorithm (GA) and DDPG. First, 
in terms of coverage, the TD3 algorithm can reach 100%, 
which meets the index requirements of coverage planning. 
Second, in terms of path length, the TD3 method has the 
smallest path length, which can ensure that the vehicle covers 
more areas under limited energy. 

IV. CONCLUSIONS 

In summary, the TD3 algorithm provides an effective 
approach for coverage path planning by addressing key 
challenges such as path optimization, redundancy reduction, 
and adaptability to dynamic environments. Through the dual Q 
network, TD3 reduces the overestimation bias, allowing for a 
more accurate assessment of the coverage efficiency of each 
action. Experimental results show that TD3 outperforms 
traditional heuristic and rule-based methods, achieving higher 
coverage with fewer redundant actions. The algorithm's ability 
to balance exploration and exploitation makes it a solid choice 
for practical applications in robotic coverage tasks. 
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