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Abstract

Associations between phenotype and genomic and epigenomic markers are often derived by correlation. Systems Biology
aims to make more robust connections and uncover broader insights by modeling the cellular mechanisms that produce a
phenotype. The question of choosing the modeling methodology is of central importance. A model that does not capture
biological reality closely enough will not explain the system’s behavior. At the same time, highly detailed models suffer
from computational limitations and are likely to overfit the data. Boolean networks strike a balance between complexity
and descriptiveness and thus have received increasing interest. We previously described an algorithm for fitting Boolean
networks to high-throughout experimental data that finds the optimal network with respect to the information in a given
dataset. In this work, we describe a simple extension that enables the modeling of asynchronous dynamics, i.e. different
reaction times for different network nodes. Our approach greatly simplifies the construction of Boolean network models
for time-series datasets, where asynchronicty often occurs. We demonstrate our methodology by integrating real data
from three datasets, and provide an implementation that can be used by the community for network reconstruction
using any high-throughout dataset. Our approach significantly expands the applicability of the Boolean network model
to experimental data.
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Introduction

Cellular processes that alter the functional profile of the cell

are subject to complex, adaptable regulation. This regulation

is achieved by networks of interactions between molecules that

integrate environmental signals and the current state of the cell

[Arenas et al., 2015, Hackett et al., 2016, Eichenberger et al.,

2004]. In order to understand these networks, various mode-

ling methodologies have been proposed, varying in their degree

of complexity and expressiveness[Karlebach and Shamir, 2008].

Due to limited knowledge of the reactions involved in carrying

out each regulatory interaction, Boolean models, first intro-

duced by Kauffman [Kauffman, 1969], are frequently chosen

as a general-purpose modeling methodology [Fox et al., 2024,

Samaga et al., 2009, Schwab et al., 2017]. Several questions

arise when reconstructing a Boolean network from data. First,

as with any computational task, one must ask whether the pro-

cess can be accomplished efficientlyKarlebach2012. The second

question is how to find the correct trade-off between model size

and the fit to the data[Rissanen, 1983, Akaike, 1998, Schwarz,

1978]. Finally, a method to map continuous or discrete mea-

surements into binary values is needed [Hopfensitz et al., 2012,

Glaz et al., 2001, Shmulevich and Zhang, 2002, Berestovsky and

Nakhleh, 2013]. In addressing the first question, Karlebach and

Shamir showed that the problem of optimally fitting a Boolean

model to binary data is NP-Complete [Karlebach and Shamir,

2008], making a solution impractical in the worst case and likely

challenging for many other instances. The second question is

usually addressed by independently minimizing the fit of indi-

vidual regulatory logic tables to the binarized values of their

targets [Margolin et al., 2006, Lahdesmaki, 2003, Faith et al.,

2007]. Bayesian approaches have also been proposed, but these

arguably deviate from the simplicity of the Boolean model by

introducing a probabilistic parameters [Gat-Viks et al., 2004].

Karlebach and Robinson proposed a non-probabilistic criterion

that is based on Kolmogorov Complexity [Kolmogorov, 1968]

,and takes into account both the fit to the data and the total

size of the model [Karlebach and Robinson, 2023a], and pro-

posed an algorithm for optimizing according to it. As for the

third question, while a gold-standard has not been agreed upon,

various methodologies have been developed that generate use-

ful mappings in practice [Berestovsky and Nakhleh, 2013]. An

often overlooked challenge in modeling is accounting for varia-

tion in reaction times. A gene may be activated at a different

rate than another gene that has a regulatory association to

it, and this can result in a time-series dataset where not all

regulations take effect at every sampling point. A related issue

occurs when consecutive sampling times capture the same netw-

ork state repeatedly. Since the data is usually affected by noise,
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it may be hard to know when the exact same site has been sam-

pled twice. To address these issues, our goal in this paper is to

extend the methodology described in [Karlebach and Robinson,

2023a] for Boolean networks with asynchronous dynamics, the-

reby obtaining a rigorous reconstruction methodology that can

handle time-series data where the sampling rate has not been

optimized, or where the rates of different regulatory interacti-

ons differ significantly. In the following section, we specify and

extend our methodology and explain its application to asynch-

ronous network modeling. We also show how heuristics that

address the computational complexity of the problem can be

used in the case of asynchronous dynamics. In the Results

section we describe modeling of real data with asynchronous

Boolean networks. In the Conclusion section we summarize our

findings and assess the impact of the method on future modeling

efforts.

Methods

In this section we will assume that the network reconstruction

uses transcriptomics data, although the methodology is applica-

ble to any high-throughput dataset. Additionally, all the values

are assumed to have been binarized, i.e. mapped to the set of

Boolean values 0 and 1. Mapping of real data to Boolean values

is demonstrated in the Results section. A Boolean network can

be described by a directed graph G(V,E), where G is a set of

nodes or genes, and E are edges such that a gene g’s regula-

tors are the nodes from which directed edges extend to g, i.e.

u : (u, g) ∈ E. Each set of n regulators of a gene is associa-

ted with a logic function that has n Boolean inputs and one

Boolean output. The Boolean inputs are determined when the

nodes that are associated with the function’s inputs are assi-

gned Boolean values. Biologically, the input nodes correspond

to regulators, and their combined activity or inactivity deter-

mines the Boolean value of their target gene. Given a Boolean

assignment to all the nodes in the network, also referred to

as a state, the next state can be computed by combining the

outputs of all the logic functions. A sequence of states that

are derived from one another in this way are called a traje-

ctory. If a state is always followed by an identical state in a

trajectory, it is called a steady state. In experimental data, a

steady state is usually provided as one measurement per gene

or network node. The dynamics of the network are synchronous

if the values of all the genes are updated by the logic functi-

ons simultaneously. If updates can be delayed for any subset

of the genes, for any number of network state traversals, we

will say the the dynamics are asynchronous. In gene expression

datasets, the logic is often unknown and regulators are at best

known approximately. A gene expression dataset consists of a

N × M matrix, where N corresponds to the number of genes

whose expression level was measured, and M corresponds to the

number of experiments. The entry at indices i,j contains a Boo-

lean value that is equal to 1 if the gene is in the active state,

and otherwise equal to 0. If the data consists of steady states,

every row of the matrix represents a network state in which

none of the genes will change their activity without external

perturbation. If the data consists of trajectories, sequences of

rows correspond to consecutive time points in which the netw-

ork updates the activity states of some or all of its genes. The

data can also consist of both steady states and trajectories. In

addition to the gene expression dataset, the modeler determi-

nes a set of plausible regulatory interactions. For example, the

modeler can identify those genes whose protein products bind

to the promoter of a target gene, and refine the selection by

intersecting this information with correlations in the expres-

sion dataset. From this initial set, the modeler want to choose

the optimal one, including the logic tables by which the regu-

lators determine the state of the target. An expression dataset

will, in practice, always contain some noise. This means that

a single set of regulators taking the same value in two netw-

ork states will have a different effect on the target in each

of these states. An an inference methodology must therefore

identify where such inconsistencies are a result of experimental

noise, and where they are the result of asynchronous dynamics.

The approach described in the next section minimizes the sum

of such inconsistencies and the number of bits in the network

encoding. To briefly state the rationale, every additional netw-

ork bit doubles the number of possible networks, and similarly

every mismatch halves the number of remaining solutions to

fit. Hence, a non-random solution will result in a sum that is

significantly smaller than the size of the dataset [Karlebach and

Robinson, 2023a,b].

In order to find an optimal solution to the problem, we for-

mulate it as 0/1 Integer programming. First, we assume that

the number of regulators of each gene is relatively small, in the

sense that the logic table defining the regulation is of managea-

ble size. The variables of the problem are denoted by uppercase

English letters. A B variable is defined for every measurement,

i.e. an entry in the expression matrix that describes a gene and

its activity at a given state, and is equal to 1 if there is a misma-

tch between the observed value of the gene at that measurement

and the value that the model assigns it. An I variable is defi-

ned for every combination of regulator values, and is equal to 1

if the state of the target gene is set to 1 for that combination,

and otherwise it is equal to 0. An R variable is defined for every

potential regular-target pair. It is equal to 1 if the regulator is

chosen for the optimal model, and otherwise to 0. A V variable

is defined for every gene and possible number of regulators for

that gene, and is equal to 1 if the gene has at least that number

of regulators, and otherwise it is equal to 0. At the end of the

section we will also define a D variable, which will allow us to

implement asynchronous dynamics. Using these variables, we

first describe the constraints of the model, and then the obje-

ctive function: Let Ci,j denote the observed Boolean value of

gene i at experiment j. The corresponding B variable is Bgi,j ,

and it is equal 1 if the value of gene gi in experiment j does

not match the model’s assignment, and otherwise 0. If j is the

index of a steady state in the data, gk+1 is a gene with regu-

lators g1, g2, ..., gk, we go over every possible combination of

values for these regulators (w1, w2, ..., wk) , wj ∈ {0, 1} and

for each one add the following constraint:

k∑
r=1

(Cr,j · (wr + (1− 2 · wr) · Bgr,j) (1)

+ (1− Cr,j) · ((1− wr) + (2 · wr − 1) · Bgr,j))

+ Ck+1,j · Bgk+1,j + (1− Ck+1,j) · (1− Bgk+1,j)

< (2− I(w1, w2, ..., wk)) · (k + 1)

where I(w1, w2, ..., wk) is the output of the Boolean function

that determines the value of gk+1. This constraint means that if

the output variable I(w1, w2, ..., wk) was set to 1, whenever the

combination w1, w2, ..., wk appears, the output (the value of

gk+1) must be 1. If the data contains trajectories, the observed

values of the target gene and the corresponding 0/1 IP variables

will be taken from the subsequent time point, at which the
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regulation is expected to take effect if the model is synchronous.

Similarly, if I(w1, w2, ..., wk) is set to 0, we add the following

constraint:

k∑
r=1

(Cr,j · (wr + (1− 2 · wr) · Bgr,j) (2)

+ (1− Crj) · ((1− wr) + (2 · wr − 1) · Bgr,j))

+ Ck+1,j · (1− Bgk+1,j) + (1− Ck+1,j) · Bgk+1,j

< (I(w1, w2, ..., wk) + 1) · (k + 1)

Next, for every gene gi and each one of its regulators gj ,

we create a Boolean variable Rij . In other words, every poten-

tial regulator of gene gi is associated with an R variable for

that gene. For every two different assignment of values to gi’s

regulators, i.e. inputs to the logic function that sets the value

of gi, the sum of R variables of regulators which have diffe-

rent values in the two assignments is constrained to be greater

than the differences between the I variables that determine the

outputs for these assignments. For example, with two regula-

tors R1 and R2 and two assignments 01 and 00 to the variables

respectively, R2 must be greater than I01−I00 and also greater

than I00− I01. If the outputs for these two assignments are dif-

ferent, only the change in R2 can explain this difference,as R1

has the same value in both assignments. More generally, this

constraint means that two different outputs can never occur for

the exact combination of regulatory inputs, for otherwise the

regulatory logic is not a function. The Vik variable, which is

defined for gene i and every possible number of regulators k

of that gene, is constrained to be greater than 0.5
indegree(gi)

if

k = 1 or ( i−1
indegree(gi)

) if k > 1. Now we can set the weights

of variables in the objective to match the inference criterion:

First, a weight of 1 is given to B variables. Now if r regulators

are chosen for a gene, all its V variables 1..r will be set to 1.

Therefore, we set the weight of the first R variable of the gene

to be the log base 2 of the number of ways to choose a first

regulator plus the log base 2 of the number of logic tables pos-

sible for one regulator. We then set the weight of the second

R variable of the gene to be the log base 2 of the number of

ways to choose a second regulator after the first one was alre-

ady chosen plus the log base 2 of the number of logic tables

with two regulators, minus the log base 2 of the number of

logic table with one regulator. So the cost of encoding the logic

tables cancel out by consecutive V variables, while the cost of

choosing the regulators is produced by the combination of all

the V that are set to 1. If we denote the number of logic tables

with k regulators as Lk, the weight of the kth V variable is set

to log2(Lk) − log2(Lk−1) + log2(N−k+1
k ) So far, we assumed

that the updates of the model are synchronous. We now adapt

the 0/1 IP formulation to fit asynchronous dynamics. We add

a new type of variable called the D variable. This variable is

defined for every constraint that involves the B variables in a

trajectory, as defined in (1) and (2). It is added to the right

hand side of the constraint, and therefore if it is equal to 1 it

allows the output of the logic function to not agree with its

inputs. We further constrain the D variable to be smaller than

1 minus the differences between the chosen value of target gene

at the state at which the regulatory effect is taking effect and

the previous state. I.e., the value selected for the gene by the

model at these states. This constraint only allows the output

of the logic function to disagree with its input if the output

does not change, i.e. if the regulatory update is not immediate.

Using the same notation as before, the additional constraints

on the D variable can be described as follows:

1− (Ck+1,j+1 ∗ (1− Bgk+1,j+1
+ (1− Ck+1,j+1) ∗ Bgk+1,j+1

− (Ck+1,j ∗ (1−Bgk+1,j
) + (1−Ck+1,j) ∗Bgk+1,j

)) >= D (3)

1− (Ck+1,j ∗ (1− Bgk+1,j
+ (1− Ck+1,j) ∗ Bgk+1,j

−(Ck+1,j+1 ∗(1−Bgk+1,j+1
)+(1−Ck+1,j+1)∗Bgk+1,j+1

)) >= D

(4)

We set the weight of every D variable to 1 in the objective

function. Consider a network M that is the optimal solution for

some dataset T . If it sets the value of the D variable to 1 at some

time t, then the corresponding target must exert a regulatory

change on one of its own targets after the delay introduced

by the D variable, for otherwise a better solution could have

been obtained without setting the D variable. Therefore, the

trajectory of the model when there is no delay (i.e. when the D

variable is not set) is different than the one it uses in the optimal

solution. Now if we set the D variable to 0 instead, set the

suffix of the trajectory from time t to fit exactly the trajectory

of the model that was fit to T from time t and afterwards,

then M must also be optimal for this new trajectory T ′. If

not, and there is another better fit model, then when flipping

the bits back, it will still be better than M on the original

dataset, whether M uses the D variable or not. Therefore, like

the B variables, every D variable is equivalent to one bit in the

encoding of the network.

Powerful solvers like Gurobi [Gurobi Optimization, LLC,

2023] have dramatically improved our ability to solve 0/1 Inte-

ger Programming problems. However, custom heuristics offer

even better performance than those devised for the general

problem. We now describe such heuristics.

Perhaps the simplest heuristic for a trajectory is to per-

forming a single pass over the data, state by state starting

from the first state, and to record every input-output pair obse-

rved as long as it does not conflict with pairs observed before

it. When a conflict happens, the value of the target gene is

flipped to match the output that was previously observed. A

more sophisticated approach was suggested by Karlebach and

Robinson [Karlebach and Robinson, 2023a], and can be applied

to an expression data sets composed of either steady states or

equal-length trajectories:

1.Choose a set of regulators.

2.If the set has a single steady state, return it as a solution.

3.If the set has s single trajectory, solve any inconsistencies

using the simple heuristic described above, and return it as a

solution.

4.If the size of the set of steady states or trajectories is larger

than 1 but the set is consistent with the regulators, return that

set of states as a solution, possibly removing some redundant

regulators by backward elimination.

5.Otherwise, cluster the states and round the cluster centers

into Boolean vectors, then solve the problem recursively for the

cluster centers. This generates a set of consistent states S. For

every state in the original set, choose its closest neighbor in S,

and flip its values one by one to match the neighbor’s values

until all inconsistencies with states in S have been resolved, or

until it is equal to the neighbor, which is already consistent. At
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that point add it to S so it can be compared to states that have

not been made consistent yet. At the end of the process, return

S excluding the cluster centers.

The set of regulators in step 1 can be chosen from the current

LP solution, for example all regulators which have a value of at

least 0.5. The number of clusters should be such that the clu-

sters contain either one state or more than two, since a cluster

center for two Boolean states may contain multiple values of 0.5

whose rounding to 0 or 1 is arbitrary. If the dataset contains

both steady states and trajectories, then the recursive heuri-

stic can be run for the steady states, and then the resulting

logic can be used to remove inconsistencies from the trajectory

using the single pass heuristic described above. If trajecto-

ries have different lengths, equal-sized contiguous subsequences

of trajectories can be solved by the recursive heuristic, and

the remaining inconsistencies then resolved by the single-pass

heuristic. Care should be taken that clustering of these subse-

quences is biologically meaningful, for otherwise poor solutions

may be result due to their incompatibility.

It remains to adapt the heuristic to allow for asynchronous

dynamics. If a gene’s value does not match the output expe-

cted by the values of its regulators, but it is consistent with the

value of the gene in the previous time point, then it is no longer

flagged as an inconsistency. Additionally, when fixing inconsi-

stencies by performing a pass over trajectories and building a

set of logic functions, a functions is only updated when their

target genes that change their values between consecutive time

steps. With these changes, the heuristic can apply to asynch-

ronous trajectories, or a combination of steady states and such

trajectories.

We have integrated this heuristic into our 0/1 Integer Pro-

gramming implementation in order to improve the upper bound

on the nascent solution. In the next section we analyze a real

dataset for insights using our method.

Results

The methodology described above was implemented using the

Gurobi python API [Gurobi Optimization, LLC, 2023], which

allows a high level of correspondence between the code and the

mathematical description of the model. We set the solver para-

meters Method,MIPFocus and GomoryPasses to the values 2,2

and 1, respectively. The straightforward correspondence betw-

een the python API and the variables and constraints of the

problem will enable other programmers an easy access to our

implementation. The code and data are publicly available on

GitHub: https://github.com/karleg/MEDSI

To test our method on real experimental data, we obtai-

ned the microarray dataset GSE49650 of synchronized yeast

cells from the Gene Expression Omnibus. Preprocessing of the

.CEL files was done using the rma function in the Biocondu-

ctor package affy, using default argument values. Additionally,

every trajectory (time-series) of every gene was smoothed using

the R functions smooth.spline and then approxfun (in the stats

package) with default argument values[?]. The x-coordinate

values for the smoothing were the times at which the measure-

ments were taken in minutes, and the y-coordinate values were

the array intensities. We used the BASCA method as implemen-

ted in the R package Binarize [Hopfensitz et al., 2012], with

default arguments, for mapping from continuous to Boolean

values. Every trajectory was binarized separately. We used the

yeast cell cycle model from Li et al. [Fangting et al., 2004], with

the edges as the candidate regulatory connections. Complexes

were modeled using the expression of one of their genes. After

fitting the model, the percentage of mismatches was 17.5 %.

In Li et al. edges were associated with activation or repres-

sion activity. Compared to the inferred logic tables, all but one

of the edges agreed on the sign with Li et al. This result detailed

in Table 1. Furthermore, the inferred logic provided information

about combinatorial regulations, i.e. what is the effect of multi-

ple regulators with opposite effects. This is illustrated in Figure

1. CLN3 did not have gene regulators in the Li et al. model,

and is marked as controlled by cell size. We therefore did not

assign candidate regulators to it, leaving its only constraints to

be determined by its targets. Genes that have candidate regu-

lators and do not select any, will be fixed to a constant value,

but we allow genes with no candidate regulators to vary in a

trajectory in order to capture external signals that were not

measured. Interestingly, the inferred trajectory showed it acti-

vated in later stages of the cell cycle, and more generally the

genes can be separated into those activate in early stages and in

later stages(Figure 2). Figure 2b shows an inferred trajectory

for one of the time-series, and Figure 2a shows the continuous

values that were binarized for two of the genes in the model.

Conclusion

In this work we have presented a methodology that chooses an

optimal model given a time-series dataset that contains asy-

nchronous updates. Our methodology, implemented in software

and publicly available for the community, can greatly enha-

nce researchers’ ability to understand their data in the context

of a regulatory network. The experimental dataset that we

analyzed exhibits asynchronicity, but nevertheless our algori-

thm was able to successfully infer the regulatory interactions.

Based on this result, we believe that the algorithm is appli-

cable to a broad range of high-throughput datasets. Several

challenges are left for future work: first, the computational

efficiency of the method should be further improved, as the

problem it addresses is likely to present a variety challenging

instances. Another challenge is identifying the best approach

for selecting a gene’s candidate regulators out of the total set

of network nodes. Finally, the topic of binarization of continu-

ous or discrete data into Boolean values deserves more study.

Such work should examine the effects of different binarization

techniques on inference of asynchronous dynamics systemati-

cally, and their synergy with different experimental data types

and preprocessing procedures.
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