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ABSTRACT  

 

Large amplitude free vibrations have nonlinear behavior that may be detrimental to structures .As a result, they need to be effectively 

regulated .A composite sandwich panel with a magnetorheological (MR) core's nonlinear vibration was examined, and the softening 

and hardening behaviors were investigated utilizing the New Sinusoidal Shear Deformation Theory. The extraction of the governing 

equations and boundary conditions was made possible by Hamilton's principle. Using the harmonic balancing approach, the equation 

was solved analytically with cubic and quadratic nonlinearities, followed by comparing the data with the proven findings.  The utilization 

of Galerkin's approximation approach led to the development of ordinary differential equations from the governing PDEs.When aspect 

ratio, damping parameter and sandwich panel thickness values increase, the vibration amplitude reduces. It is used to describe a rise in 

amplitude that causes a rise in nonlinear frequency. The structure's inherent frequency increased as the MR layer's thickness increased. 

Sandwich panels that are thick and orthotropic were found to exhibit a more significant hardening behavior.As the magnetic field grows, 

the structure substantially hardens in the nonlinear state, improving the stability of the system. For controlling the vibration behavior, 

raising the magnetic field declines the structure frequency and elevates the aspect ratio of panel raises the frequency. 
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1. INTRODUCTION 

 

Durable and lightweight composites have found effective applications across various fields in material science and engineering. Since 

laminated composite plates can be used in hostile situations, their nonlinear vibration has drawn a lot of attention. Accurately identifying 
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the nonlinear vibration's frequency is crucial for fitting a range of material applications. Chandra explored the significant deflection 

vibration of cross-ply laminated plates under specific edge conditions[1] . Chandra et al. delved into the analysis of significant deflection 

vibration of angle-ply laminated plates [2]. The nonlinear vibrations of simply supported rectangular cross-ply plates were investigated 

by Singh and co-researchers[3]. Singh and colleagues presented the extensive amplitude free vibration of simply supported 

antisymmetric cross-ply plates [4]. Amabili and collaborators examined the nonlinear vibrations of rectangular laminated composite 

plates under various boundary conditions [5]. Particularly, they compared numerical outcomes from the classical Von Karman theory, 

the FSDT, and the third-order shear deformation theory (TSDT). Khorshidi investigated the nonlinear elasto-plastic impact response of 

a moderately thick rectangular plate[6] . Yazdi conducted an analysis of the nonlinear vibration behavior of functionally graded plates 

using the Homotopy Perturbation Method (HPM) [7] . Quan and colleagues reviewed the vibration and nonlinear dynamic response of 

imperfect sandwich piezoelectric auxetic plates [8] . Li and Cheng provided a method, known as the differential quadrature technique, 

for studying the nonlinear vibration of orthotropic plates considering transverse shear effect and finite deformation [9]. These 

researchers evaluated nonlinear free vibration behavior using differential quadrature method and employed the harmonic balance 

process for deriving motion relations. Lal and others conducted the nonlinear free vibration analysis of laminated composite plates on 

an elastic foundation with random system features[10] . They obtained characteristic numerical findings (second-order statistics) for 

composite plates supported by Winkler and Pasternak elastic foundations under varying support conditions. The problem's formulation 

was based on a higher-order shear displacement theory, encompassing rotatory inertia impacts and von Karman-type nonlinear strain 

displacement relations. Using a C^0 finite element approach, the laminate was discretized. They devised an iterative approach along 

with a perturbation technique based on first-order Taylor series to address the random nonlinear generalized eigenvalue problem. Tian 

et al. proposed a fresh higher-order approach for sandwich plates featuring a elastic core[11] . Malekzadeh and colleagues studied the 

dynamic reaction of in-plane pre-stressed sandwich panels incorporating a viscoelastic flexible core and various boundary 

conditions[12] . 

  

Utilizing conventional theories for moderately thick laminated plates might yield inaccurate information. In anisotropic materials, there's 

an interplay between bending and stretching of laminated composite plates for overlooking shear strains and rotary inertia effects. 

Therefore, the FSDT and higher-order SDT theories were both utilized to analyze the nonlinear vibration behavior of these laminated 

plates.  Frostig [13] formulated an advanced theory for sandwich panels with higher-order considerations. Malekzadeh et al. [14] 

presented an enhanced higher-order theory for sandwich plates by integrating the FSDT theory into the face sheets. Smart fluids and 

elastomers, featuring variable stiffness and damping features, capable of adjusting their rheology in reaction to an imposed electric or 

magnetic field, present promising opportunities for creating adaptive sandwich configurations with superior vibration damping across 

a broad frequency spectrum. Eshaghi et al. [15] investigated the dynamic traits and control mechanisms of electrorheological or 

magnetorheological sandwich constructions.   Carlson [16] initially introduced the principles behind ER(ElectroRheological)  adaptive 

structures employing materials. Yeh and Chen conducted an exploration into the dynamic stability issues of an ER(ElectroRheological) 

sandwich beam and elucidated dynamic characteristics of several types of sandwich plates—such as orthotropic, annular, orthotropic 

annular, and rotating polar orthotropic annular ones—by varying ER layer thickness and electric field strength[17-22]. Keshavarzian et 

al. examined the high-order linear vibration characteristics of a moderately thick sandwich panel featuring an ER core[23] . Additionally, 

their research involved investigating the nonlinear free vibration analysis of a thick sandwich panel equipped with an electrorheological 

core [24]. They also explored applying smart magnetorheological and electrorheological fluid cores in dampening vibration behavior 

of sandwich panels, by the use of an innovative HSDT theory [25]. Nayak et al. dynamically analyzed a sandwich beam utilizing 

magnetorheological elastomer with conductive skins, exploring varying boundary situations[26] . Meanwhile, Yu-Hang Li et al. 

investigated the dynamic characteristics of a rectangular plate comprising a magnetorheological fluid core and a constraining layer[27] 

. They established mathematical models using the finite element approach and assessed the impact of various magnetic field intensities 

and various thicknesses of the MR layer on frequency and loss factor. Their results demonstrated that as the magnetic field intensity 

increased, the frequency heightened while the loss factor diminished. On the contrary, elevating the thickness of the MR layer resulted 

in an initial frequency decrease, succeeded by a swift rise, alongside a consistent increase in the loss factor. 

 

There is a scarcity of published research focusing on nonlinear vibration characteristics of sandwich panels featuring MR fluid cores, 

despite the numerous studies performed on vibration behavior of such panels. Consequently, additional research is undoubtedly 

necessary to elucidate this subject further. 

This research aimed to establish the nonlinear equations of motion in sandwich panels comprising multiple face sheets and an MR fluid 

core, considering the mentioned information. To achieve this, we utilized the New Sinusoidal Shear Deformation Theory, accounting 

for rotary inertia. 

We aimed to evaluate dynamic characteristics of these sandwich panels using Galerkin's approach, focusing on aspects such as the 

geometric aspect ratio, magnetic field strength, and thickness of the MR core layer. Upon presenting a force function, these relations 

were condensed into several coupled nonlinear partial differential equations (PDEs) along with a compatibility equation. We validated 

the accuracy of our study initially on isotropic materials and then expanded our investigation to laminated rectangular panels, analyzing 

the nonlinear free vibration patterns of the panel. 

Furthermore, the influence of system parameters on frequency of nonlinear vibration was evaluated. 

  
2. THEORETICAL FORMULATION 

  



2.1. Elementary Assumptions  

 
The fundamental premise entailed a thick composite sandwich panel including a core layer and two laminated face sheets, where the 

top and bottom cover thickness, as well as the core material, were specified: . The suggested sandwich panel would possess 

dimensions: a length of "a," a width of "b," and an overall thickness of "h." Besides, Figure 1indicates the orthogonal coordinates 

. Where, the “t” index denotes the upper sheet, “b” is the lower sheet, and “c” shows the core. 
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Figure 1. A sandwich panel featuring laminated face sheets, an MR core, and orthogonal coordinates 

 

2.2. Formulations 

 
2.2.1 Displacement field model 

 
 Within the Higher-order Shear Deformation Theory (HSDT), the displacement field can be articulated as: 

𝑢𝑖(𝑥, 𝑧, 𝑦, 𝑡) = 𝑢0
𝑖 (𝑥, 𝑦, 𝑡) + 𝑓1(𝑧𝑖)

𝜕𝑤0(𝑥, 𝑦, 𝑡)

𝜕𝑥
+ 𝑓2(𝑧𝑖)𝜙𝑥

𝑖 (𝑥, 𝑦, 𝑡) 

𝑣𝑖(𝑥, 𝑧, 𝑦, 𝑡) = 𝑣0
𝑖 (𝑥, 𝑦, 𝑡) + 𝑓1(𝑧𝑖)

𝜕𝑤0(𝑥,𝑦,𝑡)

𝜕𝑦
+ 𝑓2(𝑧𝑖)𝜙𝑦

𝑖 (𝑥, 𝑦, 𝑡)       ؛     (𝑖 = 𝑡, 𝑏)                                              (1) 

𝑤𝑖(𝑥, 𝑧, 𝑦, 𝑡) = 𝑤0
𝑖(𝑥, 𝑦, 𝑡) 

where 𝑢𝑖 , 𝑣𝑖 and 𝑤𝑖  show the point displacements along the (x, y, z) coordinates. 𝑢0
𝑖 , 𝑣𝑖 and 𝑤0

𝑖  correspond the point displacements on 

the mid plane. 𝜙𝑥
𝑖  and 𝜙𝑦

𝑖  denote the rotations of normal to the mid plane about the y- and x-axis. 

According to table 1, it is possible to easily obtain The plate theories through changing the functions 𝑓1(𝑧𝑖), 𝑓2(𝑧𝑖).  

 

 

Table 1. different shear deformation Theories 

 

𝑓2(𝑧) 𝑓1(𝑧) plate theories 

0 −𝑧 Classic [28] 

𝑧 0 First- order [28] 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

2.2.2. classical laminated plate theory (CLPT) 

 

The most basic Equivalent Single Layer (ESL) laminated plate theory is known as the CLPT. According to the displacement field, lines 

vertical to the xy-plane pre-deformation remain perpendicular and straight in relation to the mid-surface post-deformation. The 

Kirchhoff assumption involves disregarding both transverse shear and transverse normal effects. Consequently, the deformation solely 

arises from bending and in-plane stretching [28]. 

 

2.2.3. First-order of Laminated Composite Plates 

 

The First-order Shear Deformation Theory (FSDT) expands upon the kinematics of the CLPT by incorporating significant transverse 

shear deformation in its assumptions. Here, the transverse shear strain is considered constant concerning the thickness coordinate. This 

inclusion of basic shear deformation relaxes the normality constraints of the classical laminate theory. However, the FSDT introduces 

shear correction factors, which pose challenges in determining them for arbitrarily laminated composite plate structures. These 

correction factors are not solely reliant on lamination and geometric factors; they hinge on the imposed boundary and loading conditions 

[28]. 

 
2.2.4.  Third-Order Theory of Laminated Composite Plates 

 
The forthcoming third-order plate theory, like the classic and first-order plate theories, follows similar assumptions. However, it deviates 

by relaxing the assumption regarding the linearity and perpendicularity of a transverse normal post-deformation. This is achieved by 

expanding the displacements u, v, and w as cubic functions concerning the thickness coordinate. In Figure 1, the deformation kinematics 

of a transverse normal at the edge (y = 0) are depicted [28]. 
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Figure 2. A transverse normal deformation based on the first-order, third-order, and classical plate theories [28] 

 
2.2.5.  Exponential Shear Deformation Theory 

 

Within this theory, the in-plane displacement u along the x-direction and v along the y-direction comprise two elements: 

(a) A displacement element akin to the classical plate theory of bending. 

(b) A displacement element attributed to shear deformation, expected to exhibit an exponential nature concerning the thickness 

coordinate.The exponential function, represented as 𝑓2(𝑧) with regards to the thickness coordinate, impacts both the in-plane 

displacements u and v, correlating with the distribution of transverse shear stress across The plate thickness. The Exponential Shear 

Deformation Theory stands as a refined, displacement-based theory, acknowledged for its effectiveness in enhancing the precision of 

displacements and stress assessments. The kinematic framework within this theory exceeds the complexity of HSDTs in existing 

literature. This is primarily because, upon expanding the exponential term into a power series, the kinematic characteristics of higher-

order theories are significantly considered. Unlike the sine function that encompasses solely odd powers, the exponential function 

incorporates both even and odd powers within its expansion[29] . 

 

2.2.6.  New Higher- Order Shear Deformation Theory 

 

This novel HSDT utilizes a set of shape functions that combine trigonometric, polynomial, and exponential functions, in contrast to 

the traditional use of only polynomial functions. The selected shape function aims to precisely represent the distribution of shear 

deformation throughout The plate thickness. Furthermore, this proposed shape function fulfills the conditions of zero shear stress on 

both the lower and upper surfaces of The plate, eliminating the need for considering shear correction factors [30]. 

 
2.2.7. New Sinusoidal Shear Deformation theory 

 

In the present work, a fresh sinusoidal shear deformation theory was introduced to examine the Large Amplitude Free Vibration of thick 

Laminated Composite Plates equipped with a Magnetorheological Core. This theory incorporated an undefined integral term to 

minimize the unknowns to just four, eliminating the need for shear correction factors. The efficacy and precision of this theory were 

validated through comparisons with existing solutions, affirming its high accuracy and efficiency. 
 

We define 𝜙𝑥
𝑖  and 𝜙𝑦

𝑖  as follows: 

 

𝜙𝑥
𝑖 (𝑥, 𝑦, 𝑡) = (

𝜕𝜃𝑖(𝑥,𝑦,𝑡)

𝜕𝑥
+
𝜕𝑤0

𝑖 (𝑥,𝑦,𝑡)

𝜕𝑥
)                                                                                                                                    (2) 

   𝜙𝑦
𝑖 (𝑥, 𝑦, 𝑡) = (

𝜕𝜃𝑖(𝑥,𝑦,𝑡)

𝜕𝑦
+
𝜕𝑤0

𝑖 (𝑥,𝑦,𝑡)

𝜕𝑦
)   



The proposed shear deformation theory introduces two derivative quantities, 
𝜕𝜃(𝑥,𝑦,𝑡)

𝜕𝑥
 and 

𝜕𝜃(𝑥,𝑦,𝑡)

𝜕𝑦
, resulting in only four unknown 

displacement functions. This approach reduces the number of unknowns compared to other Higher-order Shear Deformation Theories 

(HSDTs), which typically involve five to eight unknowns, thereby potentially lowering computational costs [31].In this investigation, 

an  inno va t ive  s inuso ida l  shear  de fo rma t io n  theory i s  d e r ived  b y e s t ab l i sh ing  the  fo l lo wing  co ndi t io ns :  

𝑓1(𝑧𝑖) = 𝑧  , 𝑓2(𝑧) =
ℎ √15

3𝜋
𝑠𝑖𝑛 (

𝜋𝑧

ℎ
)                                                                                                                                       (3)                                                                                                 

The innovative sinusoidal shear deformation theory meets requirements of The plate shear strains and stresses. The shear stress 

distribution must be parabolical over The plate thickness as the first condition. The second requirement is that the shear stresses and 

strains must be zero at all points on The plate free surfaces. Consequently, the proposed theory doesn't require shear correction factors, 

in contrast to FSDTs. Here, zi represents the vertical coordinate of face sheets (i = t, b), measured upward from the mid-plane of each 

face sheet The relations describing the movement of the face sheets are:[32] 

𝜀𝑥𝑥
𝑖 = 𝜀0𝑥𝑥

𝑖 + 𝑓1(𝑧)𝐿𝑥𝑥
𝑖 + 𝑓2(𝑧)𝑘𝑥𝑥

𝑖  ,  𝜀𝑦𝑦
𝑖 = 𝜀0𝑦𝑦

𝑖 + 𝑓1(𝑧)𝐿𝑦𝑦
𝑖 + 𝑓2(𝑧)𝑘𝑦𝑦 

𝑖 , 𝜀𝑧𝑧
𝑖 = 0 

𝛾𝑥𝑦
𝑖 = 2𝜀𝑥𝑦

𝑖 =𝛾0𝑥𝑦
𝑖 + 𝑓1(𝑧)𝐿𝑥𝑦

𝑖 + 𝑓2(𝑧)𝑘𝑥𝑦
𝑖  

𝛾𝑥𝑧
𝑖 = 2𝜀𝑥𝑧

𝑖 = 𝛾0𝑥𝑧
𝑖 +

𝜕𝑓1(𝑧)

𝜕𝑧𝑖
𝐺𝑥𝑧
𝑖 +

𝜕𝑓2(𝑧)

𝜕𝑧𝑖
𝑇𝑥𝑧
𝑖 𝑖)                ؛          , = 𝑡, 𝑏)                                                                     (4) 

𝛾𝑦𝑧
𝑖 = 2𝜀𝑦𝑧

𝑖 = 𝛾0𝑦𝑧
𝑖 +

𝜕𝑓1(𝑧)

𝜕𝑧𝑖
𝐺𝑦𝑧
𝑖 +

𝜕𝑓2(𝑧)

𝜕𝑧𝑖
𝑇𝑦𝑧
𝑖  

Where,  

𝜀0𝑥𝑥
𝑖 =

𝜕𝑢0
𝑖

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝑖

𝜕𝑥
)
2

,    𝜀0𝑦𝑦
𝑖 =

𝜕𝑣0
𝑖

𝜕𝑦
+
1

2
(
𝜕𝑤0

𝑖

𝜕𝑦
)
2

 , 𝛾0𝑥𝑦
𝑖 =

𝜕𝑣0
𝑖

𝜕𝑥
+
𝜕𝑢0

𝑖

𝜕𝑦
+
𝜕𝑤0

𝑖

𝜕𝑥
 
𝜕𝑤0

𝑖

𝜕𝑦
           

  𝛾0𝑥𝑧
𝑖 =

𝜕𝑤0
𝑖

𝜕𝑥
  ,  𝛾0𝑦𝑧

𝑖 =
𝜕𝑤0

𝑖

𝜕𝑦
 ,   𝐿𝑥𝑥

𝑖 =
𝜕2𝑤0

𝑖

𝜕𝑥2
,      𝑘𝑥𝑥

𝑖 =
𝜕𝜙𝑥

𝑖

𝜕𝑥
,   𝐿𝑦𝑦

𝑖 =
𝜕2𝑤0

𝑖

𝜕𝑦2
,      𝑘𝑦𝑦

𝑖 =
𝜕𝜙𝑦

𝑖

𝜕𝑦
,                                         (5) 

  𝐿𝑥𝑦
𝑖 = 2

𝜕2𝑊0
𝑖

𝜕𝑥𝜕𝑦
,       𝑘𝑥𝑦

𝑖 =
𝜕𝜙𝑥

𝑖

𝜕𝑦
+
𝜕𝜙𝑦

𝑖

𝜕𝑥
  , 𝐺𝑥𝑧

𝑖 =
𝜕𝑤0

𝑖

𝜕𝑥
  , 𝑇𝑥𝑧

𝑖 = 𝜙𝑥
𝑖  , 𝐺𝑦𝑧

𝑖 =
𝜕𝑤0

𝑖

𝜕𝑦
  , 𝑇𝑦𝑧

𝑖 = 𝜙𝑦
𝑖  

2.3. Displacement field for the thick core layer:  
 

𝑢𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0
𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐𝑢1

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
2𝑢2

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
3𝑢3

𝑐(𝑥, 𝑦, 𝑡), 

𝑣𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0
𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐𝑣1

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
2𝑣2

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
3𝑣3

𝑐(𝑥, 𝑦, 𝑡),                                                         (6) 

𝑤𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0
𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐𝑤1

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
2𝑤2

𝑐(𝑥, 𝑦, 𝑡). 

The kinematic connections governing the behavior of the core layer are:  



εxx
c =

∂uc

∂x
, εyy
c =

∂vc

∂y
 , εzz

c =
∂wc

∂z
 

𝛾𝑥𝑦
𝑐 = 2𝜀𝑥𝑦

𝑐 = 
𝜕𝑣𝑐

𝜕𝑥
+
𝜕𝑢𝑐

𝜕𝑦
   ,     𝛾𝑥𝑧

𝑐 = 2𝜀𝑥𝑧
𝑐 =

𝜕𝑤𝑐

𝜕𝑥
+
𝜕𝑢𝑐

𝜕𝑧
    ,    𝛾𝑦𝑧

𝑐 = 2𝜀𝑦𝑧
𝑐 = 

𝜕𝑤𝑐

𝜕𝑦
+
𝜕𝑣𝑐

𝜕𝑧
                                                    (7) 

The strains can be derived in relation to the displacement of the mid-plane by inserting equation (6) into relations (7), resulting in the 

following outcome: 

𝜀𝑥𝑥
𝑐 = (𝜀0𝑥𝑥 + 𝑧𝑐𝑥0𝑥𝑥 + 𝑧𝑐

2𝜀0𝑥𝑥
∗ + 𝑧𝑐

3𝑥0𝑥𝑥
∗ ) , 𝜀𝑦𝑦

𝑐 = (𝜀0𝑦𝑦 + 𝑧𝑐𝑥0𝑦𝑦 + 𝑧𝑐
2𝜀0𝑦𝑦
∗ + 𝑧𝑐

3𝑥0𝑦𝑦
∗ ) 

𝜀𝑧𝑧
𝑐 = 𝜀0𝑧𝑧 + 𝑧𝑐𝑥0𝑧𝑧 

𝛾𝑥𝑦
𝑐 = 𝜀0𝑥𝑦 + 𝑧𝑐𝑥0𝑥𝑦 + 𝑧𝑐

2𝜀0𝑥𝑦
∗ + 𝑧𝑐

3𝑥0𝑥𝑦
∗ + 𝜀0𝑦𝑥 + 𝑧𝑐𝑥0𝑦𝑥 + 𝑧𝑐

2𝜀0𝑦𝑥
∗ + 𝑧𝑐

3𝑥0𝑦𝑥
∗                                                    (8) 

𝛾𝑥𝑧
𝑐 = 𝜀0𝑥𝑧 + 𝑧𝑐𝑥0𝑥𝑧 + 𝑧𝑐

2𝜀0𝑥𝑧
∗ + 𝑧𝑐

3𝑥0𝑥𝑧
∗ + 𝜀1𝑥𝑧 + 𝑧𝑐𝑥1𝑥𝑧 + 𝑧𝑐

2𝜀1𝑥𝑧
∗   

𝛾𝑦𝑧
𝑐 = 𝜀0𝑦𝑧 + 𝑧𝑐𝑥0𝑦𝑧 + 𝑧𝑐

2𝜀0𝑦𝑧
∗ + 𝑧𝑐

3𝑥0𝑦𝑧
∗ + 𝜀1𝑦𝑧 + 𝑧𝑐𝑥1𝑦𝑧 + 𝑧𝑐

2𝜀1𝑦𝑧
∗  

Where: 

  𝜀0𝑥𝑥 =
𝜕𝑢0

𝑐

𝜕𝑥
,             𝜒0𝑥𝑥 =

𝜕𝑢1
𝑐

𝜕𝑥
     , 𝜀0𝑥𝑥

∗ =
𝜕𝑢2

𝑐

𝜕𝑥
,             𝜒0𝑥𝑥

∗ =
𝜕𝑢3

𝑐

𝜕𝑥
 , 𝜀0𝑦𝑦 =

𝜕𝑣0
𝑐

𝜕𝑦
, 

 𝜒0𝑦𝑦 =
𝜕𝑣1

𝑐

𝜕𝑦
     , 𝜀0𝑦𝑦

∗ =
𝜕𝑣2

𝑐

𝜕𝑦
,             𝜒0𝑦𝑦

∗ =
𝜕𝑣3

𝑐

𝜕𝑦
  , 𝜀0𝑧𝑧 = 𝑤1

𝑐,      𝜒0𝑧𝑧 = 2𝑤2
𝑐                    

  𝜀0𝑥𝑦 =
𝜕𝑣0

𝑐

𝜕𝑥
  , 𝜒0𝑥𝑦 =

𝜕𝑣1
𝑐

𝜕𝑥
 ,    𝜀0𝑥𝑦

∗ =
𝜕𝑣2

𝑐

𝜕𝑥
  ,     𝜒0𝑥𝑦

∗ =
𝜕𝑣3

𝑐

𝜕𝑥
 , 𝜀0𝑦𝑥 =

𝜕𝑢0
𝑐

𝜕𝑦
  ,    𝜒0𝑦𝑥 =

𝜕𝑢1
𝑐

𝜕𝑦
                                                   (9) 

 𝜀0𝑦𝑥
∗ =

𝜕𝑢2
𝑐

𝜕𝑦
  ,      𝜒0𝑦𝑥

∗ =
𝜕𝑢3

𝑐

𝜕𝑦
 , 𝜀0𝑥𝑧 =

𝜕𝑤0
𝑐

𝜕𝑥
  ,     𝜒0𝑥𝑧 =

𝜕𝑤1
𝑐

𝜕𝑥
 ,    𝜀0𝑥𝑧

∗ =
𝜕𝑤2

𝑐

𝜕𝑥
 , 𝜒0𝑥𝑧

∗ = 0  

   𝜀1𝑥𝑧 = 𝑢1
𝑐 ,       𝜒1𝑥𝑧 = 2𝑢2

𝑐  ,     𝜀𝑥𝑧
∗ = 3𝑢3

𝑐    𝜀0𝑦𝑧 =
𝜕𝑤0

𝑐

𝜕𝑦
  ,     𝜒0𝑦𝑧 =

𝜕𝑤1
𝑐

𝜕𝑦
 ,    𝜀0𝑦𝑧

∗ =
𝜕𝑤2

𝑐

𝜕𝑦
 

 𝜒0𝑥𝑦
∗ = 0 ,      𝜀1𝑦𝑧 = 𝑣1

𝑐 ,       𝜒1𝑦𝑧 = 2𝑣2
𝑐 ,     𝜀𝑦𝑧

∗ = 3𝑣3
𝑐 

 
If the bottom and top face sheets and core interfaces are bonded perfectly, the following compatibility conditions are obtained: 

  

{
 

 𝑢𝑐(𝑧 = 𝑧𝑐𝑖) = 𝑢0
𝑖 +

1

2
(−1)𝑘ℎ𝑖𝜙𝑥

𝑖

𝑣𝑐(𝑧 = 𝑧𝑐𝑖) = 𝑣0
𝑖 +

1

2
(−1)𝑘ℎ𝑖𝜙𝑦

𝑖

𝑤𝑐(𝑧 = 𝑧𝑐𝑖) = 𝑤0
𝑖

    {
𝐹𝑜𝑟 𝑖 = 𝑡 → (𝑘 = 𝑧𝑐𝑡؛1 =

ℎ𝑐

2
)

𝐹𝑜𝑟 𝑖 = 𝑏 → (𝑘 = 𝑧𝑐𝑏؛0 = −
ℎ𝑐

2
)
                                                            (10) 

Using (4) and (6) and simplifying, the compatibility conditions is represented as below: 

 



𝑢2
𝑐 =

2(𝑢0
𝑡+𝑢0

𝑏)−ℎ𝑡𝜙𝑥
𝑡+ℎ𝑏𝜙𝑥

𝑏−4𝑢0
𝑐

ℎ𝑐
2  , 𝑢3

𝑐 =
4(𝑢0

𝑡−𝑢0
𝑏)−2(ℎ𝑡𝜙𝑥

𝑡+ℎ𝑏𝜙𝑥
𝑏)−4ℎ𝑐𝑢1

𝑐

ℎ𝑐
3  

𝑣2
𝑐 =

2(𝑣0
𝑡+𝑣0

𝑏)−ℎ𝑡𝜙𝑦
𝑡+ℎ𝑏𝜙𝑦

𝑏−4𝑣0
𝑐

ℎ𝑐
2   , 𝑣3

𝑐 =
4(𝑣0

𝑡−𝑣0
𝑏)−2(ℎ𝑡𝜙𝑦

𝑡+ℎ𝑏𝜙𝑦
𝑏)−4ℎ𝑐𝑣1

𝑐 

ℎ𝑐
3                                                                         (11) 

𝑤1
𝑐 =

(𝑤0
𝑡+𝑤0

𝑏)

ℎ𝑐
  , 𝑤2

𝑐 =
2(𝑤0

𝑡+𝑤0
𝑏)−4𝑤0

𝑐

ℎ𝑐
2  

According to (11), there are five unknown elements in the core layer:  and  . Thus, the unknowns for a flat 

composite sandwich panel includes 15 items:  

{𝑢0
𝑡  , 𝑣0

𝑡 , 𝑤0
𝑡, 𝜓𝑥

𝑡 , 𝜓𝑦
𝑡 , 𝑢0

𝑏 , 𝑣0
𝑏 , 𝑤0

𝑏 , 𝜓𝑥
𝑏 , 𝜓𝑦

𝑏 , 𝑢0
𝑐  , 𝑢1

𝑐, 𝑣0
𝑐  , 𝑣1

𝑐, 𝑤0
𝑐} 

2.4. The stress resultants for the core  
 
The stress impacts the core in the this manner: 

  {

𝑁𝑥𝑥
𝑐

𝑁𝑦𝑦
𝑐

𝑁𝑥𝑦
𝑐
} = ∫ {

𝜎𝑥𝑥
𝑐

𝜎𝑦𝑦
𝑐

𝜎𝑥𝑦
𝑐
}

ℎ𝑐 2⁄

−ℎ𝑐 2⁄
𝑑𝑧𝑐  , {

𝑀𝑛𝑥𝑥
𝑐

𝑀𝑛𝑦𝑦
𝑐

𝑀𝑛𝑥𝑦
𝑐
} = ∫ 𝑧𝑐

𝑛 {

𝜎𝑥𝑥
𝑐

𝜎𝑦𝑦
𝑐

𝜎𝑥𝑦
𝑐
}

ℎ𝑐 2⁄

−ℎ𝑐 2⁄
𝑑𝑧𝑐 ,

{
 

 
𝑁𝑥𝑧
𝑐

𝑁𝑦𝑧
𝑐

𝑀𝑛𝑥𝑧
𝑐

𝑀𝑛𝑦𝑧
𝑐
}
 

 

= ∫ 𝑧𝑐
𝑛

{
 

 
𝜎𝑥𝑧
𝑐

𝜎𝑦𝑧
𝑐

𝑧𝑐
𝑛𝜎𝑥𝑧

𝑐

𝑧𝑐
𝑛𝜎𝑦𝑧

𝑐
}
 

 
ℎ𝑐 2⁄

−ℎ𝑐 2⁄
𝑑𝑧𝑐                            (12) 

     {𝑅𝑧
𝑐, 𝑀𝑧

𝑐} = ∫ (1, 𝑧𝑐)𝜎𝑧𝑧
𝑐 𝑑𝑧𝑐

ℎ𝑐 2⁄

−ℎ𝑐 2⁄
 ,                    𝑛 = 1,2,3                                                             

2.5. Resulting stress per unit length of the face sheets  

 
 The resultant stress per unit length of the face sheets is described as: 

{

𝑁𝑥𝑥
𝑖

𝑁𝑦𝑦
𝑖

𝑁𝑥𝑦
𝑖

} = ∫ {

𝜎𝑥𝑥
𝑖

𝜎𝑦𝑦
𝑖

𝜎𝑥𝑦
𝑖

}

ℎ𝑖 2⁄

−ℎ𝑖 2⁄

𝑑𝑧 , {

𝑀𝑥𝑥
𝑖

𝑀𝑦𝑦
𝑖

𝑀𝑥𝑦
𝑖

} = ∫ 𝑓1(𝑧){

𝜎𝑥𝑥
𝑖

𝜎𝑦𝑦
𝑖

𝜎𝑥𝑦
𝑖

}

ℎ𝑖 2⁄

−ℎ𝑖 2⁄

𝑑𝑧  , {

𝑃𝑥𝑥
𝑖

𝑃𝑦𝑦
𝑖

𝑃𝑥𝑦
𝑖

} = ∫ 𝑓2(𝑧){

𝜎𝑥𝑥
𝑖

𝜎𝑦𝑦
𝑖

𝜎𝑥𝑦
𝑖

}

ℎ𝑖 2⁄

−ℎ𝑖 2⁄

𝑑𝑧     

𝑁𝑥𝑧
𝑖 = ∫ 𝜎𝑥𝑧

𝑖 𝑑𝑧
ℎ𝑖 2⁄

−ℎ𝑖 2⁄
, 𝑅𝑥𝑧

𝑖  = ∫ (
𝑑𝑓1(𝑧)

𝑑𝑧
) 𝜎𝑥𝑧

𝑖 𝑑𝑧,
ℎ𝑖 2⁄

−ℎ𝑖 2⁄
𝑆𝑥𝑧
𝑖  = ∫ (

𝑑𝑓2(𝑧)

𝑑𝑧
) 𝜎𝑥𝑧

𝑖 𝑑𝑧,
ℎ𝑖 2⁄

−ℎ𝑖 2⁄
𝑖 = 𝑡, 𝑏                                                  (13) 

𝑁𝑦𝑧
𝑖  = ∫ 𝜎𝑦𝑧

𝑖 𝑑𝑧

ℎ𝑖 2⁄

−ℎ𝑖 2⁄

, 𝑅𝑦𝑧
𝑖  = ∫ (

𝑑𝑓1(𝑧)

𝑑𝑧
)𝜎𝑦𝑧

𝑖 𝑑𝑧,

ℎ𝑖 2⁄

−ℎ𝑖 2⁄

𝑆𝑦𝑧
𝑖  = ∫ (

𝑑𝑓2(𝑧)

𝑑𝑧
)𝜎𝑦𝑧

𝑖 𝑑𝑧,

ℎ𝑖 2⁄

−ℎ𝑖 2⁄

𝑖 = 𝑡, 𝑏 

 

2.6. Equations of Motion 

 
The sandwich panel motion relations were obtained by Hamilton's approach. 

It is presented analytically as:   

(14)                                                                                            ∫ 𝛿𝐿𝑑𝑡 = ∫ (𝛿𝐾 − 𝛿𝑈 + 𝛿𝑊𝑒𝑥𝑡)𝑑𝑡 = 0
𝑡

0

𝑡

0
  



Where,  and  present strain and kinetic energy variations. Besides, 𝛿𝑊𝑒𝑥𝑡   potential energy variation is produced by external 

forces and “t” denotes the duration between “t1 and t2” times, and “ ” shows the variation operator. Therefore, the primary variation 

equation of kinetic energy (assuming uniform conditions for displacement and velocity regarding time) is: 

 𝛿𝐾 = −∑ [∬ ∫ 𝜌𝑖(𝑢̈𝑖𝛿𝑢𝑖 + 𝑣̈𝑖𝛿𝑣𝑖 + 𝑤̈𝑖𝛿𝑤𝑖)𝑑𝑧𝑖 𝑑𝐴𝑖
ℎ𝑖 2⁄

−ℎ𝑖 2⁄𝐴𝑖
]𝑖=𝑡,𝑏,𝑐                                                                         (15) 

𝑑𝐴𝑐 = 𝑑𝑥𝑐𝑑𝑦𝑐,    𝑑𝐴𝑖 = 𝑑𝑥𝑖𝑑𝑦𝑖 ,    (𝑖 = 𝑡, 𝑏) 
 
The sandwich panel cases and total strain energy of the core are stated as follows:   

𝛿𝑈 = ∑ (∫(𝜎𝑥𝑥
𝑖 𝛿𝜀𝑥𝑥

𝑖 + 𝜎𝑦𝑦
𝑖 𝛿𝜀𝑦𝑦

𝑖 + 𝛾𝑥𝑦
𝑖 𝛿𝛾𝑥𝑦

𝑖 + 𝛾𝑥𝑧
𝑖 𝛿𝛾𝑥𝑧

𝑖 + 𝛾𝑦𝑧
𝑖 𝛿𝛾𝑦𝑧

𝑖 )𝑑𝑉𝑖
𝑉𝑖

 )

𝑖=𝑡,𝑏

 

+∫ (𝜎𝑥𝑥
𝑐 𝛿𝜀𝑥𝑥

𝑐 + 𝜎𝑦𝑦
𝑐 𝛿𝜀𝑦𝑦

𝑐 + 𝛾𝑥𝑦
𝑐 𝛿𝛾𝑥𝑦

𝑐 + 𝛾𝑥𝑧
𝑐 𝛿𝛾𝑥𝑧

𝑐 + 𝛾𝑦𝑧
𝑐 𝛿𝛾𝑦𝑧

𝑐 )𝑑𝑉𝑐𝑉𝑐
                                                                             (16) 

Where:  𝑑𝑉𝑐 = 𝑑𝐴𝑐𝑑𝑍𝑐 = 𝑑𝑥𝑐𝑑𝑦𝑐𝑑𝑧𝑐, 𝑑𝑉𝑖 = 𝑑𝐴𝑖𝑑𝑧𝑖 = 𝑑𝑥𝑖𝑑𝑦𝑖𝑑𝑧𝑖; (𝑖 = 𝑡, 𝑏)  
 

Ultimately, we must replace the kinetic energy fluctuations and system potentials with relations of strain-displacement and displacement 

fields. The motion equations are discovered by using the Hamilton's principle. Only one equation is used as an example due to the 

lengthy equations: 

𝛿𝑢0
𝑡 : 

 
𝜕𝑁𝑥𝑥

𝑡

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝑡

𝜕𝑦
+

2

ℎ𝐶
2

𝜕𝑀2𝑥𝑥
𝐶

𝜕𝑥
+

4

ℎ𝐶
3

𝜕𝑀3𝑥𝑦
𝐶

𝜕𝑦
+

2

ℎ𝐶
2

𝜕𝑀2𝑥𝑦
𝐶

𝜕𝑦
−
4𝑀1𝑥𝑧

𝐶

ℎ𝐶
2 −

12𝑀2𝑥𝑧
𝐶

ℎ𝐶
3 +

4

ℎ𝐶
3

𝜕𝑀3𝑥𝑥
𝐶

𝜕𝑥
=                                                            (17) 

(−
16𝐼5

𝑐

ℎ𝑐
5
−
8𝐼4

𝐶

ℎ𝑐
4
+
4𝐼3

𝐶

ℎ𝑐
3
+
2𝐼2

𝐶

ℎ𝑐
2
) 𝑢̈0

𝐶 + (
2𝐼3

𝐶

ℎ𝑐
2
−
8𝐼5

𝐶

ℎ𝑐
4
−
16𝐼6

𝐶

ℎ𝑐
5
+
4𝐼4

𝐶

ℎ𝑐
3
) 𝑢̈1

𝐶 + (
4𝐼4

𝐶

ℎ𝑐
4
−
16𝐼6

𝐶

ℎ𝑐
6
) 𝑢̈0

𝑏 + (
16𝐼6

𝐶

ℎ𝑐
6
+
4𝐼4

𝐶

ℎ𝑐
4
+
16𝐼5

𝐶

ℎ𝑐
5
+ 𝐼0

𝑡) 𝑢̈0
𝑡  

+ (
2𝐼4

𝐶ℎ𝑏
ℎ𝑐
4

−
8ℎ𝑏𝐼6

𝐶

ℎ𝑐
6
) ∅̈𝑥

𝑏 + (−
8ℎ𝑡𝐼5

𝐶

ℎ𝑐
5

+ 𝐼2
𝑡 −

2𝐼4
𝐶ℎ𝑡
ℎ𝑐
4
−
8ℎ𝑡𝐼6

𝐶

ℎ𝑐
6
) ∅̈𝑥

𝑡  + 𝐼1
𝑡𝑊̈0,𝑥

𝑡  

 
The core's moment of inertia is defined through the subsequent equations[35] : 

     𝐼𝑛
𝑐 = ∫ 𝜌𝑐𝑧𝑐

𝑛
ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐                                   n = 0,1, … ,6                                                                                                   (18)   

Additionally, the inertia moment of the face sheets is deduced from the following equations:      

𝐼0
𝑡 = ∫ 𝜌𝑡

ℎ𝑡
2
 

−
ℎ𝑡
2

𝑑𝑧𝑡  , 𝐼1
𝑡 = ∫ 𝜌𝑡

ℎ𝑡
2

−
ℎ𝑡
2

𝑓1(𝑧)𝑑𝑧𝑡  , 𝐼2
𝑡 = ∫ 𝜌𝑡

ℎ𝑡
2

−
ℎ𝑡
2

𝑓2(𝑧)𝑑𝑧𝑡  , 𝐼3
𝑡 = ∫ 𝜌𝑡

ℎ𝑡
2

−
ℎ𝑡
2

𝑓1(𝑧)𝑓2(𝑧)𝑑𝑧𝑡                                            (19) 

𝐼4
𝑡 =  ∫ 𝜌𝑡

ℎ𝑡
2

−
ℎ𝑡
2

[𝑓2(𝑧𝑖)]
2𝑑𝑧𝑡             

 𝐼0
𝑏 = ∫ 𝜌𝑏

ℎ𝑏
2

−
ℎ𝑏
2

𝑑𝑧𝑏 , 𝐼1
𝑏 = ∫ 𝜌𝑏

ℎ𝑏
2

−
ℎ𝑏
2

𝑓1(𝑧)𝑑𝑧𝑏 , 𝐼2
𝑏 = ∫ 𝜌𝑏

ℎ𝑏
2

−
ℎ𝑏
2

𝑓2(𝑧)𝑑𝑧𝑏 , 𝐼3
𝑏 = ∫ 𝜌𝑏

ℎ𝑏
2

−
ℎ𝑏
2

𝑓1(𝑧)𝑓2(𝑧)𝑑𝑧𝑏  



, 𝐼4
𝑏 = ∫ 𝜌𝑏

ℎ𝑏
2

−
ℎ𝑏
2

[𝑓2(𝑧)]
2𝑑𝑧𝑏   

2.7. Lamina Constitutive Relations 
 

2.7.1. Lamina Constitutive Relations for face sheets 
 
The linear constitutive relations in the principal material coordinates for the kth orthotropic lamina are as below:  

[

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

] = [

Q11    Q12    Q16 
Q12    Q22    Q26 
Q16    Q26    Q66

]

(𝑘)

[

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

]    , [
𝜎𝑦𝑧
𝜎𝑥𝑧

] = [
Q44    Q45 
Q45    Q55 

]
(𝑘)

[
𝜀𝑦𝑧
𝜀𝑥𝑧
]                                                                  (20) 

  

Where 𝑄𝑖𝑗
(𝑘)

 denotes the plane stress-reduced stiffness.  Also, for 𝑄𝑖𝑗  of each layer, (19) is present: 

𝑄11 =
𝐸1

1−𝑣12𝑣21
, 𝑄12 =

𝑣12𝐸1

1−𝑣12𝑣21
, 𝑄22 =

𝐸2

1−𝑣12𝑣21
  , 𝑄66 = 𝐺12, 𝑄44 = 𝐺23, 𝑄55 = 𝐺13                                                   (21)                 

2.7.2. Lamina Constitutive Relations for the core material 

Hooke's Law expressions for the core layer are stated as: 

𝜎𝑥𝑥
𝐶 = 𝐸𝑥𝑥

𝐶 (𝑧)𝜖𝑥𝑥
𝐶 = 𝐸𝑥𝑥

𝐶 (𝑧) ((
𝜕𝑢0

𝑐

𝜕𝑥
+ 𝑧𝑐

𝜕𝑢1
𝑐

𝜕𝑥
+ 𝑧𝑐

2
𝜕𝑢2

𝑐

𝜕𝑥
+ 𝑧𝑐

3
𝜕𝑢3

𝑐

𝜕𝑥
))                   

𝜎𝑦𝑦
𝐶 = 𝐸𝑦𝑦

𝐶 (𝑧)𝜖𝑦𝑦
𝐶 = 𝐸𝑦𝑦

𝐶 (𝑧) ((
𝜕𝑣0

𝑐

𝜕𝑦
+ 𝑧𝑐

𝜕𝑣1
𝑐

𝜕𝑦
+ 𝑧𝑐

2 𝜕𝑣2
𝑐

𝜕𝑦
+ 𝑧𝑐

3 𝜕𝑣3
𝑐

𝜕𝑦
))              

𝜎𝑧𝑧
𝐶 = 𝐸𝑧𝑧

𝐶 (𝑧)𝜖𝑧𝑧
𝐶 = 𝐸𝑧𝑧

𝐶 (𝑧) (
𝜕𝑤𝑐

𝜕𝑧
) = 𝐸𝑧𝑧

𝐶 (𝑧)(𝑤1
𝑐 + 𝑧𝑐2𝑤2

𝑐)                                                                                                        (22) 

 𝜎𝑥𝑦
𝐶 = 𝐺𝑥𝑦

𝐶 (𝑧)𝛾
𝑥𝑦
𝐶 = 𝐺𝑥𝑦

𝐶 (𝑧) ((
𝜕𝑣0

𝑐

𝜕𝑥
+ 𝑧𝑐

𝜕𝑣1
𝑐

𝜕𝑥
+ 𝑧𝑐

2
𝜕𝑣2

𝑐

𝜕𝑥
+ 𝑧𝑐

3
𝜕𝑣3

𝑐

𝜕𝑥
+
𝜕𝑢0

𝑐

𝜕𝑦
+ 𝑧𝑐

𝜕𝑢1
𝑐

𝜕𝑦
+ 𝑧𝑐

2
𝜕𝑢2

𝑐

𝜕𝑦
+ 𝑧𝑐

3
𝜕𝑢3

𝑐

𝜕𝑦
 ))                

𝜎𝑥𝑧
𝐶 = 𝐺𝑥𝑧

𝐶 (𝑧)𝛾𝑥𝑧
𝐶 = 𝐺𝑥𝑧

𝐶 (𝑧) (
𝜕𝑤𝑐
𝜕𝑥

+
𝜕𝑢𝑐
𝜕𝑧
) = 𝐺𝑥𝑧

𝐶 (𝑧) (
𝜕𝑤0

𝑐

𝜕𝑥
+ 𝑧𝑐

𝜕𝑤1
𝑐

𝜕𝑥
+ 𝑧𝑐

2
𝜕𝑤2

𝑐

𝜕𝑥
+ 𝑢1

𝑐 + 𝑧𝑐2𝑢2
𝑐 + 𝑧𝑐

23𝑢3
𝑐 )                    

 𝜎𝑦𝑧
𝐶 = 𝐺𝑦𝑧

𝐶 (𝑧)𝛾𝑦𝑧
𝐶 = 𝐺𝑦𝑧

𝐶 (𝑧) (
𝜕𝑤𝑐

𝜕𝑦
+

𝜕𝑣𝑐

𝜕𝑧
) = 𝐺𝑦𝑧

𝐶 (𝑧) (
𝜕𝑤0

𝑐

𝜕𝑦
+ 𝑧𝑐

𝜕𝑤1
𝑐

𝜕𝑦
+ 𝑧𝑐

2 𝜕𝑤2
𝑐

𝜕𝑦
+ 𝑣1

𝑐 + 𝑧𝑐2𝑣2
𝑐 + 𝑧𝑐

23𝑣3
𝑐)                    

Stress resultants per unit length for the core layer are stated as follows: 

𝑁𝑥𝑥
𝐶 = ∫ 𝜎𝑥𝑥𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝐸𝑥𝑥
𝑐

ℎ𝑐
2

−
ℎ𝑐
2

(𝑍) ((
𝜕𝑢0

𝑐

𝜕𝑥
+ 𝑧𝑐

𝜕𝑢1
𝑐

𝜕𝑥
+ 𝑧𝑐2

𝜕𝑢2
𝑐

𝜕𝑥
+ 𝑧𝑐3

𝜕𝑢3
𝑐

𝜕𝑥
))𝑑𝑧𝑐          



𝑁𝑦𝑦
𝐶 = ∫ 𝜎𝑦𝑦

𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝐸𝑦𝑦
𝑐

ℎ𝑐
2

−
ℎ𝑐
2

(𝑍) ((
𝜕𝑣0

𝑐

𝜕𝑦
+𝑧𝑐

𝜕𝑣1
𝑐

𝜕𝑦
+𝑧𝑐2

𝜕𝑣2
𝑐

𝜕𝑦
+ 𝑧𝑐3

𝜕𝑣3
𝑐

𝜕𝑦
))𝑑𝑧𝑐                     

𝑁𝑥𝑦
𝐶 = ∫ 𝜎𝑥𝑦

𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝐺𝑥𝑦
𝐶 (𝑧)

ℎ𝑐
2

−
ℎ𝑐
2

((
𝜕𝑣0

𝑐

𝜕𝑥
+ 𝑧𝑐

𝜕𝑣1
𝑐

𝜕𝑥
+ 𝑧𝑐

2
𝜕𝑣2

𝑐

𝜕𝑥
+ 𝑧𝑐

3
𝜕𝑣3

𝑐

𝜕𝑥
+
𝜕𝑢0

𝑐

𝜕𝑦
+ 𝑧𝑐

𝜕𝑢1
𝑐

𝜕𝑦
+ 𝑧𝑐

2
𝜕𝑢2

𝑐

𝜕𝑦
+ 𝑧𝑐

3
𝜕𝑢3

𝑐

𝜕𝑦
 ))𝑑𝑧𝑐                 

𝑀𝑛𝑥𝑥
𝐶 = ∫ 𝑍𝑐

𝑛𝜎𝑥𝑥
𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝑍𝑐
𝑛𝐸𝑥𝑥

𝑐

ℎ𝑐
2

−
ℎ𝑐
2

(𝑧) ((
𝜕𝑢0

𝑐

𝜕𝑥
+ 𝑧𝑐

𝜕𝑢1
𝑐

𝜕𝑥
+ 𝑧𝑐

2
𝜕𝑢2

𝑐

𝜕𝑥
+ 𝑧𝑐

3
𝜕𝑢3

𝑐

𝜕𝑥
))  𝑑𝑧𝑐 

𝑀𝑛𝑦𝑦
𝐶 = ∫ 𝑍𝑐

𝑛𝜎𝑦𝑦
𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝑍𝑐
𝑛𝐸𝑦𝑦

𝑐
ℎ𝑐
2

−
ℎ𝑐
2

(𝑧) ((
𝜕𝑣0

𝑐

𝜕𝑦
+ 𝑧𝑐

𝜕𝑣1
𝑐

𝜕𝑦
+ 𝑧𝑐

2 𝜕𝑣2
𝑐

𝜕𝑦
+ 𝑧𝑐

3 𝜕𝑣3
𝑐

𝜕𝑦
)) 𝑑𝑧𝑐                                                                                                            (23) 

𝑀𝑛𝑥𝑦
𝐶 = ∫ 𝑍𝑐

𝑛𝜎𝑥𝑦
𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝑍𝑐
𝑛𝐺𝑥𝑦

𝑐

ℎ𝑐
2

−
ℎ𝑐
2

(𝑍)((
𝜕𝑣0

𝑐

𝜕𝑥
+ 𝑧𝑐

𝜕𝑣1
𝑐

𝜕𝑥
+ 𝑧𝑐

2 𝜕𝑣2
𝑐

𝜕𝑥
+ 𝑧𝑐

3 𝜕𝑣3
𝑐

𝜕𝑥
+
𝜕𝑢0

𝑐

𝜕𝑦
+ 𝑧𝑐

𝜕𝑢1
𝑐

𝜕𝑦
+ 𝑧𝑐

2 𝜕𝑢2
𝑐

𝜕𝑦
+ 𝑧𝑐

3 𝜕𝑢3
𝑐

𝜕𝑦
 ))𝑑𝑧𝑐   

𝑁𝑥𝑧
𝐶 = ∫ 𝜎𝑥𝑧

𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝐺𝑥𝑧
𝑐

ℎ𝑐
2

−
ℎ𝑐
2

(𝑍) (
𝜕𝑤0

𝑐

𝜕𝑥
+ 𝑧𝑐

𝜕𝑤1
𝑐

𝜕𝑥
+ 𝑧𝑐2

𝜕𝑤2
𝑐

𝜕𝑥
+𝑢1

𝑐 +𝑧𝑐2𝑢2
𝑐 +𝑧𝑐23𝑢3

𝑐  )𝑑𝑍𝑐                                 

𝑁𝑦𝑧
𝐶 = ∫ 𝜎𝑦𝑧

𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝐺𝑦𝑧
𝑐

ℎ𝑐
2

−
ℎ𝑐
2

(𝑍) (
𝜕𝑤0

𝑐

𝜕𝑦
+ 𝑧𝑐

𝜕𝑤1
𝑐

𝜕𝑦
+ 𝑧𝑐2

𝜕𝑤2
𝑐

𝜕𝑦
+𝑣1

𝑐 +𝑧𝑐2𝑣2
𝑐 +𝑧𝑐23𝑣3

𝑐)𝑑𝑍𝑐                                 

𝑀𝑛𝑥𝑧
𝐶 = ∫ 𝑍𝐶

𝑛𝜎𝑥𝑧
𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝑍𝐶
𝑛𝐺𝑥𝑧

𝑐

ℎ𝑐
2

−
ℎ𝑐
2

(𝑍) (
𝜕𝑤0

𝑐

𝜕𝑥
+ 𝑧𝑐

𝜕𝑤1
𝑐

𝜕𝑥
+ 𝑧𝑐2

𝜕𝑤2
𝑐

𝜕𝑥
+𝑢1

𝑐 +𝑧𝑐2𝑢2
𝑐 +𝑧𝑐23𝑢3

𝑐  )𝑑𝑍𝑐               

𝑀𝑛𝑦𝑧
𝐶 = ∫ 𝑍𝐶

𝑛𝜎𝑦𝑧
𝑐

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧𝑐 = ∫ 𝑍𝐶
𝑛𝐺𝑦𝑧

𝑐

ℎ𝑐
2

−
ℎ𝑐
2

(𝑍) (
𝜕𝑤0

𝑐

𝜕𝑦
+ 𝑧𝑐

𝜕𝑤1
𝑐

𝜕𝑦
+ 𝑧𝑐2

𝜕𝑤2
𝑐

𝜕𝑦
+𝑣1

𝑐 +𝑧𝑐2𝑣2
𝑐 + 𝑧𝑐23𝑣3

𝑐)𝑑𝑍𝑐                

𝑅𝑧
𝑐 = ∫ 𝜎𝑧𝑧

𝐶 𝑑𝑍𝑐 = ∫ 𝐸𝑧𝑧
𝐶 (𝑍)𝜖𝑧𝑧

𝐶 𝑑𝑍𝑐

ℎ𝑐
2

−
ℎ𝑐
2

ℎ𝑐
2

−
ℎ𝑐
2

= ∫ 𝐸𝑧𝑧
𝐶
(𝑧)(𝑤1

𝑐 +𝑧𝑐2𝑤2
𝑐)𝑑𝑍𝑐

ℎ𝑐
2

−
ℎ𝑐
2

                                                                       

𝑀𝑧
𝑐 = ∫ 𝑍𝑐 𝜎𝑧𝑧

𝐶 𝑑𝑍𝑐

ℎ𝑐
2

−
ℎ𝑐
2

= ∫ 𝑍𝑐𝐸𝑧𝑧
𝐶 (𝑍)𝜖𝑧𝑧

𝐶 𝑑𝑍𝑐

ℎ𝑐
2

−
ℎ𝑐
2

= ∫ 𝑍𝑐𝐸𝑧𝑧
𝐶
(𝑧)(𝑤1

𝑐 +2𝑧𝑐𝑤2
𝑐)𝑑𝑍𝑐

ℎ𝑐
2

−
ℎ𝑐
2

                                               

 
The thick and multi-layered core layer constitutive relations connected to face sheets are stated as below given in-plane displacements 

by incorporating relations (13) and (12) and using relation (6). The Appendices A, B, and C contain the most important equations due 

to the abundance of equations. 

2.8. Model of MR material: 

In the period before yielding, the MR material exhibits viscoelastic behavior, elucidated through the complex modulus 

𝐺 = 𝐺′ + i𝐺" 

 
where 𝐺′ denotes storage modulus of the MR fluid, associated with to the average energy stored per unit volume of the material in a 

deformation cycle, and 𝐺" represents the loss modulus, which is a criterion of the energy dissipated per unit volume of the material in a 

cycle. The storage and loss moduli of the MR fluid were calculated for various magnetic field strengths (0, 100, 200, 300, 450, 500, and 

600 G). Both moduli were represented by second-order polynomial functions relative to the field intensity[33]. 

 



𝐺′(β) = −3.3691β2 + 4.9975 × 103β + 0.873 × 106                                                  

𝐺"(β) = −0.9β2 + 0.8124 × 103β + 0.1855 × 106                                                                                                   (24) 
 

𝐺(β) = 𝐺′(β) + i𝐺"(β) 
 
where β shows the magnetic field’s intensityin Gauss. 

 

 

no normal stress is present in the MR layer and only transverse shear stresses exist:  

 

By placing relations (8) and (9) in the Hooke's Law expressions: 

𝜎𝑥𝑧
𝑐 = 𝐺(𝐵)𝑥𝑧

𝑐 𝛾𝑥𝑧
𝑐 = 𝐺(𝐵)𝑥𝑧

𝑐 [
𝜕𝑤0

𝐶

𝜕𝑥
+ 𝑧

𝜕𝑤1
𝐶

𝜕𝑥
+ 𝑧2

𝜕𝑤2
𝐶

𝜕𝑥
] + 𝐺(𝐵)𝑥𝑧

𝑐 [𝑢1
𝑐 + 2𝑧𝑢2

𝑐 + 3𝑧2𝑢3
𝑐]                                       (25)    

𝜎𝑦𝑧
𝑐 = 𝐺(𝐵)𝑦𝑧

𝑐 𝛾𝑦𝑧
𝑐 = 𝜎𝑦𝑧

𝑐 [
𝜕𝑤0

𝐶

𝜕𝑦
+ 𝑧

𝜕𝑤1
𝐶

𝜕𝑦
+ 𝑧2

𝜕𝑤2
𝐶

𝜕𝑦
] + 𝐺(𝐵)𝑦𝑧

𝑐 [𝑣1
𝑐 + 2𝑧𝑣2

𝑐 + 3𝑧2𝑣3
𝑐]                                              (26) 

The anticipated reactions of the connection comply with the stipulated simply supported boundary conditions, as indicated in the 

subsequent relationships: 

  

[
 
 
 
 
 
 
 
 𝑢0

𝑗(𝑥, 𝑦, 𝑡)

𝑣0
𝑗(𝑥, 𝑦, 𝑡)

𝑤0
𝑗(𝑥, 𝑦, 𝑡)

𝜃𝑗(𝑥, 𝑦, 𝑡)

𝑢𝑘
𝑐(𝑥, 𝑦, 𝑡)

𝑣𝑘
𝑐(𝑥, 𝑦, 𝑡)

𝑤0
𝑐(𝑥, 𝑦, 𝑡)]

 
 
 
 
 
 
 
 

= ∑ ∑

[
 
 
 
 
 
 
 
 𝑈0𝑚𝑛

𝑗
cos (𝛼𝑚𝑥)𝑠𝑖𝑛(𝛽𝑛𝑦)

𝑉0𝑚𝑛
𝑗
sin (𝛼𝑚𝑥)𝑐𝑜𝑠(𝛽𝑛𝑦)

𝑊0𝑚𝑛
𝑗
sin (𝛼𝑚𝑥)𝑠𝑖𝑛(𝛽𝑛𝑦)

𝛳0𝑚𝑛
𝑗

sin (𝛼𝑚𝑥)𝑠𝑖𝑛(𝛽𝑛𝑦)

𝑈𝑘𝑚𝑛
𝑐 cos (𝛼𝑚𝑥)𝑠𝑖𝑛(𝛽𝑛𝑦)

𝑉𝑘𝑚𝑛
𝑐 sin (𝛼𝑚𝑥)𝑐𝑜𝑠(𝛽𝑛𝑦)

𝑊𝑙𝑚𝑛
𝑗
sin (𝛼𝑚𝑥)𝑠𝑖𝑛(𝛽𝑛𝑦)]

 
 
 
 
 
 
 
 

∞
𝑚=1

∞
𝑛=1 𝑒𝑖𝜔𝑡,    (𝑘 = 0,1,2,3), (𝑙 = 0,1,2)                               (27)    

Where  𝛼m =
mπ

a
  and  𝛽𝑛 =

nπ

b
 

In equation (27), 𝑊𝑙𝑚𝑛
𝑗
, 𝑉𝑘𝑚𝑛

𝑐 , 𝑈𝑘𝑚𝑛
𝑐 , 𝛳0𝑚𝑛

𝑗
,𝑊0𝑚𝑛

𝑗
, 𝑈0𝑚𝑛

𝑗
, 𝑉0𝑚𝑛

𝑗
and Wlmn

j
, denote the Fourier  

coefficients and “n” and “m” represent half wave numbers along “y” and “x” directions. The nonlinear ordinary differential equation is 

derived by inserting equations (27) into the equations of motion using displacements and imposing Galerkin’s method. Solving the 

motion equations involves isolating each equation for the nonlinear ordinary differential by focusing on individual unknowns: 

 

{𝑈0𝑚𝑛
𝑡 , 𝑈0𝑚𝑛

𝑏 ,𝑉0𝑚𝑛
𝑡 ,𝑉0𝑚𝑛

𝑏 ,𝑊0𝑚𝑛
𝑡 , 𝑊0𝑚𝑛

𝑏 , 𝜃0𝑚𝑛
𝑡 , 𝜃𝑚𝑛

𝑏 , 𝑈0𝑚𝑛
𝑐 ,𝑉0𝑚𝑛

𝑐 , 𝑢1𝑚𝑛
𝑐 , 𝑉0𝑚𝑛

𝑐 , 𝑊0𝑚𝑛
𝑐 } 

 
All time-dependent variables of relations (24) are determined by the equation of motion, concerning 𝑤(𝑡), because transverse 

oscillations are taken into account in this article (t). The nonlinear equation of motion has the following representation in symbols:  

𝑤̈(𝑡) +𝜔𝐿
2𝑤(𝑡) + 𝛼2𝑤(𝑡)

2 + 𝛼3𝑤(𝑡)
3 = 0                                                                                                               (28)        

In this relation, 𝛼2 and 𝛼3 coefficient of nonlinear stiffness and 𝜔𝐿 denotes the natural linear frequency 

2.9. Solving Equation of Motion 
  
The resulting nonlinear equation of motion (28) is tackled by perturbation methods such as the harmonic balance technique, as 

elucidated in [34].   

 

 



2.10. Hardening/Softening Behavior in Nonlinear Oscillations 

 
Considering [35], the following relation is used to obtain effective nonlinearity coefficient δ: 

δ = 
10𝑎2

2−9𝑎3𝜔𝐿
2

24𝜔𝐿
2                                                                                                                                                 (29) 

Thus, “δ” denotes the extent of the resonance curves bending. With δ > 0, The frequency response curves shift to right when the effective 

nonlinearity nature transforms into hardening. On the contrary, with δ<0, frequency-response curves curve to left as the effective 

nonlinearity shifts towards a softening type. Moreover, with δ = 0, the frequency-response curves show no bending either to the left or 

right, indicating that by the second approximation, there is a linear system response.  

 Based on equation (28), the quadratic nonlinearity exhibits a softening impact. When  is positive, effective nonlinearity "δ" can be 

either positive or negative, depending on the comparative sizes of “ ” and “ ”. 

 

3. FINDINGS AND DISCUSSION  

 

3.1. Validation of the Equations  
 

Because no study was found on the nonlinear vibrations of thick sandwich panels with MR core to date, it is necessary to compare the 

result of reducing the MR layer thickness —or, more accurately, the panel without the MR layer—with the current theory and the 

sources listed in table 2 in order to determine whether the modeling done for the thick sandwich panel was accurate. 

 

The subsequent instances validate our research methodology. 

  

Example: The investigation into the nonlinear free vibration of a flat rectangular panel lacking the MR layer with SSSS boundary 

conditions.  

 

Here, a flat square panel devoid of a core was examined, and the outcomes of this research were contrasted with another study's findings. 

All mechanical specifications are taken from reference [10]. The results of these references are for a four-layer rectangular sandwich 

sheet and were obtained using the finite element approach. In the investigated problem, the porcelain layer is [0,90,90,0].   

 

The data in Table 2 compares the outcomes of the present theory utilizing harmonic balance and von Karman's nonlinear strains 

approaches with the results derived from alternative plate theories and nonlinear strains. 

Table 2. Nonlinear frequency ratio for  square sandwich panel without MR layer obtained by Singh’s results [4], Lal et al [10], 

Kumar et al.[38] and Chien’s results [36] with those obtained in present model. 

 
This table clearly shows that there is excellent convergence amongst the answers. 

 

 

 

 

 

 

𝐴𝑅 = 𝑤𝑚𝑎𝑥/ℎ 

Amplitude of 

vibration/h 

𝜔𝑁𝐿/𝜔𝐿 

Present 

model 

𝜔𝑁𝐿/𝜔𝐿 

Singh’s results 

[4] 

𝜔𝑁𝐿/𝜔𝐿 

Lal et al.[10] 

𝜔𝑁𝐿/𝜔𝐿 

Chien’s 

results [39] 

𝜔𝑁𝐿/𝜔𝐿 

 Kumar et al. 

results [38] 

𝜔𝑁𝐿/𝜔𝐿 

Chien’s results  

Classical plate 

theory 

[39] 

0.3 1.1110 1.0796 1.0731 1.0988 1.18 1.0762 

0.6 1.3919 1.2867 1.2859 1.3622 1.61 1.2752 

0.9 1.7634 1.5691 1.5650 1.7377 2.16 1.5534 

 



Table 3. The comparison of nonlinear frequency ratio & modal loss factor  for a square sandwich  panel with MR core and without 

MR layer .The lay-up sequences for face sheets are [0/90/0/core/0/90/0] and, β = 400, ℎ / a = 10. 

 

According to Table 3, it is observed that the use of magneto-rheological core reduces the vibrations of the sandwich panel by 21%. 

3.2. Impact of Hardening/Softening Behavior in Nonlinear Vibrations  
 
Table 4 indicates the mechanical properties of the face sheets concerning the MR core.  

 

Table 4. Geometrical and mechanical characteristics of the composite sandwich panel with MR core and multi-layer face sheets [37]. 

Geometry Laminate face sheets  MR Core 

a=0.3m ρ =1627 Kg/m3 𝜌 =3500 Kg/m3 

b=0.3m 𝐸1=131 GPa , 𝐸2=𝐸3=10.34 GPa 𝐺12 = 𝐺13 =𝐺23= 𝐺 = 𝐺′ + i𝐺" 

     ℎ𝑐 = 1mm 𝐺12 = 𝐺23=6.895 GPa , 𝐺13 = 6.205 GPa 𝐺′= -3.3691 β 2+4.9975×103 β +0.873×106  

 ℎ𝑡=ℎ𝑏=1 mm 𝑣12 = 𝑣13 = 0.22, 𝑣23=0.49 𝐺"=-0.9 β 2+0.8124×103 β +0.1855×106 

 

 
Table 5. The Values of 𝑎3 and 𝑎2 for flat sandwich panel with aluminum face sheet and MR core based on new sinusoidal shear 

deformation theory. The lay-up sequences for face sheets are 

[0/90/0/core/0/90/0] and β =600 G, a/b = 1, ℎ𝑐/ℎ𝑡 = 1, m, n=1. 
 

Magnetic Field Strengths  Effective Nonlinearity Coefficient 

 β =600 G 𝑎2 = −1.2256 × 10−8 𝑎3 = 1.2214 × 1011 

 
According to the information provided in Table 4, the impact of hardening effects surpassed that of softening effects significantly. 

 

3.3. Discussion and numerical results about nonlinear free vibrations 

 
This section examines the nonlinear free vibrations of a sandwich panel made of composite face sheets and an MR core as well as the 

impacts of varying the MR layer's thickness, aspect ratio, and magnetic field intensity on the sandwich panel's natural frequencies and 

modal loss factor. 

 

 

 

3.3.1.  Impact of the magnetic field intensity 
The study examines the impact of magnetic field intensity loss factors and on natural frequencies of a laminated composite MR fluid 

sandwich plate under simply supported end conditions (SSSS) along all plate edges. The obtained results for the first modes are 

illustrated in Figures 3 and 4. The nonlinear frequencies show a decline as the magnetic field intensifies. Regarding the loss factor, it is 

calculated as the ratio between the square of the imaginary component of the complex natural frequency and the real component. Overall, 

there's a consistent rise in the loss factors as the magnetic field strength increases. 

𝐴𝑅 = 𝑤𝑚𝑎𝑥/ℎ 

Amplitude of 

vibration/h 

𝜔𝑁𝐿/𝜔𝐿 

Present model 

𝜂𝑣𝑁𝐿/𝜂𝑣𝐿 

Present model 

𝜔𝑁𝐿/𝜔𝐿 

Present model 
Without MR layer 

𝜂𝑣𝑁𝐿/𝜂𝑣𝐿 

Present model 
Without MR layer 

0.3 1.1367 0.7734 0.9940 0.9972 

0.6 1.4727 0.4604 0.9761 0.9887 

0.9 1.9055 0.2749 0.9455 0.9739 

1.2 2.3828 0.1758 0.9015 0.9513 

1.5 2.8827 0.1201 0.8423 0.9186 

2 3.7412 0.0713 0.7026 0.8300 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The graphical representations depict the nonlinear frequency ratio variations across the sheet concerning various magnetic 

field intensities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Diagrammatic changes damping coefficient with different Magnetic fields . 

3.3.2. Impact of the MR fluid layer thickness 

 
The study explores how changes in the thickness of the MR fluid layer affect the loss factors and nonlinear frequencies in a sandwich 

plate configuration ([0/90/0/ MR fluid /0/90/0]) under SSSS end conditions and a magnetic field of 450 G. Figure 5 illustrates the 

outcomes, showing a decrease in the nonlinear natural frequency as the MR fluid layer thickness rises. Such change may be due to a 

relatively greater shift in the structure's mass compared to its stiffness with increasing MR fluid layer thickness. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Diagrams of the first nonlinear changes of the sheet in varying ratios of the core to sheet thickness . 

(β =450 G, a/b = 1, ℎ𝑐/ℎ𝑡 = 1, m, n=1). 

 

3.3.3.  The impact of aspect ratio on the Nonlinear Frequency ratio 
  
Figure 6 presents graphic changes in initial nonlinear frequency of a flat sandwich plate containing an MR core concerning different 

coefficients of aspect ratio, each associated with varying magnetic field intensities. As The plate dimensional ratio rises, indicating a 

thinner structure, the vibration amplitude proportionally grows. From the observations in Figure 6, it's evident that as aspect ratio 

increases, the sheet’s natural frequency also rises. Such growth in the aspect ratio leads sheet toward a beam-like state, enhancing the 

transverse stiffness of the panel and consequently elevating the natural frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 6. Diagram of the nonlinear frequency ratio variations of the sheet vs. magnetic field intensity for different aspect ratios.  

(β =400 G, a/b = 1, ℎ𝑐/ℎ𝑡 = 1, m, n=1) 
 

 



 

3.3.4. Impact of Length-to-Thickness Ratio on the Nonlinear Frequency ratio 

 
Figure 7,8 indicates the diagrams of the nonlinear frequency ratio and modal loss factor of the flat sandwich panel with an MR core 

based on the ratio of length to thickness (ℎ𝑐/ℎ𝑡=1, a/b =1, β =300 G).  

 

With the increase in the sheet length to thickness  ratio, the sheet’s nonlinear frequency has decreased. With increasing the ratio, the 

sheet gets thinner, resulting in reduced stiffness. Consequently, adjusting this parameter enables obtaining the nonlinear frequency 

within the desired range. Moreover, the modal loss factor ratio diminishes as the vibration amplitude decreases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. The variations in nonlinear frequency ratio of the sheet for varying ratios of length to thickness. ℎ𝑐/ℎ𝑡=1, a/b =1, β =300 G 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. The modal loss factor ratio variations of the sheet for varying length to thickness ratios. ℎ𝑐/ℎ𝑡=1, a/b =1, β =300 G 

 

 

 

 



HIGHLIGHTS 

 

For controlling the nonlinear vibration behavior in sandwich panel: 

 
• By boosting the magnetic field's intensity, the sandwich panel’s nonlinear frequency is reduced. 

• The panel's nonlinear frequency rises as the aspect ratio is increased. 

• As the ratio of length to thickness increases, the nonlinear frequency declines. 

• With the application of damping, the vibration amplitude consistently diminishes with the escalation of magnetic field intensity. 

• With increasing the panel's ratio, it gets thinner, leading to a gradual increase in the vibration's amplitude. 

• The nonlinear to linear frequency ratio within the MR core initially rises, then falls in line with rises in core thickness. 

• The hardening behavior increases together with the thickness of the sandwich panel. 

 

 

4. CONCLUSIONS  

 
The equations governing the system and boundary conditions were derived using Hamilton’s principle. We used harmonic balance 

technique to analytically solve the equation involving cubic and quadratic nonlinearities, and then compared the results with existing 

data. Galerkin’s approximation was employed to transform the governing PDEs into ordinary differential equations. 

The newly developed sinusoidal shear deformation plate theory offers several advantages, including simplicity, efficiency, and high 

accuracy in predicting the nonlinear vibration behaviors of sandwich panels featuring multi-layer face sheets and an MR fluid core. 

With only four unknown variables, this theory reduces computational costs and time. 
The following conclusions can be formed in light of the results: 

 

 

1. As the magnetic field intensity rises, the panel's nonlinear vibration frequency falls and the structure hardens, improving the 

stability of the structure. 

2. The vibration amplitude dramatically decreases with increasing dampening and an increase in magnetic field strength. 

3. The discoveries help us create a magnetic field that we can control, which allows us to alter the natural amplitude and frequency 

of the vibration in buildings. 

4. At a consistent magnetic field intensity, the core thickness demonstrates a trend where as the panel thickness increases, the 

proportion of nonlinear to linear vibration frequency first elevates, followed by a gradual decrease. 

5. With increasing the ratio between the core thickness and the entire panel thickness, it leads to reducing the panel stiffness. 

 

6. Increasing the oil content in the core layer adds weight to the panel, resulting in a reduction of the panel's density-to-stiffness 

ratio. 

7. With increasing panel's dimensional ratio, it gets thinner, leading to a gradual rise in vibration amplitude.  

8.    With increasing the sheet length to thickness ratio, sheet’s nonlinear frequency decreased. 

9.     By manipulating these parameters, it's feasible to attain the preferred nonlinear vibration frequency and amplitude across various 

structures. 
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Nomenclature 

 

APPENDIX A: Descriptions of Notations  

                
dVt, dVc, dVb                                         The core Volume element of the top face sheet, the core and the bottom face sheet, respectively 

𝐼𝑛
𝑖 (𝑖 = 𝑡, 𝑏, 𝑐)                                        The moments of inertia of the top and bottom face sheets and the core 

𝑀𝑧
𝑐                                                         Normal bending moments per unit length of the edge of the core 

 𝑀𝑥𝑦
𝑖 , 𝑀𝑥𝑥

𝑖 , 𝑀𝑦𝑦
𝑖                                       Bending and shear moments per unit length of the edge (i=t,b) 

𝑀𝑛𝑥𝑥
𝑐 , 𝑀𝑛𝑥𝑦

𝑐 , 𝑀𝑛𝑦𝑦
𝑐                                   Shear and bending  moments per unit length of the edge of the core,  



𝑀𝑛𝑥𝑧
𝑐 , 𝑀𝑛𝑦𝑧

𝑐  

𝑁𝑥𝑦
𝑖 , 𝑁𝑦𝑥

𝑖 , 𝑁𝑥𝑥
𝑖 , 𝑁𝑦𝑦

𝑖                                 In-plane and shear forces per unit length of the edge (i=t, b) 

 𝑁𝑥𝑧
𝑐 , 𝑁𝑦𝑧

𝑐                                                Shear forces per unit length of the edge of the core 

𝑄𝑖𝑗                                                         The reduced stiffnesses referred to the principal material coordinates 

𝑄̅𝑖𝑗                                                        Transformed reduced stiffnesses 

𝑢𝑘, 𝑣𝑘 , 𝑤𝑘                                             Unknowns of the in-plane displacements of the core (k=0,1,2,3) 

𝑢𝑐 , 𝑣𝑐 , 𝑤𝑐                                              Displacement components of the core 

𝑢0
𝑖 , 𝑣0

𝑖 , 𝑤0
𝑖                                              Displacement components of the face sheets, (i = t, b) 

𝑢̈𝑐 , 𝑣̈𝑐 , 𝑤̈𝑐                                             Acceleration components of the core 

𝑢̈𝑖 , 𝑣̈𝑖 , 𝑤̈𝑖                                              Acceleration components of the face sheets, (i= t, b) 

𝑍𝑡 , 𝑍𝑏 , 𝑍𝑐                                             Normal coordinates in the mid-plane of the top and the bottom face  

sheets and 

    

GREEK LETTERS 

𝜌𝑡 , 𝜌𝑏 , 𝜌𝑐                                             Material densities of the face sheets and the core          

𝜎𝑖𝑖
𝑗
                                                       Normal stress in the face sheets, (i=x,y), j=(t,b) 

𝜎𝑖𝑖
𝑐                                                       Normal stress in the core, (i=x,y,z) 

𝜎𝑥𝑦
𝑖 , 𝜎𝑥𝑧

𝑗
, 𝜎𝑦𝑧

𝑖                                        Shear stress in the face sheets, j=(t,b) 

𝜎𝑥𝑦
𝑐 , 𝜎𝑥𝑧

𝑐 , 𝜎𝑦𝑧
𝑐                                        Shear stresses in the core 

𝜀0𝑥𝑥
𝑗
, 𝜀0𝑥𝑦
𝑗
, 𝜀0𝑦𝑦
𝑗
, 𝜀0𝑥𝑧
𝑗
, 𝜀0𝑥𝑧
𝑗

                  The mid-plane strain components, (i=t,b) 

𝜀𝑧𝑧
𝑐 , 𝜀𝑥𝑥

𝑐 , 𝜀𝑦𝑦
𝑐                                         Normal strains components of the core layer 

𝛾𝑥𝑧
𝑐 , 𝛾𝑦𝑧

𝑐 , 𝛾𝑥𝑦
𝑐                                        Shear strains components of the core layer 

𝜙𝑥
𝑖 , 𝜙𝑦

𝑖                                                Rotation of the normal section of midsurface of the top face                                                                                                                                                                                                                                                                                                                   

sheet and the core bottom face sheet along x and y, respectively(i=t,b) 

 

APPENDIX B: Constitutive Equations for In-plane Stress Resultants  

𝑁𝑥𝑥
𝑖 = 𝐴11

𝑖 (
𝜕𝑢0

𝑖

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝑖

𝜕𝑥
)

2

) + 𝐵11
𝑖
𝜕2𝑤0

𝑖

𝜕𝑥2
+ 𝐷11

𝑖
𝜕𝜙𝑥

𝑖

𝜕𝑥
+ 𝐴12

𝑖 (
𝜕𝑣0

𝑖

𝜕𝑦
+
1

2
(
𝜕𝑤0

𝑖

𝜕𝑦
)

2

)              

+𝐵12
𝑖
𝜕2𝑤0

𝑖

𝜕𝑦2
+ 𝐷12

𝑖
𝜕𝜙𝑦

𝑖

𝜕𝑦
+ 𝐴16

𝑖 (
𝜕𝑢0

𝑖

𝜕𝑦
+
𝜕𝑣0

𝑖

𝜕𝑥
+
𝜕𝑤0

𝑖

𝜕𝑥

𝜕𝑤0
𝑖

𝜕𝑦
) + 𝐵16

𝑖 (2 
𝜕2𝑊0

𝑖

𝜕𝑥𝜕𝑦
) + 𝐷16

𝑖 (
𝜕∅𝑥

𝑖

𝜕𝑦
+
𝜕∅𝑦

𝑖

𝜕𝑥
) 

𝑃𝑥𝑥
𝑖 = 𝐸11

𝑖 (
𝜕𝑢0

𝑖

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝑖

𝜕𝑥
)

2

) + 𝐺11
𝑖
𝜕2𝑤0

𝑖

𝜕𝑥2
+ 𝐻11

𝑖
𝜕𝜙𝑥

𝑖

𝜕𝑥
+ 𝐸12

𝑖 (
𝜕𝑣0

𝑖

𝜕𝑦
+
1

2
(
𝜕𝑤0

𝑖

𝜕𝑦
)

2

)               

+𝐺12
𝑖
𝜕2𝑤0

𝑖

𝜕𝑦2
+ 𝐻12

𝑖
𝜕𝜙𝑦

𝑖

𝜕𝑦
+ 𝐸16

𝑖 (
𝜕𝑢0

𝑖

𝜕𝑦
+
𝜕𝑣0

𝑖

𝜕𝑥
+
𝜕𝑤0

𝑖

𝜕𝑥

𝜕𝑤0
𝑖

𝜕𝑦
) + 𝐺16

𝑖 (2 
𝜕2𝑊0

𝑖

𝜕𝑥𝜕𝑦
) + 𝐻16

𝑖 (
𝜕∅𝑥

𝑖

𝜕𝑦
+
𝜕∅𝑦

𝑖

𝜕𝑥
) 

𝑆𝑦𝑧
𝑖 = 𝐾𝑆 [𝐽44

𝑖 (
𝜕𝑤0

𝑖

𝜕𝑦
) + 𝐺44

𝑖
𝜕𝑤0

𝑖

𝜕𝑦
+ 𝐻44

𝑖 𝜙𝑦
𝑖 + 𝐴45

𝑖 (
𝜕𝑤0

𝑖

𝜕𝑥
) + 𝐺45

𝑖
𝜕𝑤0

𝑖

𝜕𝑥
+ 𝐻45

𝑖 𝜙𝑥
𝑖 ] 

In the above equations, the stiffness coefficients for multilayer sheets are defined as follows:                                

∫ 𝑄̅11𝑑𝑍𝑖 = 𝐴11
𝑖

ℎ𝑖
2

−
ℎ𝑖
2

          ∫ 𝑄̅11𝑓1(𝑧𝑖) 𝑑𝑍𝑖 = 𝐵11
𝑖

ℎ𝑖
2

−
ℎ𝑖
2

        ∫ 𝑄̅11 𝑓2(𝑧𝑖) 𝑑𝑍𝑖 = 𝐷11
𝑖

ℎ𝑖
2

−
ℎ𝑖
2

              

∫ 𝑄̅11 𝑓1(𝑧𝑖) 𝑑𝑍𝑖 = 𝐵11
𝑖

ℎ𝑖
2

−
ℎ𝑖
2

 , ∫ 𝑄̅11𝑓1(𝑧𝑖)𝑓1(𝑧𝑖) 𝑑𝑍𝑖 = 𝐹11
𝑖

ℎ𝑖
2

−
ℎ𝑖
2

, ∫ 𝑄̅11 𝑓2(𝑧𝑖)𝑓1(𝑧𝑖) 𝑑𝑍𝑖 = 𝐺11
𝑖

ℎ𝑖
2

−
ℎ𝑖
2

                       

∫ 𝑄̅12𝑓2(𝑧𝑖)𝑑𝑍𝑖 = 𝐸12
𝑖

ℎ𝑖
2

−
ℎ𝑖
2

  , ∫ 𝑄̅12𝑓2(𝑧𝑖) 𝑓1(𝑧𝑖)𝑑𝑍𝑖 = 𝐺12
𝑖

ℎ𝑖
2

−
ℎ𝑖
2

 , ∫ 𝑄̅12 𝑓2(𝑧𝑖) 𝑓2(𝑧𝑖)𝑑𝑍𝑖 = 𝐻12
𝑖

ℎ𝑖
2

−
ℎ𝑖
2

                   

APPENDIX C: Constitutive Equations for thick core layer  
To define the motion equations in terms of displacement, and to facilitate solving the motion equations, the following integrals are 

applied:  

𝑒𝑛
𝑐(𝑥𝑥)

= ∫ 𝑍𝑐𝐸𝑥𝑥
𝐶 (𝑍)

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧 ,  𝑒𝑛
𝑐(𝑦𝑦)

= ∫ 𝑍𝑐𝐸𝑦𝑦
𝐶 (𝑍)

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧  , g𝑛
𝑐(𝑥𝑦)

= ∫ 𝑍𝑐
𝑛𝐺𝑥𝑦

𝐶 (𝑍)

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧      𝑛 = 0,1,2,3 

g𝑛
𝑐(𝑥𝑧) = ∫ 𝑍𝑐

𝑛𝐺(𝑥𝑧)
𝐶 (𝑍)

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧  ,    g𝑛
𝑐(𝑦𝑧)

= ∫ 𝑍𝑐
𝑛𝐺(𝑦𝑧)

𝐶 (𝑍)

ℎ𝑐
2

−
ℎ𝑐
2

𝑑𝑧                              𝑛 = 0,1,2 



By applying the above equations to the fundamental tension equations of the core, they can be written as follows: 

𝑁𝑥𝑥
𝑐 = 𝑒0

𝑐(𝑥𝑥) 𝜕𝑢0
𝑐

𝜕𝑥
+ 𝑒1

𝑐(𝑥𝑥) 𝜕𝑢1
𝑐

𝜕𝑥
+ 𝑒2

𝑐(𝑥𝑥) 𝜕𝑢2
𝑐

𝜕𝑥
+ 𝑒3

𝑐(𝑥𝑥) 𝜕𝑢3
𝑐

𝜕𝑥
           

𝑀𝑛𝑥𝑥
𝑐 = 𝑒𝑛

𝑐(𝑥𝑥) 𝜕𝑢0
𝑐

𝜕𝑥
+ 𝑒𝑛+1

𝑐(𝑥𝑥) 𝜕𝑢1
𝑐

𝜕𝑥
+ 𝑒𝑛+2

𝑐(𝑥𝑥) 𝜕𝑢2
𝑐

𝜕𝑥
+ 𝑒𝑛+3

𝑐(𝑥𝑥) 𝜕𝑢3
𝑐

𝜕𝑥
                                               

𝑅𝑧
𝑐 = e0

𝑐(𝑥𝑧)𝑤1
𝐶 + 2e1

𝑐(𝑥𝑧)𝑤2
𝐶                                                                                                             

𝑀𝑧
𝑐 = e1

𝑐(𝑥𝑧)𝑤1
𝐶 + 2g2

𝑐(𝑥𝑧)𝑤2
𝐶                                                                                                             
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