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1. Introduction 

Redundant serial manipulators have found extensive utility in diverse domains, 

including industrial automation, precision manufacturing, and service robotics, due to 

their exceptional dexterity and adaptability. In operational scenarios, such 

manipulators are frequently required to navigate complex environments populated with 

dynamic entities, such as human operators, cooperative robotic systems, and other 

autonomous agents. These entities, collectively considered obstacles, may exhibit 

stationary or non-stationary characteristics, further complicating motion planning. In 

extraterrestrial environments, such as space missions [1], the manipulators face 

additional constraints [2], including microgravity and limited computational resources, 

necessitating advanced methodologies for collision avoidance. The integration of deep 

learning algorithms enables predictive modeling of obstacle trajectories, facilitating 

anticipatory and adaptive motion strategies. Ensuring collision-free operation across 

the entire manipulator structure is critical for task execution [3], such as object 

manipulation or assembly in microgravity. Consequently, real-time whole-body 

obstacle avoidance is indispensable for redundant manipulators to maintain operational 

efficacy in such challenging and dynamic contexts. 

To address the intricate challenge of obstacle avoidance in robotic systems, an 

array of methodologies has been developed over the years. Broadly, these techniques 



can be categorized into reactive motion generation frameworks and trajectory planning 

paradigms. Trajectory planning approaches, exemplified in works such as [4], leverage 

sophisticated planning algorithms to circumvent obstacles. Nevertheless, the 

computational complexity associated with these methods imposes significant 

constraints, rendering them impractical for real-time applications, particularly in 

scenarios requiring instantaneous decision-making. [5] come up with a novel self-

adaptive algorithm for robots to adapt itself in various external environment, which 

pave the foundation of self-adaption in robotics and can be extended in space reparing 

missions. This limitation becomes even more pronounced in space environments, 

where real-time obstacle avoidance must contend with additional challenges such as 

microgravity dynamics and constrained onboard computational resources. By 

integrating deep learning techniques, predictive obstacle modeling and adaptive 

motion strategies can be realized, significantly mitigating the computational burden 

and enabling seamless real-time operation in such highly dynamic and resource-

constrained domains.  

Reactive motion generation methodologies have been developed as an 

alternative to path planning approaches to facilitate real-time obstacle avoidance. 

Techniques such as the vector field histogram [6] and the curvature-velocity method 

[7] enable rapid evasion of obstacles. However, these methods often yield locally 

optimal solutions and cannot always guarantee a globally feasible trajectory. A 

groundbreaking decentralized adaptive control method for space robotic systems was 

proposed by [8], addressing the critical challenges of space servicing and repair under 

the uncertainty of aerospace accessories on satellites or spacecraft. This work 

represents a significant milestone in the development of adaptive servicing strategies, 

laying a robust foundation for tackling complex tasks in unstructured and unpredictable 

space environments. Notable advancements include the attractor dynamics approach in 

[9] and dynamic potential fields proposed by [10], among others. The APF method 

models obstacles as sources of repulsive forces, designed to repel the system away 



from collisions. However, these forces must be carefully defined to avoid local minima, 

a common limitation of APF methods. 

To address the local minima issue, a novel monte Carlo tree search approach in 

[11] was introduced, combining reactive techniques with path planning algorithms to 

ensure collision-free navigation. The harmonic potential method [12] emerged as 

another widely adopted alternative [13], leveraging harmonic potential functions to 

mitigate local minima challenges. Inspired by fluid dynamics around impenetrable 

barriers, a novel dynamical systems (DS)-based method was proposed in [14]. This 

approach employs a modulation matrix for obstacles, deforming the original DS to 

compute an alternative trajectory that circumvents obstacles. Despite its efficacy, the 

DS-based method is inherently limited to convex obstacles. Extensions by Huber et al. 

[15] enabled the avoidance of concave obstacles, albeit restricted to linear DS, thereby 

limiting applicability to nonlinear dynamical systems. 

In more recent developments, sensor-based obstacle representations, such as 

point clouds, have been incorporated into DS-based approaches [16], enabling adaptive 

and environment-aware obstacle avoidance. However, these methods face significant 

challenges in complex environments like space, where the dynamic and computational 

constraints demand more sophisticated solutions. By integrating deep learning, these 

reactive motion generation approaches can leverage neural networks to predict obstacle 

dynamics and adaptively optimize trajectories, offering a pathway to overcome 

limitations associated with nonlinearity, local minimum, and real-time performance in 

resource-constrained domains such as extraterrestrial environments. 



 

Figure 1. A Space module install a multi-dof robot arm in space environment. 

 

 

2. Related Work 

Obstacle avoidance strategies for redundant manipulators have been extensively 

investigated in the literature [17]. Numerous methodologies leverage null-space 

velocity control, wherein a velocity vector directed away from the obstacle is assigned 

to the manipulator’s point of closest proximity to the obstacle [18]. Additionally, task-

priority frameworks [19] have been proposed, which prioritize the execution of primary 

objectives, such as obstacle avoidance, only when deemed necessary. While these 

approaches offer computational efficiency, they are inherently constrained by certain 

simplifying assumptions, namely, that the manipulator’s end-effector follows a 

predetermined global trajectory and that obstacles remain static. These limitations 

render such methodologies unsuitable for executing complex tasks, such as 

dynamically grasping objects in environments with multiple moving obstacles. 

In the context of extraterrestrial operations, such as those encountered in space 

robotics, the complexities escalate further due to the presence of microgravity and 



rapidly changing obstacle dynamics. To overcome these challenges, deep learning 

paradigms can be integrated into null-space and task-priority frameworks to enhance 

their adaptability. By leveraging neural networks, the system can predict obstacle 

motion trajectories and dynamically adjust the end-effector’s path in real time. This 

fusion of deep learning with classical control strategies enables manipulators to handle 

more sophisticated scenarios, such as interacting with multiple non-stationary 

obstacles, while maintaining compliance with mission-critical constraints in space 

environments. 

As discussed previously, while numerous advanced obstacle avoidance 

techniques have been proposed, only a limited number of them can guarantee real-time 

whole-body obstacle avoidance (RWOA) for redundant manipulators, particularly 

when encountering moving obstacles during task execution. Certain approaches, such 

as those outlined in [20-22], are specifically tailored for obstacle avoidance at the 

manipulator's end-effector, whereas other methods, including those described in [23], 

address avoidance for the non-end-effector components—essentially the manipulator’s 

body excluding the end-effector [24]. Moreover, many of these methods operate under 

the simplifying assumption that obstacles remain stationary, rendering them unsuitable 

for dynamic and highly unpredictable environments. 

To address the RWOA challenge comprehensively, this study introduces a novel 

framework that combines dynamical systems (DS) with null-space velocity control. 

The proposed methodology is specifically designed to handle real-time obstacle 

avoidance across the entirety of a manipulator’s structure, ensuring collision-free 

motion in the presence of moving obstacles. Given the widespread deployment of 7-

DOF redundant manipulators in both terrestrial and extraterrestrial applications, this 

work focuses on manipulators with such configurations. Additionally, by incorporating 

deep learning into the DS-based framework, the proposed approach leverages neural 

networks for obstacle trajectory prediction, enabling anticipatory adjustments and 

adaptive control. This integration enhances the method’s applicability to complex 

environments, such as space missions, where dynamic obstacles, microgravity 



conditions, and computational constraints pose significant challenges to traditional 

control strategies.. 

3. Methodology 

In this study, we assume the presence of N discrete, dynamically moving convex 

obstacles surrounding the manipulator. Considering that manipulators predominantly 

operate within the Cartesian space, the obstacles under consideration are modeled as 

three-dimensional entities. In scenarios involving interconnected obstacles, they can be 

approximated collectively as a singular convex obstacle, as discussed in [25-29]. While 

non-convex objects, such as brushes or lamps, are frequently encountered in practical 

applications, a Bounding Volume (BV) approach [30] can be employed to encapsulate 

these irregular shapes within three-dimensional convex envelopes. This abstraction not 

only simplifies the computational complexity but also ensures that obstacle 

representations remain compatible with existing motion planning algorithms. To 

enhance adaptability in dynamic and space-specific environments, deep learning 

algorithms can be incorporated to predict obstacle motion patterns and refine the 

generation of convex representations in real time, thereby facilitating collision-free 

manipulator operation under complex spatial constraints.  

The Newton-Euler formalism is utilized to derive the dynamic model of the 

space robotic system [31]. This methodology enables a comprehensive and intuitive 

analysis of forces and moments acting on the system and can be effectively extended 

to complex systems that incorporate closed-loop geometric constraints. The resulting 

dynamic equations account for the intricate interactions between the robotic links and 

the spacecraft base, providing a detailed representation of the system’s behavior under 

external and internal forces. By integrating deep learning techniques, the predictive 

capabilities of the dynamic model can be enhanced, allowing for real-time adaptation 

to dynamic environments and unforeseen disturbances, which are critical in space 

missions characterized by microgravity and constrained computational resources. The 



equations governing the dynamics of the robotic links and the spacecraft base are 

presented as follows: 
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To develop controllers capable of tracking desired trajectories within the task 

space, it is essential to reformulate the dynamic equations of the space robot in terms 

of the task space control variables [32]. This transformation ensures that the control 

inputs are directly aligned with the task space objectives, facilitating precise trajectory 

tracking. Based on the above equation, the second-order derivative of the task space 

variable: 
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the combined modulation matrix as 
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To further smooth the motion of obstacle avoidance, a smoothing factor h  is 

presented in [18] to smoothly apply the homogenous solution as 
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Then we incorporate the Deep Learning algorithm based on the dynamics of the 

space robotics system. The proposed GG-CNN framework offers two significant 



advantages over conventional state-of-the-art grasp synthesis convolutional neural 

networks (CNNs). First, instead of relying on sampling discrete grasp candidates, it 

generates grasp poses at a granular, pixel-by-pixel resolution [33]. This approach 

parallels advancements in object detection, where fully convolutional architectures are 

utilized to achieve pixel-wise semantic segmentation, superseding traditional methods 

like sliding windows or bounding boxes [34]. Such precision is particularly 

advantageous in space environments, where fine manipulation and accurate grasping 

are critical for handling delicate payloads and performing intricate tasks [35]. Second, 

the GG-CNN architecture is highly efficient, possessing significantly fewer parameters 

than its counterparts, which facilitates rapid closed-loop grasping operations. This 

efficiency is essential for resource-constrained environments, such as space missions, 

where computational power is often limited. Impressively, the grasp detection pipeline 

achieves execution times as low as 19 milliseconds on a GPU-enabled desktop system, 

enabling real-time performance in scenarios demanding high precision and adaptability. 

Incorporating deep learning methodologies into this framework further enhances its 

predictive and adaptive capabilities [36], making it ideal for dynamic and unpredictable 

extraterrestrial operations. The network equation can be expressed by 

𝑅Θ(𝐼) = (𝑄Θ; 𝜑Θ; 𝐵Θ). 

where the grasp map G estimates the parameters of a set of grasps, for each Cartesian 

point in the 3D space corresponding to each pixel in the captured image. It constitutes 

asset of 3 images denoted as, Q, φ, and W. 



 

Figure 2. Algorithm design with Deep Neural Network for space module. 

 

4. Results 

Preliminary results indicate that our proposed framework significantly enhances 

the multi-drone system's ability to identify and manipulate unknown payloads. Notably, 

the cooperative learning paradigm improves overall performance compared to singular 

drone operations. The trajectory tracking for our multi-drone system in 3D space is 

shown in Fig.4. The tracking error compared with the other two popular machine 

learning methods is shown in Fig.5. 

 



Figure 4. Loss value during the trainning process with our Deep Neural Network. 

 

 

Figure 4. Trajectory tracking results for the end-effector of the robot arm on the space 

module in zero-gravity environment. 

 

Figure 5. Amplitude of the base of the space module during the manipulation task in 

zero-gravity environment. 



5. Conclusion 

This paper introduced a novel real-time whole-body obstacle avoidance 

framework tailored for multi-DoF redundant manipulators, with a particular focus on 

addressing challenges in dynamic environments. The proposed approach leverages a 

deformable dynamical system, where the original DS is adaptively modified through a 

combined modulation matrix accounting for the motion of surrounding obstacles. This 

deformation ensures that the end-effector can compute a trajectory capable of 

dynamically circumventing obstacles while achieving the desired target in real time. 

During trajectory tracking, null-space velocity control was employed to guarantee 

obstacle avoidance for the remaining non-end-effector components of the manipulator. 

By integrating deep learning into the framework, the system can further enhance 

adaptability, leveraging neural networks for real-time prediction of obstacle dynamics 

and optimizing control strategies in complex, high-dimensional spaces. The 

generalizability of the proposed approach allows its extension to manipulators with 

different degrees of freedom, making it particularly well-suited for applications in 

space environments, where precision, adaptability, and computational efficiency are 

paramount. 
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