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Abstract

Deep learning, as a computational paradigm, fundamentally relies on the synergy of func-
tional approximation, optimization theory, and statistical learning. This work presents an
extremely rigorous mathematical framework that formalizes deep learning through the lens of
measurable function spaces, risk functionals, and approximation theory. We begin by defin-
ing the risk functional as a mapping between measurable function spaces, establishing its
structure via Frechet differentiability and variational principles. The hypothesis complexity
of neural networks is rigorously analyzed using VC-dimension theory for discrete hypotheses
and Rademacher complexity for continuous spaces, providing fundamental insights into gen-
eralization and overfitting.

A refined proof of the Universal Approximation Theorem is developed using convolution op-
erators and the Stone-Weierstrass theorem, demonstrating how neural networks approximate
arbitrary continuous functions on compact domains with quantifiable error bounds. The depth
vs. width trade-off is explored through capacity analysis, bounding the expressive power of
networks using Fourier analysis and Sobolev embeddings, with rigorous compactness argu-
ments via the Rellich-Kondrachov theorem.

We extend the theoretical framework to training dynamics, analyzing gradient flow and sta-
tionary points, the Hessian structure of optimization landscapes, and the Neural Tangent
Kernel (NTK) regime. Generalization bounds are established through PAC-Bayes formalism
and spectral regularization, connecting information-theoretic insights to neural network sta-
bility. The analysis further extends to advanced architectures, including convolutional and
recurrent networks, transformers, generative adversarial networks (GANs), and variational
autoencoders, emphasizing their function space properties and representational capabilities.

Finally, reinforcement learning is rigorously examined through deep Q-learning and policy
optimization, with applications spanning robotics and autonomous systems. The mathemat-
ical depth is reinforced by a comprehensive exploration of optimization techniques, covering
stochastic gradient descent (SGD), adaptive moment estimation (Adam), and spectral-based
regularization methods. The discussion culminates in a deep investigation of function space
embeddings, generalization error bounds, and the fundamental limits of deep learning models.

This work bridges deep learning’s theoretical underpinnings with modern advancements, of-
fering a mathematically precise and exhaustive exposition that is indispensable for researchers
aiming to rigorously understand and extend the frontiers of deep learning theory.
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1 Mathematical Foundations

Deep learning is a computational paradigm for solving high-dimensional function approximation
problems. At its core, it relies on the synergy of:

• Functional Approximation: Representing complex, non-linear functions using neural net-
works. Functional approximation is one of the fundamental concepts in deep learning, and
it is integral to how deep learning models, particularly neural networks, solve complex prob-
lems. In the context of deep learning, functional approximation refers to the ability of neural
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networks to represent complex, high-dimensional, and non-linear functions that are often
difficult or infeasible to model using traditional mathematical techniques.

• Optimization Theory: Solving non-convex optimization problems efficiently. Optimization
theory plays a central role in deep learning, as the goal of training deep neural networks
is essentially to find the optimal set of parameters (weights and biases) that minimize a
predefined objective, often called the loss function. This objective typically measures the
difference between the network’s predictions and the true values. Optimization techniques
guide the training process and determine how well a neural network can learn from data.

• Statistical Learning Theory: Understanding generalization behavior on unseen data. Sta-
tistical Learning Theory (SLT) provides the mathematical foundation for understanding the
behavior of machine learning algorithms, including deep learning models. It offers key insights
into how models generalize from training data to unseen data, which is critical for ensuring
that deep learning models are not only accurate on the training set but also perform well on
new, previously unseen data. SLT helps address fundamental challenges such as overfitting,
bias-variance tradeoff, and generalization error.

The problem can be formalized as:

Find fθ : X → Y, such that Ex,y∼P [ℓ(fθ(x), y)] is minimized, (1)

where X is the input space, Y is the output space, P is the data distribution, ℓ(·, ·) is a loss
function, θ are parameters of the neural network. This task involves the composition of several
disciplines, each of which is explored in rigorous detail below.

1.1 Problem Definition: Risk Functional as a Mapping Between Spaces

1.1.1 Measurable Function Spaces

A measurable space is a fundamental construct in measure theory, denoted by (X ,Σ), where X
is a non-empty set referred to as the underlying set or the sample space, and Σ is a σ-algebra, a
specific collection of subsets of X that encodes the notion of measurability. The σ-algebra Σ ⊆ 2X ,
the power set of X , satisfies three axioms, each ensuring a critical aspect of closure under set oper-
ations. First, Σ is closed under complementation, meaning that for any set A ∈ Σ, its complement
Ac = X \ A is also in Σ. This guarantees the ability to define the ”non-occurrence” of measurable
events in a mathematically consistent way. Second, Σ is closed under countable unions: for any
countable collection {An}∞n=1 ⊆ Σ, the union

⋃∞
n=1An is also in Σ, enabling the construction of

measurable sets from countably infinite operations. De Morgan’s laws then imply closure under
countable intersections, as

⋂∞
n=1An = (

⋃∞
n=1A

c
n)

c
, ensuring that the framework accommodates

conjunctions of countable collections of events. Finally, the inclusion of the empty set ∅ ∈ Σ is an
axiom that provides a null baseline, ensuring that the σ-algebra is non-empty and can represent
the ”impossibility” of certain outcomes.

Literature Review: Rao et. al. (2024) [1] investigated approximation theory within Lebesgue
measurable function spaces, providing an analysis of operator convergence. They also established
a theoretical framework for function approximation in Lebesgue spaces and provided a rigorous
study of symmetric properties in function spaces. Mukhopadhyay and Ray (2025) [2] provided a
comprehensive introduction to measurable function spaces, with a focus on Lp-spaces and their
completeness properties. They also established the fundamental role of Lp-spaces in measure the-
ory and discussed the relationship between continuous function spaces and measurable functions.
Szo ldra (2024) [3] examined measurable function spaces in quantum mechanics, exploring the role
of measurable observables in ergodic theory. They connected functional analysis and measure the-
ory to quantum state evolution and provided a mathematical foundation for quantum machine

5



learning in function spaces. Lee (2025) [10] investigated metric space theory and functional analy-
sis in the context of measurable function spaces in AI models. He formalized how function spaces
can model self-referential structures in AI and provided a bridge between measure theory and gen-
erative models. Song et. al. (2025) [4] discussed measurable function spaces in the context of
urban renewal and performance evaluation. They developed a rigorous evaluation metric using
measurable function spaces and explored function space properties in applied data science and
urban analytics. Mennaoui et. al. (2025) [5] explored measurable function spaces in the theory
of evolution equations, a key concept in functional analysis. They established a rigorous study
of measurable operator functions and provided new insights into function spaces and their role in
solving differential equations. Pedroza (2024) [6] investigated domain stability in machine learning
models using function spaces. He established a formal mathematical relationship between function
smoothness and domain adaptation and uses topological and measurable function spaces to analyze
stability conditions in learning models. Cerreia-Vioglio and Ok (2024) [7] developed a new integra-
tion theory for measurable set-valued functions. They introduced a generalization of integration
over Banach-valued functions and established weak compactness properties in measurable function
spaces. Averin (2024) [8] applied measurable function spaces to gravitational entropy theory. He
provided a rigorous proof of entropy bounds using function space formalism and connected measure
theory with relativistic field equations. Potter (2025) [9] investigated measurable function spaces
in the context of Fourier analysis and crystallographic structures. He established new results on
Fourier transforms of measurable functions and introduced a novel framework for studying function
spaces in invariant shift operators.

Measurable spaces are not merely abstract structures but are the backbone of measure theory,
probability, and integration. For example, the Borel σ-algebra B(R) on the real numbers R is the
smallest σ-algebra containing all open intervals (a, b) for a, b ∈ R. This σ-algebra is pivotal in
defining Lebesgue measure, where measurable sets generalize the classical notion of intervals to
include sets that are neither open nor closed. Moreover, the construction of a σ-algebra generated
by a collection of subsets C ⊆ 2X , denoted σ(C), provides a minimal framework that includes C
and satisfies all σ-algebra properties, enabling the systematic extension of measurability to more
complex scenarios. For instance, starting with intervals in R, one can build the Borel σ-algebra, a
critical tool in modern analysis.

The structure of a measurable space allows the definition of a measure µ, a function µ : Σ→ [0,∞]
that assigns a non-negative value to each set in Σ, adhering to two key axioms: µ(∅) = 0 and count-
able additivity, which states that for any disjoint collection {An}∞n=1 ⊆ Σ, the measure of their union
satisfies µ (

⋃∞
n=1An) =

∑∞
n=1 µ(An). This property is indispensable in extending intuitive notions

of length, area, and volume to arbitrary measurable sets, paving the way for the Lebesgue integral.
A function f : X → R is then termed Σ-measurable if for every Borel set B ∈ B(R), the preimage
f−1(B) belongs to Σ. This definition ensures that the function is compatible with the σ-algebra, a
necessity for defining integrals and expectation in probability theory.

In summary, measurable spaces represent a highly versatile and mathematically rigorous frame-
work, underpinning vast areas of analysis and probability. Their theoretical depth lies in their
ability to systematically handle infinite operations while maintaining closure, consistency, and flex-
ibility for defining measures, measurable functions, and integrals. As such, the rigorous study of
measurable spaces is indispensable for advancing modern mathematical theory, providing a bridge
between abstract set theory and applications in real-world phenomena.

Let (X ,ΣX , µX) and (Y ,ΣY , µY ) be measurable spaces. The true risk functional is defined as:

R(f) =

∫
X×Y

ℓ(f(x), y) dP (x, y), (2)
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where:

• f belongs to a hypothesis space F ⊆ Lp(X , µX).

• P (x, y) is a Borel probability measure over X × Y , satisfying
∫
X×Y 1 dP = 1.

1.1.2 Risk as a Functional

Literature Review: Wang et. al. (2025) [11] developed a mathematical risk model based on func-
tional variational calculus and introduced a loss functional regularization framework that minimizes
adversarial risk in deep learning models. They also proposed a game-theoretic interpretation of
functional risk in security settings. Duim and Mesquita (2025) [12] extended the inverse reinforce-
ment learning (IRL) framework by defining risk as a functional over probability spaces and used
Bayesian functional priors to model risk-sensitive behavior. They also introduced an iterative reg-
ularized risk functional minimization approach. Khayat et. al. (2025) [13] established functional
Sobolev norms to quantify risk in adversarial settings and introduced a functional risk decom-
position technique using deep neural architectures. They also provided an in-depth theoretical
framework for risk estimation in adversarially perturbed networks. Agrawal (2025) [14] developed
a variational framework for risk as a loss functional and used adaptive weighting of loss functions
to enhance generalization in deep learning. He also provided rigorous convergence analysis of risk
functional minimization. Hailemichael and Ayalew (2025) [15] used control barrier function (CBF)
theory to develop risk-aware deep learning models and modeled risk as a functional on dynamical
systems, optimizing stability and robustness. They also introduced a risk-minimizing constrained
optimization formulation. Nguyen et.al. (2025) [16] developed a functional metric learning ap-
proach for risk-sensitive deep models and used convex optimization techniques to derive functional
risk bounds. They also established semi-supervised loss functions for risk-regularized learning. Luo
et. al. (2025) [17] introduced a geometric interpretation of risk functionals in deep learning models
and used integral transform techniques to approximate risk in real-world vision systems. They also
developed a functional approach to adversarial robustness.

The functional R : F → R+ is Fréchet-differentiable if:

∀f, g ∈ F , R(f + ϵg) = R(f) + ϵ⟨∇R(f), g⟩+ o(ϵ), (3)

where ⟨·, ·⟩ denotes the inner product in L2(X ). In the field of risk management and decision
theory, the concept of a risk functional is a mathematical formalization that captures how risk
is quantified for a given outcome or state. A risk functional, denoted as R, acts as a map that
takes elements from a given space X (which represents the possible outcomes or states) and returns
a real-valued risk measure. This risk measure, R(x), expresses the degree of risk or the adverse
outcome associated with a particular element x ∈ X. The space X may vary depending on the
context—this could be a space of random variables, trajectories, or more complex function spaces.
The risk functional maps x to R, i.e., R : X → R, where each R(x) reflects the risk associated with
the specific realization x. One of the most foundational forms of risk functionals is based on the
expectation of a loss function L(x), where x ∈ X represents a random variable or state, and L(x)
quantifies the loss associated with that state. The risk functional can be expressed as an expected
loss, written mathematically as:

R(x) = E[L(x)] =

∫
X

L(x)p(x) dx (4)

where p(x) is the probability density function of the outcome x, and the integration is taken
over the entire space X. In this setup, L(x) can be any function that measures the severity or
unfavorable nature of the outcome x. In a financial context, L(x) could represent the loss function
for a portfolio, and p(x) would be the probability density function of the portfolio’s returns. In
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many cases, a specific form of L(x) is used, such as L(x) = (x − µ)2, where µ is the target or
expected value. This choice results in the risk functional representing the variance of the outcome
x, expressed as:

R(x) =

∫
X

(x− µ)2p(x) dx (5)

This formulation captures the variability or dispersion of outcomes around a mean value, a common
risk measure in applications like portfolio optimization or risk management. Additionally, another
widely used class of risk functionals arises from quantile-based risk measures, such as Value-
at-Risk (VaR), which focuses on the extreme tail behavior of the loss distribution. The VaR at
a confidence level α ∈ [0, 1] is defined as the smallest value l such that the probability of L(x)
exceeding l is no greater than 1− α, i.e.,

P (L(x) ≤ l) ≥ α (6)

This defines a threshold beyond which the worst outcomes are expected to occur with probability
1− α. Value-at-Risk provides a measure of the worst-case loss under normal circumstances, but it
does not provide information about the severity of losses exceeding this threshold. To address this
limitation, the Conditional Value-at-Risk (CVaR) is introduced, which measures the expected
loss given that the loss exceeds the VaR threshold. Mathematically, CVaR at the level α is given
by:

CVaRα(x) = E[L(x) | L(x) ≥ VaRα(x)] (7)

This conditional expectation provides a more detailed assessment of the potential extreme losses
beyond the VaR threshold. The CVaR is a more comprehensive measure, capturing the tail risk
and providing valuable information about the magnitude of extreme adverse events. In cases where
the space X represents trajectories or paths, such as in the context of continuous-time processes
or dynamical systems, the risk functional is often formulated in terms of integrals over time. For
example, consider x(t) as a trajectory in the function space C([0, T ],Rn), the space of continuous
functions on the interval [0, T ]. The risk functional in this case might quantify the total deviation
of the trajectory from a reference or target trajectory over time. A typical example could be the
total squared deviation, written as:

R(x) =

∫ T

0

∥x(t)− x̄(t)∥2dt (8)

where x̄(t) represents a reference trajectory and ∥ · ∥ is a norm, such as the Euclidean norm. This
risk functional quantifies the total deviation (or energy) of the trajectory from the target path
over the entire time interval, and is used in various applications such as control theory and optimal
trajectory planning. A common choice for the norm ∥x(t)∥ might be ∥x(t)∥2 =

∑n
i=1 x

2
i (t), where

xi(t) are the components of the trajectory x(t) in Rn. In some cases, the space X of possible
outcomes may not be a finite-dimensional vector space, but instead a Banach space or a Hilbert
space, particularly when x represents a more complex object such as a function or a trajectory.
For example, the space C([0, T ],Rn) is a Banach space, and the risk functional may involve the
evaluation of integrals over this function space. In such settings, the risk functional can take the
form:

R(x) =

∫ T

0

∥x(t)∥ppdt (9)

where ∥ · ∥p is the p-norm, and p ≥ 1. For p = 2, this risk functional represents the total energy
of the trajectory, but other norms can be used to emphasize different types of risks. For instance,
the L∞-norm would focus on the maximum deviation of the trajectory from the target path. The
concept of convexity plays a significant role in the theory of risk functionals. Convexity ensures
that the risk associated with a convex combination of two states x1 and x2 is less than or equal to
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the weighted average of the risks of the individual states. Mathematically, for λ ∈ [0, 1], convexity
demands that:

R(λx1 + (1− λ)x2) ≤ λR(x1) + (1− λ)R(x2) (10)

This property reflects the diversification effect in risk management, where mixing several states or
outcomes generally leads to a reduction in overall risk. Convex risk functionals are particularly
important in portfolio theory, where they allow for risk minimization through diversification. For
example, ifR(x) represents the variance of a portfolio’s returns, then the convexity property ensures
that combining different assets will result in a portfolio with lower overall risk than the risk of any
individual asset. Monotonicity is another important property for risk functionals, ensuring that
the risk increases as the outcome becomes more adverse. If x1 is worse than x2 according to some
partial order, we have:

R(x1) ≥ R(x2) (11)

Monotonicity ensures that the risk functional behaves in a way that aligns with intuitive notions
of risk: worse outcomes are associated with higher risk. In financial contexts, this is reflected in
the fact that losses increase the associated risk measure. Finally, in some applications, the risk
functional is derived from perturbation analysis to study how small changes in parameters affect
the overall risk. Consider x(ϵ) as a perturbed trajectory, where ϵ is a small parameter, and the
Fréchet derivative of the risk functional with respect to ϵ is given by:

d

dϵ
R(x(ϵ))

∣∣∣∣
ϵ=0

(12)

This derivative quantifies the sensitivity of the risk to perturbations in the system and is crucial
in the analysis of stability and robustness. Such analyses are essential in areas like stochastic
control and optimization, where it is important to understand how small changes in the model’s
parameters can influence the risk profile.

Thus, the risk functional is a powerful tool for quantifying and managing uncertainty, and its
formulation can be adapted to various settings, from random variables and stochastic processes to
continuous trajectories and dynamic systems. The risk functional provides a rigorous mathemat-
ical framework for assessing and minimizing risk in complex systems, and its flexibility makes it
applicable across a wide range of domains.

1.2 Approximation Spaces for Neural Networks

The neural network hypothesis space Fθ is parameterized as:

Fθ = {fθ : X → R | fθ(x) =
n∑

j=1

cjσ(aj · x+ bj), θ = (c, a, b)}. (13)

To analyze its capacity, we rely on:

• VC-dimension theory for discrete hypotheses.

• Rademacher complexity for continuous spaces:

RN(F) = Eϵ

[
sup
f∈F

1

N

N∑
i=1

ϵif(xi)

]
, (14)

where ϵi are i.i.d. Rademacher random variables.
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1.2.1 VC-dimension theory for discrete hypotheses

The VC-dimension (Vapnik-Chervonenkis dimension) is a fundamental concept in statistical learn-
ing theory that quantifies the capacity of a hypothesis class to fit a range of labelings of a set of
data points. The VC-dimension is particularly useful in understanding the generalization ability of
a classifier. The theory is important in machine learning, especially when assessing overfitting and
the risk of model complexity.

Literature Review: There are several articles that explore the VC-dimension theory for dis-
crete hypotheses very rigorously. N. Bousquet and S. Thomassé (2015) [18] explored in their paper
the VC-dimension in the context of graph theory, connecting it to structural properties such as the
Erdős-Pósa property. Yıldız and Alpaydin (2009) [19] in their article computed the VC-dimension
for decision tree hypothesis spaces, considering both discrete and continuous features. Zhang et.
al. (2012) [20] introduced a discretized VC-dimension to bridge real-valued and discrete hypothesis
spaces, offering new theoretical tools for complexity analysis. Riondato and Zdonik (2011) [21]
adapted VC-dimension theory to database systems, analyzing SQL query selectivity using a theo-
retical lens. Riggle and Sonderegger (2010) [22] investigated the VC-dimension in linguistic models,
focusing on grammar hypothesis spaces. Anderson (2023) [23] provided a comprehensive review
of VC-dimension in fuzzy systems, particularly in logic frameworks involving discrete structures.
Fox et. al. (2021) [24] proved key conjectures for systems with bounded VC-dimension, offering
insights into combinatorial implications. Johnson (2021) [25] discusses binary representations and
VC-dimensions, with implications for discrete hypothesis modeling. Janzing (2018) [26] in his paper
focuses on hypothesis classes with low VC-dimension in causal inference frameworks. Hüllermeier
and Tehrani (2012) [27] in their paper explored the theoretical VC-dimension of Choquet integrals,
applied to discrete machine learning models. The book titled “Foundations of Machine Learning”
[28] by Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar offers a very good foundational
discussion on VC-dimension in the context of statistical learning. Another book titled “Learning
Theory: An Approximation Theory Viewpoint” by Felipe Cucker and Ding-Xuan Zhou [29] dis-
cusses the role of VC-dimension in approximation theory. Yet another book titled “Understanding
Machine Learning: From Theory to Algorithms” by Shai Shalev-Shwartz and Shai Ben-David [30]
contains detailed chapters on hypothesis spaces and VC-dimension.

For discrete hypotheses, the VC-dimension theory applies to a class of hypotheses that map a
set of input points to binary output labels (typically 0 or 1). The VC-dimension for a hypothesis
class refers to the largest set of data points that can be shattered by that class, where ”shattering”
means that the hypothesis class can realize all possible labelings of these points.

We shall now discuss the Formal Mathematical Framework. Let X be a finite or infinite
set called the instance space, which represents the input space. Consider a hypothesis class H,
where each hypothesis h ∈ H is a function h : X → {0, 1}. The function h classifies each element
of X into one of two classes: 0 or 1. Given a subset S = {x1, x2, . . . , xk} ⊆ X, we say that H
shatters S if for every possible labeling y⃗ = (y1, y2, . . . , yk) ∈ {0, 1}k, there exists some h ∈ H
such that for all i ∈ {1, 2, . . . , k}:

h(xi) = yi (15)

In other words, a hypothesis class H shatters S if it can produce every possible binary labeling
on the set S. The VC-dimension VC(H) is defined as the size of the largest set S that can be
shattered by H:

VC(H) = sup{k | ∃S ⊆ X, |S| = k, S is shattered by H} (16)

If no set of points can be shattered, then the VC-dimension is 0. Some Properties of the VC-
Dimension are

1. Shattering Implies Non-empty Hypothesis Class: If a set S is shattered by H, then

10



H is non-empty. This follows directly from the fact that for each labeling y⃗ ∈ {0, 1}k, there
exists some h ∈ H that produces the corresponding labeling. Therefore, H must contain at
least one hypothesis.

2. Upper Bound on Shattering: Given a hypothesis class H, if there exists a set S ⊆ X
of size k such that H can shatter S, then any set S ′ ⊆ X of size greater than k cannot be
shattered. This gives us the crucial result that:

VC(H) ≥ k if H can shatter a set of size k (17)

3. Implication for Generalization A central result in the theory of statistical learning
is the connection between VC-dimension and the generalization error. Specifically, the
VC-dimension bounds the ability of a hypothesis class to generalize to unseen data. The
higher the VC-dimension, the more complex the hypothesis class, and the more likely it is to
overfit the training data, leading to poor generalization.

We shall now discuss the VC-Dimension and Generalization Bounds (VC Theorem). The VC-
dimension theorem (often referred to as Hoeffding’s bound or the generalization bound)
provides a probabilistic guarantee on the relationship between the training error and the true error.
Specifically, it gives an upper bound on the probability that the generalization error exceeds the
empirical error (training error) by more than ϵ.

Let D be the distribution from which the training data is drawn, and let ˆerr(h) and err(h) represent
the empirical error and true error of a hypothesis h ∈ H, respectively:

ˆerr(h) =
1

n

n∑
i=1

1{h(xi )̸=yi} (18)

err(h) = P(x,y)∼D (h(x) ̸= y) (19)

where {(x1, y1), . . . , (xn, yn)} are i.i.d. (independent and identically distributed) samples from the
distribution D. For a hypothesis class H with VC-dimension d = VC(H), with probability at
least 1− δ, the following holds for all h ∈ H:

| ˆerr(h)− err(h)| ≤ ϵ (20)

where ϵ is bounded by:

ϵ ≤

√
8

n

(
d log

(
2n

d

)
+ log

(
4

δ

))
(21)

This result shows that the generalization error (the difference between the true and empirical error)
is small with high probability, provided the sample size n is large enough and the VC-dimension
d is not too large. The sample complexity n required to guarantee that the generalization error is
within ϵ with high probability 1− δ is given by:

n ≥ C

ϵ2

(
d log

(
1

ϵ

)
+ log

(
1

δ

))
(22)

where C is a constant depending on the distribution. This bound emphasizes the importance of
VC-dimension in controlling the complexity of the hypothesis class. A larger VC-dimension requires
a larger sample size to avoid overfitting and ensure reliable generalization. Some Detailed Examples
are:
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1. Example 1: Linear Classifiers in R2: Consider the hypothesis class H consisting of linear
classifiers in R2. These classifiers are hyperplanes in two dimensions, defined by:

h(x) = sign(wTx+ b) (23)

where w ∈ R2 is the weight vector and b ∈ R is the bias term. The VC-dimension of
linear classifiers in R2 is 3. This can be rigorously shown by noting that for any set of 3
points in R2, the hypothesis class H can shatter these points. In fact, any possible binary
labeling of the 3 points can be achieved by some linear classifier. However, for 4 points in
R2, it is impossible to shatter all possible binary labelings (e.g., the four vertices of a convex
quadrilateral), meaning the VC-dimension is 3.

2. Example 2: Polynomial Classifiers of Degree d: Consider a polynomial hypothesis class
in Rn of degree d. The hypothesis class H consists of polynomials of the form:

h(x) =
∑

i1,i2,...,in

αi1,i2,...,inx
i1
1 x

i2
2 . . . x

in
n (24)

where the αi1,i2,...,in are coefficients and x = (x1, x2, . . . , xn). The VC-dimension of poly-
nomial classifiers of degree d in Rn grows as O(nd), implying that the complexity of the
hypothesis class increases rapidly with both the degree d and the dimension n of the input
space.

Neural networks, depending on their architecture, can have very high VC-dimensions. In particu-
lar, the VC-dimension of a neural network with L layers, each containing N neurons, is typically
O(NL), indicating that the VC-dimension grows exponentially with both the number of neurons
and the number of layers. This result provides insight into the complexity of neural networks and
their capacity to overfit data when the training sample size is insufficient.

The VC-dimension of a hypothesis class is a powerful tool in statistical learning theory. It
quantifies the complexity of the hypothesis class by measuring its capacity to shatter sets of points,
and it is directly tied to the model’s ability to generalize. The VC-dimension theorem provides
rigorous bounds on the generalization error and sample complexity, giving us essential insights into
the trade-off between model complexity and generalization. The theory extends to more complex
hypothesis classes such as linear classifiers, polynomial classifiers, and neural networks, where it
serves as a critical tool for controlling overfitting and ensuring reliable performance on unseen data.

1.2.2 Rademacher complexity for continuous spaces

Literature Review: Truong (2022) [31] in his article explored how Rademacher complexity im-
pacts generalization error in deep learning, particularly with IID and Markov datasets. Gnecco
and Sanguineti (2008) [32] developed approximation error bounds in Reproducing Kernel Hilbert
Spaces (RKHS) and functional approximation settings. Astashkin (2010) [33] discusses applica-
tions of Rademacher functions in symmetric function spaces and their mathematical structure.
Ying and Campbell (2010) [34] applies Rademacher complexity to kernel-based learning problems
and support vector machines. Zhu et.al. (2009) [35] examined Rademacher complexity in cog-
nitive models and neural representation learning. Astashkin et al. (2020) [36] investigated how
the Rademacher system behaves in function spaces and its role in functional analysis. Sachs et.al.
(2023) [37] introduced a refined approach to Rademacher complexity tailored to specific machine
learning algorithms. Ma and Wang (2020) [38] investigated Rademacher complexity bounds in deep
residual networks. Bartlett and Mendelson (2002) [39] wrote a foundational paper on complexity
measures, providing fundamental theoretical insights into generalization bounds. Dzahini and Wild
(2024) [40] in their paper extended Rademacher-based complexity to stochastic optimization meth-
ods. McDonald and Shalizi (2011) [41] showed using sequential Rademacher complexities for I.I.D
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process how to control the generalization error of time series models wherein past values of the
outcome are used to predict future values.

Let (X ,Σ,D) represent a probability space where X is a measurable space, Σ is a sigma-algebra,
and D is a probability measure. The function class F ⊂ L∞(X ,R) satisfies:

sup
f∈F
∥f∥∞ <∞, (25)

where ∥f∥∞ = ess supx∈X |f(x)| denotes the essential supremum. For rigor, F is assumed measur-
able in the sense that for every ϵ > 0, there exists a countable subset Fϵ ⊆ F such that:

sup
f∈F

inf
g∈Fϵ

∥f − g∥∞ ≤ ϵ. (26)

Given S = {x1, x2, . . . , xn} ∼ Dn, the empirical measure Pn is:

Pn(A) =
1

n

n∑
i=1

⊮{xi∈A}, ∀A ∈ Σ. (27)

The integral under Pn for f ∈ F approximates the population integral under D:

Pn[f ] =
1

n

n∑
i=1

f(xi), D[f ] =

∫
X
f(x) dD(x). (28)

Let σ = (σ1, . . . , σn) be independent Rademacher random variables:

P(σi = +1) = P(σi = −1) =
1

2
, i = 1, . . . , n. (29)

These variables are defined on a probability space (Ω,A,P) independent of the sample S. The
Duality and Symmetrization of Empirical Rademacher Complexity is also very important. The
empirical Rademacher complexity of F with respect to S is:

R̂S(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
, (30)

where Eσ denotes expectation over σ. The supremum can be interpreted as a functional dual
norm in L∞(X ,R), where F is the unit ball. Using the symmetrization technique, the Rademacher
complexity relates to the deviation of Pn[f ] from D[f ]:

ES sup
f∈F
|Pn[f ]−D[f ]| ≤ 2Rn(F), (31)

where:
Rn(F) = ES

[
R̂S(F)

]
. (32)

This is derived by first symmetrizing the sample and then invoking Jensen’s inequality and the
independence of σ. There are some Complexity Bounds that use Covering Numbers and Entropy
that need to be discussed. In Metric Entropy, we let ∥ · ∥∞ be the metric on F . The covering
number N(ϵ,F , ∥ · ∥∞) satisfies:

N(ϵ,F , ∥ · ∥∞) = inf{m ∈ N : ∃{f1, . . . , fm} ⊆ F , ∀f ∈ F , ∃i, ∥f − fi∥∞ ≤ ϵ}. (33)

Regarding the Dudley’s Entropy Integral, For a bounded function class F (compact under ∥ · ∥∞):

Rn(F) ≤ inf
α>0

(
4α +

12√
n

∫ ∞

α

√
logN(ϵ,F , ∥ · ∥∞) dϵ

)
. (34)

13



There is also a Relation to Talagrand’s Concentration Inequality. Talagrand’s inequality provides
tail bounds for the supremum of empirical processes:

P
(

sup
f∈F
|Pn[f ]−D[f ]| > ϵ

)
≤ 2 exp

(
− nϵ2

2∥f∥2∞

)
, (35)

reinforcing the link between Rn(F) and generalization. There are some Applications in Continuous
Function Classes. One example is the RKHS with Gaussian Kernel. For F as the unit ball of an
RKHS with kernel k(x, x′), the covering number satisfies:

logN(ϵ,F , ∥ · ∥∞) ∼ O

(
1

ϵ2

)
, (36)

yielding:

Rn(F) ∼ O

(
1√
n

)
. (37)

For F ⊆ Hs(Rd), the covering number depends on the smoothness s and dimension d:

Rn(F) ∼ O

(
1

ns/d

)
. (38)

Rademacher complexity is deeply embedded in modern empirical process theory. Its intricate
relationship with measure-theoretic tools, symmetrization, and concentration inequalities provides
a robust theoretical foundation for understanding generalization in high-dimensional spaces.

1.2.3 Sobolev Embeddings

Literature Review: Abderachid and Kenza (2024) [42] in their paper investigated fractional
Sobolev spaces defined using Riemann-Liouville derivatives and studies their embedding prop-
erties. It establishes new continuous embeddings between these fractional spaces and classical
Sobolev spaces, providing applications to PDEs. Giang et.al. (2024) [43] introduced weighted
Sobolev spaces and derived new Pólya-Szegö type inequalities. These inequalities play a key role in
establishing compact embedding results in function spaces equipped with weight functions. Ruiz
and Fragkiadaki (2024) [44] provided a novel approach using Haar functions to revisit fractional
Sobolev embedding theorems and demonstrated the algebra properties of fractional Sobolev spaces,
which are essential in nonlinear analysis. Bilalov et.al. (2025) [45] analyzed compact Sobolev em-
beddings in Banach function spaces, extending the classical Poincaré and Friedrichs inequalities
to this setting and provided applications to function spaces used in modern PDE theory. Cheng
and Shao (2025) [46] developed the weighted Sobolev compact embedding theorem for function
spaces with unbounded radial potentials and used this result to prove the existence of ground state
solutions for fractional Schrödinger-Poisson equations. Wei and Zhang (2025) [47] established a
new embedding theorem tailored to variational problems arising in Schrödinger-Poisson equations
and used Hardy-Sobolev embeddings to study the zero-mass case, an important case in quantum
mechanics. Zhang and Qi (2025) [48] examined the compactness of Sobolev embeddings in the
presence of small perturbations in quasilinear elliptic equations and proved multiple solution exis-
tence results using variational methods. Xiao and Yue (2025) [49] established a Sobolev embedding
theorem for fractional Laplacian function spaces and applied the embedding results to image pro-
cessing, particularly edge detection. Pesce and Portaro (2025) [50] studied intrinsic Hölder spaces
and their connection to fractional Sobolev embeddings and established new embedding results for
function spaces relevant to ultraparabolic operators.

The Sobolev embedding theorem states that:

W k,p(X ) ↪→ Cm(X ), (39)
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if k − d
p
> m, ensuring fθ ∈ C∞(X ) for smooth activations σ. For a function u ∈ Lp(Ω), its weak

derivative Dαu satisfies:∫
Ω

u(x)Dαϕ(x) dx = (−1)|α|
∫
Ω

v(x)ϕ(x) dx ∀ϕ ∈ C∞
c (Ω), (40)

where v ∈ Lp(Ω) is the weak derivative. This definition extends the classical notion of differentiation
to functions that may not be pointwise differentiable. The Sobolev norm encapsulates both function
values and their derivatives:

∥u∥Wk,p(Ω) =

∑
|α|≤k

∥Dαu∥pLp(Ω)

1/p

. (41)

Key properties:

• Semi-norm Dominance: The W k,p-norm is controlled by the seminorm |u|Wk,p , ensuring
sensitivity to high-order derivatives.

• Poincaré Inequality: For Ω bounded, u− uΩ satisfies:

∥u− uΩ∥Lp ≤ C∥Du∥Lp . (42)

Sobolev spaces W k,p(Ω) embed into Lq(Ω) or Cm(Ω), depending on k, p, q, and n. These embeddings
govern the smoothness and integrability of u and its derivatives. There are several Advanced
Theorems on Sobolev Embeddings. They are as follows:

1. Sobolev Embedding Theorem: Let Ω ⊂ Rn be a bounded domain with Lipschitz bound-
ary. Then:

• If k > n/p, W k,p(Ω) ↪→ Cm,α(Ω) with m = ⌊k − n/p⌋ and α = k − n/p−m.

• If k = n/p, W k,p(Ω) ↪→ Lq(Ω) for q <∞.

• If k < n/p, W k,p(Ω) ↪→ Lq(Ω) where 1
q

= 1
p
− k

n
.

2. Rellich-Kondrachov Compactness Theorem: The embedding W k,p(Ω) ↪→ Lq(Ω) is com-
pact for q < np

n−kp
. Compactness follows from:

(a) Equicontinuity: W k,p-boundedness ensures uniform control over oscillations.

(b) Rellich’s Selection Principle: Strong convergence follows from uniform estimates and
tightness.

The Proof of Sobolev Embedding starts with the Scaling Analysis.Define uλ(x) = u(λx). Then:

∥uλ∥Lp(Ω) = λ−n/p∥u∥Lp(λ−1Ω). (43)

For derivatives:
∥Dαuλ∥Lp(Ω) = λ|α|−n/p∥Dαu∥Lp(λ−1Ω). (44)

The scaling relation λk−n/p aligns with the Sobolev embedding condition k > n/p. Sobolev norms
in Rn are equivalent to decay rates of Fourier coefficients:

∥u∥Wk,p ∼
(∫

Rn

|ξ|2k|û(ξ)|2 dξ
)1/2

. (45)

For k > n/p, Fourier decay implies uniform bounds, ensuring u ∈ Cm,α. Interpolation spaces
bridge Lp and W k,p, providing finer embeddings. Duality: Sobolev embeddings are equivalent to
boundedness of adjoint operators in Lq. For −∆u = f , u ∈ W 2,p(Ω) ensures u ∈ C0,α(Ω) if p > n/2.
Sobolev spaces govern variational problems in geometry, e.g., minimal surfaces and harmonic maps.
On Ω with fractal boundaries, trace theorems refine Sobolev embeddings.
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1.2.4 Rellich-Kondrachov Compactness Theorem

The Rellich-Kondrachov Compactness Theorem is one of the most fundamental and deep re-
sults in the theory of Sobolev spaces, particularly in the study of functional analysis and the theory
of partial differential equations. The theorem asserts the compactness of certain Sobolev embed-
dings under appropriate conditions on the domain and the function spaces involved. This result is
of immense significance in mathematical analysis because it provides a rigorous justification for the
fact that bounded sequences in Sobolev spaces, under certain conditions, have strongly convergent
subsequences in lower-order normed spaces. In essence, the theorem states that while weak con-
vergence in Sobolev spaces is relatively straightforward due to the Banach-Alaoglu theorem, strong
convergence is not always guaranteed. However, under the assumptions of the Rellich-Kondrachov
theorem, strong convergence in Lq(Ω) can indeed be obtained from boundedness in W 1,p(Ω). The
compactness property ensured by this theorem is much stronger than mere boundedness or weak
convergence and plays a crucial role in proving the existence of solutions to variational problems
by ensuring that minimizing sequences possess convergent subsequences in an appropriate function
space. The theorem can also be viewed as a generalization of the classical Arzelà–Ascoli theo-
rem, extending compactness results to function spaces that involve derivatives.

Literature Review: Lassoued (2026) [51] examined function spaces on the torus and their lack
of compactness, highlighting cases where the classical Rellich-Kondrachov result fails. He extended
compact embedding results to function spaces with periodic structures. He also discussed trace
theorems and regular function spaces in this new context. Chen et.al. (2024) [52] extended the
Rellich-Kondrachov theorem to Hörmander vector fields, a class of differential operators that appear
in hypoelliptic PDEs. They established a degenerate compact embedding theorem, generalizing pre-
vious results in the field. They also provided applications to geometric inequalities, highlighting
the role of compact embeddings in PDE theory. Adams and Fournier (2003) [53] in their book
provided a complete proof of the Rellich-Kondrachov theorem, along with a discussion of compact
embeddings. They also covered function space theory, embedding theorems, and applications in
PDEs. Brezis (2010) [54] wrote a highly recommended resource for understanding Sobolev spaces
and their compactness properties. The book included applications to variational methods and weak
solutions of PDEs. Evans (2022) [55] in his classic PDE textbook includes a discussion of compact
Sobolev embeddings, their implications for weak convergence, and applications in variational meth-
ods. Maz’ya (2011) [56] provided a detailed treatment of Sobolev space theory, including compact
embedding theorems in various settings.

To rigorously state the theorem, we consider a bounded open domain Ω ⊂ Rn with a Lipschitz
boundary. For 1 ≤ p < n, the theorem asserts that the embedding

W 1,p(Ω) ↪→ Lq(Ω) (46)

is compact whenever q ≤ np
n−p

. More precisely, this means that if {uk} ⊂ W 1,p(Ω) is a bounded
sequence in the Sobolev norm, i.e., there exists a constant C > 0 such that

∥uk∥W 1,p(Ω) = ∥uk∥Lp(Ω) + ∥∇uk∥Lp(Ω) ≤ C, (47)

then there exists a subsequence {ukj} and a function u ∈ Lq(Ω) such that

ukj → u strongly in Lq(Ω), (48)

which means that
∥ukj − u∥Lq(Ω) → 0 as j →∞. (49)

To establish this rigorously, we first recall the fact that bounded sequences in W 1,p(Ω) are
weakly precompact. Since W 1,p(Ω) is a reflexive Banach space for 1 < p < ∞, the Banach-
Alaoglu theorem ensures that any bounded sequence {uk} in W 1,p(Ω) has a subsequence (still
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denoted by {uk}) and a function u ∈ W 1,p(Ω) such that

uk ⇀ u in W 1,p(Ω). (50)

This means that for all test functions φ ∈ W 1,p′(Ω), where p′ is the Hölder conjugate of p satisfying
1
p

+ 1
p′

= 1, we have∫
Ω

ukφdx→
∫
Ω

uφ dx,

∫
Ω

∇uk · ∇φdx→
∫
Ω

∇u · ∇φdx. (51)

However, weak convergence alone does not imply compactness. To obtain strong convergence
in Lq(Ω), we need additional arguments. This is accomplished using the Fréchet-Kolmogorov
compactness criterion, which states that a bounded subset of Lq(Ω) is compact if and only if it
is tight and uniformly equicontinuous. More formally, compactness follows if

1. The sequence uk(x) does not oscillate excessively at small scales.

2. The sequence uk(x) does not escape to infinity in a way that prevents strong convergence.

To quantify this, we invoke the Sobolev-Poincaré inequality, which states that for p < n, there
exists a constant C such that

∥u− uΩ∥Lq(Ω) ≤ C∥∇u∥Lp(Ω), uΩ =
1

|Ω|

∫
Ω

u(x) dx. (52)

Applying this inequality to uk − u, we obtain

∥uk − u∥Lq(Ω) ≤ C∥∇(uk − u)∥Lp(Ω). (53)

Since ∇uk is weakly convergent in Lp(Ω), we have

∥∇uk −∇u∥Lp(Ω) → 0. (54)

Thus,
∥uk − u∥Lq(Ω) → 0, (55)

which establishes the strong convergence in Lq(Ω), completing the proof. The key insight is
that compactness arises because the gradients of uk provide control over the oscillations of uk,
ensuring that the sequence cannot oscillate indefinitely without converging in norm. The crucial
role of Sobolev embeddings is to guarantee that even though W 1,p(Ω) does not embed compactly
into itself, it does embed compactly into Lq(Ω) for q < np

n−p
. This embedding ensures that weak

convergence in W 1,p(Ω) implies strong convergence in Lq(Ω), proving the theorem.

2 Universal Approximation Theorem: Refined Proof

The Universal Approximation Theorem (UAT) is a fundamental result in neural network theory,
stating that a feedforward neural network with a single hidden layer containing a finite number of
neurons can approximate any continuous function on a compact subset of Rn to any desired degree
of accuracy, provided that an appropriate activation function is used. This theorem has significant
implications in machine learning, function approximation, and deep learning architectures.

Literature Review: Hornik et. al. (1989) [57] in their seminal paper rigorously proved that
multilayer feedforward neural networks with a single hidden layer and a sigmoid activation func-
tion can approximate any continuous function on a compact set. It extends prior results and lays
the foundation for the modern understanding of UAT. Cybenko (1989) [58] provided one of the first
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rigorous proofs of the UAT using the sigmoid function as the activation function. They demon-
strated that a single hidden layer network can approximate any continuous function arbitrarily well.
Barron (1993) [59] extended UAT by quantifying the approximation error and analyzing the rate
of convergence. This work is crucial for understanding the practical efficiency of neural networks.
Pinkus (1999) [60] provided a comprehensive survey of UAT from the perspective of approximation
theory and also discussed conditions for approximation with different activation functions and the
theoretical limits of neural networks. Lu et.al. (2017) [61] investigated how the width of neural
networks affects their approximation capability, challenging the notion that deeper networks are
always better. They also provided insights into trade-offs between depth and width. Hanin and
Sellke (2018) [62] extended UAT to ReLU activation functions, showing that deep ReLU networks
achieve universal approximation while maintaining minimal width constraints. Garcıa-Cervera et.
al. (2024) [63] extended the universal approximation theorem to set-valued functions and its ap-
plications to Deep Operator Networks (DeepONets), which are useful in control theory and PDE
modeling. Majee et.al. (2024) [64] explored the universal approximation properties of deep neu-
ral networks for solving inverse problems using Markov Chain Monte Carlo (MCMC) techniques.
Toscano et. al. (2024) [65] introduced Kurkova-Kolmogorov-Arnold Networks (KKANs), an ex-
tension of UAT incorporating Kolmogorov’s superposition theorem for improved approximation
capabilities. Son (2025) [66] established a new framework for operator learning based on the UAT,
providing a theoretical foundation for backpropagation-free deep networks.

2.1 Approximation Using Convolution Operators

Let us begin by considering the convolution operator and its role in approximating functions in the
context of the Universal Approximation Theorem (UAT). Suppose f : Rn → R is a continuous and
bounded function. The convolution of f with a kernel function ϕ : Rn → R, denoted as f ∗ ϕ, is
defined as

(f ∗ ϕ)(x) =

∫
Rn

f(y)ϕ(x− y) dy. (56)

The kernel ϕ(x) is typically chosen to be smooth, compactly supported, and normalized such that∫
Rn

ϕ(x) dx = 1. (57)

To approximate f locally, we introduce a scaling parameter ϵ > 0 and define the scaled kernel ϕϵ(x)
as

ϕϵ(x) = ϵ−nϕ
(x
ϵ

)
. (58)

The factor ϵ−n ensures that ϕϵ(x) remains a probability density function, satisfying∫
Rn

ϕϵ(x) dx =

∫
Rn

ϕ(x) dx = 1. (59)

The convolution of f with the scaled kernel ϕϵ is given by

(f ∗ ϕϵ)(x) =

∫
Rn

f(y)ϕϵ(x− y) dy. (60)

Performing the change of variables z = x−y
ϵ

, we have y = x− ϵz and dy = ϵndz. Substituting into
the integral, we obtain

(f ∗ ϕϵ)(x) =

∫
Rn

f(x− ϵz)ϕ(z) dz. (61)

This representation shows that (f ∗ ϕϵ)(x) is a smoothed version of f(x), where the smoothing
is controlled by the parameter ϵ. As ϵ → 0, the kernel ϕϵ(x) becomes increasingly concentrated
around x, and we recover f(x) in the limit:

lim
ϵ→0

(f ∗ ϕϵ)(x) = f(x), (62)
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assuming f is continuous. This result can be rigorously proven using properties of the kernel
ϕ, such as its smoothness and compact support, and the dominated convergence theorem, which
ensures that the integral converges uniformly to f(x). Now, let us consider the role of convolution
operators in the approximation of f by neural networks. A single-layer feedforward neural network
is expressed as

f̂(x) =
M∑
i=1

ciσ(wT
i x+ bi), (63)

where ci ∈ R are coefficients, wi ∈ Rn are weight vectors, bi ∈ R are biases, and σ : R → R is the
activation function. The activation function σ(wT

i x+ bi) can be interpreted as a localized response
function, analogous to the kernel ϕ(x− y) in convolution. By drawing an analogy between the two,
we can write the neural network approximation as

f̂(x) ≈
M∑
i=1

f(xi)ϕϵ(x− xi)∆x (64)

where ϕϵ(x) is interpreted as a parameterized kernel defined by wi, bi, and σ, and ∆x represents a
discretization step. The approximation error ∥f − f̂∥∞ can be decomposed into two components:

∥f − f̂∥∞ ≤ ∥f − f ∗ ϕϵ∥∞ + ∥f ∗ ϕϵ − f̂∥∞. (65)

The term ∥f − f ∗ ϕϵ∥∞ represents the error introduced by smoothing f with the kernel ϕϵ, and it
can be made arbitrarily small by choosing ϵ sufficiently small, provided f is regular enough (e.g.,
Lipschitz continuous). The term ∥f ∗ ϕϵ − f̂∥∞ quantifies the error due to discretization, which
vanishes as the number of neurons M → ∞. To rigorously analyze the convergence of f̂(x) to
f(x), we rely on the density of neural network approximators in function spaces. The Universal
Approximation Theorem states that, for any continuous function f on a compact domain Ω ⊂ Rn

and any ϵ > 0, there exists a neural network f̂ with finitely many neurons such that

sup
x∈Ω
|f(x)− f̂(x)| < ϵ. (66)

This result hinges on the ability of the activation function σ to generate a rich set of basis func-
tions. For example, if σ(x) = max(0, x) (ReLU), the network approximates f(x) by piecewise linear
functions. If σ(x) = 1

1+e−x (sigmoid), the network generates smooth approximations that resemble
logistic regression.

In this refined proof of the UAT, convolution operators provide a unifying framework for un-
derstanding the smoothing, localization, and discretization processes that underlie neural network
approximations. The interplay between ϕϵ(x), f ∗ ϕϵ(x), and f̂(x) reveals the profound mathemat-
ical structure that connects classical approximation theory with modern machine learning. This
connection not only enhances our theoretical understanding of neural networks but also guides the
design of architectures and algorithms for practical applications.

2.1.1 Stone-Weierstrass Application

Literature Review: Rudin (1976) [67] introduced the Weierstrass approximation theorem and
proves its generalization, the Stone-Weierstrass theorem. He also discussed the algebraic structure
of function spaces and how the theorem ensures the uniform approximation of continuous func-
tions by polynomials. He also presented examples and exercises related to compactness, uniform
convergence, and Banach algebra structures. Stein and Shakarchi (2005) [68] extended the Stone-
Weierstrass theorem into measure theory and functional analysis. He also proved the theorem in
the context of Lebesgue integration. He also discussed how it applies to Hilbert spaces and orthog-
onal polynomials. He also connected the theorem to Fourier analysis and spectral decomposition.
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Conway (2019) [69] explored the Stone-Weierstrass theorem in the setting of Banach algebras and
C-algebras*. He also extended the theorem to non-commutative function algebras and discussed the
operator-theoretic implications of the theorem in Hilbert spaces. He also analyzed the theorem’s
application to spectral theory. Dieudonné (1981) [70] traced the historical development of func-
tional analysis, including the origins of the Stone-Weierstrass theorem and discussed contributions
by Karl Weierstrass and Marshall Stone. He also explored how the theorem influenced topological
vector spaces and operator theory and also included perspectives on the axiomatic development of
function approximation. Folland (1999) [71] discussed the Stone-Weierstrass theorem in depth with
applications to probability theory and ergodic theory and used the theorem to establish the density
of algebraic functions in measure spaces He also connected the Stone-Weierstrass theorem to func-
tional approximation in Lp spaces. He also explored the interplay between the Stone-Weierstrass
theorem and the Hahn-Banach theorem. Sugiura (2024) [72] extended the Stone-Weierstrass theo-
rem to the study of reservoir computing in machine learning and proved that certain neural networks
can approximate functions uniformly under the assumptions of the theorem. He bridges classical
functional approximation with modern AI and deep learning. Liu et al. (2024) [73] investigated
the Stone-Weierstrass theorem in normed module settings and used category theory to general-
ize function approximation results. He also extended the theorem beyond real-valued functions
to structured mathematical objects. Martinez-Barreto (2025) [74] provided a modern formulation
of the theorem with rigorous proof and reviewed applications in operator algebras and topology.
He also discussed open problems related to function approximation. Chang and Wei (2024) [75]
used the Stone-Weierstrass theorem to derive new operator inequalities and applied the theorem to
functional analysis in quantum mechanics. Caballer et al. (2024) [76] investigated cases where the
Stone-Weierstrass theorem fails and provided counterexamples and refined conditions for uniform
approximation. Chen (2024) [77] extended the Stone-Weierstrass theorem to generalized function
spaces and introduced a new class of uniform topological algebras. Rafiei and Akbarzadeh-T (2024)
[78] used the Stone-Weierstrass theorem to analyze function approximation in fuzzy logic systems
and explored the applications in control systems and AI.

The Stone-Weierstrass Theorem serves as a cornerstone in functional analysis, bridging the
algebraic structure of continuous functions with approximation theory. This theorem, when ap-
plied to the Universal Approximation Theorem (UAT), provides a rigorous foundation for
asserting that neural networks can approximate any continuous function defined on a compact set.
To understand this connection in its most scientifically and mathematically rigorous form, we must
carefully analyze the algebra of continuous functions on a compact Hausdorff space and the role
of neural networks in approximating these functions, ensuring that all mathematical nuances are
explored with extreme precision. Let X be a compact Hausdorff space, and let C(X) represent
the space of continuous real-valued functions on X. The supremum norm ∥f∥∞ for a function
f ∈ C(X) is defined as:

∥f∥∞ = sup
x∈X
|f(x)| (67)

This supremum norm is critical in defining the proximity between continuous functions, as we seek
to approximate any function f ∈ C(X) by a function g from a subalgebra A ⊂ C(X). The Stone-
Weierstrass theorem guarantees that if the subalgebra A satisfies two essential properties—(1) it
contains the constant functions, and (2) it separates points—then the closure of A in the supremum
norm will be the entire space C(X). To formalize this, we define the point separation property
as follows: for every pair of distinct points x1, x2 ∈ X, there exists a function h ∈ A such that
h(x1) ̸= h(x2). This condition ensures that functions from A are sufficiently “rich” to distinguish
between different points in X. Mathematically, this is expressed as:

∃h ∈ A such that h(x1) ̸= h(x2) ∀x1, x2 ∈ X, x1 ̸= x2 (68)
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Given these two properties, the Stone-Weierstrass theorem asserts that for any continuous function
f ∈ C(X) and any ϵ > 0, there exists an element g ∈ A such that:

∥f − g∥∞ < ϵ (69)

This result ensures that any continuous function on a compact Hausdorff space can be approxi-
mated arbitrarily closely by functions from a sufficiently rich subalgebra. In the context of the
Universal Approximation Theorem (UAT), we seek to apply the Stone-Weierstrass theorem
to the approximation capabilities of neural networks. Let K ⊆ Rn be a compact subset, and let
f ∈ C(K) be a continuous function defined on this set. A feedforward neural network with a
non-linear activation function σ has the form:

f̂θ(x) =
N∑
i=1

wiσ(⟨wi, x⟩+ bi) (70)

where ⟨wi, x⟩ represents the inner product between the weight vector wi and the input x, and bi
represents the bias term. The activation function σ is typically non-linear (such as the sigmoid or
ReLU function), and the parameters θ = {wi, bi}Ni=1 are the weights and biases of the network. The
function f̂θ(x) is a weighted sum of the non-linear activations applied to the affine transformations
of x.

We now explore the connection between neural networks and the Stone-Weierstrass theorem. A
critical observation is that the set of functions defined by a neural network with non-linear activation
is a subalgebra of C(K) provided the activation function σ is sufficiently rich in its non-linearity.
This non-linearity ensures that the network can separate points in K, meaning that for any two
distinct points x1, x2 ∈ K, there exists a network function f̂θ that takes distinct values at these
points. This satisfies the point separation condition required by the Stone-Weierstrass theorem.
To formalize this, consider two distinct points x1, x2 ∈ K. Since σ is non-linear, the function f̂θ(x)
with appropriately chosen weights and biases will satisfy:

f̂θ(x1) ̸= f̂θ(x2) (71)

Thus, the algebra of neural network functions satisfies the point separation property. By applying
the Stone-Weierstrass theorem, we conclude that this algebra is dense in C(K), meaning that for
any continuous function f ∈ C(K) and any ϵ > 0, there exists a neural network function f̂θ such
that:

∥f(x)− f̂θ(x)∥∞ < ϵ ∀x ∈ K (72)

This rigorous result shows that neural networks with a non-linear activation function can approxi-
mate any continuous function on a compact set arbitrarily closely in the supremum norm, thereby
proving the Universal Approximation Theorem. To further explore this, consider the error term:

∥f(x)− f̂θ(x)∥∞ (73)

For a given function f and a compact set K, this error term can be made arbitrarily small by
increasing the number of neurons in the hidden layer of the neural network. This increases the
capacity of the network, effectively enlarging the subalgebra of functions generated by the network,
thereby improving the approximation. As the number of neurons increases, the network’s ability to
approximate any function from C(K) becomes increasingly precise, which aligns with the conclusion
of the Stone-Weierstrass theorem that the network functions form a dense subalgebra in C(K).
Thus, the Universal Approximation Theorem, derived through the Stone-Weierstrass theorem,
rigorously proves that neural networks can approximate any continuous function on a compact set
to any desired degree of accuracy. The combination of the non-linearity of the activation function
and the architecture of the neural network guarantees that the network can generate a dense
subalgebra of continuous functions, ultimately allowing it to approximate any function from C(K).
This result not only formalizes the approximation power of neural networks but also provides a
deep theoretical foundation for understanding their capabilities as universal approximators.
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2.2 Depth vs. Width: Capacity Analysis

2.2.1 Bounding the Expressive Power

The Kolmogorov-Arnold Superposition Theorem is a foundational result in the mathematical anal-
ysis of multivariate continuous functions and their decompositions, providing a framework that
underpins the expressive power of neural networks. It asserts that any continuous multivariate func-
tion can be expressed as a finite composition of continuous univariate functions and addition. It was
first conjectured by Andrey Kolmogorov in 1956 and later rigorously proved by Vladimir Arnold in
1957. Formally, the theorem guarantees that any continuous multivariate function f : [0, 1]n → R
can be represented as a finite composition of continuous univariate functions Φq and ψpq. Specifi-
cally, for f(x1, x2, . . . , xn), there exist functions Φq : R→ R and ψpq : R→ R, such that

f(x1, x2, . . . , xn) =
2n∑
q=0

Φq

(
n∑

p=1

ψpq(xp)

)
, (74)

where the functions ψpq(xp) encode the univariate projections of the input variables xp, and the
outer functions Φq aggregate these projections into the final output. This decomposition highlights
a fundamental property of multivariate continuous functions: their expressiveness can be captured
through hierarchical compositions of simpler, univariate components.

Literature Review: There are some Classical References on the Kolmogorov-Arnold Superpo-
sition Theorem (KST). Kolmogorov (1957) [79] in his Foundational Paper on KST established that
any continuous function of several variables can be represented as a superposition of continuous
functions of a single variable and addition. This was groundbreaking because it provided a uni-
versal function decomposition method, independent of inner-product spaces. He proved that there
exist functions ϕq and ψq such that any function f(x1, x2, . . . , xn) can be expressed as:

f(x1, ..., xn) =
2n+1∑
q=1

ϕq

(
n∑

p=1

ψqp(xp)

)
(75)

where the ψqp are univariate functions. Kolmogorov provided a mathematical basis for approxima-
tion theory and neural networks, influencing modern machine learning architectures. Arnold (1963)
[80] refined Kolmogorov’s theorem by proving that one can restrict the superposition to functions
of at most two variables instead of one. Arnold’s formulation led to the Kolmogorov-Arnold
representation:

f(x1, ..., xn) =
2n+1∑
q=1

ϕq

(
xq +

n∑
p=1

ψqp(xp)

)
(76)

making the theorem more suitable for practical computations. Arnold strengthened the expressiv-
ity of neural networks, inspiring alternative function representations in high-dimensional settings.
Lorentz (2008) [81] in his book discusses the significance of KST in approximation theory and con-
structive mathematics. He provided error estimates for approximating multivariate functions using
Kolmogorov-type decompositions. He showed how KST fits within Bernstein approximation the-
ory. He helped frame KST in the context of function approximation, bridging it to computational
applications. Building on this theoretical foundation, Hornik et. al. (1989) [57] demonstrated
that multilayer feedforward networks are universal approximators, meaning that neural networks
with a single hidden layer can approximate any continuous function. This work bridged the gap
between the Kolmogorov-Arnold theorem and practical neural network design, providing a rigor-
ous justification for the use of deep architectures. Pinkus (1999) [60] analyzed the role of KST
in multilayer perceptrons (MLPs), showing how it influences function expressibility in neural
networks. He demonstrated that feedforward neural networks can approximate arbitrary functions
using Kolmogorov superposition. He also provided bounds on network depth and width required for
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universal approximation. He played a crucial role in understanding the theoretical power of deep
learning. In more recent years, Montúfar, Pascanu, Cho, and Bengio (2014) [440] explored the
expressive power of deep neural networks by analyzing the number of linear regions they can repre-
sent. Their work provided a modern perspective on the Kolmogorov-Arnold theorem, showing how
depth enhances the ability of networks to model complex functions. Schmidt-Hieber (2020) [441]
rigorously analyzed the approximation properties of deep ReLU networks, demonstrating their effi-
ciency in approximating high-dimensional functions and further connecting the Kolmogorov-Arnold
theorem to modern deep learning practices. Yarotsky (2017) [442] complemented this by providing
explicit error bounds for approximating functions using deep ReLU networks, offering insights into
how depth and activation functions influence approximation accuracy. Telgarsky (2016) [443] con-
tributed to this body of work by rigorously proving that deeper networks can represent functions
more efficiently than shallow ones, aligning with the hierarchical decomposition suggested by the
Kolmogorov-Arnold theorem. This work provided theoretical insights into why depth is crucial in
modern neural networks. Lu et. al. (2017) [444] explored the expressive power of neural networks
from the perspective of width rather than depth, showing how width can also play a critical role in
function approximation. This complemented the Kolmogorov-Arnold theorem by offering a more
nuanced understanding of network design. Finally, Zhang et. al. (2021) [445] provided a rigorous
analysis of how deep learning models generalize, which is closely related to their ability to approx-
imate complex functions. While not directly about the Kolmogorov-Arnold theorem, their work
contextualized these theoretical insights within the broader framework of generalization in deep
learning, offering practical implications for the design and training of neural networks.

There are several very recent contributions in the Kolmogorov-Arnold Superposition Theorem
(KST) (2024–2025). Guilhoto and Perdikaris (2024) [82] explored how KST can be reformulated
using deep learning architectures. They proposed Kolmogorov-Arnold Networks (KANs), a new
type of neural network inspired by KST. They showed that KANs outperform traditional feedfor-
ward networks in function approximation tasks. They also provided empirical evidence of KAN
efficiency in real-world datasets. They also introduced a new paradigm in machine learning, making
function decomposition more interpretable. Alhafiz, M. R. et al. (2025) [83] applied KST-based
networks to turbulence modeling in fluid mechanics. They demonstrated how KANs improve pre-
dictive accuracy for Navier-Stokes turbulence models. They showed a reduction in computational
complexity compared to classical turbulence models. They also developed a data-driven turbulence
modeling framework leveraging KST. They advanced machine learning applications in computa-
tional fluid dynamics (CFD). Lorencin, I. et al. (2024) [84] used KST-inspired neural networks for
predicting propulsion system parameters in ships. They implemented KANs to model hybrid ship
propulsion (Combined Diesel-Electric and Gas - CODLAG) and demonstrated a highly accurate
prediction model for propulsion efficiency. They also provided a new benchmark dataset for ship
propulsion research. They extended KST applications to naval engineering & autonomous systems.

Paper Main Contribution Impact
Kolmogorov (1957) Original KST theorem Laid foundation for function decomposition
Arnold (1963) Refinement using 2-variable functions Made KST more practical for computation
Lorentz (2008) KST in approximation theory Linked KST to function approximation errors
Pinkus (1999) KST in neural networks Theoretical basis for deep learning
Perdikaris (2024) Deep learning reinterpretation Proposed Kolmogorov-Arnold Networks
Alhafiz (2025) KST-based turbulence modeling Improved CFD simulations
Lorencin (2024) KST in naval propulsion Optimized ship energy efficiency

In the context of neural networks, this result establishes the theoretical universality of function ap-
proximation. A neural network with a single hidden layer approximates a function f(x1, x2, . . . , xn)
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by representing it as

f(x1, x2, . . . , xn) ≈
W∑
i=1

aiσ

(
n∑

j=1

wijxj + bi

)
, (77)

where W is the width of the hidden layer, σ is a nonlinear activation function, wij are weights,
bi are biases, and ai are output weights. The expressive power of such shallow networks depends
critically on the width W , as the universal approximation theorem ensures that W → ∞ suffices
to approximate any continuous function arbitrarily well. However, for a fixed approximation error
ϵ > 0, the required width grows exponentially with the input dimension n, satisfying a lower bound
of

W ≥ C · ϵ−n, (78)

where C depends on the function’s Lipschitz constant. This exponential dependence, sometimes
called the ”curse of dimensionality,” underscores the inefficiency of shallow architectures in captur-
ing high-dimensional dependencies.

The advantage of depth becomes apparent when we consider deep neural networks, which uti-
lize hierarchical representations. A deep network with D layers and width W per layer constructs
a function as a composition of layer-wise transformations:

h(k) = σ
(
W (k)h(k−1) + b(k)

)
, h(0) = x, (79)

where h(k) denotes the output of the k-th layer, W (k) is the weight matrix, b(k) is the bias vector,
and σ is the nonlinear activation. The final output of the network is then given by

f(x) ≈ h(D) = σ
(
W (D)h(D−1) + b(D)

)
. (80)

The depth D of the network allows it to approximate hierarchical compositions of functions. For
example, if a target function f(x) has a compositional structure

f(x) = g1 ◦ g2 ◦ · · · ◦ gD(x), (81)

where each gi is a simple function, the depth D directly corresponds to the number of nested
transformations. This compositional hierarchy enables deep networks to approximate functions
efficiently, achieving a reduction in the required parameter count. The approximation error ϵ for a
deep network decreases polynomially with D, satisfying

ϵ ≤ O

(
1

D2

)
, (82)

which is exponentially more efficient than the error scaling for shallow networks. In light of the
Kolmogorov-Arnold theorem, the decomposition

f(x1, x2, . . . , xn) =
2n∑
q=0

Φq

(
n∑

p=1

ψpq(xp)

)
(83)

demonstrates how deep networks align naturally with the structure of multivariate functions. The
inner functions ψpq capture local dependencies, while the outer functions Φq aggregate these into a
global representation. This layered decomposition mirrors the depth-based structure of neural net-
works, where each layer learns a specific aspect of the function’s complexity. Finally, the parameter
count in a deep network with D layers and width W per layer is given by

P ≤ O(D ·W 2), (84)

whereas a shallow network requires
P ≥ O(W n) (85)

parameters for the same approximation accuracy. This exponential difference in parameter count
illustrates the superior efficiency of deep architectures, particularly for high-dimensional functions.
By leveraging the hierarchical decomposition inherent in the Kolmogorov-Arnold theorem, deep
networks achieve expressive power that scales favorably with both dimension and complexity.
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2.2.2 Fourier Analysis of Expressivity

Literature Review: Juárez-Osorio et. al. (2024) [215] applied Fourier analysis to design quantum
convolutional neural networks (QCNNs) for time series forecasting. The Fourier series decomposi-
tion helps analyze and optimize expressivity in quantum architectures, making QCNNs better at
capturing periodic and non-periodic structures in data. Umeano and Kyriienko (2024) [216] intro-
duced Fourier-based quantum feature maps that transform classical data into quantum states with
enhanced expressivity. The Fourier transform plays a central role in mapping high-dimensional
data efficiently while maintaining interpretability. Liu et. al. (2024) [217] extended Graph Convo-
lutional Networks (GCNs) by integrating Fourier analysis and spectral wavelets to improve graph
expressivity. It bridges the gap between frequency-domain analysis and graph embeddings, making
GCNs more effective for complex data structures. Vlasic (2024) [218] presented a Fourier series-
inspired feature mapping technique to encode classical data into quantum circuits. It demonstrates
how Fourier coefficients can enhance the representational capacity of quantum models, leading
to better compression and generalization. Kim et. al. (2024) [219] introduced Neural Fourier
Modelling (NFM), a novel approach to representing time-series data compactly while preserving
its expressivity. It outperforms traditional models like Short-Time Fourier Transform (STFT) in
retaining long-term dependencies. Xie et. al. (2024) [220] explored how Fourier basis functions
can be used to enhance the expressivity of tensor networks while maintaining computational ef-
ficiency. It establishes trade-offs between expressivity and model complexity in machine learning
architectures. Liu et. al. (2024) [221] integrated spectral modulation and Fourier transforms into
implicit neural representations for text-to-image synthesis. Fourier analysis improves global coher-
ence while preserving local expressivity in generative models. Zhang (2024) [222] demonstrated how
Fourier and Lock-in spectrum techniques can represent long-term variations in mechanical signals.
The Fourier-based decomposition allows for more expressive representations of mechanical failures
and degradation. Hamed and Lachiri (2024) [223] applied Fourier transformations to speech syn-
thesis models, improving their ability to transfer expressive content from text to speech. Fourier
series allows capturing prosody, rhythm, and tone variations effectively. Lehmann et. al. (2024)
[224] integrated Fourier-based deep learning models for seismic activity prediction. It explores the
expressivity of Fourier Neural Operators (FNOs) in capturing wave propagations in different geo-
logical environments.

The Fourier analysis of expressivity in neural networks seeks to rigorously quantify how neural
architectures, characterized by their depth and width, can approximate functions through the de-
composition of those functions into their Fourier spectra. Consider a square-integrable function
f : Rd → R, for which the Fourier transform is defined as

f̂(ξ) =

∫
Rd

f(x)e−i2πξ·x dx (86)

where ξ ∈ Rd represents the frequency. The inverse Fourier transform reconstructs the function as

f(x) =

∫
Rd

f̂(ξ)ei2πξ·x dξ (87)

The magnitude |f̂(ξ)| reflects the energy contribution of the frequency ξ to f . Neural networks
approximate f by capturing its Fourier spectrum, but the architecture fundamentally governs how
efficiently this approximation can be achieved, especially in the presence of high-frequency compo-
nents.

For shallow networks with one hidden layer and a finite number of neurons, the universal ap-
proximation theorem establishes that

f(x) ≈
n∑

i=1

aiϕ(wi · x + bi) (88)
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where ϕ is the activation function, wi ∈ Rd are weights, bi ∈ R are biases, and ai ∈ R are
coefficients. The Fourier transform of this representation can be expressed as

f̂(ξ) ≈
n∑

i=1

aiϕ̂(ξ)e−i2πξ·bi (89)

where ϕ̂(ξ) denotes the Fourier transform of the activation function. For smooth activation func-
tions like sigmoid or tanh, ϕ̂(ξ) decays exponentially as ∥ξ∥ → ∞, limiting the network’s ability
to approximate functions with high-frequency content unless the width n is exceedingly large.
Specifically, the Fourier coefficients decay as

|f̂(ξ)| ∼ e−β∥ξ∥ (90)

where β > 0 depends on the smoothness of ϕ. This restriction implies that shallow networks
are biased toward low-frequency functions unless their width scales exponentially with the input
dimension d. Deep networks, on the other hand, leverage their hierarchical structure to overcome
these limitations. A deep network with L layers recursively composes functions, producing an
output of the form

f(x) = ϕL(W(L)ϕL−1(W
(L−1) · · ·ϕ1(W

(1)x + b(1)) · · · ) + b(L)) (91)

where ϕl is the activation function at layer l, W(l) are weight matrices, and b(l) are bias vectors.
The Fourier transform of this composition can be analyzed iteratively. If h(l) = ϕl(W

(l)h(l−1)+b(l))
represents the output of the l-th layer, then

ĥ(l)(ξ) = ϕ̂l(ξ) ∗ ̂W(l)h(l−1)(ξ) (92)

where ∗ denotes convolution and ϕ̂l is the Fourier transform of the activation function. The recursive
application of this convolution amplifies high-frequency components, enabling deep networks to
approximate functions whose Fourier spectra exhibit polynomial decay. Specifically, the Fourier
coefficients of a deep network decay as

|f̂(ξ)| ∼ ∥ξ∥−αL (93)

where α depends on the activation function. This is in stark contrast to the exponential decay
observed in shallow networks.

The activation function plays a pivotal role in shaping the Fourier spectrum of neural networks. For
example, the rectified linear unit (ReLU) ϕ(x) = max(0, x) introduces significant high-frequency
components into the network. The Fourier transform of the ReLU activation is given by

ϕ̂(ξ) =
1

2πiξ
(94)

which decays more slowly than the Fourier transforms of smooth activations. Consequently, ReLU-
based networks are particularly effective at approximating functions with oscillatory behavior. To
illustrate, consider the function

f(x) = sin(2πξ · x) (95)

A shallow network requires an exponentially large number of neurons to approximate f when ∥ξ∥ is
large, but a deep network can achieve the same approximation with polynomially fewer parameters
by leveraging its hierarchical structure. The expressivity of deep networks can be further quantified
by considering their ability to approximate bandlimited functions, i.e., functions f whose Fourier
spectra are supported on ∥ξ∥ ≤ ωmax. For a shallow network with width n, the required number
of neurons scales as

n ∼ (ωmax)
d (96)
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where d is the input dimension. In contrast, for a deep network with depth L, the width scales as

n ∼ (ωmax)
d/L (97)

reflecting the exponential efficiency of depth in distributing the approximation of frequency compo-
nents across layers. For example, if f(x) = cos(2πξ · x) with ∥ξ∥ = ωmax, a deep network requires
significantly fewer parameters than a shallow network to approximate f to the same accuracy.

In summary, the Fourier analysis of expressivity rigorously demonstrates the superiority of deep
networks over shallow ones in approximating complex functions. Depth introduces a hierarchi-
cal compositional structure that enables the efficient representation of high-frequency components,
while width provides a rich basis for approximating the function’s Fourier spectrum. Together,
these properties explain the remarkable capacity of deep neural networks to approximate functions
with intricate spectral structures, offering a mathematically rigorous foundation for understanding
their expressivity.

3 Training Dynamics and NTK Linearization

Literature Review: Trevisan et. al. [85] investigated how knowledge distillation can be ana-
lyzed using the Neural Tangent Kernel (NTK) framework and demonstrated that under certain
conditions, the training dynamics of a student model in knowledge distillation closely follow NTK
linearization. They explored how NTK affects generalization and feature transfer in the distillation
process. They provided theoretical insight into why knowledge distillation improves performance
in deep networks. Bonfanti et. al. (2024) [86] studied how NTK behaves in the nonlinear regime,
particularly in Physics-Informed Neural Networks (PINNs). They showed that when PINNs oper-
ate outside the NTK regime, their performance degrades due to high sensitivity to initialization
and weight updates. They established conditions under which NTK linearization is insufficient
for PINNs, emphasizing the need for nonlinear adaptations. They provided practical guidelines
for designing PINNs that maintain stable training dynamics. Jacot et. al. (2018) [87] introduced
the Neural Tangent Kernel (NTK) as a fundamental framework for analyzing infinite-width neural
networks. They proved that as width approaches infinity, neural networks evolve as linear models
governed by the NTK. They derived generalization bounds for infinitely wide networks and con-
nected training dynamics to kernel methods. They established NTK as a core tool in deep learning
theory, leading to further developments in training dynamics research. Lee et. al. (2019) [88]
extended NTK theory to arbitrarily deep networks, showing that even deep architectures behave as
linear models under gradient descent and proved that training dynamics remain stable regardless of
network depth when width is sufficiently large. They explored practical implications for initializing
and optimizing deep networks. They strengthened NTK theory by confirming its validity beyond
shallow networks. Yang and Hu (2022) [89] challenged the conventional NTK assumption that fea-
ture learning is negligible in infinite-width networks and showed that certain activation functions
can induce nontrivial feature learning even in infinite-width regimes. They suggested that feature
learning can be integrated into NTK theory, opening new directions in kernel-based deep learning
research. Xiang et. al. (2023) [90] investigated how finite-width effects impact training dynam-
ics under NTK assumptions and showed that finite-width networks deviate from NTK predictions
due to higher-order corrections in weight updates. They derived corrections to NTK theory for
practical networks, improving its predictive power for real-world architectures. They refined NTK
approximations, making them more applicable to modern deep-learning models. Lee et. al. (2019)
[91] extended NTK linearization to deep convolutional networks, analyzing their training dynamics
under infinite width and showed how locality and weight sharing in CNNs impact NTK behav-
ior. They also demonstrated practical consequences for CNN training in real-world applications.
They bridged NTK theory and convolutional architectures, providing new theoretical tools for CNN
analysis.
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3.1 Gradient Flow and Stationary Points

Literature Review: Goodfellow et. al. (2016) [112] provided a comprehensive overview of deep
learning, including a detailed discussion of gradient-based optimization methods. It rigorously ex-
plains the dynamics of gradient descent in the context of neural networks, covering topics such as
backpropagation, vanishing gradients, and saddle points. The book also discusses the role of learn-
ing rates, momentum, and adaptive optimization methods in shaping the trajectory of gradient
flow. Sra et. al. (2012) [474] included several chapters dedicated to the theoretical and practi-
cal aspects of gradient-based optimization in machine learning. It provides rigorous mathematical
treatments of gradient flow dynamics, including convergence analysis, the impact of stochasticity in
stochastic gradient descent (SGD), and the geometry of loss landscapes in high-dimensional spaces.
Choromanska et. al. (2015) [475] rigorously analyzed the loss surfaces of deep neural networks.
It demonstrates that the loss landscape is highly non-convex but contains a large number of local
minima that are close in function value to the global minimum. The paper provides insights into
how gradient flow navigates these complex landscapes and why it often converges to satisfactory
solutions despite the non-convexity. Arora et al. (2019) [476] provided a theoretical framework for
understanding the dynamics of gradient descent in deep neural networks. It rigorously analyzes
the role of overparameterization in enabling gradient flow to converge to global minima, even in
the absence of explicit regularization. The paper also explores the implicit regularization effects of
gradient descent and their impact on generalization. Du et. al. (2019) [467] establishes theoretical
guarantees for the convergence of gradient descent to global minima in overparameterized neural
networks. It rigorously proves that gradient flow can efficiently minimize the training loss to zero,
even in the presence of non-convexity, by leveraging the high-dimensional geometry of the loss land-
scape. The authors provided a rigorous analysis of the exponential convergence of gradient descent
in overparameterized neural networks. It shows that the gradient flow dynamics are characterized
by a rapid decrease in the loss function, driven by the alignment of the network’s parameters with
the data. The paper also discusses the role of initialization in shaping the trajectory of gradient
flow. Zhang et al. (2017) [445] challenged traditional notions of generalization in deep learning.
It rigorously demonstrates that deep neural networks can fit random labels, suggesting that the
dynamics of gradient flow are not solely driven by the data distribution but also by the implicit
biases of the optimization algorithm. The paper highlights the importance of understanding how
gradient flow interacts with the architecture and initialization of neural networks. Baratin et. al.
(2020) [477] explored the implicit regularization effects of gradient flow in deep learning from the
perspective of function space. It rigorously demonstrates that gradient descent in overparameter-
ized models tends to converge to solutions that minimize certain norms or complexity measures,
providing insights into why these models generalize well despite their capacity to overfit. Balduzzi
et al. (2018) [478] extended the analysis of gradient flow to multi-agent optimization problems,
such as those encountered in generative adversarial networks (GANs). It rigorously characterizes
the dynamics of gradient descent in games, highlighting the role of rotational forces and the chal-
lenges of convergence in non-cooperative settings. The paper provides tools for understanding how
gradient flow behaves in complex, interactive learning scenarios. Allen-Zhu et al. (2019) [469]
provided a rigorous convergence theory for deep learning models trained with gradient descent. It
shows that overparameterization enables gradient flow to avoid bad local minima and converge to
global minima efficiently. The paper also analyzes the role of initialization, step size, and network
depth in shaping the dynamics of gradient descent.

The dynamics of gradient flow in neural network training are fundamentally governed by the
continuous evolution of parameters θ(t) under the influence of the negative gradient of the loss
function, expressed as

dθ(t)

dt
= −∇θL(θ(t)). (98)
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The loss function, typically of the form

L(θ) =
1

2n

n∑
i=1

∥f(xi; θ)− yi∥2, (99)

measures the discrepancy between the network’s predicted outputs f(xi; θ) and the true labels yi.
At stationary points of the flow, the condition

∇θL(θ∗) = 0 (100)

holds, indicating that the gradient vanishes. To classify these stationary points, the Hessian ma-
trix H = ∇2

θL(θ) is examined. For eigenvalues {λi} of H, the nature of the stationary point is
determined: λi > 0 for all i corresponds to a local minimum, λi < 0 for all i to a local maximum,
and mixed signs indicate a saddle point.Under gradient flow dθ(t)

dt
= −∇θL(θ(t)), the trajectory

converges to critical points:
lim
t→∞
∥∇θL(θ(t))∥ = 0. (101)

The gradient flow also governs the temporal evolution of the network’s predictions f(x; θ(t)). A
Taylor series expansion of f(x; θ) about an initial parameter θ0 gives:

f(x; θ) = f(x; θ0) + Jf (x; θ0)(θ − θ0) +
1

2
(θ − θ0)⊤Hf (x; θ0)(θ − θ0) +O(∥θ − θ0∥3), (102)

where Jf (x; θ0) = ∇θf(x; θ0) is the Jacobian and Hf (x; θ0) is the Hessian of f(x; θ) with respect to
θ. In the NTK (neural tangent kernel) regime, higher-order terms are negligible due to the large
parameterization of the network, and the linear approximation suffices:

f(x; θ) ≈ f(x; θ0) + Jf (x; θ0)(θ − θ0). (103)

Under gradient flow, the time derivative of the network’s predictions is given by:

df(x; θ(t))

dt
= Jf (x; θ(t))

dθ(t)

dt
. (104)

Substituting the parameter dynamics dθ(t)
dt

= −∇θL(θ(t)) = −
∑n

i=1(f(xi; θ(t)) − yi)Jf (xi; θ(t)),
this becomes:

df(x; θ(t))

dt
= −

n∑
i=1

Jf (x; θ(t))Jf (xi; θ(t))
⊤(f(xi; θ(t))− yi). (105)

Defining the NTK as K(x, x′; θ) = Jf (x; θ)Jf (x′; θ)⊤, and assuming constancy of the NTK during
training (K(x, x′; θ) ≈ K0(x, x

′)), the evolution equation simplifies to:

df(x; θ(t))

dt
= −

n∑
i=1

K0(x, xi)(f(xi; θ(t))− yi). (106)

Rewriting in matrix form, let f(t) = [f(x1; θ(t)), . . . , f(xn; θ(t))]⊤ and y = [y1, . . . , yn]⊤. The NTK
matrix K0 ∈ Rn×n evaluated at initialization defines the system:

df(t)

dt
= −K0(f(t)− y). (107)

The solution to this linear system is:

f(t) = e−K0tf(0) + (I− e−K0t)y. (108)
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As t → ∞, the predictions converge to the labels: f(t) → y, implying zero training error. The
eigenvalues of K0 determine the rates of convergence. Diagonalizing K0 as K0 = QΛQ⊤, where Q
is orthogonal and Λ = diag(λ1, . . . , λn), the dynamics in the eigenbasis are:

df̃(t)

dt
= −Λ(f̃(t)− ỹ), (109)

with f̃(t) = Q⊤f(t) and ỹ = Q⊤y. Solving, we obtain:

f̃(t) = e−Λtf̃(0) + (I− e−Λt)ỹ. (110)

Each mode decays exponentially with a rate proportional to the eigenvalue λi. Modes with larger
λi converge faster, while smaller eigenvalues slow convergence.

The NTK framework thus rigorously explains the linearization of training dynamics in overparam-
eterized neural networks. This linear behavior ensures that the optimization trajectory remains
within a convex region of the parameter space, leading to both convergence and generalization. By
leveraging the constancy of the NTK, the complexity of nonlinear neural networks is reduced to an
analytically tractable framework that aligns closely with empirical observations.

3.1.1 Hessian Structure

The Hessian matrix, H(θ) = ∇2
θL(θ), serves as a critical construct in the mathematical framework

of optimization, capturing the second-order partial derivatives of the loss function L(θ) with respect

to the parameter vector θ ∈ Rd. Each element Hij = ∂2L(θ)
∂θi∂θj

reflects the curvature of the loss surface

along the (i, j)-direction. The symmetry of H(θ), guaranteed by the Schwarz theorem under the
assumption of continuous second partial derivatives, implies Hij = Hji. This property ensures that
the eigenvalues λ1, λ2, . . . , λd of H(θ) are real and the eigenvectors v1,v2, . . . ,vd are orthogonal,
satisfying the eigenvalue equation

H(θ)vi = λivi for all i. (111)

The behavior of the loss function around a specific parameter value θ0 can be rigorously analyzed
using a second-order Taylor expansion. This expansion is given by:

L(θ) = L(θ0) + (θ − θ0)⊤∇θL(θ0) +
1

2
(θ − θ0)⊤H(θ0)(θ − θ0) +O(∥θ − θ0∥3). (112)

Here, the term (θ − θ0)
⊤∇θL(θ0) represents the linear variation of the loss, while the quadratic

term 1
2
(θ− θ0)⊤H(θ0)(θ− θ0) describes the curvature effects. The eigenvalues of H(θ0) dictate the

nature of the critical point θ0. Specifically, if all λi > 0, θ0 is a local minimum; if all λi < 0, it is
a local maximum; and if the eigenvalues have mixed signs, θ0 is a saddle point. The leading-order
approximation to the change in the loss function, ∆L ≈ 1

2
δθ⊤H(θ0)δθ, highlights the dependence

on the eigenstructure of H(θ0). In the context of gradient descent, parameter updates follow the
iterative scheme:

θ(t+1) = θ(t) − η∇θL(θ(t)), (113)

where η is the learning rate. Substituting the Taylor expansion of ∇θL(θ(t)) around θ0 gives:

θ(t+1) = θ(t) − η
[
∇θL(θ0) +H(θ0)(θ

(t) − θ0)
]
. (114)

To analyze this update rigorously, we project θ(t) − θ0 onto the eigenbasis of H(θ0), expressing it
as:

θ(t) − θ0 =
d∑

i=1

c
(t)
i vi, (115)
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where c
(t)
i = v⊤

i (θ(t)− θ0). Substituting this expansion into the gradient descent update rule yields:

c
(t+1)
i = c

(t)
i − η

[
v⊤
i ∇θL(θ0) + λic

(t)
i

]
. (116)

The convergence of this iterative scheme is governed by the condition |1−ηλi| < 1, which constrains
the learning rate η relative to the spectrum of H(θ0). For eigenvalues λi with large magnitudes,
excessively large learning rates η can cause oscillatory or divergent updates.

In the Neural Tangent Kernel (NTK) regime, the evolution of a neural network during train-
ing can be approximated by a linearization of the network output around the initialization. Let
fθ(x) denote the output of the network for input x. Linearizing fθ(x) around θ0 gives:

fθ(x) ≈ fθ0(x) +∇θfθ0(x)⊤(θ − θ0). (117)

The NTK, defined as:
K(x, x′) = ∇θfθ0(x)⊤∇θfθ0(x

′), (118)

remains approximately constant during training for sufficiently wide networks. The training dy-
namics of the parameters are described by:

dθ

dt
= −∇θL(θ), (119)

which, under the NTK approximation, becomes:

dθ

dt
= −K∇θL(θ), (120)

where K is the NTK matrix evaluated at initialization. The evolution of the loss function is gov-
erned by the eigenvalues of K, which control the rate of convergence in different directions.

The spectral properties of the Hessian play a pivotal role in the generalization properties of neural
networks. Empirical studies reveal that the eigenvalue spectrum of H(θ) often exhibits a ”bulk-
and-spike” structure, with a dense bulk of eigenvalues near zero and a few large outliers. The bulk
corresponds to flat directions in the loss landscape, which contribute to the robustness and gener-
alization of the model, while the spikes represent sharp directions associated with overfitting. This
spectral structure can be analyzed using random matrix theory, where the density of eigenvalues
ρ(λ) is modeled by distributions such as the Marchenko-Pastur law:

ρ(λ) =
1

2πλq

√
(λ+ − λ)(λ− λ−), (121)

where λ± = (1±√q)2 are the spectral bounds and q = d
n

is the ratio of the number of parameters to
the number of data points. This rigorous analysis links the Hessian structure to both the optimiza-
tion dynamics and the generalization performance of neural networks, providing a comprehensive
mathematical understanding of the training process. The Hessian H(θ) satisfies:

H(θ) = ∇2
θL(θ) = E(x,y)

[
∇θfθ(x)∇θfθ(x)⊤

]
. (122)

For overparameterized networks, H(θ) is nearly degenerate, implying the existence of flat minima.

3.1.2 NTK Linearization

The dynamics of neural networks under gradient flow can be comprehensively described by begin-
ning with the parameterized representation of the network fθ(x), where θ ∈ Rp denotes the set of
trainable parameters, x ∈ Rd is the input, and fθ(x) ∈ Rm represents the output. The objective
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of training is to minimize a loss function L(θ), defined over a dataset {(xi, yi)}ni=1, where xi ∈ Rd

and yi ∈ Rm represent the input-target pairs. The evolution of the parameters during training is
governed by the gradient flow equation dθ

dt
= −∇θL(θ), where ∇θL(θ) is the gradient of the loss

function with respect to the parameters. To analyze the dynamics of the network outputs, we first
consider the time derivative of fθ(x). Using the chain rule, this is expressed as:

∂fθ(x)

∂t
= ∇θfθ(x)⊤

dθ

dt
. (123)

Substituting dθ
dt

= −∇θL(θ), we have:

∂fθ(x)

∂t
= −∇θfθ(x)⊤∇θL(θ). (124)

The gradient of the loss function, L(θ), can be expressed explicitly in terms of the training data.
For a generic loss function over the dataset, this takes the form:

L(θ) =
1

n

n∑
i=1

ℓ(fθ(xi), yi), (125)

where ℓ(fθ(xi), yi) represents the loss for the i-th data point. The gradient of the loss with respect
to the parameters is therefore given by:

∇θL(θ) =
1

n

n∑
i=1

∇θfθ(xi)∇fθ(xi)ℓ(fθ(xi), yi). (126)

Substituting this back into the time derivative of fθ(x), we obtain:

∂fθ(x)

∂t
= − 1

n

n∑
i=1

∇θfθ(x)⊤∇θfθ(xi)∇fθ(xi)ℓ(fθ(xi), yi). (127)

To introduce the Neural Tangent Kernel (NTK), we define it as the Gram matrix of the Jacobians
of the network output with respect to the parameters:

Θ(x, x′; θ) = ∇θfθ(x)⊤∇θfθ(x
′). (128)

Using this definition, the time evolution of the output becomes:

∂fθ(x)

∂t
= − 1

n

n∑
i=1

Θ(x, xi; θ)∇fθ(xi)ℓ(fθ(xi), yi). (129)

In the overparameterized regime, where the number of parameters p is significantly larger than the
number of training data points n, it has been empirically and theoretically observed that the NTK
Θ(x, x′; θ) remains nearly constant during training. Specifically, Θ(x, x′; θ) ≈ Θ(x, x′; θ0), where
θ0 represents the parameters at initialization. This constancy significantly simplifies the analysis
of the network’s training dynamics. To see this, consider the solution to the differential equation
governing the output dynamics. Let F (t) ∈ Rn×m represent the matrix of network outputs for all
training inputs, where the i-th row corresponds to fθ(xi). The dynamics can be expressed in matrix
form as:

∂F (t)

∂t
= − 1

n
Θ(θ0)∇FL(F ), (130)

where Θ(θ0) ∈ Rn×n is the NTK matrix evaluated at initialization, and ∇FL(F ) is the gradient of
the loss with respect to the output matrix F . For the special case of a mean squared error loss,
L(F ) = 1

2n
∥F − Y ∥2F , where Y ∈ Rn×m is the matrix of target outputs, the gradient simplifies to:

∇FL(F ) =
1

n
(F − Y ). (131)
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Substituting this into the dynamics, we obtain:

∂F (t)

∂t
= − 1

n2
Θ(θ0)(F (t)− Y ). (132)

The solution to this differential equation is:

F (t) = Y + e−
Θ(θ0)

n2 t(F (0)− Y ), (133)

where F (0) represents the initial outputs of the network. As t→∞, the exponential term vanishes,
and the network outputs converge to the targets Y , provided that Θ(θ0) is positive definite. The rate
of convergence is determined by the eigenvalues of Θ(θ0), with smaller eigenvalues corresponding
to slower convergence along the associated eigenvectors. To understand the stationary points of
this system, we note that these occur when ∂F (t)

∂t
= 0. From the dynamics, this implies:

Θ(θ0)(F − Y ) = 0. (134)

If Θ(θ0) is invertible, this yields F = Y , indicating that the network exactly interpolates the train-
ing data at the stationary point. However, if Θ(θ0) is not full-rank, the stationary points form a
subspace of solutions satisfying (I − Π)(F − Y ) = 0, where Π is the projection operator onto the
column space of Θ(θ0).

The NTK framework provides a mathematically rigorous lens to analyze training dynamics, eluci-
dating the interplay between parameter evolution, kernel properties, and loss convergence in neural
networks. By linearizing the training dynamics through the NTK, we achieve a deep understand-
ing of how overparameterized networks evolve under gradient flow and how they reach stationary
points, revealing their capacity to interpolate data with remarkable precision.

3.2 NTK Regime

Literature Review: Jacot et. al. (2018) [87] in a seminal paper introduced the Neural Tangent
Kernel (NTK) and establishes its theoretical foundation. The authors show that in the infinite-
width limit, the dynamics of gradient descent in neural networks can be described by a kernel
method, where the NTK remains constant during training. This work bridges the gap between
deep learning and kernel methods, providing a framework to analyze the training and generaliza-
tion of wide neural networks. Lee et. al. (2017) [88] did a work that predates the NTK but lays the
groundwork by showing that infinitely wide neural networks behave as Gaussian processes. The au-
thors derive the kernel corresponding to such networks, which is a precursor to the NTK. This paper
is crucial for understanding the connection between neural networks and kernel methods. Chizat
and Bach (2018) [466] provided a rigorous analysis of gradient descent in over-parameterized models,
including neural networks. It complements the NTK framework by showing that gradient descent
converges to global minima in such settings. The work highlights the role of over-parameterization
in simplifying the optimization landscape. Du et. al. (2019) [467] proved that gradient descent can
find global minima in deep neural networks under the NTK regime. The authors provide explicit
convergence rates and show that the NTK framework guarantees efficient optimization for wide
networks. This work strengthens the theoretical understanding of why deep learning works. Arora
et. al. (2019) [468] provided a fine-grained analysis of optimization and generalization in two-layer
neural networks under the NTK regime. It establishes precise bounds on the generalization error
and shows how over-parameterization leads to benign optimization landscapes. Allen-Zhu et. al.
(2019) [469] extended the NTK framework to deep networks and provided a comprehensive con-
vergence theory for over-parameterized neural networks. The authors show that gradient descent
converges to global minima and that the NTK remains approximately constant during training.
Cao and Gu (2019) [470] derived generalization bounds for wide and deep neural networks trained
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with stochastic gradient descent (SGD) under the NTK regime. It highlights the role of the NTK
in controlling the generalization error and provides insights into the implicit regularization of SGD.
Yang (2019) [471] generalized the NTK framework to architectures with weight sharing, such as
convolutional neural networks (CNNs). The author derives the NTK for such architectures and
shows that they also exhibit Gaussian process behavior in the infinite-width limit. Huang and Yau
(2020) [472] extended the NTK framework by introducing the Neural Tangent Hierarchy (NTH),
which captures higher-order interactions in the training dynamics of deep networks. The authors
provide a more refined analysis of the training process beyond the first-order approximation of
the NTK. Belkin et. al. (2019) [473] explored the connection between deep learning and kernel
learning, emphasizing the role of the NTK in understanding generalization and optimization. It
provides a high-level perspective on why the NTK framework is essential for analyzing modern
machine learning models.

The Neural Tangent Kernel (NTK) regime is a fundamental framework for understanding the
dynamics of gradient descent in highly overparameterized neural networks. Consider a neural net-
work f(x;θ) parameterized by θ ∈ RP , where P represents the total number of parameters, and
x ∈ Rd is the input vector. For a training dataset {(xi, yi)}Ni=1, the loss function L(t) at time t is
given by

L(t) =
1

2N

N∑
i=1

(f(xi;θ(t))− yi)2 . (135)

The parameters evolve according to gradient descent as θ(t+ 1) = θ(t)− η∇θL(t), where η > 0 is
the learning rate. In the NTK regime, we consider the first-order Taylor expansion of the network
output around the initialization θ0:

f(x;θ) ≈ f(x;θ0) +∇θf(x;θ0)
⊤(θ − θ0). (136)

This linear approximation transforms the nonlinear dynamics of f into a simpler, linearized form.
To analyze training, we introduce the Jacobian matrix J ∈ RN×P , where Jij = ∂f(xi;θ0)

∂θj
. The vector

of outputs f(t) ∈ RN , aggregating predictions over the dataset, evolves as

f(t) = f(0) + J(θ(t)− θ0). (137)

The NTK Θ ∈ RN×N is defined as

Θij = ∇θf(xi;θ0)
⊤∇θf(xj;θ0). (138)

As P → ∞, the NTK converges to a deterministic matrix that remains nearly constant during
training. Substituting the linearized form of f(t) into the gradient descent update equation gives

f(t+ 1) = f(t)− η

N
Θ(f(t)− y), (139)

where y ∈ RN is the vector of true labels. Defining the residual r(t) = f(t) − y, the dynamics of
training reduce to

r(t+ 1) =
(
I − η

N
Θ
)
r(t). (140)

The eigendecomposition Θ = QΛQ⊤, with orthogonal Q and diagonal Λ = diag(λ1, . . . , λN), allows
us to analyze the decay of residuals in the eigenbasis of Θ:

r̃(t+ 1) =
(
I − η

N
Λ
)
r̃(t), (141)

where r̃(t) = Q⊤r(t). Each component decays as

r̃i(t) =

(
1− ηλi

N

)t

r̃i(0). (142)
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For small η, the training dynamics are approximately continuous, governed by

dr(t)

dt
= − 1

N
Θr(t), (143)

leading to the solution

r(t) = exp

(
−Θt

N

)
r(0). (144)

The NTK for specific architectures, such as fully connected ReLU networks, can be derived using
layerwise covariance matrices. Let Σ(l)(x,x′) denote the covariance between pre-activations at layer
l. The recurrence relation for Σ(l) is

Σ(l)(x,x′) =
1

2π
∥z(l−1)(x)∥∥z(l−1)(x′)∥ (sin θ + (π − θ) cos θ) , (145)

where θ = cos−1

(
Σ(l−1)(x,x′)√

Σ(l−1)(x,x)Σ(l−1)(x′,x′)

)
. The NTK, a sum over contributions from all layers,

quantifies how parameter updates propagate through the network.

In the infinite-width limit, the NTK framework predicts generalization properties, as the kernel
matrix Θ governs both training and test-time behavior. The NTK connects neural networks to
classical kernel methods, offering a bridge between deep learning and well-established theoretical
tools in approximation theory. This regime’s deterministic and analytical tractability enables pre-
cise characterizations of network performance, convergence rates, and robustness to initialization
and learning rate variations.

4 Generalization Bounds: PAC-Bayes and Spectral Analysis

4.1 PAC-Bayes Formalism

Literature Review: McAllester (1999) [92] introduced the PAC-Bayes bound, a fundamental
theorem that provides generalization guarantees for Bayesian learning models. He established a
trade-off between complexity and empirical risk, serving as the theoretical foundation for modern
PAC-Bayesian analysis. Catoni (2007) [93] in his book rigorously extended the PAC-Bayes frame-
work by linking it with information-theoretic and statistical mechanics concepts and introduced
exponential and Gibbs priors for learning, improving PAC-Bayesian bounds for supervised classifi-
cation. Germain et. al. (2009) [94] applied PAC-Bayes theory to linear classifiers, including SVMs
and logistic regression. They demonstrated that PAC-Bayesian generalization bounds are tighter
than classical Vapnik-Chervonenkis (VC) dimension bounds. Seeger (2002) [95] extended PAC-
Bayes bounds to Gaussian Process models, proving tight generalization guarantees for Bayesian
classifiers. He laid the groundwork for probabilistic kernel methods. Alquier et. al. (2006) [96]
connected variational inference and PAC-Bayes bounds, proving that variational approximations
can preserve generalization guarantees of PAC-Bayesian bounds. Dziugaite and Roy (2017) [97]
gave one of the first applications of PAC-Bayes to deep learning. They derived nonvacuous gener-
alization bounds for stochastic neural networks, bridging theory and practice. Rivasplata et. al.
(2020) [98] provided novel PAC-Bayes bounds that improve over existing guarantees, making PAC-
Bayesian bounds more practical for modern ML applications. Lever et. al. (2013) [99] explored
data-dependent priors in PAC-Bayes theory, showing that adaptive priors lead to tighter gener-
alization bounds. Rivasplata et. al. (2018) [100] introduced instance-dependent priors, improv-
ing personalized learning and making PAC-Bayesian methods more useful for real-world machine
learning problems. Lindemann et. al. (2024) [101] integrated PAC-Bayes theory with conformal
prediction to improve formal verification in control systems, demonstrating PAC-Bayes’ relevance
to safety-critical applications.
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The PAC-Bayes formalism is a foundational framework in statistical learning theory, designed
to provide probabilistic guarantees on the generalization performance of learning algorithms. By
combining principles from the PAC (Probably Approximately Correct) framework and Bayesian
reasoning, PAC-Bayes delivers bounds that characterize the expected performance of hypotheses
drawn from posterior distributions, given a finite sample of data. This document presents an ex-
tremely rigorous and mathematically precise description of the PAC-Bayes formalism, emphasizing
its theoretical constructs and implications.

At the core of the PAC-Bayes formalism lies the ambition to rigorously quantify the generalization
ability of hypotheses h ∈ H based on their performance on a finite dataset S ∼ Dm, where D
represents the underlying, and typically unknown, data distribution. The PAC framework, which
was originally designed to provide high-confidence guarantees on the true risk

R(h) = Ez∼D[ℓ(h, z)], (146)

is enriched in PAC-Bayes by incorporating principles from Bayesian reasoning. This integration
allows for bounds not just on individual hypotheses but on distributions Q over H, yielding a
sophisticated characterization of generalization that inherently accounts for the variability and
uncertainty in the hypothesis space. There are some Mathematical Constructs: True and Empirical
Risks. The true risk R(h), as defined by the expected loss, is typically inaccessible due to the
unknown nature of D. Instead, the empirical risk

R̂(h, S) =
1

m

m∑
i=1

ℓ(h, zi) (147)

serves as a computable proxy. The key question addressed by PAC-Bayes is: How does R̂(h, S)
relate to R(h), and how can we bound the deviation probabilistically? For a distribution Q over H,
these risks are generalized as:

R(Q) = Eh∼Q[R(h)], R̂(Q,S) = Eh∼Q[R̂(h, S)]. (148)

This generalization is pivotal because it allows the analysis to transcend individual hypotheses and
consider probabilistic ensembles, where Q(h) represents a posterior belief over the hypothesis space
conditioned on the observed data. We now need to discuss how Prior and Posterior Distributions
encode knowledge and complexity. The prior P is a fixed distribution over H that reflects pre-data
assumptions about the plausibility of hypotheses. Crucially, P must be independent of S to avoid
biasing the bounds. The posterior Q, however, is data-dependent and typically chosen to minimize
a combination of empirical risk and complexity. This choice is guided by the PAC-Bayes inequality,
which regularizes Q via its Kullback-Leibler (KL) divergence from P :

KL(Q∥P ) =

∫
H
Q(h) log

Q(h)

P (h)
dh. (149)

The KL divergence quantifies the informational cost of updating P to Q, serving as a penalty term
that discourages overly complex posteriors. This regularization is critical in preventing overfitting,
ensuring that Q achieves a balance between data fidelity and model simplicity.

Let’s derive the PAC-Bayes Inequality: Probabilistic and Information-Theoretic Foundations. The
derivation of the PAC-Bayes inequality hinges on a combination of probabilistic tools and information-
theoretic arguments. A central step involves applying a change of measure from P to Q, leveraging
the identity:

Eh∼Q[f(h)] = Eh∼P

[
f(h)

Q(h)

P (h)

]
. (150)
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This allows the incorporation of Q into bounds that originally apply to fixed h. By analyzing
the moment-generating function of deviations between R̂(h, S) and R(h), and applying Hoeffding’s
inequality to the empirical loss, we arrive at the following bound for any Q and P , with probability
at least 1− δ:

R(Q) ≤ R̂(Q,S) +

√
KL(Q∥P ) + log 1

δ

2m
. (151)

The generalization bound is therefore given by:

L(f)− Lemp(f) ≤
√
KL(Q∥P ) + log(1/δ)

2N
, (152)

where KL(Q∥P ) quantifies the divergence between the posterior Q and prior P . This bound is
remarkable because it explicitly ties the true risk R(Q) to the empirical risk R̂(Q,S), the KL
divergence, and the sample size m. The PAC-Bayes bound encapsulates three competing forces:

the empirical risk R̂(Q,S), the complexity penalty KL(Q∥P ), and the confidence term

√
log 1

δ

2m
. This

interplay reflects a fundamental trade-off in learning:

1. Empirical Risk: R̂(Q,S) captures how well the posterior Q fits the training data.

2. Complexity: The KL divergence ensures that Q remains close to P , discouraging overfitting
and promoting generalization.

3. Confidence: The term

√
log 1

δ

2m
shrinks with increasing sample size, tightening the bound and

enhancing reliability.

The KL term also introduces an inherent regularization effect, penalizing hypotheses that deviate
significantly from prior knowledge. This aligns with Occam’s Razor, favoring simpler explanations
that are consistent with the data.

There are several extensions and Advanced Applications of Pac-Bayes Formalism. While the classi-
cal PAC-Bayes framework assumes i.i.d. data, recent advancements have generalized the theory to
handle structured data, such as in time-series and graph-based learning. Furthermore, alternative
divergence measures, like Rényi divergence or Wasserstein distance, have been explored to accom-
modate scenarios where KL divergence may be inappropriate. In practical settings, PAC-Bayes
bounds have been instrumental in analyzing neural networks, Bayesian ensembles, and stochas-
tic processes, offering theoretical guarantees even in high-dimensional, non-convex optimization
landscapes.

4.2 Spectral Regularization

The concept of spectral regularization, which refers to the preferential learning of low-frequency
modes by neural networks before high-frequency modes, emerges from a combination of Fourier
analysis, optimization theory, and the inherent properties of deep neural networks. This phe-
nomenon is tightly connected to the functional approximation capabilities of neural networks and
can be rigorously understood through the lens of Fourier decomposition and the gradient descent
optimization process.

Literature Review: Jin et. al. (2025) [102] introduced a novel confusional spectral regularization
technique to improve fairness in machine learning models. The study focuses on the spectral norm
of the robust confusion matrix and proposes a method to control spectral properties, ensuring more
robust and unbiased learning. It provides insights into how regularization can mitigate biases in
classification tasks. Ye et. al. (2025) [103] applied spectral clustering with regularization to detect
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small clusters in complex networks. The work enhances spectral clustering techniques by integrat-
ing regularization methods, allowing improved performance in anomaly detection and community
detection tasks. The approach significantly improves robustness in highly noisy data environments.
Bhattacharjee and Bharadwaj (2025) [104] explored how spectral domain representations can ben-
efit from autoencoder-based feature extraction combined with stochastic regularization techniques.
The authors propose a Symmetric Autoencoder (SymAE) that enables better generalization of
spectral features, particularly useful in high-dimensional data and deep learning applications. Wu
et. al. (2025) [105] applied spectral regularization to geophysical data processing, specifically for
high-resolution velocity spectrum analysis. The approach enhances the resolution of velocity esti-
mation in seismic imaging by using hyperbolic Radon transform regularization, demonstrating how
spectral regularization can benefit applications beyond traditional ML. Ortega et. al. (2025) [106]
applied Tikhonov regularization to atmospheric spectral analysis, optimizing gas retrieval strategies
in high-resolution spectroscopic observations. The work significantly improves methane (CH4) and
nitrous oxide (N2O) detection accuracy by reducing noise in spectral measurements, showcasing
the impact of spectral regularization in remote sensing and environmental monitoring. Kazmi et.
al. (2025) [107] proposed a spectral regularization-based federated learning model to improve ro-
bustness in cybersecurity threat detection. The model addresses the issue of non-IID data in SDN
(Software Defined Networks) by utilizing spectral norm-based regularization within deep learning
architectures. Zhao et. al. (2025) [108] introduced a regularized deep spectral clustering method,
which enhances feature selection and clustering robustness. The authors utilize projected adap-
tive feature selection combined with spectral graph regularization, improving clustering accuracy
and interpretability in high-dimensional datasets. Saranya and Menaka (2025) [109] integrated
spectral regularization with quantum-based machine learning to analyze EEG signals for Autism
Spectrum Disorder (ASD) detection. The proposed method improves spatial filtering and feature
extraction using wavelet-based regularization, leading to more reliable EEG pattern recognition.
Dhalbisoi et. al. (2024) [110] developed a Regularized Zero-Forcing (RZF) method for spectral
efficiency optimization in beyond 5G networks. The authors demonstrate that spectral regulariza-
tion techniques can significantly improve signal-to-noise ratios in wireless communication systems,
optimizing data transmission in massive MIMO architectures. Wei et. al. (2025) [111] explored the
use of spectral regularization in medical imaging, particularly in 3D near-infrared spectral tomogra-
phy. The proposed model integrates regularized convolutional neural networks (CNNs) to improve
tissue imaging resolution and accuracy, demonstrating an application of spectral regularization in
biomedical engineering.

Let us define a target function f(x), where x ∈ Rd, and its Fourier transform f̂(ξ) as

f̂(ξ) =

∫
Rd

f(x)e−i2πξ·x dx (153)

This transform breaks down f(x) into frequency components indexed by ξ. In the context of deep
learning, we seek to approximate f(x) with a neural network output fNN(x;θ), where θ represents
the set of trainable parameters. The loss function to be minimized is typically the mean squared
error:

L(θ) =

∫
Rd

|f(x)− fNN(x;θ)|2 dx (154)

We can equivalently express this loss in the Fourier domain, leveraging Parseval’s theorem:

L(θ) =

∫
Rd

∣∣∣f̂(ξ)− f̂NN(ξ;θ)
∣∣∣2 dξ (155)

To solve for θ, we employ gradient descent:

θ(t+1) = θ(t) − η∇θL(θ) (156)
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where η is the learning rate. The gradient of the loss function with respect to θ is

∇θL(θ) = 2

∫
Rd

(
f̂NN(ξ;θ)− f̂(ξ)

)
∇θf̂NN(ξ;θ) dξ (157)

At the core of this gradient descent process lies the behavior of the gradient∇θf̂NN(ξ;θ) with respect
to the frequency components ξ. For neural networks, particularly those with ReLU activations, the
gradients of the output with respect to the parameters are expected to decay for high-frequency
components. This can be approximated as

R(ξ) ∼ 1

1 + ∥ξ∥2
(158)

which implies that the neural network is inherently more sensitive to low-frequency components of
the target function during early iterations of training. This spectral decay is a direct consequence
of the structure of the network’s activations, which are more sensitive to low-frequency features due
to their smoother, lower-order terms. To understand the role of the neural tangent kernel (NTK),
which governs the linearized dynamics of the neural network, we define the NTK as

Θ(x,x′;θ) =
P∑
i=1

∂fNN(x;θ)

∂θi

∂fNN(x′;θ)

∂θi
(159)

The NTK essentially describes how the output of the network changes with respect to its param-
eters. The evolution of the network’s output during training can be approximated by the solution
to a linear system governed by the NTK. The output of the network at time t is given by

fNN(x; t) =
∑
k

ck
(
1− e−ηλkt

)
ϕk(x) (160)

where {λk} are the eigenvalues of Θ, and {ϕk(x)} are the corresponding eigenfunctions. The
eigenvalues λk determine the speed of convergence for each frequency mode, with low-frequency
modes (large λk) converging more quickly than high-frequency ones (small λk):

1− e−ηλkt → 1 for large λk and 1− e−ηλkt → 0 for small λk (161)

This differential learning rate for frequency components leads to the spectral regularization phe-
nomenon, where the network learns the low-frequency components of the function first, and the
high-frequency modes only begin to adapt once the low-frequency ones have been approximated
with sufficient accuracy. In a more formal setting, the spectral bias can also be understood in terms
of Sobolev spaces. A neural network function fNN can be seen as a function in a Sobolev space
Wm,2, where the norm of a function f in this space is defined as

∥f∥2Wm,2 =

∫
Rd

(
1 + ∥ξ∥2

)m ∣∣∣f̂(ξ)
∣∣∣2 dξ (162)

When training a neural network, the optimization process implicitly regularizes the higher-order
Sobolev norms, meaning that the network will initially approximate the target function in terms
of lower-order derivatives (which correspond to low-frequency modes). This can be expressed by
introducing a regularization term in the loss function:

Leff(θ) = L(θ) + λ∥fNN∥2Wm,2 (163)

where λ is a regularization parameter that controls the trade-off between data fidelity and smooth-
ness in the approximation.
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Thus, spectral regularization emerges as a consequence of the network’s architecture, the nature of
gradient descent optimization, and the inherent smoothness of the functions that neural networks
are capable of learning. The mathematical structure of the NTK and the regularization properties
of the Sobolev spaces provide a rigorous framework for understanding why neural networks prior-
itize the learning of low-frequency modes, reinforcing the idea that neural networks are implicitly
biased toward smooth, low-frequency approximations at the beginning of training. This insight
has profound implications for the generalization behavior of neural networks and their capacity to
approximate complex functions.

5 Neural Network Basics

Literature Review: Goodfellow et. al. (2016) [112] wrote one of the most comprehensive books
on deep learning, covering the theoretical foundations of neural networks, optimization techniques,
and probabilistic models. It is widely used in academic courses and research. Haykin (2009)
[113] explained neural networks from a signal processing perspective, covering perceptrons, back-
propagation, and recurrent networks with a strong mathematical approach. Schmidhuber (2015)
[114] gave a historical and theoretical review of deep learning architectures, including recurrent
neural networks (RNNs), convolutional neural networks (CNNs), and long short-term memory
(LSTM). Bishop (2006) [115] gave a Bayesian perspective on neural networks and probabilistic
graphical models, emphasizing the statistical underpinnings of learning. Poggio and Smale (2003)
[116] established theoretical connections between neural networks, kernel methods, and function
approximation. LeCun (2015) [117] discusses the principles behind modern deep learning, includ-
ing backpropagation, unsupervised learning, and hierarchical feature extraction. Cybenko (1989)
[58] proved the universal approximation theorem, demonstrating that a neural network with a sin-
gle hidden layer can approximate any continuous function. Hornik et. al. (1989) [57] extended
Cybenko’s theorem, proving that multilayer perceptrons (MLPs) are universal function approxi-
mators. Pinkus (1999) [60] gave a rigorous mathematical discussion on neural networks from the
perspective of approximation theory. Tishby and Zaslavsky (2015) [118] introduced the information
bottleneck framework for understanding deep neural networks, explaining how networks learn to
compress and encode information efficiently.

5.1 Perceptrons and Artificial Neurons

The perceptron is the simplest form of an artificial neural network, operating as a binary classifier.
It computes the linear combination z of the input features x⃗ = [x1, x2, . . . , xn]T ∈ Rn and a
corresponding weight vector w⃗ = [w1, w2, . . . , wn]T ∈ Rn, augmented by a bias term b ∈ R. This
can be expressed as

z = w⃗T x⃗+ b =
n∑

i=1

wixi + b. (164)

To determine the output, this value is passed through the step activation function, defined mathe-
matically as

ϕ(z) =

{
1, z ≥ 0,

0, z < 0.
(165)

Thus, the perceptron’s decision-making process can be expressed as

y = ϕ(w⃗T x⃗+ b), (166)

where y ∈ {0, 1}. The equation w⃗T x⃗+ b = 0 defines a hyperplane in Rn, which acts as the decision
boundary. For any input x⃗, the classification is determined by the sign of w⃗T x⃗+b, specifically y = 1
if w⃗T x⃗+b ≥ 0 and y = 0 otherwise. Geometrically, this classification corresponds to partitioning the
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input space into two distinct half-spaces. To train the perceptron, a supervised learning algorithm
adjusts the weights w⃗ and the bias b iteratively using labeled training data {(x⃗i, yi)}mi=1, where yi
represents the ground truth. When the predicted output ypred = ϕ(w⃗T x⃗i + b) differs from yi, the
weight vector and bias are updated according to the rule

w⃗ ← w⃗ + η(yi − ypred)x⃗i, (167)

and
b← b+ η(yi − ypred), (168)

where η > 0 is the learning rate. Each individual weight wj is updated as

wj ← wj + η(yi − ypred)xij. (169)

For a linearly separable dataset, the Perceptron Convergence Theorem asserts that the algorithm
will converge to a solution after a finite number of updates. Specifically, the number of updates is
bounded by

R2

γ2
, (170)

where R = maxi ∥x⃗i∥ is the maximum norm of the input vectors, and γ is the minimum margin,
defined as

γ = min
i

yi(w⃗
T x⃗i + b)

∥w⃗∥
. (171)

The limitations of the perceptron, particularly its inability to solve linearly inseparable problems
such as the XOR problem, necessitate the extension to artificial neurons with non-linear activation
functions. A popular choice is the sigmoid activation function

ϕ(z) =
1

1 + e−z
, (172)

which maps z ∈ R to the continuous interval (0, 1). The derivative of the sigmoid function, essential
for gradient-based optimization, is

ϕ′(z) = ϕ(z)(1− ϕ(z)). (173)

Another widely used activation function is the hyperbolic tangent tanh(z), defined as

tanh(z) =
ez − e−z

ez + e−z
, (174)

with derivative
tanh′(z) = 1− tanh2(z). (175)

ReLU, or Rectified Linear Unit, is defined as

ϕ(z) = max(0, z), (176)

with derivative

ϕ′(z) =

{
1, z > 0,

0, z ≤ 0.
(177)

These non-linear activations enable the network to approximate non-linear decision boundaries,
a capability absent in the perceptron. Artificial neurons form the building blocks of multi-layer
perceptrons (MLPs), where neurons are organized into layers. For an L-layer network, the input x⃗
is transformed layer by layer. At layer l, the output is

z⃗(l) = ϕ(l)(W⃗ (l)z⃗(l−1) + b⃗(l)), (178)
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where W⃗ (l) ∈ Rnl×nl−1 is the weight matrix, b⃗(l) ∈ Rnl is the bias vector, and ϕ(l) is the activation
function. The network’s output is

ˆ⃗y = ϕ(L)(W⃗ (L)z⃗(L−1) + b⃗(L)). (179)

The Universal Approximation Theorem guarantees that MLPs with sufficient neurons and non-
linear activations can approximate any continuous function f : Rn → Rm to arbitrary precision.
Formally, for any ϵ > 0, there exists an MLP g(x⃗) such that

∥f(x⃗)− g(x⃗)∥∞ < ϵ (180)

for all x⃗ ∈ Rn. Training an MLP minimizes a loss function L that quantifies the error between
predicted outputs ˆ⃗y and ground truth labels y⃗. For regression, the mean squared error is

L =
1

m

m∑
i=1

∥ˆ⃗yi − y⃗i∥2, (181)

and for classification, the cross-entropy loss is

L = − 1

m

m∑
i=1

[
y⃗Ti log ˆ⃗yi + (1− y⃗i)T log(1− ˆ⃗yi)

]
. (182)

Optimization uses stochastic gradient descent (SGD), updating parameters Θ = {W⃗ (l), b⃗(l)}Ll=1 as

Θ← Θ− η∇ΘL. (183)

Gradients are computed via backpropagation:

∂L

∂W⃗ (l)
= δ(l)z⃗(l−1)T , (184)

where δ(l) is the error signal at layer l, recursively calculated as

δ(l) = (W⃗ (l+1)T δ(l+1)) ◦ ϕ′(l)(z⃗(l)). (185)

This recursive structure, combined with chain rule applications, efficiently propagates error signals
from the output layer back to the input layer.

Artificial neurons and their extensions have thus provided the foundation for modern deep learn-
ing. Their mathematical underpinnings and computational frameworks are instrumental in solving
a wide array of problems, from classification and regression to complex decision-making. The in-
terplay of linear algebra, calculus, and optimization theory in their formulation ensures that these
networks are both theoretically robust and practically powerful.

5.2 Feedforward Neural Networks

Feedforward neural networks (FNNs) are mathematical constructs designed to approximate ar-
bitrary mappings f : Rn → Rm by composing affine transformations and nonlinear activation
functions. At their core, these networks consist of L layers, where each layer k transforms its input
a⃗k−1 ∈ Rmk−1 into an output a⃗k ∈ Rmk via the operation

a⃗k = fk(Wka⃗k−1 + b⃗k). (186)

Here, Wk ∈ Rmk×mk−1 represents the weight matrix, b⃗k ∈ Rmk is the bias vector, and fk : Rmk →
Rmk is a component-wise activation function. Formally, if we denote the input layer as a⃗0 = x⃗, the
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final output of the network, y⃗ ∈ Rm, is given by a⃗L = fL(WLa⃗L−1 + b⃗L). Each transformation in

this sequence can be described as z⃗k = Wka⃗k−1 + b⃗k, followed by the activation a⃗k = fk(z⃗k). The

affine transformation z⃗k = Wka⃗k−1 + b⃗k encapsulates the linear combination of inputs with weights
Wk and the addition of biases b⃗k. For any two layers k and k + 1, the overall transformation can
be represented by

z⃗k+1 = Wk+1(Wka⃗k−1 + b⃗k) + b⃗k+1. (187)

Expanding this, we have
z⃗k+1 = Wk+1Wka⃗k−1 +Wk+1⃗bk + b⃗k+1. (188)

Without the nonlinearity introduced by fk, the network reduces to a single affine transformation

y⃗ = Wx⃗+ b⃗, (189)

where W = WLWL−1 · · ·W1 and

b⃗ = WLWL−1 · · ·W2⃗b1 + · · ·+ b⃗L. (190)

Thus, the incorporation of nonlinear activation functions is critical, as it enables the network to
approximate non-linear mappings. Activation functions fk are applied element-wise to the pre-
activation vector z⃗k. The choice of activation significantly affects the network’s behavior and
training. For example, the sigmoid activation f(x) = 1

1+e−x compresses inputs into the range (0, 1)
and has a derivative given by

f ′(x) = f(x)(1− f(x)). (191)

The hyperbolic tangent activation f(x) = tanh(x) = ex−e−x

ex+e−x maps inputs to (−1, 1) with a derivative

f ′(x) = 1− tanh2(x). (192)

The ReLU activation f(x) = max(0, x), commonly used in modern networks, has a derivative

f ′(x) =

{
1 x > 0,

0 x ≤ 0.
(193)

These derivatives are essential for gradient-based optimization. The objective of training a feedfor-
ward neural network is to minimize a loss function L, which measures the discrepancy between the
predicted outputs y⃗i and the true targets t⃗i over a dataset {(x⃗i, t⃗i)}Ni=1. For regression problems,
the mean squared error (MSE) is often used, given by

L =
1

N

N∑
i=1

∥y⃗i − t⃗i∥2 =
1

N

N∑
i=1

m∑
j=1

(yi,j − ti,j)2. (194)

In classification tasks, the cross-entropy loss is widely employed, defined as

L = − 1

N

N∑
i=1

m∑
j=1

ti,j log(yi,j), (195)

where ti,j represents the one-hot encoded labels. The gradient of L with respect to the network
parameters is computed using backpropagation, which applies the chain rule iteratively to propagate
errors from the output layer to the input layer. During backpropagation, the error signal at the
output layer is computed as

δL =
∂L
∂z⃗L

= ∇y⃗L ⊙ f ′
L(z⃗L), (196)
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where ⊙ denotes the Hadamard product. For hidden layers, the error signal propagates backward
as

δk = (W T
k+1δk+1)⊙ f ′

k(z⃗k). (197)

The gradients of the loss with respect to the weights and biases are then given by

∂L
∂Wk

= δka⃗
T
k−1,

∂L
∂b⃗k

= δk. (198)

These gradients are used to update the parameters through optimization algorithms like stochastic
gradient descent (SGD), where

Wk ← Wk − η
∂L
∂Wk

, b⃗k ← b⃗k − η
∂L
∂b⃗k

, (199)

with η > 0 as the learning rate. The universal approximation theorem rigorously establishes that
a feedforward neural network with at least one hidden layer and sufficiently many neurons can
approximate any continuous function f : Rn → Rm on a compact domain D ⊂ Rn. Specifically,
for any ϵ > 0, there exists a network f̂ such that ∥f(x⃗)− f̂(x⃗)∥ < ϵ for all x⃗ ∈ D. This expressive
capability arises because the composition of affine transformations and nonlinear activations allows
the network to approximate highly complex functions by partitioning the input space into regions
and assigning different functional behaviors to each.

In summary, feedforward neural networks are a powerful mathematical framework grounded in
linear algebra, calculus, and optimization. Their capacity to model intricate mappings between
input and output spaces has made them a cornerstone of machine learning, with rigorous mathe-
matical principles underpinning their structure and training. The combination of affine transfor-
mations, nonlinear activations, and gradient-based optimization enables these networks to achieve
unparalleled flexibility and performance in a wide range of applications.

5.3 Activation Functions

In the context of neural networks, activation functions serve as an essential component that
enables the network to approximate complex, non-linear mappings. When a neural network pro-
cesses input data, each neuron computes a weighted sum of the inputs and then applies an activa-
tion function σ(z) to produce the output. Mathematically, let the input vector to the neuron be
x = (x1, x2, . . . , xn), and let the weight vector associated with these inputs be w = (w1, w2, . . . , wn).
The corresponding bias term is denoted as b. The net input z to the activation function is then
given by:

z = w⊤x + b =
n∑

i=1

wixi + b (200)

where w⊤x represents the dot product of the weight vector and the input vector. The activation
function σ(z) is then applied to this net input to obtain the output of the neuron a:

a = σ(z) = σ

(
n∑

i=1

wixi + b

)
. (201)

The activation function introduces a non-linearity into the neuron’s response, which is a crucial
aspect of neural networks because, without it, the network would only be able to perform linear
transformations of the input data, limiting its ability to approximate complex, real-world func-
tions. The non-linearity introduced by σ(z) is fundamental because it enables the network to
capture intricate relationships between the input and output, making neural networks capable of
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solving problems that require hierarchical feature extraction, such as image classification, time-
series forecasting, and language modeling. The importance of non-linearity is most clearly evident
when considering the mathematical formulation of a multi-layer neural network. For a feed-forward
neural network with L layers, the output ŷ of the network is given by the composition of successive
affine transformations and activation functions. Let x denote the input vector, Wk and bk be the
weight matrix and bias vector for the k-th layer, and σk be the activation function for the k-th
layer. The output of the network is:

ŷ = σL(WLσL−1(WL−1 . . . σ1(W1x + b1) + b2) + · · ·+ bL). (202)

If σ(z) were a linear function, say σ(z) = c ·z for some constant c, the composition of such functions
would still result in a linear function. Specifically, if each σk were linear, the overall network function
would simplify to a single linear transformation:

ŷ = c1 · x + c2, (203)

where c1 and c2 are constants dependent on the parameters of the network. In this case, the
network would have no greater expressive power than a simple linear regression model, regardless
of the number of layers. Thus, the non-linearity introduced by activation functions allows neural
networks to approximate any continuous function, as guaranteed by the universal approximation
theorem. This theorem states that a feed-forward neural network with at least one hidden layer
and a sufficiently large number of neurons can approximate any continuous function f(x), provided
the activation function is non-linear and the network has enough capacity.

Next, consider the mathematical properties that the activation function σ(z) must possess. First,
it must be differentiable to allow the use of gradient-based optimization methods like backpropaga-
tion for training. Backpropagation relies on the chain rule of calculus to compute the gradients of
the loss function L with respect to the parameters (weights and biases) of the network. Suppose
L = L(ŷ,y) is the loss function, where ŷ is the predicted output of the network and y is the true
label. During training, we compute the gradient of L with respect to the weights using the chain
rule. Let ak = σk(zk) represent the output of the activation function at layer k, where zk is the
input to the activation function. The gradient of the loss with respect to the weights at layer k is
given by:

∂L
∂Wk

=
∂L
∂ak

∂ak
∂zk

∂zk
∂Wk

. (204)

The term ∂ak
∂zk

is the derivative of the activation function, which must exist and be well-defined
for gradient-based optimization to work effectively. If the activation function is not differentiable,
the backpropagation algorithm cannot compute the gradients, preventing the training process from
proceeding.

Now consider the specific forms of activation functions commonly used in practice. The sigmoid
activation function is one of the most well-known, defined as:

σ(z) =
1

1 + e−z
. (205)

Its derivative is:
σ′(z) = σ(z)(1− σ(z)), (206)

which can be derived by applying the chain rule to the expression for σ(z). Although sigmoid
is differentiable and smooth, it suffers from the vanishing gradient problem, especially for large
positive or negative values of z. Specifically, as z → ∞, σ′(z) → 0, and similarly as z → −∞,
σ′(z) → 0. This results in very small gradients during backpropagation, making it difficult for
the network to learn when the input values become extreme. To mitigate the vanishing gradient
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problem, the hyperbolic tangent (tanh) function is often used as an alternative. It is defined
as:

tanh(z) =
ez − e−z

ez + e−z
, (207)

with derivative:
tanh′(z) = 1− tanh2(z). (208)

The tanh function outputs values in the range (−1, 1), which helps to center the data around
zero. While the tanh function overcomes some of the vanishing gradient issues associated with the
sigmoid function, it still suffers from the problem for large |z|, where the gradients approach zero.
The Rectified Linear Unit (ReLU) is another commonly used activation function. It is defined
as:

ReLU(z) = max(0, z), (209)

with derivative:

ReLU′(z) =

{
1, z > 0,

0, z ≤ 0.
(210)

ReLU is particularly advantageous because it is computationally efficient, as it only requires a
comparison to zero. Moreover, for positive values of z, the derivative is constant and equal to 1,
which helps avoid the vanishing gradient problem. However, ReLU can suffer from the dying ReLU
problem, where neurons output zero for all inputs if the weights are initialized poorly or if the
learning rate is too high, leading to inactive neurons that do not contribute to the learning process.
To address the dying ReLU problem, the Leaky ReLU activation function is introduced, defined
as:

Leaky ReLU(z) =

{
z, z > 0,

αz, z ≤ 0,
(211)

where α is a small constant, typically chosen to be 0.01. The derivative of the Leaky ReLU is:

Leaky ReLU′(z) =

{
1, z > 0,

α, z ≤ 0.
(212)

Leaky ReLU ensures that neurons do not become entirely inactive by allowing a small, non-zero
gradient for negative values of z. Finally, for classification tasks, particularly when there are
multiple classes, the Softmax activation function is often used in the output layer of the neural
network. The Softmax function is defined as:

Softmax(zi) =
ezi∑n
j=1 e

zj
, (213)

where zi is the input to the i-th neuron in the output layer, and the denominator ensures that the
outputs sum to 1, making them interpretable as probabilities. The Softmax function is typically
used in multi-class classification problems, where the network must predict one class out of several
possible categories.

In summary, activation functions are a vital component of neural networks, enabling them to learn
intricate patterns in data, allowing for the successful application of neural networks to diverse tasks.
Different activation functions—such as sigmoid, tanh, ReLU, Leaky ReLU, and Softmax—each of-
fer distinct advantages and limitations, and their choice significantly impacts the performance and
training dynamics of the neural network.
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5.4 Loss Functions

In neural networks, the loss function is a crucial mathematical tool that quantifies the difference
between the predicted output of the model and the true output or target. Let xi be the input vector
and yi the corresponding target vector for the i-th training example. The network, parameterized
by weights W, generates a prediction denoted as ŷi = f(xi;W), where f(xi;W) represents the
model’s output. The objective of training the neural network is to minimize the discrepancy between
the predicted output ŷi and the true label yi across all training examples, effectively learning the
mapping function from inputs to outputs. A typical objective function is the average loss over a
dataset of N samples:

L(W) =
1

N

N∑
i=1

L(yi, ŷi) (214)

where L(yi, ŷi) represents the loss function that computes the error between the true output yi

and the predicted output ŷi for each data point. To minimize this objective function, optimization
algorithms such as gradient descent are used. The general update rule for the weights W is given
by:

W←W − η∇WL(W) (215)

where η is the learning rate, and ∇WL(W) is the gradient of the loss function with respect to
the weights. The gradient is computed using backpropagation, which applies the chain rule
of calculus to propagate the error backward through the network, updating the parameters to
minimize the loss. For this, we use the partial derivatives of the loss with respect to each layer’s
weights and biases, ensuring the error is distributed appropriately across all layers. For regression
tasks, the Mean Squared Error (MSE) loss is frequently used. This loss function quantifies
the error as the average squared difference between the predicted and true values. The MSE for a
dataset of N examples is given by:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (216)

where ŷi = f(xi;W) is the network’s predicted output for the i-th input xi. The gradient of the
MSE with respect to the network’s output ŷi is:

∂LMSE

∂ŷi

= 2 (ŷi − yi) (217)

This gradient guides the weight update in the direction that minimizes the squared error, leading
to a better fit of the model to the training data. For classification tasks, the cross-entropy
loss is often employed, as it is particularly well-suited to tasks where the output is a probability
distribution over multiple classes. In the binary classification case, where the target label yi is
either 0 or 1, the binary cross-entropy loss function is defined as:

LCE = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (218)

where ŷi = f(xi;W) is the predicted probability that the i-th sample belongs to the positive class
(i.e., class 1). For multiclass classification, where the target label yi is a one-hot encoded vector
representing the true class, the general form of the cross-entropy loss is:

LCE = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c) (219)
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where C is the number of classes, and ŷi,c = f(xi;W) is the predicted probability that the i-th
sample belongs to class c. The gradient of the cross-entropy loss with respect to the predicted
probabilities ŷi is:

∂LCE

∂ŷi,c
= ŷi,c − yi,c (220)

This gradient facilitates the weight update by adjusting the model’s parameters to reduce the dif-
ference between the predicted probabilities and the actual class labels.

In neural network training, the optimization process often involves regularization techniques to
prevent overfitting, especially in cases with high-dimensional data or deep networks. L2 reg-
ularization (also known as Ridge regression) is one common approach, which penalizes large
weights by adding a term proportional to the squared L2 norm of the weights to the loss function.
The regularized loss function becomes:

Lreg = LMSE + λ

n∑
j=1

W 2
j (221)

where λ is the regularization strength, and Wj represents the parameters of the network. The
gradient of the regularized loss with respect to the weights is:

∂Lreg

∂Wj

=
∂LMSE

∂Wj

+ 2λWj (222)

This additional term discourages large values of the weights, reducing the complexity of the model
and helping it generalize better to unseen data. Another form of regularization is L1 regulariza-
tion (or Lasso regression), which promotes sparsity in the model by adding the L1 norm of the
weights to the loss function. The L1 regularized loss function is:

Lreg = LMSE + λ
n∑

j=1

|Wj| (223)

The gradient of this regularized loss function with respect to the weights is:

∂Lreg

∂Wj

=
∂LMSE

∂Wj

+ λ sign(Wj) (224)

where sign(Wj) is the sign function, which returns 1 for positive values of Wj, −1 for negative
values, and 0 for Wj = 0. L1 regularization encourages the model to select only a small subset of
features by forcing many of the weights to exactly zero, thus simplifying the model and promoting
interpretability. The optimization process for neural networks can be viewed as solving a non-
convex optimization problem, given the highly non-linear activation functions and the deep
architectures typically used. In this context, stochastic gradient descent (SGD) is commonly
employed to perform the optimization by updating the weights based on the gradient computed
from a random mini-batch of the data. The update rule for SGD can be expressed as:

W←W − η∇WLbatch (225)

where ∇WLbatch is the gradient of the loss function computed over the mini-batch, and η is the
learning rate. Due to the non-convexity of the objective function, SGD tends to converge to a local
minimum or a saddle point, rather than the global minimum, especially in deep neural networks
with many layers.

In summary, the loss function plays a central role in guiding the optimization process in neu-
ral network training by quantifying the error between the predicted and true outputs. Different
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loss functions are employed depending on the nature of the problem, with MSE being common for
regression and cross-entropy used for classification. Regularization techniques such as L2 and L1
regularization are incorporated to prevent overfitting and ensure better generalization. Through
optimization algorithms like gradient descent, the neural network parameters are iteratively up-
dated based on the gradients of the loss function, with the ultimate goal of minimizing the loss
across all training examples.

6 Training Neural Networks

Literature Review: Sorrenson (2025) [119] introduced a framework enabling exact maximum
likelihood training of unrestricted neural networks. It presents new training methodologies based
on probabilistic models and applies them to scientific applications. Liu and Shi (2015) [120] ap-
plied advanced neural network theory to meteorological predictions. It uses sensitivity analysis
and new training techniques to mitigate sample size limitations. Das et. al. (2025) [121] inte-
grated Finite Integral Transform (FIT) with gradient-enhanced physics-informed neural networks
(g-PINN), optimizing training in engineering applications. Zhang et. al. (2025) [122] in his thesis
explores neural tangent kernel (NTK) theory to model the gradient descent training process of deep
networks and its implications for structural identification. Ali and Hussein (2025) [123] developed
a hybrid approach combining fuzzy set theory and artificial neural networks, enhancing training
robustness through heuristic optimization. Li (2025) [124] introduced a deep learning-based strat-
egy to train neural networks for imperfect-information extensive-form games, emphasizing offline
training techniques. Hu et. al. (2025) [125] explored the convergence properties of deep learning-
based PDE solvers, analyzing training loss and function space properties. Chen et. al. (2025)
[126] developed a Transformer-based neural network training framework for risk analysis, incorpo-
rating feature maps and game-theoretic interpretation. Sun et. al. (2025) [127] established a new
benchmarking suite for optimizing neural architecture search (NAS) techniques in training spiking
neural networks. Zhang et. al. (2025) [128] proposed a novel iterative training approach for neural
networks, enhancing convergence guarantees in theory and practice.

6.1 Backpropagation Algorithm

Consider a neural network with L layers, where each layer l (with l = 1, 2, . . . , L) consists of a
weight matrix W(l) ∈ Rnl×nl−1 , a bias vector b(l) ∈ Rnl , and an activation function σ(l) which is
applied element-wise. The network takes as input a vector x(i) ∈ Rn0 for the i-th training sample,
where n0 is the number of input features, and propagates it through the layers to produce an
output ŷ(i) ∈ RnL , where nL is the number of output units. The network parameters (weights
and biases) θ = {W(l),b(l)}Ll=1} are to be optimized to minimize a loss function that captures the
error between the predicted output ŷ(i) and the true target y(i) for all training examples. For each
training sample, we define the loss function L(ŷ(i), y(i)) as the squared error:

L(ŷ(i), y(i)) =
1

2
∥ŷ(i) − y(i)∥22, (226)

where ∥ · ∥2 represents the Euclidean norm. The total loss J(θ) for the entire dataset is the average
of the individual losses:

J(θ) =
1

N

N∑
i=1

L(ŷ(i), y(i)), (227)

where N is the number of training samples. For squared error loss, we can write:

J(θ) =
1

2N

N∑
i=1

∥ŷ(i) − y(i)∥22. (228)
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The forward pass through the network consists of computing the activations at each layer. For the
l-th layer, the pre-activation z(l) is calculated as:

z(l) = W(l)a(l−1) + b(l), (229)

where a(l−1) is the activation from the previous layer and W(l) is the weight matrix connecting the
(l − 1)-th layer to the l-th layer. The output of the layer, i.e., the activation a(l), is computed by
applying the activation function σ(l) element-wise to z(l):

a(l) = σ(l)(z(l)). (230)

The final output of the network is given by the activation a(L) at the last layer, which is the
predicted output ŷ(i):

ŷ(i) = a(L). (231)

The backpropagation algorithm computes the gradient of the loss function J(θ) with respect to
each parameter (weights and biases). First, we compute the error at the output layer. Let δ(L)

represent the error at layer L. This is computed by taking the derivative of the loss function with
respect to the activations at the output layer:

δ(L) =
∂L
∂a(L)

⊙ σ(L)′(z(L)), (232)

where ⊙ denotes element-wise multiplication, and σ(L)′(z(L)) is the derivative of the activation
function applied element-wise to z(L). For squared error loss, the derivative with respect to the
activations is:

∂L
∂a(L)

= ŷ(i) − y(i) (233)

so the error term at the output layer is:

δ(L) = (ŷ(i) − y(i))⊙ σ(L)′(z(L)) (234)

To propagate the error backward through the network, we compute the errors at the hidden layers.
For each hidden layer l = L− 1, L− 2, . . . , 1, the error δ(l) is calculated by the chain rule:

δ(l) =
(
W(l+1)T δ(l+1)

)
⊙ σ(l)′(z(l)) (235)

where W(l+1)T ∈ Rnl+1×nl is the transpose of the weight matrix connecting layer l to layer l+1. This
equation uses the fact that the error at layer l depends on the error at the next layer, modulated
by the weights, and the derivative of the activation function at layer l. Once the errors δ(l) are
computed for all layers, we can compute the gradients of the loss function with respect to the
parameters (weights and biases). The gradient of the loss with respect to the weights W(l) is:

∂J(θ)

∂W(l)
=

1

N

N∑
i=1

δ(l)(a(l−1))T (236)

The gradient of the loss with respect to the biases b(l) is:

∂J(θ)

∂b(l)
=

1

N

N∑
i=1

δ(l) (237)

After computing these gradients, we update the parameters using an optimization algorithm such
as gradient descent. The weight update rule is:

W(l) ←W(l) − η ∂J(θ)

∂W(l)
, (238)
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and the bias update rule is:

b(l) ← b(l) − η∂J(θ)

∂b(l)
(239)

where η is the learning rate controlling the step size in the gradient descent update. This process of
forward pass, backpropagation, and parameter update is repeated over multiple epochs, with each
epoch consisting of a forward pass, a backward pass, and a parameter update, until the network
converges to a local minimum of the loss function.

At each step of backpropagation, the chain rule is applied recursively to propagate the error
backward through the network, adjusting each weight and bias to minimize the total loss. The
derivative of the activation function σ(l)′(z(l)) is critical, as it dictates how the error is modulated
at each layer. Depending on the choice of activation function (e.g., ReLU, sigmoid, or tanh), the
derivative will take different forms, and this choice has a direct impact on the learning dynamics
and convergence rate of the network. Thus, backpropagation serves as the computational back-
bone of neural network training. By calculating the gradients of the loss function with respect to
the network parameters through efficient error propagation, backpropagation allows the network
to adjust its parameters iteratively, gradually minimizing the error and improving its performance
across tasks. This process is mathematically rigorous, utilizing fundamental principles of calculus
and optimization, ensuring that the neural network learns effectively from its training data.

6.2 Gradient Descent Variants

The training of neural networks using gradient descent and its variants is a mathematically intensive
process that aims to minimize a differentiable scalar loss function L(θ), where θ represents the
parameter vector of the neural network. The loss function is often expressed as

L(θ) =
1

N

N∑
i=1

ℓ(θ;xi, yi), (240)

where (xi, yi) are the input-output pairs in the training dataset of size N , and ℓ(θ;xi, yi) is the
sample-specific loss. The minimization problem is solved iteratively, starting from an initial guess
θ(0) and updating according to the rule

θ(k+1) = θ(k) − η∇θL(θ), (241)

where η > 0 is the learning rate, and ∇θL(θ) is the gradient of the loss with respect to θ. The gra-
dient, computed via backpropagation, follows the chain rule and propagates through the network’s
layers to adjust weights and biases optimally. In a feedforward neural network with L layers, the
computations proceed as follows. The input to layer l is

z(l) = W (l)a(l−1) + b(l), (242)

where W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl are the weight matrix and bias vector for the layer, respec-
tively, and a(l−1) is the activation vector from the previous layer. The output is then

a(l) = f (l)(z(l)), (243)

where f (l) is the activation function. Backpropagation begins with the computation of the error at
the output layer,

δ(L) =
∂ℓ

∂a(L)
⊙ f ′(L)(z(L)), (244)

where f ′(L)(·) is the derivative of the activation function. For hidden layers, the error propagates
recursively as

δ(l) = (W (l+1))⊤δ(l+1) ⊙ f ′(l)(z(l)). (245)
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The gradients for weight and bias updates are then computed as

∂L
∂W (l)

= δ(l)(a(l−1))⊤ (246)

and
∂L
∂b(l)

= δ(l), (247)

respectively. The dynamics of gradient descent are deeply influenced by the curvature of the loss
surface, encapsulated by the Hessian matrix

H(θ) = ∇2
θL(θ). (248)

For a small step size η, the change in the loss function can be approximated as

∆L ≈ −η∥∇θL(θ)∥2 +
η2

2
(∇θL(θ))⊤H(θ)∇θL(θ). (249)

This reveals that convergence is determined not only by the gradient magnitude but also by the
curvature of the loss surface along the gradient direction. The eigenvalues λ1, λ2, . . . , λd of H(θ)
dictate the local geometry, with large condition numbers κ = λmax

λmin
slowing convergence due to

ill-conditioning. Stochastic gradient descent (SGD) modifies the standard gradient descent by
computing updates based on a single data sample (xi, yi), leading to

θ(k+1) = θ(k) − η∇θℓ(θ;xi, yi). (250)

While SGD introduces variance into the updates, this stochasticity helps escape saddle points
characterized by zero gradient but mixed curvature. To balance computational efficiency and
stability, mini-batch SGD computes gradients over a randomly selected subset B ⊂ {1, . . . , N} of
size |B|, yielding

∇θLB(θ) =
1

|B|
∑
i∈B

∇θℓ(θ;xi, yi). (251)

Momentum methods enhance convergence by incorporating a memory of past gradients. The
velocity term

v(k+1) = γv(k) + η∇θL(θ) (252)

accumulates gradient information, and the parameter update is

θ(k+1) = θ(k) − v(k+1). (253)

Analyzing momentum in the eigenspace of H(θ), with H = QΛQ⊤, reveals that the effective step
size in each eigendirection is

ηeff,i =
η

1− γλi
, (254)

showing that momentum accelerates convergence in low-curvature directions while damping oscil-
lations in high-curvature directions. Adaptive gradient methods, such as AdaGrad, RMSProp, and
Adam, refine learning rates for individual parameters. In AdaGrad, the adaptive learning rate is

η
(k+1)
i =

η√
G

(k+1)
ii + ϵ

, (255)

where
G

(k+1)
ii = G

(k)
ii + (∇θi

L(θ))2 . (256)

RMSProp modifies this with an exponentially weighted average

G
(k+1)
ii = βG

(k)
ii + (1− β) (∇θi

L(θ))2 . (257)
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Adam combines RMSProp with momentum, where the first and second moments are

m(k+1) = β1m
(k) + (1− β1)∇θL(θ) (258)

and
v(k+1) = β2v

(k) + (1− β2) (∇θL(θ))2 . (259)

Bias corrections yield

m̂(k+1) =
m(k+1)

1− βk
1

, v̂(k+1) =
v(k+1)

1− βk
2

. (260)

The final parameter update is

θ(k+1) = θ(k) − η m̂(k+1)√
v̂(k+1) + ϵ

. (261)

In conclusion, gradient descent and its variants provide a rich framework for optimizing neural
network parameters. While standard gradient descent offers a basic approach, advanced methods
like momentum and adaptive gradients significantly enhance convergence by tailoring updates to
the landscape of the loss surface and the dynamics of training.

6.2.1 SGD (Stochastic Gradient Descent) Optimizer

Literature Review: Lauand and Meyn (2025) [175] established a theoretical framework for SGD
using Markovian dynamics to improve convergence properties. It integrates quasi-periodic linear
systems into SGD, enhancing its robustness in non-stationary environments. Maranjyan et al.
(2025) [176] developed an asynchronous SGD algorithm that meets the theoretical lower bounds
for time complexity. It introduces ring-based communication to optimize parallel execution without
degrading convergence rates. Gao and Gündüz (2025) [177] proposed a stochastic gradient descent-
based approach to optimize graph neural networks in wireless networks. It rigorously analyzes
the stochastic optimization problem and proves its convergence guarantees. Yoon et. al. (2025)
[178] investigated federated SGD in multi-agent learning and derives theoretical guarantees on its
communication efficiency while achieving equilibrium. Verma and Maiti (2025) [179] proposed a
periodic learning rate (using sine and cosine functions) for SGD-based optimizers, theoretically
proving its benefits in stability and computational efficiency. Borowski and Miasojedow (2025)
[180] extended the Robbins-Monro theorem to analyze convergence guarantees of SGD, refining the
theoretical understanding of projected stochastic approximation algorithms. Dong et al. (2025)
[181] applied stochastic gradient descent to brain network modeling, providing a theoretical frame-
work for optimizing neural control strategies. Jiang et. al. (2025) [182] analyzed the bias-variance
tradeoff in decentralized SGD, proving convergence rates and proposing an error-correction mech-
anism for biased gradients. Sonobe et. al. (2025) [183] connected SGD with Bayesian inference,
presenting a theoretical analysis of how stochastic optimization methods approximate posterior
distributions. Zhang and Jia (2025) [184] examined the theoretical properties of policy gradients
in reinforcement learning, proving convergence guarantees for stochastic optimal control problems.

The Stochastic Gradient Descent (SGD) optimizer is an iterative method designed to mini-
mize an objective function f(w) by updating a parameter vector w in the direction of the negative
gradient. The fundamental optimization problem can be expressed as

min
w

f(w), (262)

where

f(w) =
1

N

N∑
i=1

ℓ(w;xi, yi) (263)
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represents the empirical risk, constructed from a dataset {(xi, yi)}Ni=1. Here, ℓ(w;xi, yi) denotes
the loss function, w ∈ Rd is the parameter vector, N is the dataset size, and f(w) approximates
the true population risk

Ex,y[ℓ(w;x, y)]. (264)

Standard gradient descent involves the update rule

w(t+1) = w(t) − η∇f(w(t)), (265)

where η > 0 is the learning rate and

∇f(w) =
1

N

N∑
i=1

∇ℓ(w;xi, yi) (266)

is the full gradient. However, for large-scale datasets, the computation of ∇f(w) becomes com-
putationally prohibitive, motivating the adoption of stochastic approximations. The stochastic
approximation relies on the idea of estimating the gradient ∇f(w) using a single data point or a
small batch of data points. Denoting the random index sampled at iteration t as it, the stochastic
gradient can be written as

∇̂f(w(t)) = ∇ℓ(w(t);xit , yit). (267)

Consequently, the update rule becomes

w(t+1) = w(t) − η∇̂f(w(t)). (268)

For a mini-batch Bt of size m, the stochastic gradient generalizes to

∇̂f(w(t)) =
1

m

∑
i∈Bt

∇ℓ(w(t);xi, yi). (269)

An important property of ∇̂f(w) is its unbiasedness:

E[∇̂f(w)] = ∇f(w). (270)

However, the variance of ∇̂f(w), defined as

Var[∇̂f(w)] = E[∥∇̂f(w)−∇f(w)∥2], (271)

introduces stochastic noise into the updates, where Var[∇̂f(w)] ≈ σ2

m
and

σ2 = E[∥∇ℓ(w;x)−∇f(w)∥2] (272)

is the variance of the gradients. To analyze the convergence properties of SGD, we assume f(w)
to be L-smooth, meaning

∥∇f(w1)−∇f(w2)∥ ≤ L∥w1 −w2∥, (273)

and f(w) to be bounded below by f ∗ = infw f(w). Using Taylor expansion, we can write

f(w(t+1)) ≤ f(w(t))− η∥∇f(w(t))∥2 +
η2L

2
∥∇̂f(w(t))∥2. (274)

Taking expectations yields

E[f(w(t+1))] ≤ E[f(w(t))]− η

2
E[∥∇f(w(t))∥2] +

η2L

2
σ2, (275)
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showing that the convergence rate depends on the interplay between the learning rate η, the smooth-
ness constant L, and the gradient variance σ2. For η small enough, the dominant term in conver-
gence is −η

2
E[∥∇f(w(t))∥2], leading to monotonic decrease in f(w(t)). In the strongly convex case,

where f(w) satisfies

f(w1) ≥ f(w2) +∇f(w2)
⊤(w1 −w2) +

µ

2
∥w1 −w2∥2 (276)

for µ > 0, SGD achieves linear convergence. Specifically,

E[∥w(t) −w∗∥2] ≤ (1− ηµ)t∥w(0) −w∗∥2 +
ησ2

2µ
. (277)

For non-convex functions, where ∇2f(w) can have both positive and negative eigenvalues, SGD
may converge to a local minimizer or saddle point. Stochasticity plays a pivotal role in escaping
strict saddle points ws where ∇f(ws) = 0 but λmin(∇2f(ws)) < 0.

6.2.2 Nesterov Accelerated Gradient Descent (NAG)

Literature Review: The field of Nesterov Accelerated Gradient Descent (NAG) has undergone
significant theoretical refinement and practical adaptation in recent years, with researchers delv-
ing into its convergence properties, dynamical systems interpretations, stochastic extensions, and
domain-specific optimizations. Adly and Attouch (2024) [422] provide an in-depth complexity anal-
ysis by precisely tuning the viscosity parameter within an inertial gradient system, thereby extend-
ing NAG’s classical formulations into the Su-Boyd-Candès dynamical framework. By embedding
NAG within an inertial differential equation paradigm, they rigorously establish how varying the
viscosity parameter alters convergence rates and acceleration effects, bridging a crucial gap between
continuous-time inertial flow models and discrete-time iterative schemes. Expanding on this iner-
tial dynamics perspective, Wang and Peypouquet (2024) [423] focus specifically on strongly convex
functions, where they derive an exact convergence rate for NAG by constructing a novel Lyapunov
function. Unlike previous results that provided only upper-bound estimates for convergence, their
approach offers a precise characterization of NAG’s asymptotic behavior, reinforcing its accelerated
rate of O( 1

k2
) in smooth, strongly convex settings. Their work strengthens the geometric interpre-

tation of NAG as a discretization of a second-order differential equation with damping, further
cementing its connection to continuous-time optimization dynamics.

Despite the theoretical consensus on NAG’s superiority in convex optimization, Hermant et. al.
(2024) [424] present an unexpected empirical and theoretical challenge to this assumption. Their
study systematically compares deterministic NAG with Stochastic Gradient Descent (SGD) under
convex function interpolation, revealing cases where SGD exhibits superior practical performance
despite lacking formal acceleration guarantees. Their findings raise fundamental questions about
the practical advantages of momentum-based methods in data-driven scenarios, particularly when
stochastic noise interacts with interpolation dynamics. Applying NAG beyond classical convex
optimization, Alavala and Gorthi (2024) [425] integrate it into medical imaging reconstruction,
specifically for Cone Beam Computed Tomography (CBCT). They develop a NAG-accelerated least
squares solver (NAG-LS), demonstrating substantial improvements in computational efficiency and
image reconstruction quality. Their results indicate that NAG’s ability to mitigate error propaga-
tion in iterative reconstruction algorithms makes it particularly well-suited for inverse problems in
medical imaging. From a generalization perspective, Li (2024) [426] formulates a unified momen-
tum framework encompassing NAG, Polyak’s Heavy Ball method, and other stochastic momentum
algorithms. By introducing a generalized momentum differential equation, he rigorously dissects
the trade-off between stability, acceleration, and variance control in momentum-based optimization.
His framework provides a cohesive theoretical structure for understanding how momentum-based
techniques interact with gradient noise, particularly in high-dimensional stochastic settings.
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Beyond convexity, Gupta and Wojtowytsch (2024) [427] rigorously analyze NAG’s performance
in non-convex optimization landscapes, a setting where standard acceleration techniques are often
assumed ineffective. Their research establishes conditions under which NAG retains acceleration
benefits even in the absence of strong convexity, highlighting how NAG’s momentum interacts with
saddle points, sharp local minima, and benign non-convex structures. Their work provides a cru-
cial extension of NAG beyond convex functions, opening new avenues for its application in deep
learning and high-dimensional optimization. Meanwhile, Razzouki et. al. (2024) [428] compile
a comprehensive survey of gradient-based optimization methods, systematically comparing NAG,
Adam, RMSprop, and other modern optimizers. Their analysis delves into theoretical convergence
guarantees, empirical performance benchmarks, and practical tuning considerations, emphasizing
how NAG’s momentum-driven updates compare against adaptive learning rate strategies. Their
survey serves as an authoritative reference for researchers seeking to navigate the landscape of
momentum-based optimization algorithms. Shifting towards hardware implementations, Wang et
al. (2025) [429] apply NAG to digital background calibration in Analog-to-Digital Converters
(ADCs). Their study demonstrates how NAG accelerates error correction algorithms in high-speed
ADC architectures, particularly in mitigating nonlinear distortions and improving signal-to-noise
ratios (SNRs). Their results provide compelling evidence that momentum-based optimization tran-
scends software applications, finding practical utility in high-performance electronic circuit design.

To further explore empirical performance trade-offs, Naeem et. al. (2024) [430] conduct an ex-
haustive empirical evaluation of NAG, Adam, and Gradient Descent across various convex and
non-convex loss functions. Their results highlight that while NAG accelerates convergence in many
cases, it can induce oscillatory behavior in certain settings, necessitating adaptive momentum tun-
ing to prevent divergence. Their findings offer practical insights into optimizer selection strategies,
particularly in deep learning architectures where gradient curvature varies dynamically. Finally,
Campos et. al. (2024) [431] extend NAG to optimization on Lie groups, a fundamental class of
non-Euclidean geometries. By adapting momentum-based gradient descent methods to Lie alge-
bra structures, they establish new convergence guarantees for optimization problems on curved
manifolds, an area crucial to robotics, physics, and differential geometry applications. Their work
signifies a major extension of NAG’s applicability, proving its efficacy beyond Euclidean space.

Let f : Rd → R be a continuously differentiable function with a unique minimizer:

θ∗ = arg min
θ∈Rd

f(θ). (278)

We assume the L-Lipschitz Continuity of the Gradient

∥∇f(θ)−∇f(θ′)∥ ≤ L∥θ − θ′∥, ∀θ, θ′ ∈ Rd. (279)

and the Strong Convexity of f(θ) with Parameter m

f(θ′) ≥ f(θ) +∇f(θ)T (θ′ − θ) +
m

2
∥θ′ − θ∥2, ∀θ, θ′ ∈ Rd. (280)

The strong convexity assumption ensures that the Hessian satisfies:

mI ⪯ ∇2f(θ) ⪯ LI, ∀θ ∈ Rd. (281)

In Gradient Descent, Classical gradient descent updates follow:

θt+1 = θt − η∇f(θt). (282)

This method achieves a linear convergence rate of O(1/t) in the convex case. In Momentum-Based
Gradient Descent, the momentum-based update rule is:

vt = µvt−1 − η∇f(θt), (283)
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θt+1 = θt + vt. (284)

where vt is a velocity-like term accumulating past gradients. µ is the momentum coefficient. Mo-
mentum reduces oscillations and accelerates convergence but suffers from excessive oscillations in
ill-conditioned problems. The Nesterov Accelerated Gradient (NAG) is A Look-Ahead Strategy.
Instead of computing the gradient at θt, NAG applies momentum first:

θ̃t = θt + µvt−1. (285)

Then, the velocity update is performed using the gradient at θ̃t:

vt = µvt−1 − η∇f(θ̃t). (286)

Finally, the parameter update follows:

θt+1 = θt + vt. (287)

The Interpretation of the Nesterov Accelerated Gradient (NAG) is

• Look-Ahead Gradient Computation: By computing ∇f(θ̃t) instead of ∇f(θt), NAG
effectively anticipates the next move, leading to improved convergence rates.

• Adaptive Step Size: The effective step size is modified dynamically, stabilizing the trajec-
tory.

To find the Variational Formulation of NAG, We derive NAG from an auxiliary optimization
problem that minimizes an upper bound on f(θ). Define a quadratic approximation at the look-
ahead iterate θ̃t:

θt+1 = arg min
θ

[
f(θ̃t) +∇f(θ̃t)

T (θ − θ̃t) +
1

2η
∥θ − θt∥2

]
. (288)

Solving for θt+1:
θt+1 = θ̃t − η∇f(θ̃t). (289)

This derivation justifies why NAG achieves adaptive step-size behavior. We analyze the conver-
gence properties and Optimality Rate under convexity assumptions of Gradient Descent (GD). For
gradient descent:

f(θt)− f(θ∗) = O

(
1

t

)
. (290)

This is suboptimal in large-scale settings. Regarding the NAG Convergence Rate, for strongly
convex f(θ):

f(θt)− f(θ∗) = O

(
1

t2

)
. (291)

This improvement is due to the momentum-enhanced look-ahead updates. We need to do the
Lyapunov Analysis for Stability. Define the Lyapunov function:

Vt = f(θt)− f(θ∗) +
γ

2
∥θt − θ∗∥2. (292)

Here, γ, δ > 0 are parameters chosen to ensure Vt is non-increasing. We analyze Vt+1 − Vt to show
it is non-positive. Expanding Vt+1:

Vt+1 = f(θt+1)− f(θ∗) +
γ

2
∥θt+1 − θ∗∥2 +

δ

2
∥vt+1∥2. (293)

Using strong convexity:

f(θt+1) ≤ f(θt) +∇f(θt)
T (θt+1 − θt) +

L

2
∥θt+1 − θt∥2. (294)
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Since θt+1 = θt + vt, we substitute:

f(θt+1) ≤ f(θt) +∇f(θt)
Tvt +

L

2
∥vt∥2. (295)

Now, using vt = µvt−1 − η∇f(θ̃t), we analyze the term ∥θt+1 − θ∗∥2:

∥θt+1 − θ∗∥2 = ∥θt − θ∗ + vt∥2. (296)

Expanding:
∥θt+1 − θ∗∥2 = ∥θt − θ∗∥2 + 2(θt − θ∗)Tvt + ∥vt∥2. (297)

Similarly, we expand ∥vt+1∥2:

∥vt+1∥2 = ∥µvt − η∇f(θ̃t+1)∥2. (298)

Expanding:
∥vt+1∥2 = µ2∥vt∥2 − 2µηvTt ∇f(θ̃t+1) + η2∥∇f(θ̃t+1)∥2. (299)

We have to choose γ, δ to Ensure Descent. To ensure Vt+1 ≤ Vt, we require:

Vt+1 − Vt ≤ 0. (300)

After substituting the above expansions and simplifying, we obtain a sufficient condition:

γ ≥ L

η
, δ ≥ 1

η
. (301)

Choosing γ, δ appropriately, we conclude:

Vt+1 ≤ Vt (302)

which proves the global stability of NAG. In conclusion, since Vt is non-increasing and lower-
bounded (by 0), it converges, which implies that θt → θ∗ and the NAG iterates remain bounded.
Hence, we have rigorously proven the global stability of Nesterov’s Accelerated Gradient (NAG).
For Practical Considerations, we need to have:

• Choice of µ: Optimal momentum is µ = 1−O(1/t).

• Adaptive Learning Rate: Choosing η = O(1/L) ensures convergence.

6.2.3 Adam (Adaptive Moment Estimation) Optimizer

Literature Review: Kingma and Ba (2014) [165] introduced the Adam optimizer. It presents
Adam as an adaptive gradient-based optimization method that combines momentum and adaptive
learning rate techniques. The authors rigorously prove its advantages over traditional optimizers
such as SGD and RMSProp. Reddy et. al. (2019) [166] analyzed the convergence properties
of Adam and identified cases where it may fail to converge. The authors propose AMSGrad, an
improved variant of Adam that guarantees better theoretical convergence behavior. Jin et. al.
(2024) [167] introduced MIAdam (Multiple Integral Adam), which modified Adam’s update rules
to enhance generalization. The authors theoretically and empirically demonstrate its effective-
ness in avoiding sharp minima. Adly et. al. (2024) [168] proposed EXAdam, an improvement
over Adam that uses cross-moments in parameter updates. This leads to faster convergence while
maintaining the adaptability of Adam. Theoretical derivations show improved variance reduction
in updates. Liu et. al. (2024) [169] provided a rigorous mathematical proof of convergence for
Adam when applied to linear inverse problems. The authors compare Adam’s convergence rate
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with standard gradient descent and prove its efficiency in noisy settings. Yang (2025) [170] gener-
alized Adam by introducing a biased stochastic optimization framework. The authors show that
under specific conditions, Adam’s bias correction step is insufficient, leading to poor convergence
on strongly convex functions. Park and Lee (2024) [171] developed SMMF, a novel variant of Adam
that factorizes momentum tensors, reducing memory usage. Theoretical bounds show that SMMF
preserves Adam’s adaptability while improving efficiency. Mahjoubi et al. (2025) [172] provided
a comparative analysis of Adam, SGD, and RMSProp in deep learning models. It demonstrates
scenarios where Adam outperforms other methods, particularly in high-dimensional optimization
problems. Seini and Adam (2024) [173] examined how Adam’s optimization framework can be
adapted to human-AI collaborative learning models. The paper provides a theoretical foundation
for integrating Adam into AI-driven education platforms. Teessar (2024) [174] discussed Adam’s
application in survey and social science research, where adaptive optimization is used to fine-tune
questionnaire analysis models. This highlights Adam’s versatility outside deep learning.

The Adaptive Moment Estimation (Adam) optimizer can be considered a sophisticated, hybrid
optimization algorithm combining elements of momentum-based methods and adaptive learning
rate techniques, which is why it has become a cornerstone in the optimization of complex ma-
chine learning models, particularly those used in deep learning. Adam’s formulation is centered
on computing and using both the first and second moments (i.e., the mean and the variance) of
the gradient with respect to the loss function at each parameter update. This process effectively
adapts the learning rate for each parameter, based on its respective gradient’s statistical properties.
The moment-based adjustments provide robustness against issues such as poor conditioning of the
objective function and gradient noise, which are prevalent in large-scale optimization problems.

We aim to minimize a stochastic objective function f(θ), where θ ∈ Rd represents the parame-
ters of the model. The optimization problem is:

θ∗ = arg min
θ

E[f(θ; ξ)] (303)

where ξ is a random variable representing the stochasticity (e.g., mini-batch sampling in deep
learning). The Adam optimizer maintains that the first moment estimate (exponentially decaying
average of gradients) is given by:

mt = β1mt−1 + (1− β1)gt (304)

where gt = ∇θf(θt−1; ξt) is the stochastic gradient at time t, and β1 ∈ [0, 1) is the decay rate. The
second moment estimate (exponentially decaying average of squared gradients) is given by:

vt = β2vt−1 + (1− β2)g2t (305)

where β2 ∈ [0, 1) is the decay rate, and g2t denotes element-wise squaring. The bias-corrected
estimates are:

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(306)

The parameter update rule is:

θt = θt−1 − η
m̂t√
v̂t + ϵ

(307)

where η is the learning rate, and ϵ > 0 is a small constant for numerical stability. To rigorously
analyze Adam, we impose the following assumptions. The gradient ∇θf(θ) is Lipschitz continuous
with constant L:

∥∇θf(θ1)−∇θf(θ2)∥ ≤ L∥θ1 − θ2∥ (308)

The stochastic gradients gt are bounded almost surely:

∥gt∥∞ ≤ G (309)
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The second moments of the gradients are bounded:

E[∥gt∥2] ≤ σ2 (310)

The feasible region Θ is bounded with diameter D:

∥θ1 − θ2∥ ≤ D, ∀θ1, θ2 ∈ Θ (311)

The decay rates β1 and β2 satisfy 0 ≤ β1, β2 < 1, and β1 < β2. We analyze Adam in the online
optimization framework, where the loss function ft(θ) is revealed sequentially. The goal is to bound
the regret:

R(T ) =
T∑
t=1

ft(θt)−min
θ

T∑
t=1

ft(θ) (312)

The regret can be decomposed as:

R(T ) =
T∑
t=1

ft(θt)−
T∑
t=1

ft(θ
∗)︸ ︷︷ ︸

Regret due to optimization

+
T∑
t=1

ft(θ
∗)−min

θ

T∑
t=1

ft(θ)︸ ︷︷ ︸
Regret due to stochasticity

(313)

Regarding the Boundedness of m̂t and v̂t, using the boundedness of gt, we can show:

∥m̂t∥∞ ≤
G

1− β1
, ∥v̂t∥∞ ≤

G2

1− β2
(314)

The bias-corrected estimates satisfy:

E[m̂t] = E[gt], E[v̂t] = E[g2t ] (315)

The update rule scales the gradient by 1√
v̂t+ϵ

, which adapts to the curvature of the loss function.
Under the assumptions, the regret of Adam can be bounded as:

R(T ) ≤ D2T

2η(1− β1)
+

η(1 + β1)G
2

(1− β1)(1− β2)(1− γ)2
(316)

where γ = β1

β2
. This bound is O(

√
T ), which is optimal for online convex optimization. Regarding

Convergence in Non-Convex Settings, for non-convex optimization, we analyze the convergence of
Adam to a stationary point. Specifically, we show that:

lim
T→∞

E[∥∇f(θT )∥2] = 0 (317)

Define the Lyapunov function:

Vt = f(θt) +
η

2
∥m̂t∥2 (318)

Using the Lipschitz continuity of ∇f(θ) and the boundedness of m̂t and v̂t, we derive:

T∑
t=1

E
[
∥∇f(θt)∥2

]
≤ C, (319)

where C is a constant depending on η, β1, β2, G, and σ. As T → ∞, the expected gradient norm
converges to zero:

E
[
∥∇f(θT )∥2

]
→ 0. (320)

In conclusion, the Adam optimizer is a rigorously analyzed algorithm with strong theoretical guar-
antees. Its adaptive learning rates and momentum-like behavior make it highly effective for both
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convex and non-convex optimization problems.

Mathematically, at each iteration t, the Adam optimizer updates the parameter vector θt ∈ Rn,
where n is the number of parameters of the model, based on the gradient gt, which is the gradient
of the objective function with respect to θt, i.e., gt = ∇θf(θt). In its essence, Adam computes
two distinct quantities: the first moment estimate mt and the second moment estimate vt, which
are recursive moving averages of the gradients and the squared gradients, respectively. The first
moment estimate mt is given by

mt = β1mt−1 + (1− β1)gt, (321)

where β1 ∈ [0, 1) is the decay rate for the first moment. This recurrence equation represents a
weighted moving average of the gradients, which is intended to capture the directional momentum
in the optimization process. By incorporating the first moment, Adam accumulates information
about the historical gradients, which helps mitigate oscillations and stabilizes the convergence
direction. The term (1 − β1) ensures that the most recent gradient gt receives a more significant
weight in the computation of mt. Similarly, the second moment estimate vt, which represents the
exponentially decaying average of the squared gradients, is updated as

vt = β2vt−1 + (1− β2)g2t , (322)

where β2 ∈ [0, 1) is the decay rate for the second moment. This moving average of squared gradi-
ents captures the variance of the gradient at each iteration. The second moment vt thus acts as an
estimate of the curvature of the objective function, which allows the optimizer to adjust the step
size for each parameter accordingly. Specifically, large values of vt correspond to parameters that
experience high gradient variance, signaling a need for smaller updates to prevent overshooting,
while smaller values of vt correspond to parameters with low gradient variance, where larger up-
dates are appropriate. This mechanism is akin to automatically tuning the learning rate for each
parameter based on the local geometry of the loss function. At initialization, both mt and vt are
typically set to zero. This initialization introduces a bias toward zero, particularly at the initial
time steps, causing the estimates of the moments to be somewhat underrepresented in the early
iterations. To correct for this bias, bias correction terms are introduced. The bias-corrected first
moment m̂t is given by

m̂t =
mt

1− βt
1

, (323)

and the bias-corrected second moment v̂t is given by

v̂t =
vt

1− βt
2

. (324)

The purpose of these corrections is to offset the initial tendency of mt and vt to underestimate the
true values due to their initialization at zero. As the iteration progresses, the bias correction terms
become less significant, and the estimates of the moments converge to their true values, allowing
for more accurate parameter updates. The actual update rule for the parameters θt is determined
by using the bias-corrected first and second moment estimates m̂t and v̂t, respectively. The update
equation is given by

θt+1 = θt − η
m̂t√
v̂t + ϵ

, (325)

where η is the global learning rate, and ϵ is a small constant (typically 10−8) added to the denomi-
nator for numerical stability. This update rule incorporates both the momentum (through m̂t) and
the adaptive learning rate (through v̂t). The factor

√
v̂t + ϵ is particularly crucial as it ensures that

parameters with large gradient variance (i.e., those with large values in vt) receive smaller updates,
whereas parameters with smaller gradient variance (i.e., those with small values in vt) receive larger
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updates, thus preventing divergence in high-variance regions.

The learning rate adjustment in Adam is dynamic in nature, as it is controlled by the second
moment estimate v̂t, which means that Adam has a per-parameter learning rate for each param-
eter. For each parameter, the learning rate is inversely proportional to the square root of its
corresponding second moment estimate v̂t, leading to adaptive learning rates. This is what enables
Adam to operate effectively in highly non-convex optimization landscapes, as it reduces the learn-
ing rate in directions where the gradient exhibits high variance, thus stabilizing the updates, and
increases the learning rate where the gradient variance is low, speeding up convergence. In the
case where Adam is applied to convex objective functions, convergence can be analyzed mathemat-
ically. Under standard assumptions, such as bounded gradients and a decreasing learning rate, the
convergence of Adam can be shown by proving that

∞∑
t=1

η2t <∞ and
∞∑
t=1

ηt =∞, (326)

where ηt is the learning rate at time step t. The first condition ensures that the learning rate decays
sufficiently rapidly to guarantee convergence, while the second ensures that the learning rate does
not decay too quickly, allowing for continual updates as the algorithm progresses. However, Adam is
not without its limitations. One notable issue arises from the fact that the second moment estimate
vt may decay too quickly, causing overly aggressive updates in regions where the gradient variance
is relatively low. To address this, the AMSGrad variant was introduced. AMSGrad modifies the
second moment update rule by replacing vt with

v̂newt = max(v̂t−1, v̂t), (327)

thereby ensuring that v̂t never decreases, which helps prevent the optimizer from making overly
large updates in situations where the second moment estimate may be miscalculated. By forcing v̂t
to increase or remain constant, AMSGrad reduces the chance of large, destabilizing parameter up-
dates, thereby improving the stability and convergence of the optimizer, particularly in difficult or
ill-conditioned optimization problems. Additionally, further extensions of Adam, such as AdaBelief,
introduce additional modifications to the second moment estimate by introducing a belief-based
mechanism to correct the moment estimates. Specifically, AdaBelief estimates the second moment
v̂t in a way that adjusts based on the belief in the direction of the gradient, offering further stability
in cases where gradients may be sparse or noisy. These innovations underscore the flexibility of
Adam and its variants in optimizing complex loss functions across a range of machine learning tasks.

Ultimately, the Adam optimizer stands as a highly sophisticated, mathematically rigorous opti-
mization algorithm, effectively combining momentum and adaptive learning rates. By using both
the first and second moments of the gradient, Adam dynamically adjusts the parameter updates,
providing a robust and efficient optimization framework for non-convex, high-dimensional objective
functions. The use of bias correction, coupled with the adaptive nature of the optimizer, allows it
to operate effectively across a wide range of problem settings, making it a go-to method for many
machine learning and deep learning applications. The mathematical rigor behind Adam ensures
that it remains a highly stable and efficient optimization technique, capable of overcoming many
of the challenges posed by large-scale and noisy gradient information in machine learning models.

6.2.4 RMSProp (Root Mean Squared Propagation) Optimizer

Literature Review: Bensaid et. al. (2024) [155] provides a rigorous analysis of the convergence
properties of RMSProp under non-convex settings. It utilizes stability theory to examine how
RMSProp adapts to different loss landscapes and demonstrates how adaptivity plays a crucial role
in ensuring convergence. The study offers theoretical insights into the efficiency of RMSProp in
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smoothing out noisy gradients. Liu and Ma (2024) [156] investigated loss oscillations observed in
adaptive optimizers, including RMSProp. It explains how RMSProp’s exponential moving average
mechanism contributes to this phenomenon and proposes a novel perspective on tuning hyperpa-
rameters to mitigate oscillations. Li (2024) [157] explored the fundamental theoretical properties
of adaptive optimizers, with a special focus on RMSProp. It rigorously examines the interplay
between smoothness conditions and the adaptive nature of RMSProp, showing how it balances
stability and convergence speed. Heredia (2024) [158] presented a new mathematical framework
for analyzing RMSProp using integro-differential equations. The model provides deeper theoretical
insights into how RMSProp updates gradients differently from AdaGrad and Adam, particularly
in terms of gradient smoothing. Ye (2024) [159] discussed how preconditioning methods, including
RMSProp, enhance gradient descent optimization. It explains why RMSProp’s adaptive learn-
ing rate is beneficial in high-dimensional settings and provides a theoretical justification for its
effectiveness in regularized optimization problems. Compagnoni et. al. (2024) [160] employed
stochastic differential equations (SDEs) to model the behavior of RMSProp and other adaptive
optimizers. It provides new theoretical insights into how noise affects the optimization process
and how RMSProp adapts to different gradient landscapes. Yao et. al. (2024) [161] presented
a system response curve analysis of first-order optimization methods, including RMSProp. The
authors develop a dynamic equation for RMSProp that explains its stability and effectiveness in
deep learning tasks. Wen and Lei (2024) [162] explored an alternative optimization framework that
integrates RMSProp-style updates with an ADMM approach. It provides theoretical guarantees
for the convergence of RMSProp in non-convex optimization problems. Hannibal et. al. (2024)
[163] critiques the convergence properties of popular optimizers, including RMSProp. It rigorously
proves that in certain settings, RMSProp may not lead to a global minimum, emphasizing the im-
portance of hyperparameter tuning. Yang (2025) [164] extended the theoretical understanding of
adaptive optimizers like RMSProp by analyzing the impact of bias in stochastic gradient updates.
It provides a rigorous mathematical treatment of how bias affects convergence.

The Root Mean Squared Propagation (RMSProp) optimizer is a sophisticated variant of the gradi-
ent descent algorithm that adapts the learning rate for each parameter in a non-linear, non-convex
optimization problem. The fundamental issue with standard gradient descent lies in the constant
learning rate η, which fails to account for the varying magnitudes of the gradients in different di-
rections of the parameter space. This lack of adaptation can cause inefficient optimization, where
large gradients may lead to overshooting and small gradients lead to slow convergence. RMSProp
addresses this problem by dynamically adjusting the learning rate based on the historical gradient
magnitudes, offering a more tailored and efficient approach. Consider the objective function f(θ),
where θ ∈ Rn is the vector of parameters that we aim to optimize. Let ∇f(θ) denote the gradient
of f(θ) with respect to θ, which is a vector of partial derivatives:

∇f(θ) =

[
∂f(θ)

∂θ1
,
∂f(θ)

∂θ2
, . . . ,

∂f(θ)

∂θn

]T
. (328)

In traditional gradient descent, the update rule for θ is:

θt+1 = θt − η∇f(θt), (329)

where η is the learning rate, a scalar constant. However, this approach does not account for the fact
that the gradient magnitudes may differ significantly along different directions in the parameter
space, especially in high-dimensional, non-convex functions. The RMSProp optimizer introduces a
solution by adapting the learning rate for each parameter in proportion to the magnitude of the
historical gradients. The key modification in RMSProp is the introduction of a running average
of the squared gradients for each parameter θi, denoted as E[g2]i,t, which captures the cumulative
magnitude of the gradients over time. The update rule for E[g2]i,t is given by the exponential
moving average formula:

E[g2]i,t = βE[g2]i,t−1 + (1− β)g2i,t, (330)
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where gi,t = ∂f(θt)
∂θi

is the gradient of the objective function with respect to the parameter θi at
time step t, and β is the decay factor, typically set close to 1 (e.g., β = 0.9). This recurrence
relation allows the gradient history to influence the current update while exponentially forgetting
older gradient information. The value of β determines the memory of the squared gradients, where
higher values of β give more weight to past gradients. The update for θi in RMSProp is then given
by:

θi,t+1 = θi,t −
η√

E[g2]i,t + ϵ
gi,t, (331)

where ϵ is a small positive constant (typically ϵ = 10−8) introduced to avoid division by zero and
ensure numerical stability. The term 1√

E[g2]i,t+ϵ
dynamically adjusts the learning rate for each pa-

rameter based on the magnitude of the squared gradient history. This adjustment allows RMSProp
to take larger steps in directions where gradients have historically been small, and smaller steps
in directions where gradients have been large, leading to a more stable and efficient optimization
process. RMSprop (Root Mean Square Propagation) is an adaptive learning rate optimization
algorithm that incorporates the following recursive update for the mean squared gradient:

vt = βvt−1 + (1− β)g2t . (332)

where vt represents the exponentially weighted moving average of squared gradients at time t,
β ∈ (0, 1) is the decay rate that determines how much past gradients contribute, gt = ∇θf(θt) is
the stochastic gradient of the loss function f , g2t represents the element-wise squared gradient.
The step update for parameters θ is given by:

θt+1 = θt −
η√
vt + ϵ

gt. (333)

where η is the learning rate, and ϵ is a small positive constant for numerical stability. The key term
of interest is the mean squared gradient estimate vt, and its mathematical properties will now
be studied in extreme rigor. Note that the recurrence equation is

vt = βvt−1 + (1− β)g2t (334)

can be expanded iteratively:

vt = β(βvt−2 + (1− β)g2t−1) + (1− β)g2t . (335)

= β2vt−2 + (1− β)βg2t−1 + (1− β)g2t . (336)

Continuing this expansion:

vt = βtv0 + (1− β)
t−1∑
k=0

βkg2t−k. (337)

For sufficiently large t, assuming v0 ≈ 0, we obtain:

vt = (1− β)
t−1∑
k=0

βkg2t−k. (338)

which represents an exponentially weighted moving average of past squared gradients. To analyze
the expectation, we formally introduce a probability space (Ω,F ,P) where Ω is the sample space,
F is the sigma-algebra of measurable events, P is the probability measure governing the stochastic
process gt. The stochastic gradients gt are assumed to be random variables:

gt : Ω→ Rd (339)

with a well-defined second moment:
E[g2t ] = σ2

g . (340)

64



Applying expectation to both sides of the recurrence:

E[vt] = (1− β)
t−1∑
k=0

βkE[g2t−k]. (341)

For independent and identically distributed (i.i.d.) gradients:

E[g2t ] = σ2
g ∀t. (342)

Thus:

E[vt] = (1− β)σ2
g

t−1∑
k=0

βk. (343)

Using the closed-form geometric sum:

t−1∑
k=0

βk =
1− βt

1− β
, (344)

we obtain:
E[vt] = σ2

g(1− βt). (345)

To find the asymptotic Limit, we have to take the limit as t→∞:

lim
t→∞

E[vt] = σ2
g . (346)

Thus, the mean square estimate converges to the true second moment of the gradient. To
establish almost sure convergence, consider:

vt − σ2
g = (1− β)

t−1∑
k=0

βk(g2t−k − σ2
g). (347)

By the strong law of large numbers, for a sufficiently large number of iterations:

t−1∑
k=0

βk(g2t−k − σ2
g)→ 0 a.s. (348)

which implies:
vt → σ2

g a.s. (349)

In conclusion, the properties of the Mean Square Estimate are

• vt is a biased estimator of σ2
g for finite t, but unbiased in the limit.

• vt converges to σ2
g in expectation, variance, and almost surely.

• This ensures stable and adaptive learning rates in RMSprop.

To eliminate bias in early iterations, we define the bias-adjusted estimate as:

v̂t =
vt

1− βt
. (350)

This ensures an unbiased estimation of the expected squared gradient. The parameter update
for RMSprop is as follows:

θt+1 = θt −
η√
v̂t + ϵ

gt. (351)
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where η is the learning rate and ϵ ensures numerical stability. To derive the Bias Correction. We
rigorously derive the expected value of vt using full expansion.

E[vt] = E[βvt−1 + (1− β)g2t ]. (352)

Applying linearity of expectation:

E[vt] = βE[vt−1] + (1− β)E[g2t ]. (353)

Expanding recursively:

E[vt] = βtv0 + (1− β)
t−1∑
k=0

βkE[g2t−k]. (354)

Assuming gt is an unbiased estimate with variance σ2
g , we get:

E[vt] = σ2
g(1− βt). (355)

Since vt is biased, we correct the expectation by normalizing:

v̂t =
vt

1− βt
. (356)

Thus, the bias-corrected expectation satisfies:

E[v̂t] = σ2
g . (357)

This confirms that bias-adjusted RMSprop provides an unbiased estimate of the second
moment. We now do the Almost Sure Convergence Analysis. For that we analyze convergence by
considering the difference:

vt − σ2
g = (1− β)

t−1∑
k=0

βk(g2t−k − σ2
g). (358)

Using the Strong Law of Large Numbers (SLLN):

t−1∑
k=0

βk(g2t−k − σ2
g)→ 0 almost surely. (359)

Thus,
vt → σ2

g a.s., v̂t → σ2
g a.s. (360)

confirming that Bias-Adjusted RMSprop provides an asymptotically unbiased estimate
of σ2

g . Let’s do the Stability Analysis of Learning Rate. The effective learning rate in RMSprop
is:

ηeff =
η√
v̂t + ϵ

. (361)

Therefore we have:

1. Without Bias Correction: If βt is large in early iterations, then:

vt ≈ (1− β)g2t . (362)

Since (1 − β)g2t ≪ σ2
g , the denominator in ηeff is too small, leading to excessively large

steps, causing instability.

2. With Bias Correction: Since v̂t → σ2
g , we ensure that:

ηeff ≈
η√
σ2
g + ϵ

(363)

resulting in stable step sizes and improved convergence.
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In conclusion, the Mathematical Properties of Bias-Adjusted RMSprop are:

• Bias correction ensures E[v̂t] = σ2
g , removing underestimation.

• Almost sure convergence guarantees asymptotically stable second-moment estimation.

• Stable step sizes prevent instability in early iterations.

Thus, Bias-Adjusted RMSprop mathematically improves the stability and convergence
behavior of RMSprop.

Mathematically, the key advantage of RMSProp over traditional gradient descent lies in its ability
to adapt the learning rate according to the local geometry of the objective function. In regions
where the objective function is steep (large gradients), RMSProp reduces the effective learning
rate by dividing by

√
E[g2]i,t, mitigating the risk of overshooting. Conversely, in flatter regions

with smaller gradients, RMSProp increases the learning rate, allowing for faster convergence. This
self-adjusting mechanism is crucial in high-dimensional optimization tasks, where the gradients
along different directions can vary greatly in magnitude, as is often the case in deep learning tasks
involving neural networks. The exponential moving average of squared gradients used in RMSProp
is analogous to a form of local normalization, where each parameter is scaled by the inverse of the
running average of its gradient squared. This normalization ensures that the optimizer does not
become overly sensitive to gradients in any particular direction, thus stabilizing the optimization
process. In more formal terms, if the objective function f(θ) exhibits sharp curvatures along cer-
tain directions, RMSProp mitigates the effects of such curvatures by scaling down the step size
along those directions. This scaling behavior can be interpreted as a form of gradient re-weighting,
where the influence of each parameter’s gradient is modulated by its historical behavior, making
the optimizer more robust to ill-conditioned optimization problems. The introduction of ϵ ensures
that the denominator never becomes zero, even in the case where the squared gradient history for
a parameter θi becomes extremely small. This is crucial for maintaining the numerical stability of
the algorithm, particularly in scenarios where gradients may vanish or grow exceedingly small over
many iterations, as seen in certain deep learning applications, such as training very deep neural
networks. By providing a small non-zero lower bound to the learning rate, ϵ ensures that the up-
dates remain smooth and predictable.

RMSProp’s performance is heavily influenced by the choice of β, which controls the trade-off
between long-term history and recent gradient information. When β is close to 1, the optimizer
relies more heavily on the historical gradients, which is useful for capturing long-term trends in the
optimization landscape. On the other hand, smaller values of β allow the optimizer to be more re-
sponsive to recent gradient changes, which can be beneficial in highly non-stationary environments
or rapidly changing optimization landscapes. In the context of deep learning, RMSProp is particu-
larly effective for optimizing objective functions with complex, high-dimensional parameter spaces,
such as those encountered in training deep neural networks. The non-convexity of such objective
functions often leads to a gradient that can vary significantly in magnitude across different layers of
the network. RMSProp helps to balance the updates across these layers by adjusting the learning
rate based on the historical gradients, ensuring that all layers receive appropriate updates without
being dominated by large gradients from any single layer. This adaptability helps in preventing
gradient explosions or vanishing gradients, which are common issues in deep learning optimiza-
tion. In summary, RMSProp provides a robust and efficient optimization technique by adapting
the learning rate based on the historical squared gradients of each parameter. The exponential
decay of the squared gradient history allows RMSProp to strike a balance between stability and
adaptability, preventing overshooting and promoting faster convergence in non-convex optimization
problems. The introduction of ϵ ensures numerical stability, and the parameter β offers flexibility
in controlling the influence of past gradients. This makes RMSProp particularly well-suited for
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high-dimensional optimization tasks, especially in deep learning applications, where the parameter
space is vast, and gradient magnitudes can differ significantly across dimensions. By effectively
normalizing the gradients and dynamically adjusting the learning rates, RMSProp significantly
enhances the efficiency and stability of gradient-based optimization methods.

6.3 Overfitting and Regularization Techniques

Literature Review: Goodfellow (2016) et. al. [112] provides a comprehensive introduction to
deep learning, including a thorough discussion on overfitting and regularization techniques. It
explains methods such as L1/L2 regularization, dropout, batch normalization, and data augmen-
tation, which help improve generalization. The authors explore the bias-variance tradeoff and
practical solutions to reduce overfitting in neural networks. Hastie et. al. (2009) [129] discusses
overfitting in statistical learning models, particularly in regression and classification. The book cov-
ers regularization techniques like Ridge Regression (L2) and Lasso (L1), as well as cross-validation
techniques for preventing overfitting. It is fundamental for understanding model complexity control
in machine learning. Bishop (2006) [115] in his book provided an in-depth mathematical foundation
of machine learning models, with particular attention to regularization methods such as Bayesian
inference, early stopping, and weight decay. It emphasized probabilistic interpretations of regu-
larization, demonstrating how overfitting can be mitigated through prior distributions in Bayesian
models. Murphy (2012) [130] in his book presents a Bayesian approach to machine learning, cov-
ering regularization techniques from a probabilistic viewpoint. It discusses penalization methods,
Bayesian regression, and variational inference as tools to control model complexity and prevent
overfitting. The book is useful for those looking to understand uncertainty estimation in ML mod-
els. Srivastava et. al. (2014) [131] introduced Dropout, a widely used regularization technique
in deep learning. The authors show how randomly dropping units during training reduces co-
adaptation of neurons, thereby enhancing model generalization. This technique remains a key part
of modern neural network training pipelines. Zou and Hastie (2005) [132] introduced Elastic Net, a
combination of L1 (Lasso) and L2 (Ridge) regularization, which addresses the limitations of Lasso
in handling correlated features. It is particularly useful for high-dimensional data, where feature
selection and regularization are crucial. Vapnik (1995) [133] in his introduced Statistical Learning
Theory and the VC-dimension, which quantifies model complexity. It provides the mathematical
framework explaining why overfitting occurs and how regularization constraints reduce generaliza-
tion error. It forms the theoretical basis of Support Vector Machines (SVMs) and Structural Risk
Minimization. Ng (2004) [134] compares L1 (Lasso) and L2 (Ridge) regularization, demonstrat-
ing their impact on feature selection and model stability. It shows that L1 regularization is more
effective for sparse models, whereas L2 preserves information better in highly correlated feature
spaces. This work is essential for choosing the right regularization technique for specific datasets.
Li (2025) [135] explored regularization techniques in high-dimensional clinical trial data using en-
semble methods, Bayesian optimization, and deep learning regularization techniques. It highlights
the practical application of regularization to prevent overfitting in medical AI. Yasuda (2025) [136]
focused on regularization in hybrid machine learning models, specifically Gaussian–Discrete RBMs.
It extends L1/L2 penalties and dropout strategies to improve the generalization of deep generative
models. It’s valuable for those working on deep learning architectures and unsupervised learning.

Overfitting in neural networks is a critical issue where the model learns to excessively fit the
training data, capturing not just the true underlying patterns but also the noise and anomalies
present in the data. This leads to poor generalization to unseen data, resulting in a model that has
a low training error but a high test error. Mathematically, consider a dataset D = {(xi, yi)}Ni=1,
where xi ∈ Rd represents the input feature vector for each data point, and yi ∈ R represents the
corresponding target value. The goal is to fit a neural network model f(x;w) parameterized by
weights w ∈ RM , where M denotes the number of parameters in the model. The model’s objective
is to minimize the empirical risk, given by the mean squared error between the predicted values
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and the true target values:

R̂(w) =
1

N

N∑
i=1

L(f(xi;w), yi) (364)

where L denotes the loss function, typically the squared error L(ŷi, yi) = (ŷi − yi)2. In this frame-
work, the neural network tries to minimize the empirical risk on the training set. However, the
true goal is to minimize the expected risk R(w), which reflects the model’s performance on the
true distribution P (x, y) of the data. This expected risk is given by:

R(w) = Ex,y[L(f(x;w), y)] (365)

Overfitting occurs when the model minimizes R̂(w) to an excessively small value, but R(w) remains
large, indicating that the model has fit the noise in the training data, rather than capturing the true
data distribution. This discrepancy arises from an overly complex model that learns to memorize
the training data rather than generalizing across different inputs. A fundamental insight into the
overfitting phenomenon comes from the bias-variance decomposition of the generalization error.
The total error in a model’s prediction f̂(x) of the true target function g(x) can be decomposed
as:

E = E[(g(x)− f̂(x))2] = Bias2(f̂(x)) + Var(f̂(x)) + σ2 (366)

where Bias2(f̂(x)) represents the squared difference between the expected model prediction and
the true function, Var(f̂(x)) is the variance of the model’s predictions across different training sets,
and σ2 is the irreducible error due to the intrinsic noise in the data. In the context of overfitting,
the model typically exhibits low bias (as it fits the training data very well) but high variance (as
it is highly sensitive to the fluctuations in the training data). Therefore, regularization techniques
aim to reduce the variance of the model while maintaining its ability to capture the true underlying
relationships in the data, thereby improving generalization. One of the most popular methods to
mitigate overfitting is L2 regularization (also known as weight decay), which adds a penalty term
to the loss function based on the squared magnitude of the weights. The regularized loss function
is given by:

R̂reg(w) = R̂(w) + λ∥w∥22 = R̂(w) + λ
M∑
j=1

w2
j (367)

where λ is a positive constant controlling the strength of the regularization. The gradient of the
regularized loss function with respect to the weights is:

∇wR̂reg(w) = ∇wR̂(w) + 2λw (368)

The term 2λw introduces weight shrinkage, which discourages the model from fitting excessively
large weights, thus preventing overfitting by reducing the model’s complexity. This regularization
approach is a direct way to control the model’s capacity by penalizing large weight values, leading
to a simpler model that generalizes better. In contrast, L1 regularization adds a penalty based
on the absolute values of the weights:

R̂reg(w) = R̂(w) + λ∥w∥1 = R̂(w) + λ

M∑
j=1

|wj| (369)

The gradient of the L1 regularized loss function is:

∇wR̂reg(w) = ∇wR̂(w) + λ sgn(w) (370)

where sgn(w) denotes the element-wise sign function. L1 regularization has a unique property of
inducing sparsity in the weights, meaning it drives many of the weights to exactly zero, effectively
selecting a subset of the most important features. This feature selection mechanism is particularly
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useful in high-dimensional settings, where many input features may be irrelevant. A more advanced
regularization technique is dropout, which randomly deactivates a fraction of neurons during
training. Let hi represent the activation of the i-th neuron in a given layer. During training,
dropout produces a binary mask mi sampled from a Bernoulli distribution with success probability
p, i.e., mi ∼ Bernoulli(p), such that:

hdrop
i =

1

p
mi ⊙ hi (371)

where ⊙ denotes element-wise multiplication. The factor 1/p ensures that the expected value
of the activations remains unchanged during training. Dropout effectively forces the network to
learn redundant representations, reducing its reliance on specific neurons and promoting better
generalization. By training an ensemble of subnetworks with shared weights, dropout helps to
prevent the network from memorizing the training data, thus reducing overfitting. Early stopping
is another technique to prevent overfitting, which involves halting the training process when the
validation error starts to increase. The model is trained on the training set, but its performance is
evaluated on a separate validation set. If the validation error Rval(t) increases after several epochs,
training is stopped to prevent further overfitting. Mathematically, the stopping criterion is:

t∗ = arg min
t
Rval(t) (372)

where t∗ represents the epoch at which the validation error reaches its minimum. This technique
avoids the risk of continuing to fit the training data beyond the point where the model starts to lose
its ability to generalize. Data augmentation artificially enlarges the training dataset by applying
transformations to the original data. Let T = {T1, T2, . . . , TK} represent a set of transformations
(such as rotations, scaling, and translations). For each training example (xi, yi), the augmented
dataset D′ consists of K new examples:

D′ = {(Tk(xi), yi) | i = 1, 2, . . . , N, k = 1, 2, . . . , K} (373)

These transformations create new, varied examples, which help the model generalize better by
preventing it from fitting too closely to the original, potentially noisy data. Data augmentation is
particularly beneficial in domains like image processing, where transformations like rotations and
flips do not change the underlying label but provide additional examples to learn from. Batch
normalization normalizes the activations of each mini-batch to reduce internal covariate shift and
stabilize the learning process. Given a mini-batch B = {hi}mi=1 with activations hi, the mean and
variance of the activations across the mini-batch are computed as:

µB =
1

m

m∑
i=1

hi, σ2
B =

1

m

m∑
i=1

(hi − µB)2 (374)

The normalized activations are then given by:

ĥi =
hi − µB√
σ2
B + ϵ

(375)

where ϵ is a small constant for numerical stability. Batch normalization helps to smooth the
optimization landscape, allowing for faster convergence and mitigating the risk of overfitting by
preventing the model from getting stuck in sharp, narrow minima in the loss landscape.

In conclusion, overfitting is a significant challenge in training neural networks, and its prevention
requires a combination of techniques aimed at controlling model complexity, improving generaliza-
tion, and reducing sensitivity to noise in the training data. Regularization methods such as L2
and L1 regularization, dropout, and early stopping, combined with strategies like data augmenta-
tion and batch normalization, are fundamental to improving the performance of neural networks
on unseen data and ensuring that they do not overfit the training set. The mathematical formu-
lations and optimization strategies outlined here provide a detailed and rigorous framework for
understanding and mitigating overfitting in machine learning models.
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6.3.1 Dropout

Literature Review: Srivastava et. al. (2014) [131] introduced dropout as a regularization tech-
nique. The authors demonstrated that randomly dropping units (along with their connections)
during training prevents overfitting by reducing co-adaptation among neurons. They provided
theoretical insights and empirical evidence showing that dropout improves generalization in deep
neural networks. Goodfellow et. al. (2016) [112] wrote a comprehensive textbook covers dropout
in the context of regularization and overfitting. It explains dropout as an approximate Bayesian
inference method and discusses its relationship to ensemble learning and noise injection. The book
also provides a broader perspective on regularization techniques in deep learning. Srivastava et. al.
(2013) [546] in a technical report expands on the dropout technique, providing additional insights
into its implementation and effectiveness. It discusses the impact of dropout on different architec-
tures and datasets, emphasizing its role in reducing overfitting and improving model robustness.
Baldi and Sadowski (2013) [547] provided a theoretical analysis of dropout, explaining why it works
as a regularization technique. The authors show that dropout can be interpreted as an adaptive
regularization method that penalizes large weights, leading to better generalization. While not
specifically about dropout, this paper by Zou and Hastie (2005) [132] introduced the Elastic Net,
a regularization technique that combines L1 and L2 penalties. It provides foundational insights
into regularization methods, which are conceptually related to dropout in their goal of preventing
overfitting. Gal and Ghahramani (2016) [548] established a theoretical connection between dropout
and Bayesian inference. The authors show that dropout can be interpreted as a variational ap-
proximation to a Bayesian neural network, providing a probabilistic framework for understanding
its regularization effects. Hastie et. al. (2009) [129] provided a thorough grounding in statistical
learning, including regularization techniques. While it predates dropout, it offers essential back-
ground on overfitting, bias-variance tradeoff, and regularization methods like ridge regression and
Lasso, which are foundational to understanding dropout. Gal et. al. (2016) [549] introduced an
improved version of dropout called ”Concrete Dropout” which automatically tunes the dropout
rate during training. This innovation addresses the challenge of manually selecting dropout rates
and enhances the regularization capabilities of dropout. Gal et. al. (2016) [550] provided a rigorous
theoretical analysis of dropout in deep networks. It explores how dropout affects the optimization
landscape and the dynamics of training, offering insights into why dropout is effective in preventing
overfitting. Friedman et. al. (2010) [551] focused on regularization paths for generalized linear
models, emphasizing the importance of regularization in preventing overfitting. While not specific
to dropout, it provides a strong foundation for understanding the broader context of regularization
techniques in machine learning.

Dropout, a regularization technique in neural networks, is designed to address overfitting, a situ-
ation where a model performs well on training data but fails to generalize to unseen data. The
general problem of overfitting in machine learning arises when a model becomes excessively com-
plex, with a high number of parameters, and learns to model noise in the data rather than the
true underlying patterns. This can result in poor generalization performance on new, unseen data.
In the context of neural networks, the solution often involves regularization techniques to penalize
complexity and prevent the model from memorizing the data. Dropout, introduced by Geoffrey
Hinton et al., represents a unique and powerful method to regularize neural networks by introducing
stochasticity during the training process, which forces the model to generalize better and prevents
overfitting. To understand the mathematics behind dropout, let fθ(x) represent the output of a
neural network for input x with parameters θ. The goal during training is to minimize a loss func-
tion that measures the discrepancy between the predicted output and the true target y. Without
any regularization, the objective is to minimize the empirical loss:

Lempirical(θ) =
1

N

N∑
i=1

L(fθ(xi), yi) (376)
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where L(fθ(xi), yi) is the loss function (e.g., cross-entropy or mean squared error), and N is the
number of data samples. A model trained to minimize this loss function without regularization will
likely overfit to the training data, capturing the noise rather than the underlying distribution of
the data. Dropout addresses this by randomly “dropping out” a fraction of the network’s neurons
during each training iteration, which is mathematically represented by modifying the activations
of neurons.

Let us consider a feedforward neural network with a set of activations ai for the neurons in the i-th
layer, which is computed as ai = f(Wxi + bi), where W represents the weight matrix, xi the input
to the neuron, and bi the bias. During training with dropout, for each neuron, a random Bernoulli
variable ri is introduced, where:

ri ∼ Bernoulli(p) (377)

with probability p representing the retention probability (i.e., the probability that a neuron is kept
active), and 1 − p representing the probability that a neuron is “dropped” (set to zero). The
activation of the i-th neuron is then modified as follows:

a′i = ri · ai = ri · f(Wxi + bi) (378)

where ri is a random binary mask for each neuron. During each forward pass, different neurons are
randomly dropped out, and the network is effectively training on a different subnetwork, forcing
the network to learn a more robust set of features that do not depend on any particular neuron.
In this way, dropout acts as a form of ensemble learning, as each forward pass corresponds to a
different realization of the network.

The mathematical expectation of the loss function with respect to the dropout mask r can be
written as:

Er[Ldropout(θ, r)] =
1

N

N∑
i=1

L(fθ(xi, r), yi) (379)

where fθ(xi, r) is the output of the network with the dropout mask r. Since the dropout mask
is random, the loss is an expectation over all possible configurations of dropout masks. This
randomness induces an implicit ensemble effect, where the model is trained not just on a single set of
parameters θ, but effectively on a distribution of models, each corresponding to a different dropout
configuration. The model is, therefore, regularized because the network is forced to generalize
across these different subnetworks, and overfitting to the training data is prevented. One way to
gain deeper insight into dropout is to consider its connection with Bayesian inference. In the context
of deep learning, dropout can be viewed as an approximation to Bayesian posterior inference. In
Bayesian terms, we seek the posterior distribution of the network’s parameters θ, given the data
D, which can be written as:

p(θ|D) =
p(D|θ)p(θ)
p(D)

(380)

where p(D|θ) is the likelihood of the data given the parameters, p(θ) is the prior distribution over the
parameters, and p(D) is the marginal likelihood of the data. Dropout approximates this posterior
by averaging over the outputs of many different subnetworks, each corresponding to a different
dropout configuration. This interpretation is formalized by observing that each forward pass with
a different dropout mask corresponds to a different realization of the model, and averaging over
all dropout masks gives an approximation to the Bayesian posterior. Thus, the expected output of
the network, given the data x, under dropout is:

Er[fθ(x)] =
1

M

M∑
i=1

fθ(x, ri) (381)
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where ri is a dropout mask drawn from the Bernoulli distribution and M is the number of Monte
Carlo samples of dropout configurations. This expectation can be interpreted as a form of ensemble
averaging, where each individual forward pass corresponds to a different model sampled from the
posterior.

Dropout is also highly effective because it controls the bias-variance tradeoff. The bias-variance
tradeoff is a fundamental concept in statistical learning, where increasing model complexity reduces
bias but increases variance, and vice versa. A highly complex model tends to have low bias but
high variance, meaning it fits the training data very well but fails to generalize to new data. Regu-
larization techniques, such as dropout, seek to reduce variance without increasing bias excessively.
Dropout achieves this by introducing stochasticity in the learning process. By randomly deacti-
vating neurons during training, the model is forced to learn robust features that do not depend on
the presence of specific neurons. In mathematical terms, the variance of the model’s output can be
expressed as:

Var(fθ(x)) = Er[(fθ(x))2]− (Er[fθ(x)])2 (382)

By averaging over multiple dropout configurations, the variance is reduced, leading to better gener-
alization performance. Although dropout introduces some bias by reducing the network’s capacity
(since fewer neurons are available at each step), the variance reduction outweighs the bias increase,
resulting in improved generalization. Another key mathematical aspect of dropout is its relation-
ship with stochastic gradient descent (SGD). In the standard SGD framework, the parameters θ are
updated using the gradient of the loss with respect to the parameters. In the case of dropout, the
gradient is computed based on a stochastic subnetwork at each training iteration, which introduces
an element of randomness into the optimization process. The parameter update rule with dropout
can be written as:

θt+1 = θt − η∇θEr[Ldropout(θ, r)] (383)

where η is the learning rate, and ∇θ is the gradient of the loss with respect to the model parame-
ters. The expectation is taken over all possible dropout configurations, which means that at each
step, the gradient update is based on a different realization of the model. This stochasticity helps
the optimization process by preventing the model from getting stuck in local minima, improving
convergence towards global minima, and enhancing generalization. Finally, it is important to note
that dropout has a close connection with low-rank approximations. During each forward pass with
dropout, certain neurons are effectively removed, which reduces the rank of the weight matrix,
as some rows or columns of the matrix are set to zero. This stochastic reduction in rank forces
the network to learn lower-dimensional representations of the data, effectively performing low-rank
regularization. This aspect of dropout can be formalized by observing that each dropout mask
corresponds to a sparse matrix, and the network is effectively learning a low-rank approximation
of the data distribution. By doing so, dropout prevents the network from learning overly complex
representations that could overfit the data, leading to improved generalization.

In summary, dropout is a powerful and mathematically sophisticated regularization technique that
introduces randomness into the training process. By randomly deactivating neurons during each
forward pass, dropout forces the model to generalize better and prevents overfitting. Dropout can
be understood as approximating Bayesian posterior inference over the model parameters and acts
as a form of ensemble learning. It controls the bias-variance tradeoff, reduces variance, and im-
proves generalization. The stochastic nature of dropout also introduces a form of noise injection
during training, which aids in avoiding local minima and ensures convergence to global minima.
Additionally, dropout induces low-rank regularization, which further improves generalization by
preventing overly complex representations. Through these mathematical and statistical insights,
dropout has become a cornerstone technique in deep learning, enhancing the performance of neural
networks on unseen data.
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6.3.2 L1/L2 Regularization and Overfitting

Literature Review (L1 (Lasso) Regularization): Hastie et. al. (2009) [129] provided a com-
prehensive introduction to regularization techniques, including L1 regularization (Lasso). It rig-
orously explains the bias-variance tradeoff, overfitting, and how L1 regularization induces sparsity
in models. The authors also discuss the geometric interpretation of L1 regularization and its ap-
plication in high-dimensional data. Tibshirani (1996) [552] introduced the Lasso (Least Absolute
Shrinkage and Selection Operator). Tibshirani rigorously demonstrates how L1 regularization per-
forms both variable selection and regularization, making it particularly useful for high-dimensional
datasets. The paper also provides theoretical insights into the conditions under which Lasso achieves
optimal performance. Friedman et. al. (2010) [551] introduced an efficient algorithm for computing
the regularization path for L1-regularized generalized linear models (GLMs). It provides a prac-
tical framework for implementing L1 regularization in various statistical models, including logistic
regression and Poisson regression. Meinshausen (2007) [553] explored the use of L1 regularization
for sparse regression and its connection to marginal testing. The authors rigorously analyze the
consistency of L1 regularization in high-dimensional settings and provide theoretical guarantees for
variable selection. Carvalho. et. al. (2009) [554] extended L1 regularization to Bayesian frame-
works, introducing adaptive sparsity-inducing priors. It provides a rigorous Bayesian interpretation
of L1 regularization and demonstrates its application in genomics, where overfitting is a significant
concern.

Literature Review (L2 (Ridge Regression) Regularization): Hastie et. al. (2009) [129]
provided a comprehensive introduction to overfitting and regularization techniques, including L2
regularization. It rigorously explains the bias-variance tradeoff, the mathematical formulation of
ridge regression, and its role in controlling model complexity. The book also contrasts L2 regular-
ization with L1 regularization (lasso) and elastic net, offering deep insights into their theoretical
and practical implications. Bishop and Nashrabodi (2006) [115] provided a Bayesian perspective
on regularization, explaining L2 regularization as a Gaussian prior on model parameters. The
book rigorously derives the connection between ridge regression and maximum a posteriori (MAP)
estimation, offering a probabilistic interpretation of regularization. Friedman et. al. (2010) [551]
introduced efficient algorithms for solving regularized regression problems, including L2 regulariza-
tion. It provides a detailed analysis of the computational aspects of regularization and its impact
on model performance. The authors also discuss the interplay between L2 regularization and other
regularization techniques in the context of generalized linear models. Hoerl and Kennard (1970)
[555] introduced ridge regression (L2 regularization). The authors demonstrated how adding a small
positive constant to the diagonal of the design matrix (ridge penalty) can stabilize the solution of
ill-posed regression problems, reducing overfitting and improving generalization. Goodfellow et. al.
(2016) [112] provided a modern perspective on regularization in the context of deep learning. It
discusses L2 regularization as a method to penalize large weights in neural networks, preventing
overfitting. The authors also explore the interaction between L2 regularization and other techniques
like dropout and batch normalization. Cesa-Bianchi et.al. (2004) [556] provided a theoretical anal-
ysis of the generalization ability of learning algorithms, including those using L2 regularization.
It rigorously connects regularization to the concept of Rademacher complexity, offering a frame-
work for understanding how regularization controls overfitting by limiting the complexity of the
hypothesis space. Devroye et. al. (2013) [557] provided a rigorous theoretical foundation for
understanding overfitting and regularization. It discusses L2 regularization in the context of risk
minimization and explores its role in achieving consistent and stable learning algorithms. Zou and
Hastie (2005) [132] introduced the elastic net, a hybrid regularization method that combines L1
and L2 penalties. While the focus is on elastic net, the paper provides valuable insights into the
properties of L2 regularization, particularly its ability to handle correlated predictors and improve
model stability. Abu-Mostafa et. al. (2012) [558] offered an accessible yet rigorous introduction to
overfitting and regularization. It explains L2 regularization as a tool to balance fitting the training
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data and maintaining model simplicity, with clear examples and practical insights. Shalev-Shwartz
and Ben-David (2014) [559] provided a theoretical foundation for understanding overfitting and
regularization. It rigorously analyzes L2 regularization in the context of empirical risk minimiza-
tion, highlighting its role in controlling the complexity of linear models and ensuring generalization.

L1 and L2 regularization plays a critical role in mitigating overfitting. Overfitting occurs
when a model fits not only the underlying data distribution but also the noise in the data, leading
to poor generalization to unseen examples. Overfitting is especially prevalent in models with a large
number of features, where the model becomes overly flexible and may capture spurious correlations
between the features and the target variable. This often results in a model with high variance,
where small fluctuations in the data cause significant changes in the model predictions. To combat
this, regularization techniques are employed, which introduce a penalty term into the objective
function, discouraging overly complex models that fit noise.

Given a set of n observations {(xi, yi)}ni=1, where each xi ∈ Rp is a feature vector and yi ∈ R
is the corresponding target value, the task is to find a parameter vector θ ∈ Rp that minimizes
the loss function. In standard linear regression, the objective is to minimize the mean squared
error (MSE), defined as:

L(θ) =
1

n

n∑
i=1

(
yi − xT

i θ
)2

=
1

n
∥Xθ − y∥2 (384)

where X ∈ Rn×p is the design matrix, with rows xT
i , and y ∈ Rn is the vector of target values.

The solution to this problem, without any regularization, is given by the ordinary least squares
(OLS) solution:

θ̂OLS =
(
XTX

)−1
XTy (385)

This formulation, however, can lead to overfitting when p is large or when XTX is nearly singular.
In such cases, regularization is used to modify the loss function, adding a penalty term R(θ) to
the objective function that discourages large values for the parameters θi. The regularized loss
function is given by:

Lregularized(θ) = L(θ) + λR(θ) (386)

where λ is a regularization parameter that controls the strength of the penalty. The term
R(θ) penalizes the complexity of the model by imposing constraints on the magnitude of the
coefficients. Let us explore two widely used forms of regularization: L1 regularization (Lasso)
and L2 regularization (Ridge). L1 regularization involves adding the ℓ1-norm of the parameter
vector θ as the penalty term:

RL1(θ) =

p∑
i=1

|θi| (387)

The corresponding L1 regularized loss function is:

LL1(θ) =
1

n
∥Xθ − y∥2 + λ

p∑
i=1

|θi| (388)

This formulation promotes sparsity in the parameter vector θ, causing many coefficients to be-
come exactly zero, effectively performing feature selection. In high-dimensional settings where
many features are irrelevant, L1 regularization helps reduce the model complexity by forcing ir-
relevant features to be excluded from the model. The effect of the L1 penalty can be understood
geometrically by noting that the constraint region defined by the ℓ1-norm is a diamond-shaped
region in p-dimensional space. When solving this optimization problem, the coefficients often lie
on the boundary of this diamond, leading to a sparse solution with many coefficients being exactly
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zero. Mathematically, the soft-thresholding solution that arises from solving the L1 regularized
optimization problem is given by:

θ̂i = sign(θi) max (0, |θi| − λ) (389)

This soft-thresholding property drives coefficients to zero when their magnitude is less than λ,
resulting in a sparse solution. L2 regularization, on the other hand, uses the ℓ2-norm of the
parameter vector θ as the penalty term:

RL2(θ) =

p∑
i=1

θ2i (390)

The corresponding L2 regularized loss function is:

LL2(θ) =
1

n
∥Xθ − y∥2 + λ

p∑
i=1

θ2i (391)

This penalty term does not force any coefficients to be exactly zero but rather shrinks the coeffi-
cients towards zero, effectively reducing their magnitudes. The L2 regularization helps stabilize the
solution when there is multicollinearity in the features by reducing the impact of highly correlated
features. The optimization problem with L2 regularization leads to a ridge regression solution,
which is given by the following expression:

θ̂ridge =
(
XTX + λI

)−1
XTy (392)

where I is the identity matrix. The L2 penalty introduces a circular or spherical constraint in
the parameter space, resulting in a solution where all coefficients are reduced in magnitude, but
none are eliminated. The Elastic Net regularization is a hybrid technique that combines both L1
and L2 regularization. The regularized loss function for Elastic Net is given by:

LElasticNet(θ) =
1

n
∥Xθ − y∥2 + λ1

p∑
i=1

|θi|+ λ2

p∑
i=1

θ2i (393)

In this case, λ1 and λ2 control the strength of the L1 and L2 penalties, respectively. The Elas-
tic Net regularization is particularly useful when dealing with datasets where many features are
correlated, as it combines the sparsity-inducing property of L1 regularization with the stability-
enhancing property of L2 regularization. The Elastic Net has been shown to outperform L1 and
L2 regularization in some cases, particularly when there are groups of correlated features. The
optimization problem can be solved using coordinate descent or proximal gradient methods,
which efficiently handle the mixed penalties. The choice of regularization parameter λ is critical
in controlling the bias-variance tradeoff. A small value of λ leads to a low-penalty model that
is more prone to overfitting, while a large value of λ forces the coefficients to shrink towards zero,
potentially leading to underfitting. Thus, it is important to select an optimal value for λ to strike
a balance between bias and variance. This can be achieved by using cross-validation techniques,
where the model is trained on a subset of the data, and the performance is evaluated on the re-
maining data.

In conclusion, both L1 and L2 regularization techniques play an important role in addressing
overfitting by controlling the complexity of the model. L1 regularization encourages sparsity and
feature selection, while L2 regularization reduces the magnitude of the coefficients without elim-
inating any features. By incorporating these regularization terms into the objective function, we
can achieve a more balanced bias-variance tradeoff, enhancing the model’s ability to generalize to
new, unseen data.
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6.3.3 Elastic Net Regularization

Literature Review: Zou and Hastie (2005) [132] introduced the Elastic Net regularization method.
The authors combined the strengths of L1 (Lasso) and L2 (Ridge) regularization to address their
individual limitations. Lasso can select only a subset of variables, while Ridge tends to shrink co-
efficients but does not perform variable selection. Elastic Net balances these by encouraging group
selection of correlated variables and improving prediction accuracy, especially when the number of
predictors exceeds the number of observations. Hastie et. al. (2010) [129] provided a comprehensive
overview of statistical learning methods, including detailed discussions on overfitting, regularization
techniques, and the Elastic Net. It explains the theoretical foundations of regularization, the bias-
variance tradeoff, and practical implementations of Elastic Net in high-dimensional data settings.
Tibshirani (1996) [552] introduced the Lasso (L1 regularization), which is a key component of Elas-
tic Net. Lasso performs both variable selection and regularization by shrinking some coefficients to
zero. The paper laid the groundwork for understanding how L1 regularization can prevent overfit-
ting in high-dimensional datasets. Hoerl and Kennard (1970) [555] introduced Ridge Regression (L2
regularization), which addresses multicollinearity and overfitting by shrinking coefficients toward
zero without setting them to zero. Ridge Regression is the other key component of Elastic Net, and
this paper provides the theoretical basis for its use in regularization. Bühlmann and van de Geer
(2011) [560] provided a rigorous treatment of high-dimensional statistics, including regularization
techniques like Elastic Net. It discusses the theoretical properties of Elastic Net, such as its ability
to handle correlated predictors and its consistency in variable selection. Friedman et. al. (2010)
[551] presented efficient algorithms for computing regularization paths for Lasso, Ridge, and Elastic
Net in generalized linear models. The authors introduce coordinate descent, a computationally effi-
cient method for fitting Elastic Net models, making it practical for large-scale datasets. Gareth et.
al. (2013) [561] provided an accessible introduction to regularization techniques, including Elastic
Net. It explains the intuition behind overfitting, the bias-variance tradeoff, and how Elastic Net
combines L1 and L2 penalties to improve model performance. Efron et. al. (2004) [562] introduced
the Least Angle Regression (LARS) algorithm, which is closely related to Lasso and Elastic Net.
LARS provides a computationally efficient way to compute the regularization path for Lasso and
Elastic Net, making it easier to understand the behavior of these methods. Fan and Li (2001) [563]
discussed the theoretical properties of variable selection methods, including Lasso and Elastic Net.
It introduces the concept of oracle properties, which ensure that the selected model performs as
well as if the true underlying model were known. The paper provides insights into why Elastic
Net is effective in high-dimensional settings. Meinshausen and Bühlmann (2006) [564] explored the
use of Lasso and related methods (including Elastic Net) in high-dimensional settings. It provides
theoretical guarantees for variable selection consistency and discusses the challenges of overfitting
in high-dimensional data. The insights from this paper are directly applicable to understanding
the performance of Elastic Net.

Overfitting is a critical issue in machine learning and statistical modeling, where a model learns the
training data too well, capturing not only the underlying patterns but also the noise and outliers,
leading to poor generalization performance on unseen data. Mathematically, overfitting can be
characterized by a significant discrepancy between the training error Etrain(θ) and the test error
Etest(θ), where θ represents the model parameters. Specifically, Etrain(θ) is minimized during train-
ing, but Etest(θ) remains high, indicating that the model has failed to generalize. This typically
occurs when the model complexity, quantified by the number of parameters or the degrees of free-
dom, is excessively high relative to the amount of training data available. To mitigate overfitting,
regularization techniques are employed, and among these, Elastic Net regularization stands out as
a particularly effective method due to its ability to combine the strengths of both L1 (Lasso) and
L2 (Ridge) regularization. Elastic Net regularization addresses overfitting by introducing a penalty
term to the loss function that constrains the magnitude of the model parameters θ. The general
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form of the regularized loss function is given by

L(θ) = Data Loss(θ) + λ · Penalty(θ) (394)

where λ is the regularization parameter controlling the strength of the penalty, and Penalty(θ) is
a function that penalizes large or complex parameter values. In Elastic Net, the penalty term is a
convex combination of the L1 and L2 norms of the parameter vector θ, expressed as

Penalty(θ) = α∥θ∥1 + (1− α)∥θ∥22 (395)

Here,

∥θ∥1 =
n∑

i=1

|θi| (396)

is the L1 norm, which encourages sparsity by driving some parameters to exactly zero, and

∥θ∥22 =
n∑

i=1

θ2i (397)

is the squared L2 norm, which discourages large parameter values and promotes smoothness. The
mixing parameter α ∈ [0, 1] controls the balance between the L1 and L2 penalties, with α = 1
corresponding to pure Lasso regularization and α = 0 corresponding to pure Ridge regularization.
For a linear regression model, the Elastic Net loss function takes the form

L(θ) =
1

2m

m∑
i=1

(
yi − θTxi

)2
+ λ

(
α∥θ∥1 + (1− α)∥θ∥22

)
(398)

where m is the number of training examples, yi is the target value for the i-th example, xi is the
feature vector for the i-th example, and θ is the vector of model parameters. The first term in the
loss function,

1

2m

m∑
i=1

(
yi − θTxi

)2
(399)

represents the mean squared error (MSE) of the model predictions, while the second term,

λ
(
α∥θ∥1 + (1− α)∥θ∥22

)
(400)

represents the Elastic Net penalty. The regularization parameter λ controls the overall strength of
the penalty, with larger values of λ resulting in stronger regularization and simpler models. The
optimization problem for Elastic Net regularization is formulated as

min
θ

{
1

2m

m∑
i=1

(
yi − θTxi

)2
+ λ

(
α∥θ∥1 + (1− α)∥θ∥22

)}
(401)

This is a convex optimization problem, and its solution can be obtained using iterative algorithms
such as coordinate descent or proximal gradient methods. The coordinate descent algorithm up-
dates one parameter at a time while holding the others fixed, and the update rule for the j-th
parameter θj is given by

θj ←
S
(∑m

i=1 xij(yi − ỹ
(−j)
i ), λα

)
1 + λ(1− α)

(402)

where S(z, γ) is the soft-thresholding operator defined as

S(z, γ) = sign(z) max(|z| − γ, 0) (403)
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and ỹ
(−j)
i is the predicted value excluding the contribution of θj. The Elastic Net penalty has

several desirable properties that make it particularly effective for overfitting control. First, the
L1 component (α∥θ∥1) induces sparsity in the parameter vector θ, effectively performing feature
selection by setting some coefficients to zero. This is especially useful in high-dimensional settings
where the number of features n is much larger than the number of training examples m. Second, the
L2 component ((1 − α)∥θ∥22) encourages a grouping effect, where correlated features tend to have
similar coefficients. Third, the mixing parameter α provides flexibility in balancing the sparsity-
inducing effect of L1 regularization with the smoothness-promoting effect of L2 regularization. In
practice, the hyperparameters λ and α must be carefully tuned to achieve optimal performance.
This is typically done using cross-validation. The Elastic Net regularization path, which describes
how the coefficients θ change as λ varies, can be computed efficiently using algorithms such as least
angle regression (LARS) with Elastic Net modifications.

In conclusion, Elastic Net regularization is a mathematically rigorous and scientifically sound tech-
nique for controlling overfitting in machine learning models. By combining the sparsity-inducing
properties of L1 regularization with the smoothness-promoting properties of L2 regularization,
Elastic Net provides a flexible and effective framework for handling high-dimensional data, multi-
collinearity, and feature selection.

6.3.4 Early Stopping

Literature Review: Goodfellow et. al. (2016) [112] provided a comprehensive overview of deep
learning, including detailed discussions on overfitting and regularization techniques. It explains
early stopping as a form of regularization that prevents overfitting by halting training when vali-
dation performance plateaus. The book rigorously connects early stopping to other regularization
methods like weight decay and dropout, emphasizing its role in controlling model complexity.
Montavon et. al. (2012) [565] compiled practical techniques for training neural networks, including
early stopping. It highlights how early stopping acts as an implicit regularizer by limiting the ef-
fective capacity of the model. The authors provide empirical evidence and theoretical insights into
why early stopping works, comparing it to explicit regularization methods like L2 regularization.
Bishop (2006) [115] provided a rigorous mathematical treatment of overfitting and regularization.
It discusses early stopping in the context of gradient-based optimization, showing how it prevents
overfitting by controlling the effective number of parameters. The book also connects early stop-
ping to Bayesian inference, framing it as a way to balance model complexity and data fit. Prechelt
(1998) [566] provided a systematic analysis of early stopping criteria, such as generalization loss and
progress measures. He introduces quantitative metrics to determine the optimal stopping point and
demonstrates its effectiveness in preventing overfitting across various datasets and architectures.
Zhang et. al. (2021) [445] challenged traditional views on generalization in deep learning. It shows
that deep neural networks can fit random labels, highlighting the importance of regularization
techniques like early stopping. The authors argue that early stopping is crucial for ensuring models
generalize well, even in the presence of high capacity. Friedman et. al. (2010) [551] introduced
coordinate descent algorithms for regularized linear models, including L1 and L2 regularization.
While not exclusively about early stopping, it provides a theoretical framework for understand-
ing how regularization techniques, including early stopping, control model complexity and prevent
overfitting. Hastie et. al. (2010) [129] discussed early stopping as a regularization method in the
context of gradient boosting and neural networks. The authors explain how early stopping re-
duces variance by limiting the number of iterations, thereby improving generalization performance.
While primarily focused on dropout, Srivastava et. al. (2014) [131] compared dropout to other
regularization techniques, including early stopping. It highlights how early stopping complements
dropout by preventing overfitting during training. The authors provide empirical results showing
the combined benefits of these methods
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Overfitting in machine learning models is a phenomenon where the model learns to approximate
the training data with excessive precision, capturing not only the underlying data-generating distri-
bution but also the noise and stochastic fluctuations inherent in the finite sample of training data.
Formally, consider a model f(x; θ), parameterized by θ ∈ Rd, which maps input features x ∈ Rp

to predictions ŷ ∈ R. The model is trained to minimize the empirical risk Ltrain(θ), defined over a
training dataset Dtrain = {(xi, yi)}Ni=1, where xi are the input features and yi are the corresponding
labels. The empirical risk is given by:

Ltrain(θ) =
1

N

N∑
i=1

ℓ(f(xi; θ), yi) (404)

where ℓ(·) is a loss function quantifying the discrepancy between the predicted output f(xi; θ) and
the true label yi. Overfitting occurs when the model achieves a very low training loss Ltrain(θ) but
a significantly higher generalization loss Ltest(θ), evaluated on an independent test dataset Dtest.
This discrepancy arises because the model has effectively memorized the training data, including
its noise, rather than learning the true underlying patterns.

Early stopping is a regularization technique that mitigates overfitting by dynamically halting the
training process before the model fully converges to a minimum of the training loss. This is achieved
by monitoring the model’s performance on a separate validation dataset Dval = {(xj, yj)}Mj=1, which
is distinct from both the training and test datasets. The validation loss Lval(θ) is computed as:

Lval(θ) =
1

M

M∑
j=1

ℓ(f(xj; θ), yj) (405)

During training, the model parameters θ are updated iteratively using an optimization algorithm
such as gradient descent, which follows the update rule:

θt+1 = θt − η∇θLtrain(θt) (406)

where η is the learning rate and ∇θLtrain(θt) is the gradient of the training loss with respect
to the parameters θ at iteration t. Early stopping intervenes in this process by evaluating the
validation loss Lval(θt) at each iteration t and terminating training when Lval(θt) ceases to decrease
or begins to increase. This point of termination is determined by a patience parameter P , which
specifies the number of iterations to wait after the last improvement in Lval(θt) before stopping.
The effectiveness of early stopping as a regularization mechanism can be understood through its
implicit control over the model’s complexity. By limiting the number of training iterations T , early
stopping restricts the model’s capacity to fit the training data perfectly, thereby preventing it from
overfitting. This can be formalized by considering the relationship between the number of iterations
T and the effective complexity of the model. Specifically, early stopping imposes an implicit
constraint on the optimization process, preventing the model from reaching a sharp minimum of
the training loss Ltrain(θ), which is often associated with poor generalization. Instead, early stopping
encourages convergence to a flatter minimum, which is more robust to perturbations in the data.
The regularization effect of early stopping can be further analyzed through its connection to explicit
regularization techniques. It has been shown that early stopping is mathematically equivalent to
imposing an implicit L2 regularization penalty on the model parameters θ. This equivalence arises
because early stopping effectively restricts the norm of the parameter updates ∥θt − θ0∥, where θ0
is the initial parameter vector. The strength of this implicit regularization is inversely proportional
to the number of iterations T , as fewer iterations result in smaller updates to θ. Formally, this can
be expressed as:

∥θT − θ0∥ ≤ C(T ) (407)

where C(T ) is a function that decreases with T . This constraint on the parameter updates is
analogous to the explicit L2 regularization penalty λ∥θ∥22, where λ controls the strength of the
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regularization. Thus, early stopping can be viewed as a form of adaptive regularization, where the
regularization strength is determined by the number of iterations T . The theoretical foundation
of early stopping is further supported by its connection to the bias-variance tradeoff in statistical
learning. By limiting the number of iterations T , early stopping reduces the variance of the model,
as it prevents the model from fitting the noise in the training data. At the same time, it introduces
a small amount of bias, as the model may not fully capture the underlying data-generating distribu-
tion. This tradeoff is optimized by selecting the stopping point T that minimizes the generalization
error, which can be estimated using cross-validation or a held-out validation set.

In summary, early stopping is a powerful and theoretically grounded technique for controlling
overfitting in machine learning models. By dynamically halting the training process based on the
validation loss, it imposes an implicit regularization constraint on the model parameters, preventing
them from growing too large and overfitting the training data. This regularization effect is math-
ematically equivalent to an implicit L2 penalty, and it is rooted in the principles of optimization
theory and statistical learning. Through its connection to the bias-variance tradeoff, early stopping
provides a principled approach to balancing model complexity and generalization performance,
making it an essential tool in the machine learning practitioner’s toolkit.

6.3.5 Data Augmentation

Literature Review: Goodfellow et. al. (2016) [112] provided a comprehensive overview of deep
learning, including detailed discussions on overfitting and regularization techniques. It explains
how data augmentation acts as a form of regularization by introducing variability into the training
data, thereby reducing the model’s reliance on specific patterns and improving generalization. The
book also covers other regularization methods like dropout, weight decay, and early stopping, con-
textualizing their relationship with data augmentation. Zou and Hastie (2005) [132] introduced the
Elastic Net, a regularization technique that combines L1 (Lasso) and L2 (Ridge) penalties. While
not directly about data augmentation, it provides a theoretical foundation for understanding how
regularization combats overfitting. The principles discussed are highly relevant when designing
augmentation strategies to ensure that models do not overfit to augmented data. Zhang et. al.
(2021) [445] challenged traditional notions of generalization in deep learning. It demonstrates that
deep neural networks can easily fit random labels, highlighting the importance of regularization
techniques, including data augmentation, to prevent overfitting. The study underscores the role of
augmentation in improving generalization by making the learning task more challenging and ro-
bust. Srivastava et. al. (2014) [131] introduced dropout, a regularization technique that randomly
deactivates neurons during training. While the focus is on dropout, the authors discuss how data
augmentation complements dropout by providing additional training examples, thereby further
reducing overfitting. The paper provides empirical evidence of the synergy between augmenta-
tion and dropout. Brownlee (2019) [567] focused on implementing data augmentation techniques
for image data using popular deep learning frameworks. It provides a hands-on explanation of
how augmentation reduces overfitting by increasing the diversity of training data. The book also
discusses the interplay between augmentation and other regularization methods like weight decay
and batch normalization. Shorten and Khoshgoftaar (2019) [569] provided a comprehensive review
of data augmentation techniques across various domains, including images, text, and audio. It
rigorously analyzes how augmentation serves as a regularization mechanism by introducing noise
and variability into the training process, thereby preventing overfitting. The paper also discusses
the limitations and challenges of augmentation. Friedman et. al. (2010) [551] introduced efficient
algorithms for fitting regularized generalized linear models. While primarily focused on L1 and
L2 regularization, it provides insights into how regularization techniques can be combined with
data augmentation to control model complexity and prevent overfitting. The paper is particularly
useful for understanding the theoretical underpinnings of regularization. Zhang et. al. (2017) [568]
introduced Mixup, a data augmentation technique that creates new training examples by linearly
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interpolating between pairs of inputs and their labels. Mixup acts as a form of regularization by
encouraging the model to behave linearly between training examples, thereby reducing overfitting.
The paper provides theoretical and empirical evidence of its effectiveness. Cubuk et al. (2019)
[571] proposed AutoAugment, a method for automatically learning optimal data augmentation
policies from data. By tailoring augmentation strategies to the specific dataset, AutoAugment
acts as a powerful regularization technique, significantly reducing overfitting and improving model
performance. The paper demonstrates the effectiveness of this approach on multiple benchmarks.
Perez (2017) [570] provided a detailed empirical study of how data augmentation reduces overfit-
ting in deep neural networks. It compares various augmentation techniques and their impact on
model generalization. The authors also discuss the relationship between augmentation and other
regularization methods, providing insights into how they can be combined for optimal performance.

Overfitting, in its most formal and rigorous definition, arises when a model f ∈ H, where H
denotes the hypothesis space of all possible models, achieves a low empirical risk on the training
dataset Dtrain = {(xi, yi)}Ni=1 but fails to generalize to unseen data drawn from the true data-
generating distribution P . This phenomenon can be quantified by the discrepancy between the
model’s performance on the training data and its performance on the test data, which can be
expressed mathematically as:

E(x,y)∼P [L(f̂(x), y)]≫ 1

N

N∑
i=1

L(f̂(xi), yi) (408)

where L is the loss function measuring the error between the model’s predictions f̂(x) and the true
labels y, and f̂ is the model that minimizes the empirical risk on Dtrain. The primary cause of
overfitting is the model’s excessive capacity to fit the training data, which is often a consequence
of high model complexity relative to the size and diversity of Dtrain. Data augmentation addresses
overfitting by artificially expanding the training dataset Dtrain through the application of a set of
transformations T to the existing data points. These transformations are designed to preserve
the semantic content of the data while introducing variability that reflects plausible real-world
variations. Formally, let T : X → X be a transformation function that maps an input x ∈ X to a
transformed input T (x). The augmented dataset Daug is then constructed as:

Daug = {(T (xi), yi) | xi ∈ Dtrain, T ∈ T }. (409)

The model is subsequently trained on Daug instead of Dtrain, which effectively increases the size of
the training dataset and introduces additional diversity. This process can be viewed as implicitly
defining a new empirical risk minimization problem:

f̂ = arg min
f∈H

1

|Daug|
∑

(xi,yi)∈Daug

L(f(xi), yi). (410)

By training on Daug, the model is exposed to a broader range of data variations, which encourages
it to learn more robust and generalizable features. This reduces the risk of overfitting by preventing
the model from over-relying on specific patterns or noise present in the original training data. The
effectiveness of data augmentation can be analyzed through the lens of the bias-variance trade-
off. Without data augmentation, the model may exhibit high variance due to its ability to fit the
limited training data too closely. Data augmentation reduces this variance by effectively increasing
the size of the training dataset, thereby constraining the model’s capacity to fit noise. At the
same time, it introduces a controlled form of bias by encouraging the model to learn features that
are invariant to the applied transformations. This trade-off can be formalized by considering the
expected generalization error Egen of the model, which decomposes into bias and variance terms:

Egen = E(x,y)∼P

[
(f̂(x)− y)2

]
= Bias(f̂)2 + Var(f̂) + σ2, (411)
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where σ2 represents the irreducible noise in the data. Data augmentation reduces Var(f̂) by increas-
ing the effective sample size, while the bias term Bias(f̂) may increase slightly due to the constraints
imposed by the invariance requirements. The choice of transformations T is critical to the success
of data augmentation. For instance, in image classification tasks, common transformations include
rotations, translations, scaling, flipping, and color jittering. Each transformation T ∈ T can be
represented as a function T : Rd → Rd, where d is the dimensionality of the input space. The set
T should be designed such that the transformed data points T (x) remain semantically consistent
with the original labels y. Mathematically, this can be expressed as:

P (y | T (x)) ≈ P (y | x) ∀T ∈ T . (412)

This ensures that the augmented data points are valid representatives of the underlying data distri-
bution P . In addition to reducing overfitting, data augmentation also has the effect of smoothing
the loss landscape of the optimization problem. The loss function L evaluated on the augmented
dataset Daug can be viewed as a regularized version of the original loss function:

Laug(f) =
1

|Daug|
∑

(xi,yi)∈Daug

L(f(xi), yi). (413)

This augmented loss function typically exhibits a more convex and smoother optimization land-
scape, which facilitates convergence during training. The smoothness of the loss landscape can be
quantified using the Lipschitz constant L of the gradient ∇Laug, which satisfies:

∥∇Laug(f1)−∇Laug(f2)∥ ≤ L∥f1 − f2∥ ∀f1, f2 ∈ H. (414)

A smaller Lipschitz constant L indicates a smoother loss landscape, which is beneficial for opti-
mization algorithms such as gradient descent.

In conclusion, data augmentation is a powerful and mathematically grounded technique for control-
ling overfitting in machine learning models. By artificially expanding the training dataset through
the application of semantically preserving transformations, data augmentation reduces the model’s
reliance on specific patterns and noise in the original training data. This leads to improved gen-
eralization performance by balancing the bias-variance trade-off and smoothing the optimization
landscape. The rigorous formulation of data augmentation as a form of implicit regularization
provides a solid theoretical foundation for its widespread use in practice.

6.3.6 Cross-Validation

Literature Review: Hastie et. al. (2010) [129] provided a comprehensive overview of statistical
learning methods, including detailed discussions on overfitting, bias-variance tradeoff, and regular-
ization techniques (e.g., Ridge Regression, Lasso). It also covers cross-validation as a tool for model
selection and evaluation. The book rigorously explains how regularization mitigates overfitting by
introducing penalty terms to the loss function, and how cross-validation helps in tuning hyperpa-
rameters. Tibshirani (1996) [552] introduced the Lasso (Least Absolute Shrinkage and Selection
Operator), a regularization technique that performs both variable selection and shrinkage to prevent
overfitting. The paper demonstrates how Lasso’s L1 penalty encourages sparsity in model coeffi-
cients, making it particularly useful for high-dimensional data. It also discusses cross-validation
for selecting the regularization parameter. Bishop and Nashrabodi (2006) [115] provided a deep
dive into probabilistic models and regularization techniques, including Bayesian regularization and
weight decay. It explains how regularization controls model complexity and prevents overfitting
by penalizing large weights. The book also discusses cross-validation as a method for assessing
model performance and selecting hyperparameters. Hoerl and Kennard (1970) [555] introduced
Ridge Regression, an L2 regularization technique that addresses multicollinearity and overfitting in
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linear models. The authors demonstrate how adding a penalty term to the least squares objective
function shrinks coefficients, reducing variance at the cost of introducing bias. Cross-validation
is highlighted as a method for choosing the optimal regularization parameter. Domingos (2012)
[572] provided practical insights into machine learning, including the importance of avoiding over-
fitting and the role of regularization. He emphasized the tradeoff between model complexity and
generalization, and how techniques like cross-validation help in selecting models that generalize
well to unseen data. Goodfellow et. al. (2016) [112] covered regularization techniques specific to
deep learning, such as dropout, weight decay, and early stopping. It explains how these methods
prevent overfitting in neural networks and discusses cross-validation as a tool for hyperparameter
tuning. The book also explores the theoretical underpinnings of regularization in the context of
deep models. Srivastava et. al. (2014) [131] introduced dropout, a regularization technique for
neural networks that randomly deactivates neurons during training. The authors demonstrate that
dropout reduces overfitting by preventing co-adaptation of neurons and effectively ensembles mul-
tiple sub-networks. Cross-validation is used to evaluate the performance of dropout-regularized
models. Gareth et. al. (2013) [561] provided an accessible introduction to key concepts in statisti-
cal learning, including overfitting, regularization, and cross-validation. It explains how techniques
like Ridge Regression and Lasso improve model generalization and how cross-validation helps in
selecting the best model. The book includes practical examples and R code for implementation.
Stone (1974) [573] formalized the concept of cross-validation as a method for assessing predictive
performance and preventing overfitting. Stone discusses how cross-validation provides an unbiased
estimate of model performance by partitioning data into training and validation sets. The pa-
per lays the groundwork for using cross-validation in conjunction with regularization techniques.
Friedman et. al. (2010) [551] presented efficient algorithms for computing regularization paths for
generalized linear models, including Lasso and Elastic Net. The authors demonstrate how these
techniques balance bias and variance to prevent overfitting. The paper also discusses the use of
cross-validation for selecting the optimal regularization parameters.

Overfitting in supervised learning is fundamentally characterized by a learned function f that
exhibits low training error but high generalization error. Mathematically, this is framed through
the concept of expected risk minimization. Given a probability distribution P (x, y) over the feature-
label space, the goal of supervised learning is to minimize the expected risk functional:

R(f) = E(x,y)∼P [L(y, f(x))] (415)

where L(y, f(x)) is a loss function measuring the discrepancy between predicted and actual values.
Since P (x, y) is unknown, we approximate R(f) with the empirical risk over the training dataset
D = {(xi, yi)}Ni=1, yielding the empirical risk functional:

R̂(f) =
1

N

N∑
i=1

L(yi, f(xi)) (416)

A model is said to overfit if there exists another model g such that R̂(f) < R̂(g) but R(f) >
R(g). This discrepancy is analytically understood through the bias-variance decomposition of the
generalization error:

E[(y − f(x))2] = (E[f(x)]− f ∗(x))2 + V [f(x)] + σ2 (417)

Overfitting corresponds to the regime where V [f(x)] is significantly large while (E[f(x)]− f ∗(x))2

remains small, meaning that the model is highly sensitive to variations in the training set. Cross-
validation provides a principled mechanism for estimating R(f) and preventing overfitting by sim-
ulating model performance on unseen data. The most rigorous formulation of cross-validation is
k-fold cross-validation, where the dataset D is partitioned into k disjoint subsets D1, D2, . . . , Dk,
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each containing approximately N
k

samples. For each j ∈ {1, 2, . . . , k}, we train the model on the
dataset

Dtrain(j) = D \Dj (418)

and evaluate it on the validation set Dj, computing the validation error:

R̂j(f) =
1

|Dj|
∑

(xi,yi)∈Dj

L(yi, f(xi)) (419)

The cross-validation estimate of the expected risk is given by:

R̂CV(f) =
1

k

k∑
j=1

R̂j(f) (420)

This estimation introduces a tradeoff between bias and variance depending on the choice of k.
A small k, such as k = 2, results in high bias due to insufficient training data per fold, while
large k, such as k = N (leave-one-out cross-validation, LOOCV), results in high variance due to
the extreme sensitivity of the validation error to single observations. The variance of the cross-
validation estimator itself is approximated by:

Var(R̂CV) =
1

k

k∑
j=1

Var(R̂j) (421)

Leave-one-out cross-validation is particularly insightful as it provides an almost unbiased estimate
of R(f). Formally, if D−i = D \ {(xi, yi)}, then the leave-one-out estimator is:

R̂LOO(f) =
1

N

N∑
i=1

L(yi, f−i(xi)) (422)

where f−i is the model trained on D−i. The key advantage of LOOCV is its nearly unbiased nature,

E[R̂LOO] ≈ R(f) (423)

but its computational cost scales as O(N) times the cost of training the model, making it infeasible
for large datasets. Another important mathematical consequence of cross-validation is its role
in hyperparameter selection. Suppose a model fλ is parameterized by λ (e.g., the regularization
parameter in Ridge regression). Cross-validation allows us to find

λ∗ = arg min
λ
R̂CV(fλ) (424)

This optimization ensures that the selected hyperparameter minimizes generalization error rather
than just empirical risk. In practical applications, hyperparameter tuning via cross-validation is
often performed over a logarithmic grid {λ1, λ2, . . . , λm}, and the optimal λ∗ is obtained via

λ∗ = arg min
λj

1

k

k∑
j=1

R̂j(fλj
) (425)

This selection mechanism rigorously prevents overfitting by ensuring that the model complexity
is chosen based on its generalization capacity rather than its fit to the training data. A deeper
understanding of the bias-variance tradeoff in cross-validation is achieved through its impact on
model complexity. If fd(x) denotes a model of complexity d, its cross-validation risk behaves as:

RCV(fd) = R(fd) +O

(
d

N

)
(426)
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This formulation makes explicit that increasing model complexity d leads to lower empirical risk
but higher variance, necessitating cross-validation as a control mechanism to balance these compet-
ing factors. Finally, an advanced theoretical justification for cross-validation arises from stability
theory. The stability of a learning algorithm quantifies how small perturbations in the training set
affect its output. Formally, a learning algorithm is γ-stable if, for two datasets D and D′ differing
by a single point

sup
x
|fD(x)− fD′(x)| ≤ γ (427)

Cross-validation is most effective for stable algorithms, where γ-stability ensures that∣∣∣R̂CV −R(f)
∣∣∣ = O(γ) (428)

For highly unstable algorithms (e.g., deep neural networks with small datasets), cross-validation
estimates exhibit significant variance, making regularization even more critical.

In conclusion, cross-validation provides a mathematically rigorous framework for controlling over-
fitting by estimating generalization error. By partitioning the dataset into training and validation
sets, it enables optimal hyperparameter selection and model assessment while managing the bias-
variance tradeoff. The interplay between cross-validation risk, model complexity, and stability
theory underpins its fundamental role in statistical learning.

6.3.7 Pruning

Literature Review: LeCun et. al. (1990) [574] introduced the concept of pruning in neural
networks. They proposed the ”optimal brain damage” (OBD) and ”optimal brain surgeon” (OBS)
algorithms, which prune weights based on their contribution to the loss function. These tech-
niques reduce overfitting by simplifying the model architecture. They proved that pruning based
on second-order derivatives (Hessian matrix) is more effective than random pruning, as it preserves
critical weights. Li et. al. (2016) [575] focused on pruning convolutional neural networks (CNNs)
by removing entire filters rather than individual weights. It demonstrates that filter pruning sig-
nificantly reduces computational cost while maintaining accuracy, effectively addressing overfitting
in large CNNs. The Pruning filters based on their L1-norm magnitude is a simple yet effective
regularization technique. Frankle and Carbin (2018) [576] introduced the ”lottery ticket hypoth-
esis,” which states that dense neural networks contain smaller subnetworks (”winning tickets”)
that, when trained in isolation, achieve comparable performance to the original network. Pruning
helps identify these subnetworks, reducing overfitting by focusing on essential parameters. The
authors proposed that Iterative pruning and retraining can uncover sparse, highly generalizable
models. Han et. al. (2015) [577] proposed a pruning technique that removes redundant connec-
tions and retrains the network to recover accuracy. It introduces a systematic approach to pruning
and demonstrates its effectiveness in reducing overfitting while compressing models. The authors
proposed that Pruning followed by retraining preserves model performance and reduces overfitting
by eliminating unnecessary complexity. Liu et. al. (2018) [578] challenged the conventional wisdom
that pruning is primarily for model compression. It shows that pruning can also serve as a reg-
ularization technique, improving generalization by removing redundant parameters. The authors
proposed that Pruning can be viewed as a form of architecture search, leading to models that gen-
eralize better. Cheng et. al. (2017) [579] provided a comprehensive overview of model compression
techniques, including pruning, quantization, and knowledge distillation. It highlights how prun-
ing reduces overfitting by simplifying models and removing redundant parameters. The authors
proposed that Pruning is a key component of a broader strategy to improve model efficiency and
generalization. Frankle et. al. (2020) [580] investigated the limitations of pruning neural networks
at initialization (before training). It highlights the challenges of identifying important weights early
and suggests that iterative pruning during training is more effective for regularization. The authors
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proposed that Pruning is most effective when combined with training, as it allows the model to
adapt to the reduced architecture.

Overfitting is a core problem in statistical learning theory, occurring when a model exhibits a dis-
proportionately high variance relative to its bias, leading to poor generalization. Given a dataset
D = {(xi, yi)}Ni=1 drawn from an unknown probability distribution P (X, Y ), a neural network func-
tion f(X,W ) parameterized by weights W aims to approximate the true underlying function g(X).
The goal is to minimize the true risk function:

R(W ) = E(X,Y )∼P [ℓ(f(X,W ), Y )] (429)

where ℓ(·, ·) is a chosen loss function such as mean squared error or cross-entropy. Since P (X, Y )
is unknown, we approximate R(W ) by minimizing the empirical risk:

R̂(W ) =
1

N

N∑
i=1

ℓ(f(xi,W ), yi) (430)

If W has too many parameters, the model can memorize training data, leading to an excessive gap
between the empirical and true risk:

R(W ) = R̂(W ) +O

(√
dVC

N

)
(431)

where dVC is the Vapnik-Chervonenkis (VC) dimension, a fundamental measure of model com-
plexity. Overfitting occurs when dVC is excessively large relative to N , leading to high variance.
Pruning aims to reduce dVC while preserving network functionality, thereby controlling
complexity and improving generalization. The Mathematical Formulation of Pruning is of a Con-
strained Optimization Problem. Pruning can be rigorously formulated as a constrained empirical
risk minimization problem. The objective is to minimize the empirical risk while enforcing a
constraint on the number of nonzero weights. Mathematically, this is expressed as:

min
W

R̂(W ) subject to ∥W∥0 ≤ k (432)

where ∥W∥0 is the L0 norm, counting the number of nonzero parameters, and k is the sparsity
constraint. Since direct L0 minimization is computationally intractable (NP-hard), practical ap-
proaches approximate this problem using continuous relaxations such as L1 regularization or
thresholding heuristics.

Let’s now discuss some theoretical Justifications of different Types of Pruning. For Weight Pruning
we start with eliminating Redundant Parameters. Weight pruning removes individual weights that
contribute negligibly to the network’s predictions. Given a weight matrix W , the simplest form of
pruning is threshold-based removal:

W ′ = {wj ∈ W | |wj| > τ} (433)

This operation enforces an L0-like sparsity constraint:

Ω(W ) =
d∑

j=1

1|wj |>τ (434)

Since direct L0 minimization is non-differentiable, a common alternative is L1 regulariza-
tion:

Ŵ = arg min
W

[
R̂(W ) + λ

d∑
j=1

|wj|

]
(435)
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L1 pruning results in a soft-thresholding effect, where small weights decay towards zero, reducing
model complexity in a continuous and differentiable manner. Neuron Pruning is defined as the
removing of entire neurons based on activation strength. Beyond individual weights, entire neurons
can be pruned based on their average activation magnitude. Given a neuron hi(x) in layer l with
weight vector Wi, we define its mean absolute activation over the dataset as:

Ai =
1

N

N∑
j=1

|hi(xj)|. (436)

If Ai < τ , then neuron hi is removed. This corresponds to the minimization:

Ω(W ) =
m∑
i=1

1Ai>τ . (437)

Neuron pruning leads to a direct reduction in network depth, modifying the function class and
affecting expressivity. The effective VC dimension of a fully connected network of depth L with
layer sizes {n1, n2, . . . , nL} satisfies:

dVC ≈
L∑
l=1

n2
l . (438)

After pruning p percent of neurons, the new VC dimension is:

d′VC =
L∑
l=1

(1− p)2n2
l . (439)

Since generalization error is bounded as O(
√
dVC/N), reducing dVC via pruning improves gen-

eralization. In convolutional networks, structured pruning eliminates entire filters rather than
individual weights. Let F1, F2, . . . , Fm be the filters of a convolutional layer. The importance of
filter Fi is quantified by its Frobenius norm:

∥Fi∥F =

√∑
j,k

F 2
i,j,k. (440)

Filters with norms below threshold τ are removed, solving the optimization problem:

F̂ = arg min
F

[
R̂(F ) + λ

m∑
i=1

∥Fi∥F

]
(441)

Pruning filters leads to significant reductions in computational cost, directly improving in-
ference speed while maintaining accuracy. There are some Generalization Bounds for Pruned Net-
works: PAC Learning and VC Dimension Reduction. A pruned neural network exhibits a reduced
function class complexity, leading to stronger generalization guarantees. The PAC (Proba-
bly Approximately Correct) bound states that for any confidence level δ, the probability of
excessive generalization error is bounded by:

P
(
R(W ′)− R̂(W ′) > ϵ

)
≤ 2 exp

(
−2Nϵ2

d′VC

)
(442)

Since pruning reduces d′VC, it results in a tighter PAC bound, enhancing model robustness. In
conclusion, Pruning is an extremely scientifically and mathematically rigorous approach to
overfitting control, rooted in optimization theory, PAC learning, VC dimension reduction,
and empirical risk minimization. By removing redundant weights, neurons, or filters, prun-
ing improves generalization, tightens complexity bounds, and enhances computational
efficiency.
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6.3.8 Ensemble Methods

Literature Review: Hastie et. al. (2009) [129] provided a comprehensive overview of ensemble
methods, including bagging, boosting, and random forests. It rigorously explains how overfitting
occurs in ensemble models and discusses regularization techniques such as shrinkage in boosting
(e.g., AdaBoost, gradient boosting) and feature subsampling in random forests. The book also intro-
duces the bias-variance tradeoff, which is central to understanding overfitting in ensemble methods.
Breiman (1996) [581] introduced bagging (Bootstrap Aggregating), an ensemble technique that re-
duces overfitting by averaging predictions from multiple models trained on bootstrapped samples.
The paper demonstrates how bagging reduces variance without increasing bias, making it a pow-
erful regularization tool for unstable models like decision trees. Breiman (2001) [582] introduced
random forests, an extension of bagging that further reduces overfitting by introducing randomness
in feature selection during tree construction. Breiman shows how random forests achieve regulariza-
tion through feature subsampling and ensemble averaging, making them robust to overfitting while
maintaining high predictive accuracy. Freund and Schapire (1997) [583] introduced AdaBoost,
a boosting algorithm that combines weak learners into a strong ensemble. The authors discuss
how boosting can overfit noisy datasets and propose theoretical insights into controlling overfitting
through careful weighting of training examples and early stopping. Friedman (2001) [584] intro-
duced gradient boosting machines (GBM), a powerful ensemble method that generalizes boosting
to differentiable loss functions. The paper emphasizes the importance of shrinkage (learning rate)
as a regularization technique to control overfitting. It also discusses the role of tree depth and
subsampling in improving generalization. Zhou (2025) [585] provided a systematic and theoretical
treatment of ensemble methods, including detailed discussions on overfitting and regularization. It
covers techniques such as diversity promotion in ensembles, weighted averaging, and regularized
boosting, offering insights into how these methods mitigate overfitting. Dietterich (2000) [586]
empirically compared bagging, boosting, and randomization techniques for constructing ensembles
of decision trees. It highlights how each method addresses overfitting, with a focus on the role
of randomization in reducing model variance and improving generalization. Chen and Guestrin
(2016) [587] introduced XGBoost, a highly efficient and scalable implementation of gradient boost-
ing. XGBoost incorporates several regularization techniques, including L1/L2 regularization on
leaf weights, column subsampling, and shrinkage, to control overfitting. The paper also discusses
the importance of early stopping and cross-validation in preventing overfitting. Bühlmann and
Yu (2003) [588] explored boosting with the L2 loss function and its regularization properties. The
authors demonstrate how boosting with L2 loss naturally incorporates shrinkage and early stopping
as mechanisms to prevent overfitting, providing theoretical guarantees for its generalization per-
formance. While not exclusively focused on ensemble methods, the paper by Snoek et. al. (2012)
[489] introduced Bayesian optimization as a tool for hyperparameter tuning in machine learning
models, including ensembles. It highlights how optimizing regularization parameters (e.g., learning
rate, subsampling rate) can mitigate overfitting and improve ensemble performance.

Overfitting in ensemble methods arises when a model learns the specific noise in the training data
rather than capturing the underlying data distribution. Mathematically, given an i.i.d. dataset
D = {(xi, yi)}Ni=1, where xi ∈ Rd is the feature vector and yi ∈ R (for regression) or yi ∈ {0, 1} (for
classification), we consider a hypothesis space H containing functions f : Rd → R that approximate
the true function f ∗(x) = E[y | x]. The generalization ability of a model is characterized by its
true risk, defined as

R(f) = E(x,y)∼P[ℓ(f(x), y)] (443)

where ℓ : R×R→ R+ is the loss function. However, since the true distribution P(x, y) is unknown,
we approximate this risk using the empirical risk,

R̂(f) =
1

N

N∑
i=1

ℓ(f(xi), yi). (444)

89



Overfitting occurs when the empirical risk is minimized at the cost of a large true risk, i.e.,

R̂(f)≪ R(f), (445)

which leads to poor generalization. This phenomenon can be rigorously analyzed using the bias-
variance decomposition, which states that the expected squared error of a learned function f
satisfies

E[(f(x)− y)2] = (E[f(x)]− f ∗(x))2 + V[f(x)] + σ2. (446)

The first term represents the bias, which measures systematic deviation from the true function.
The second term represents the variance, which quantifies the sensitivity of f to fluctuations in
the training data. The third term, σ2, represents irreducible noise inherent in the data. Overfitting
occurs when the variance term dominates, which is particularly problematic in ensemble methods
when base learners are highly complex. To understand overfitting in boosting, consider a sequence
of models f1, f2, . . . , fT iteratively trained to correct errors of previous models. The boosting
procedure constructs a final model as a weighted sum:

FT (x) =
T∑
t=1

αtft(x). (447)

For AdaBoost, the weights αt are chosen to minimize the exponential loss,

L(FT ) =
N∑
i=1

exp(−yiFT (xi)). (448)

Differentiating with respect to FT , we obtain the gradient update rule

∇FT
L = −

N∑
i=1

yi exp(−yiFT (xi)), (449)

which shows that boosting places exponentially increasing emphasis on misclassified points,
leading to overfitting when noise is present in the data. For bagging, which constructs multiple
base models fm trained on bootstrap samples and aggregates their predictions as

F (x) =
1

M

M∑
m=1

fm(x), (450)

we analyze variance reduction. If fm are independent with variance σ2, then the ensemble variance
satisfies

V[F (x)] =
1

M
σ2. (451)

However, in practice, base models are correlated, introducing a term ρ such that

V[F (x)] =
1

M
σ2 +

(
1− 1

M

)
ρσ2. (452)

As M →∞, variance reduction is limited by ρ, which is exacerbated when deep decision trees are
used, leading to overfitting. To combat overfitting, regularization techniques are employed. One
approach is pruning in decision trees, where complexity is controlled by minimizing

L(T ) =
N∑
i=1

ℓ(fT (xi), yi) + λ|T |, (453)
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where |T | is the number of terminal nodes, and λ penalizes complexity. Another approach is
shrinkage in boosting, where the update rule is modified to

Ft+1(x) = Ft(x) + ηht(x), (454)

where η is a step size satisfying 0 < η < 1. Theoretical analysis shows that small η ensures the
ensemble function sequence remains in a Lipschitz-continuous function space, preventing overfitting.
Finally, in random forests, overfitting is mitigated by decorrelating base models through feature
subsampling. Given a feature set F of dimension d, each base tree is trained on a randomly
selected subset Fm ⊂ F of size k ≪ d, ensuring models remain diverse. Theoretical analysis shows
that feature selection reduces expected correlation ρ between base models, thereby decreasing
ensemble variance:

V[F (x)] =
1

M
σ2 +

(
1− 1

M

)
k

d
σ2. (455)

Thus, by rigorously analyzing bias-variance tradeoffs, deriving variance-reduction formulas, and
proving shrinkage effectiveness, we ensure ensemble methods generalize effectively.

6.3.9 Noise Injection

Literature Review: Hinton and Van Camp (1993) [589] did an early exploration of weight noise
as a regularization mechanism. It formalizes the idea that injecting Gaussian noise into neural net-
work weights reduces model complexity, prevents overfitting, and improves interpretability. Bishop
(1995) [590] laid the foundation for using noise injection as a regularization method. The paper
mathematically formalizes how noise can act as a stochastic approximation of weight decay and
discusses its effects on model stability and generalization. Grandvalet and Bengio (2005) [591]
explored the use of label noise and entropy minimization for improving model generalization. It
demonstrates that adding noise to labels, rather than inputs or weights, can effectively reduce over-
fitting in semi-supervised learning scenarios. Wager et. al. (2013) [592] offers a theoretical analysis
of dropout as a noise-driven adaptive regularization method. It provides a connection between
dropout and ridge regression, demonstrating how it acts as a form of adaptive weight scaling to
mitigate overfitting. Srivastava et. al. (2014) [131] formally introduced dropout as a regulariza-
tion technique, showing how randomly omitting neurons during training simulates noise injection
and prevents co-adaptation of units. It presents extensive experiments proving that dropout im-
proves test accuracy and generalization. Gal and Ghahramani (2015) [548] extended the concept of
dropout by linking it to Bayesian inference, arguing that dropout noise serves as an implicit prior
distribution that controls overfitting. It provides rigorous theoretical justifications and empirical
studies supporting the role of noise-based regularization in deep learning. Pei et. al. (2025) [593]
explored the application of noise injection techniques in convolutional neural networks (CNNs)
for electric vehicle load forecasting. It investigates the impact of different regularization methods,
including L1/L2 penalties, dropout, and Gaussian noise injection, on reducing overfitting. The
study highlights how controlled noise perturbations can enhance generalization performance in
time-series forecasting tasks. Chen (2024) [594] demonstrated how noise injection, combined with
data augmentation techniques like rotation and shifting, serves as an implicit regularization tech-
nique in deep learning models. The study finds that while noise injection marginally improves AUC
scores, its effect varies depending on the complexity of the dataset, making it a viable yet context-
dependent method for controlling overfitting. An et. al. (2024) [595] introduced a noise-based
regularized cross-entropy (RCE) loss function for robust brain tumor segmentation. It argues that
controlled noise injection during training prevents overfitting by making models less sensitive to
small variations in input data. The study provides empirical evidence that noise-assisted learning
improves segmentation performance by enhancing feature robustness. Song and Liu (2024) [596]
presented a novel adversarial training technique integrating label noise as a form of regularization.
It investigates the theoretical underpinnings of noise injection in preventing catastrophic overfitting
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in adversarial settings and provides a comparative analysis with traditional dropout and weight
decay methods.

Overfitting arises when a model f̂(x; θ), parameterized by θ ∈ Θ, learns not only the true un-
derlying function f(x) = E[Y |X = x] but also the noise ϵ = Y − f(X) present in the training data
D = {(xi, yi)}ni=1. Formally, the generalization error Egen(θ) and training error Etrain(θ) are defined
as:

Egen(θ) = E(X,Y )∼P

[
L(Y, f̂(X; θ))

]
, (456)

Etrain(θ) =
1

n

n∑
i=1

L(yi, f̂(xi; θ)) (457)

where L is a loss function. Overfitting occurs when Egen(θ)≫ Etrain(θ), indicating that the model
has high variance and poor generalization. This phenomenon is exacerbated when the hypoth-
esis class Θ has excessive capacity, as measured by its Vapnik-Chervonenkis (VC) dimension or
Rademacher complexity. Regularization addresses overfitting by introducing a penalty term R(θ)
to the empirical risk minimization problem:

θ̂ = arg min
θ∈Θ

(
1

n

n∑
i=1

L(yi, f̂(xi; θ)) + λ ·R(θ)

)
(458)

where λ > 0 is a hyperparameter controlling the trade-off between fitting the data and minimizing
the penalty. Common choices for R(θ) include the ℓ2-norm ∥θ∥22 (ridge regression) and the ℓ1-norm
∥θ∥1 (lasso). These penalties constrain the model’s capacity, favoring solutions with smaller norms
and reducing variance. Noise injection is a stochastic regularization technique that introduces
randomness into the training process to improve generalization. For input noise injection, let
η ∼ Q be a random noise vector sampled from a distribution Q (e.g., Gaussian N(0, σ2I)). The
perturbed input is x̃i = xi + ηi, and the modified training objective becomes:

θ̂ = arg min
θ∈Θ

1

n

n∑
i=1

Eηi∼Q

[
L(yi, f̂(x̃i; θ))

]
. (459)

This expectation can be approximated using Monte Carlo sampling or analyzed using a second-
order Taylor expansion:

Eη

[
L(yi, f̂(xi + η; θ))

]
≈ L(yi, f̂(xi; θ)) +

σ2

2
Tr
(
∇2

xL(yi, f̂(xi; θ))
)
, (460)

where ∇2
xL is the Hessian matrix of the loss with respect to the input. The second term acts

as an implicit regularizer, penalizing the curvature of the loss function and encouraging smoother
solutions. For weight noise injection, noise is added directly to the model parameters: θ̃ = θ + η,
where η ∼ Q. The training objective becomes:

θ̂ = arg min
θ∈Θ

1

n

n∑
i=1

Eη∼Q

[
L(yi, f̂(xi; θ̃))

]
. (461)

This formulation encourages the model to converge to flatter minima in the loss landscape, which
are associated with better generalization. The flatness of a minimum can be quantified using the
eigenvalues of the Hessian matrix ∇2

θL. Output noise injection introduces randomness into the
target labels: ỹi = yi + ϵi, where ϵi ∼ Q. The training objective becomes:

θ̂ = arg min
θ∈Θ

1

n

n∑
i=1

Eϵi∼Q

[
L(ỹi, f̂(xi; θ))

]
. (462)
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This prevents the model from fitting the training labels too closely, reducing overfitting and im-
proving robustness. Theoretical guarantees for noise injection can be derived using tools from
statistical learning theory. The Rademacher complexity of the hypothesis class Θ is reduced by
noise injection, leading to tighter generalization bounds. The empirical Rademacher complexity is
defined as:

R̂n(Θ) = Eσ

[
sup
θ∈Θ

1

n

n∑
i=1

σif̂(xi; θ)

]
, (463)

where σi are Rademacher random variables. Noise injection effectively reduces R̂n(Θ), as the model
is forced to learn robust features that are invariant to small perturbations. From a PAC-Bayesian
perspective, noise injection can be interpreted as a form of distributional robustness. It ensures
that the model performs well not only on the training distribution but also on perturbed versions
of it. The PAC-Bayesian bound takes the form:

Eθ∼Q [Egen(θ)] ≤ Eθ∼Q [Etrain(θ)] +
1

2n
KL(Q∥P ) +

log n

δ2n
, (464)

where Q is the posterior distribution over parameters induced by noise injection, P is a prior
distribution, and KL(Q∥P ) is the Kullback-Leibler divergence. In the continuous-time limit, noise
injection can be modeled as a stochastic differential equation (SDE):

dθt = −∇θL(θt)dt+ σdWt, (465)

where Wt is a Wiener process. This SDE converges to a stationary distribution that favors flat
minima, which generalize better. The stationary distribution p(θ) satisfies the Fokker-Planck equa-
tion:

∇θ ·
(
p(θ)∇θL(θ)

)
+
σ2

2
∇2

θp(θ) = 0. (466)

The flatness of the minima can be quantified using the eigenvalues of the Hessian matrix ∇2
θL.

From an information-theoretic perspective, noise injection increases the entropy of the model’s
predictions, reducing overconfidence and improving calibration. The mutual information I(θ;D)
between the parameters and the data is reduced, leading to better generalization. The information
bottleneck principle formalizes this intuition:

min
θ
I(θ;D) subject to E(X,Y )∼P

[
L(Y, f̂(X; θ))

]
≤ ϵ, (467)

where ϵ is a tolerance parameter. In conclusion, noise injection is a mathematically rigorous and
theoretically grounded regularization technique that enhances generalization by introducing con-
trolled stochasticity into the training process. Its effects can be precisely analyzed using tools from
functional analysis, stochastic processes, and statistical learning theory, making it a powerful tool
for combating overfitting in machine learning models.

6.3.10 Batch Normalization

Literature Review: Cakmakci (2024) [598] explored the use of batch normalization and regu-
larization to improve prediction accuracy in deep learning models. It discusses how BN stabilizes
gradients and reduces covariate shifts, preventing overfitting. It also evaluates different combi-
nations of dropout and weight regularization for optimizing performance in pediatric bone age
estimation. Surana et. al. (2024) [599] applied dropout regularization and batch normalization
in deep learning models for weather forecasting. It provides empirical evidence on how BN pre-
vents overfitting by normalizing inputs at each layer, ensuring smooth training and avoiding the
vanishing gradient problem. Chanda (2025) [600] explored the role of batch normalization and
dropout in image classification tasks. It highlights how BN maintains the stability of activations,
while dropout introduces stochasticity to prevent overfitting in large-scale datasets. Zaitoon et. al.

93



(2024) [601] presented a hybrid regularization approach combining spatial dropout and batch nor-
malization. The authors show how batch normalization smooths feature distributions, leading to
faster convergence, while dropout enhances model generalization in GAN-based survival prediction
models. Bansal et. al. (2024) [602] integrated Gaussian noise, dropout, and batch normalization
to develop a robust fall detection system. It provides a comparative analysis of different regulariza-
tion methods and highlights how batch normalization helps maintain generalization even in noisy
environments. Kusumaningtyas et. al. (2024) [603] investigated batch normalization as a core
regularization method in CNN architectures, particularly MobileNetV2. It emphasized how BN
reduces internal covariate shift, leading to faster training and better generalization. Hosseini et.
al. (2025) [597] applied batch normalization and dropout techniques in medical image classifica-
tion. It demonstrates that batch normalization stabilizes activations while dropout prevents model
dependency on specific neurons, enhancing robustness. Yadav et. al. (2024) [604] examined batch
normalization combined with ReLU activations in medical imaging applications. The authors show
that batch normalization speeds up convergence and reduces overfitting, leading to more accurate
segmentation in cancer detection. Alshamrani and Alshomran (2024) [605] implemented batch nor-
malization along with L2 regularization in ResNet50-based mammogram classification. It highlights
how BN reduces parameter sensitivity, improving stability and reducing overfitting in deep learning
architectures. Zamindar (2024) [606] applied batch normalization and early stopping techniques
in industrial AI applications. It presents an in-depth analysis of how BN prevents overfitting by
maintaining variance stability, ensuring improved feature learning.

Overfitting, in its most rigorous formulation, arises when a model f(x; θ), parameterized by θ,
achieves a low empirical risk

R̂(θ) =
1

N

N∑
i=1

ℓ(f(xi; θ), yi) (468)

on the training data D = {(xi, yi)}Ni=1, but a high expected risk

R(θ) = E(x,y)∼P [ℓ(f(x; θ), y)] (469)

on the true data distribution P (x, y). This discrepancy is quantified by the generalization gap

R(θ)− R̂(θ), (470)

which can be bounded using tools from statistical learning theory, such as the Rademacher complex-
ity RN(H) of the hypothesis space H. Specifically, with probability at least 1−δ, the generalization
gap satisfies:

R(θ)− R̂(θ) ≤ 2RN(H) +
1

2N
log

(
1

δ

)
, (471)

where

RN(H) = ED,σ

[
sup
f∈H

1

N

N∑
i=1

σif(xi)

]
, (472)

and σi are Rademacher random variables. Overfitting occurs when the model complexity, as mea-
sured by RN(H), is too large relative to the sample size N , leading to a high generalization gap.
Regularization addresses overfitting by introducing a penalty term Ω(θ) into the empirical risk
minimization framework, yielding the regularized loss function:

Lreg(θ) = R̂(θ) + λΩ(θ), (473)

where λ controls the strength of regularization. Common choices for Ω(θ) include the L2-norm

Ω(θ) = ∥θ∥22 =

p∑
j=1

θ2j (474)
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and the L1-norm

Ω(θ) = ∥θ∥1 =

p∑
j=1

|θj|. (475)

From a Bayesian perspective, regularization corresponds to imposing a prior distribution p(θ) on
the parameters, such that the posterior distribution p(θ|D) ∝ p(D|θ)p(θ) favors simpler models.
For L2 regularization, the prior is a Gaussian distribution

p(θ) ∝ exp

(
−λ

2
∥θ∥22

)
, (476)

while for L1 regularization, the prior is a Laplace distribution

p(θ) ∝ exp(−λ∥θ∥1). (477)

Batch normalization (BN) introduces an additional layer of complexity to this framework by nor-
malizing the activations of a neural network within each mini-batch B = {x1, x2, . . . , xm}. For a
given activation x ∈ Rd, BN computes the normalized output x̂ as:

x̂ =
x− µB

σ2
B + ϵ

, (478)

where µB = 1
m

∑m
i=1 xi is the mini-batch mean, σ2

B = 1
m

∑m
i=1(xi− µB)2 is the mini-batch variance,

and ϵ is a small constant for numerical stability. The normalized output is then scaled and shifted
using learnable parameters γ and β, yielding the final output

y = γx̂+ β. (479)

This transformation ensures that the activations have zero mean and unit variance during training,
reducing internal covariate shift and stabilizing the optimization process. The regularization effect
of BN arises from its stochastic nature and its impact on the optimization dynamics. During
training, the use of mini-batch statistics introduces noise into the gradient updates, which can be
modeled as:

g̃(θ) = g(θ) + η, (480)

where g(θ) = ∇θL(θ) is the true gradient, g̃(θ) is the stochastic gradient computed using BN,
and η is a zero-mean random variable with covariance Σ. This noise acts as a form of stochastic
regularization, biasing the optimization trajectory toward flatter minima, which are associated with
better generalization. The regularization effect can be further analyzed using the continuous-time
limit of stochastic gradient descent (SGD), described by the stochastic differential equation (SDE):

dθt = −∇LBN(θt)dt+ ηΣdWt, (481)

where Wt is a Wiener process. The noise term ηΣdWt induces an implicit regularization effect, as
it biases the trajectory of θt toward regions of the parameter space with smaller curvature. From
a theoretical perspective, the regularization effect of BN can be formalized using the PAC-Bayes
framework. Let Q(θ) be a posterior distribution over the parameters induced by BN, and let P (θ)
be a prior distribution. The PAC-Bayes bound states:

Eθ∼Q[R(θ)] ≤ Eθ∼Q[R̂(θ)] + KL(Q ∥ P ) +
1

2N
log

(
1

δ

)
, (482)

where KL(Q ∥ P ) is the Kullback-Leibler divergence between Q and P . BN reduces KL(Q ∥ P ) by
constraining the parameter space, leading to a tighter bound and better generalization. Addition-
ally, BN reduces the effective rank of the activations, leading to a lower-dimensional representation
of the data, which further contributes to its regularization effect.
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Empirical studies have demonstrated that BN reduces the need for explicit regularization tech-
niques, such as dropout and weight decay, by introducing an implicit regularization effect that is
both data-dependent and adaptive. However, the exact form of this implicit regularization remains
an open question, and further theoretical analysis is required to fully understand the interaction
between BN and other regularization techniques. In conclusion, batch normalization is a powerful
tool that not only stabilizes and accelerates training but also introduces a sophisticated form of im-
plicit regularization, which can be rigorously analyzed using tools from statistical learning theory,
optimization, and stochastic processes.

6.3.11 Weight Decay

Literature Review: Xu et. al. (2024) [607] introduced a novel dual-phase regularization method
that combines excitatory and inhibitory transitions in neural networks. The study highlights the
effectiveness of L2 regularization (weight decay) in mitigating overfitting while enhancing conver-
gence speed. This work is critical for researchers looking at biologically inspired regularization
techniques. Elshamy et. al. (2024) [608] integrated weight decay regularization into deep learning
models for medical imaging. By fine-tuning hyperparameters and regularization techniques, the
paper demonstrates improved diagnostic accuracy and robustness against overfitting, making it a
crucial reference for medical AI applications. Vinay et. al. (2024) [609] explored L2 regularization
(weight decay) and learning rate decay as effective techniques to prevent overfitting in convolutional
neural networks (CNNs). It highlights how a structured combination of regularization techniques
can improve model robustness in medical image classification. Gai and Huang (2024) [610] intro-
duced a new weight decay method tailored for biquaternion neural networks, emphasizing its role
in maintaining balance between model complexity and generalization. It presents rigorous mathe-
matical proofs supporting the effectiveness of weight decay in reducing overfitting. Xu (2025) [611]
systematically compared various high-level regularization techniques, including dropout, weight de-
cay, and early stopping, to combat overfitting in deep learning models trained on noisy datasets.
It presents empirical evaluations on real-world linkage tasks. Liao et. al. (2025) [612] introduced
decay regularization, a variation of weight decay, in stochastic networks to optimize battery Re-
maining Useful Life (RUL) prediction for UAVs. It provides a novel take on weight decay’s impact
on sparsification and overfitting control. Dong et. al. (2024) [613] evaluated weight decay in self-
knowledge distillation frameworks for improving image classification accuracy. It provides evidence
that combining weight decay with knowledge distillation significantly improves model generaliza-
tion. Ba et. al. (2024) [614] investigated the interplay between data diversity and weight decay
regularization in neural networks. The paper introduces a theoretical framework linking weight
decay with dataset variability and explores its impact on the weight landscape. Li et. al. (2024)
[615] integrated L2 regularization (weight decay) with hybrid data augmentation strategies for au-
dio signal processing, proving its effectiveness in preventing overfitting in deep neural networks.
Zang and Yan (2024) [616] presented a new attenuation-based weight decay regularization method
for improving network robustness in high-dimensional data scenarios. It introduces novel kernel-
learning techniques combined with weight decay for enhanced performance.

Overfitting is a phenomenon that arises when a model f(x; θ), parameterized by θ ∈ Rp, achieves
a low empirical risk

Ltrain(θ) =
1

N

N∑
i=1

ℓ(f(xi; θ), yi) (483)

but fails to generalize to unseen data, as quantified by the generalization error

Ltest(θ) = E(x,y)∼P [ℓ(f(x; θ), y)] (484)

where P is the true data-generating distribution. The discrepancy between Ltrain(θ) and Ltest(θ)
is a consequence of the model’s excessive capacity to fit noise in the training data, which can be
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formalized using the Rademacher complexity RN(H) of the hypothesis space H. Specifically, the
Rademacher complexity is defined as

RN(H) = ED,σ

[
sup
f∈H

1

N

N∑
i=1

σif(xi; θ)

]
(485)

where σi are Rademacher random variables. Overfitting occurs when RN(H) is large relative to
the sample size N , leading to a generalization gap

Ltest(θ)− Ltrain(θ) (486)

that grows with the complexity of H. Regularization addresses overfitting by introducing a penalty
term Ω(θ) into the empirical risk minimization framework, yielding the regularized objective

Lregularized(θ) = Ltrain(θ) + λΩ(θ) (487)

where λ > 0 is the regularization parameter. Weight decay, a specific form of regularization,
corresponds to the choice

Ω(θ) =
1

2
∥θ∥22 (488)

which imposes an L2 penalty on the model parameters. This penalty can be interpreted as a
constraint on the parameter space, restricting the solution to a ball of radius C = 2

λ
in the Euclidean

norm, as dictated by the Lagrange multiplier theorem. The regularized objective thus becomes

Lregularized(θ) = Ltrain(θ) +
λ

2
∥θ∥22 (489)

which is strongly convex if Ltrain(θ) is convex, ensuring a unique global minimum θ∗. The optimiza-
tion dynamics of weight decay can be analyzed through the lens of gradient descent. The update
rule for gradient descent with learning rate η and weight decay is given by

θt+1 = θt − η (∇θLtrain(θt) + λθt) (490)

which can be rewritten as
θt+1 = (1− ηλ)θt − η∇θLtrain(θt) (491)

This update rule introduces an exponential decay in the parameter values, ensuring that θt remains
bounded and converges to the regularized solution θ∗. The convergence properties of this algorithm
can be rigorously analyzed using the theory of convex optimization. Specifically, if Ltrain(θ) is
L-smooth and µ-strongly convex, the regularized objective Lregularized(θ) is (L + λ)-smooth and
(µ+ λ)-strongly convex, leading to a linear convergence rate of

∥θt − θ∗∥2 ≤
(
L+ λ

µ+ λ

)t

∥θ0 − θ∗∥2 (492)

The statistical implications of weight decay can be understood through the bias-variance tradeoff.
The bias of the regularized estimator θ∗ is given by

Bias(θ∗) = E[θ∗]− θ0 (493)

where θ0 is the true parameter vector, while the variance is given by

Var(θ∗) = E[∥θ∗ − E[θ∗]∥22] (494)

Weight decay increases the bias by shrinking θ∗ toward zero but reduces the variance by constraining
the parameter space. This tradeoff can be quantified using the ridge regression estimator in the
linear model setting, where

θ∗ = (X⊤X + λI)−1X⊤y (495)
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The bias and variance of this estimator can be explicitly computed as

Bias(θ∗) = −λ(X⊤X + λI)−1θ0 (496)

and
Var(θ∗) = σ2Tr

(
(X⊤X + λI)−2X⊤X

)
(497)

where σ2 is the noise variance. The theoretical foundations of weight decay can also be explored
through the lens of reproducing kernel Hilbert spaces (RKHS). In this framework, the regularization
term λ

2
∥θ∥22 corresponds to the squared norm in an RKHS H, and the regularized solution is the

minimizer of

Lregularized(f) = Ltrain(f) +
λ

2
∥f∥2H (498)

where ∥f∥H is the norm in H. This connection reveals that weight decay is equivalent to Tikhonov
regularization in the RKHS setting, providing a unifying theoretical framework for understanding
regularization in both parametric and non-parametric models. In conclusion, weight decay is a
mathematically principled regularization technique that addresses overfitting by constraining the
hypothesis space and reducing the Rademacher complexity of the model. Its optimization dy-
namics, statistical properties, and connections to RKHS theory provide a rigorous foundation for
understanding its role in improving generalization performance. By carefully tuning the regular-
ization parameter λ, we can achieve an optimal balance between bias and variance, ensuring robust
and reliable model performance on unseen data.

6.3.12 Max Norm Constraints

Literature Review: Srivastava et al. (2014) [131] introduced dropout as a regularization method
and explores the interplay between dropout and max-norm constraints. The authors show that
dropout acts as an implicit regularizer, reducing overfitting by randomly omitting units during
training. They also analyze the use of max-norm constraints with dropout, demonstrating that
this combination prevents excessive weight growth and stabilizes training in deep neural networks.
Moradi et al. (2020) [617] provided a comprehensive survey of regularization techniques, including
max-norm constraints. The authors explore different forms of norm-based constraints (L1, L2,
and max-norm), discussing their effects on weight magnitude, sparsity, and overfitting reduction.
They compare these techniques across multiple neural network architectures. Rodŕıguez et al.
(2016) [618] introduced a novel regularization technique that constrains local weight correlations
in CNNs, reducing overfitting without sacrificing learning capacity. They demonstrate that max-
norm constraints help prevent weights from growing too large, thus maintaining stability in deep
convolutional networks. Tian and Zhang (2022) [619] surveyed different regularization strategies,
with a special focus on norm constraints. It extensively discusses the effectiveness of max-norm
constraints in preventing overfitting in deep learning models and compares them with weight de-
cay and L1/L2 regularization. Cong et al. (2017) [620] developed a hybrid approach combining
max-norm and low-rank constraints to handle overfitting in similarity learning tasks. The authors
propose an online learning method that reduces model complexity while maintaining generaliza-
tion performance. Salman and Liu (2019) [621] conducted an empirical study on how overfitting
manifests in deep neural networks and propose max-norm constraints as a key strategy to miti-
gate overfitting. Their results suggest that max-norm regularization improves generalization by
limiting weight magnitudes. Wang et. al. (2021) [622] explored benign overfitting, where models
achieve perfect training accuracy but still generalize well. The authors investigate max-norm con-
straints as a form of implicit regularization and show that they help avoid harmful overfitting in
high-dimensional settings. Poggio et al. (2017) [623] presented a theoretical framework explaining
why deep networks often avoid overfitting despite having more parameters than data points. They
highlight the role of max-norm constraints in controlling model complexity and preventing overfit-
ting. Oyedotun et. al. (2017) [624] discussed the consequences of overfitting in deep networks and
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compares various norm-based constraints (L1, L2, max-norm). The authors advocate for max-norm
regularization due to its computational efficiency and robustness in high-dimensional spaces. Luo
et al. (2016) [625] proposed an improved extreme learning machine (ELM) model that integrates
L1, L2, and max-norm constraints to enhance generalization performance. The authors show that
max-norm regularization effectively prevents overfitting while maintaining model interpretability.

Overfitting is a fundamental problem in machine learning that occurs when a model captures noise
or spurious patterns in the training data instead of learning the underlying distribution. Mathe-
matically, overfitting can be understood in terms of generalization error, which is the discrepancy
between the empirical risk Lempirical(w) and the expected risk L(w). Given a training dataset
D = {(xi, yi)}Ni=1, where xi ∈ Rd and yi ∈ R, the model is parameterized by w and optimized to
minimize the empirical risk

Lempirical(w) =
1

N

N∑
i=1

ℓ(fw(xi), yi) (499)

where ℓ(·, ·) is a loss function, such as the squared loss for regression:

ℓ(fw(xi), yi) =
1

2
(fw(xi)− yi)2 (500)

However, the expected risk, which measures the model’s true generalization performance on unseen
data, is given by

L(w) = E(x,y)∼P [ℓ(fw(x), y)] (501)

The generalization gap is defined as

L(w)− Lempirical(w) (502)

and it increases when the model complexity is too high relative to the number of training samples.
In statistical learning theory, this gap can be upper-bounded using the Vapnik-Chervonenkis (VC)
dimension VC(H) of the hypothesis class H, yielding the bound

E[L(w)] ≤ Lempirical(w) +O

(√
VC(H)

N

)
(503)

This inequality suggests that models with high VC dimension have larger generalization gaps,
leading to overfitting. Another theoretical measure of complexity is the Rademacher complexity,
which quantifies the ability of a function class to fit random noise. If H has high Rademacher
complexity R(H), the generalization bound

E[L(w)] ≤ Lempirical(w) +O (R(H)) (504)

indicates poor generalization. Regularization techniques aim to reduce the effective hypothesis
space, thereby improving generalization by controlling model complexity. One effective approach
to mitigating overfitting is the incorporation of a regularization term in the objective function. A
general regularized loss function takes the form

Lλ(w) = Lempirical(w) + λΩ(w) (505)

where Ω(w) is a penalty function enforcing constraints on w, and λ is a hyperparameter controlling
the strength of regularization. Popular choices for Ω(w) include the L2 norm (ridge regression)

Ω(w) = ∥w∥22 =
d∑

j=1

w2
j (506)
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which shrinks large weight values but does not impose an explicit bound on their magnitude.
Similarly, L1 regularization (lasso regression),

Ω(w) = ∥w∥1 =
d∑

j=1

|wj| (507)

promotes sparsity but does not constrain the overall norm. Max-norm regularization is a stricter
form of regularization that directly enforces an upper bound on the norm of the weight vector.
Specifically, it constrains the weight norm to satisfy

∥w∥2 ≤ c (508)

for some constant c. This constraint prevents the optimizer from selecting solutions where the
weight magnitudes grow excessively, thereby controlling model complexity more effectively than
L2 regularization. Instead of adding a penalty term to the loss function, max-norm regularization
enforces the constraint during optimization by projecting the weight vector onto the feasible set
whenever it exceeds the bound. Mathematically, this projection step is given by

w← c

max(∥w∥2, c)
w (509)

From a geometric perspective, max-norm regularization restricts the hypothesis space to a Eu-
clidean ball of radius c centered at the origin. The restricted hypothesis space leads to a lower
VC dimension and reduced Rademacher complexity, improving generalization. The constrained
optimization problem can be reformulated using Lagrange multipliers, leading to the constrained
optimization problem

min
w
L(w) subject to ∥w∥2 ≤ c (510)

Introducing the Lagrange multiplier α, the Lagrangian function is

Lα(w) = L(w) + α(∥w∥22 − c2) (511)

Differentiating with respect to w gives the optimality condition

∇wL(w) + 2αw = 0 (512)

Solving for w, we obtain

w = − 1

2α
∇wL(w) (513)

which shows that weight updates are constrained in a direction dependent on α, effectively con-
trolling their magnitude.

6.3.13 Transfer Learning

Literature Review: Cakmakci [598] examined the use of Xception-based transfer learning in
pediatric bone age prediction. It highlights the importance of dropout regularization in prevent-
ing overfitting in deep models trained on small datasets. The paper provides insights into how
regularization techniques can maintain model generalizability. Zhou et. al. (2024) [626] focused
on ElasticNet regularization combined with transfer learning to prevent overfitting in rice disease
classification. The research demonstrates that L1 and L2 regularization can significantly improve
generalization by penalizing model complexity, especially in scenarios with limited labeled data.
Omole et. al. (2024) [627] explored Neural Architecture Search (NAS) with transfer learning, in-
tegrating adaptive convolution and regularization-based techniques to enhance model robustness.
The authors implement batch normalization and weight decay to address overfitting issues common
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in agricultural image datasets. By leveraging data augmentation, dropout, and fine-tuning, Tri-
pathi, et. al. (2024) [628] optimized a VGG-16-based transfer learning approach for brain tumor
detection. The study shows how dropout regularization and L2 penalty mitigate overfitting and
improve model robustness when handling medical images. Singla and Gupta [629] emphasized early
stopping, dropout regularization, and L1/L2 penalties in preventing overfitting in transfer learning
models applied to medical imaging. The authors highlight the impact of model complexity on over-
fitting and suggest hyperparameter tuning as a complementary solution. Adhaileh et. al. (2024)
[630] introduced a multi-phase transfer learning model with regularization-based fine-tuning to en-
hance diagnostic accuracy in chest disease classification. The study integrates batch normalization,
weight decay, and dropout layers to prevent overfitting in CNN-based architectures. Harvey et.
al. (2025) [631] presented a data-driven hyperparameter optimization technique that adapts reg-
ularization strength dynamically. The proposed L2-zero regularization method adjusts the weight
penalty based on the importance of data samples, improving transfer learning model robustness
against overfitting. Mahmood et. al. (2025) [632] introduced regional regularization loss functions
in transfer learning for medical imaging. It focuses on mitigating overfitting through adversarial
training and data augmentation, ensuring robustness across diverse datasets. Shen (2025) [633]
combined feature selection with transfer learning to prevent overfitting in sports analytics. The
study highlights Ridge and Lasso regularization as essential tools in stabilizing model predictions
in high-dimensional data. Guo et. al. (2025) [634] developed uncertainty-aware knowledge dis-
tillation for transfer learning in medical image segmentation. It employs cyclic ensemble training
and dropout-based uncertainty estimation to mitigate overfitting and improve generalization per-
formance.

Let’s discuss the Mathematical Formulation of Transfer Learning and Overfitting. Let X ⊂ Rd

be the input space and Y be the label space. In transfer learning, we assume the existence of
two probability distributions: the source distribution Psource(x, y) and the target distribution
Ptarget(x, y), which govern the input-output relationship. The goal of transfer learning is to approx-
imate the optimal target hypothesis function f ∗(x) by leveraging knowledge from the source
model fs(x), while minimizing the expected risk over the target distribution:

Rtarget(f) = Ex∼Ptarget [L(f(x), y)] . (514)

Since Ptarget is unknown, we approximate Rtarget(f) using the empirical risk computed over a
finite dataset Dtarget = {(xi, yi)}Ni=1:

R̂target(f) =
1

N

N∑
i=1

L(f(xi), yi). (515)

A model that perfectly minimizes R̂target(f) may lead to overfitting, wherein the function
f(x) aligns with noise in the training set instead of generalizing well to new data. The degree of
overfitting is measured by the generalization gap:

G(f) = Rtarget(f)− R̂target(f). (516)

According to Statistical Learning Theory, the generalization error bound is governed by
the Rademacher complexity R(H) of the hypothesis space H, which quantifies the capacity of
H to fit random noise:

G(f) ≤ O

(
R(H) +

√
logN

N

)
. (517)

This implies that hypothesis spaces with high Rademacher complexity suffer from large general-
ization gaps, leading to overfitting. Regularization can be thought as a Mechanism for Controlling
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Hypothesis Complexity. To mitigate overfitting, we impose a regularization functional Ω(f)
that penalizes excessively complex hypotheses. This modifies the optimization problem to:

f ∗ = arg min
f∈H

[
R̂target(f) + λΩ(f)

]
. (518)

where λ is a hyperparameter balancing empirical risk minimization and model complexity. From
the perspective of functional analysis, we interpret regularization as imposing constraints on the
function space where f is chosen. In many cases, f is assumed to belong to a Reproducing
Kernel Hilbert Space (RKHS) HK associated with a kernel function K(x,x′). The RKHS
norm,

∥f∥2HK
=
∑
i,j

αiαjK(xi,xj), (519)

acts as a smoothness regularizer that prevents excessive function oscillations. Alternatively, in the
Sobolev space Wm,p(X ), regularization can take the form:

Ω(f) =

∫
X
|Dmf(x)|p dx, (520)

where Dmf represents the mth weak derivative of f . The choice of m and p dictates the smoothness
constraints imposed on f , directly influencing its generalization ability. One of the most widely used
regularization techniques is L2 regularization or Tikhonov regularization, which penalizes the
Euclidean norm of the model parameters:

Ω(f) = ∥θ∥22 =
∑
i

θ2i . (521)

To understand the effect of L2 regularization, consider the Hessian matrix H = ∇2
θL, which

captures the local curvature of the loss landscape. The largest eigenvalue λmax determines the
sharpness of the loss minimum:

∥H∥2 = sup
∥v∥2=1

∥Hv∥2. (522)

A sharp minimum, corresponding to a high λmax, leads to poor generalization. L2 regularization
modifies the eigenvalue spectrum of the Hessian, effectively reducing λmax, leading to smoother
loss surfaces and improved generalization. In conclusion, The Bias-Variance Tradeoff and Optimal
Regularization Selection, Regularization directly influences the bias-variance tradeoff :

• Under-regularization: Low bias, high variance ⇒ overfitting.

• Over-regularization: High bias, low variance ⇒ underfitting.

By tuning λ via cross-validation, we achieve a balance between empirical risk minimization
and hypothesis complexity control, ensuring optimal generalization performance.

6.4 Hyperparameter Tuning

Literature Review: Luo et. al. (2003) [137] provided a deep dive into Bayesian Optimization, a
widely used method for hyperparameter tuning. It covers theoretical foundations, practical appli-
cations, and advanced strategies for establishing an appropriate range for hyperparameters. This
resource is essential for researchers interested in probabilistic approaches to tuning machine learn-
ing models. Alrayes et. al. (2025) [138] explored the use of statistical learning and optimization
algorithms to fine-tune hyperparameters in machine learning models applied to IoT networks. The
paper emphasizes privacy-preserving approaches, making it valuable for practitioners working with
secure data environments. Cho et. al. (2020) [139] discussed basic enhancement strategies when
using Bayesian Optimization for Hyperparameter Tuning of Deep Neural Networks. Ibrahim et.
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al. (2025) [140] focused on hyperparameter tuning for XGBoost, a widely used machine learning
model, in the context of medical diagnosis. It showcases a comparative analysis of tuning techniques
to optimize model performance in real-world healthcare applications. Abdel-Salam et. al. (2025)
[141] introduced an evolved framework for tuning deep learning models using multiple optimization
algorithms. It presented a novel approach that outperforms traditional techniques in training deep
networks. Vali (2025) [142] in his Doctoral thesis covers how vector quantization techniques aid
in reducing hyperparameter search space for deep learning models. It emphasizes computational
efficiency in speech and image processing applications. Vincent and Jidesh (2023) [143] in their
paper explored various hyperparameter optimization techniques, comparing their performance on
image classification datasets using AutoML models. It focuses on Bayesian optimization and intro-
duces genetic algorithms, differential evolution, and covariance matrix adaptation—evolutionary
strategy (CMA-ES) for acquisition function optimization. Results show that CMA-ES and differ-
ential evolution enhance Bayesian optimization, while genetic algorithms degrade its performance.
Razavi-Termeh et. al. (2025) [144] explored the role of geospatial artificial intelligence (GeoAI)
in mapping flood-prone areas, leveraging metaheuristic algorithms for hyperparameter tuning. It
offers insights into machine learning applications in environmental science. Kiran and Ozyildirim
(2022) [145] proposed a distributed variable-length genetic algorithm to optimize hyperparameters
in reinforcement learning (RL), improving training efficiency and robustness. Unlike traditional
deep RL, which lacks extensive tuning due to complexity, our approach systematically enhances
performance across various RL tasks, outperforming Bayesian methods. Results show that more
generations yield optimal, computationally efficient solutions, advancing RL for real-world appli-
cations.

Hyperparameter tuning in neural networks represents an intricate, highly mathematical optimiza-
tion challenge that is fundamental to achieving optimal performance on a given task. This process
can be framed as a bi-level optimization problem, where the outer optimization concerns the se-
lection of hyperparameters h ∈ H to minimize a validation loss function Lval(θ

∗(h);h), while the
inner optimization determines the optimal model parameters θ∗ by minimizing the training loss
Ltrain(θ;h). This can be expressed rigorously as follows:

h∗ = arg min
h∈H
Lval(θ

∗(h);h), where θ∗(h) = arg min
θ
Ltrain(θ;h). (523)

Here, H denotes the hyperparameter space, which is often high-dimensional, non-convex, and
computationally expensive to traverse. The training loss function Ltrain(θ;h) is typically represented
as an empirical risk computed over the training dataset {(xi, yi)}Ni=1:

Ltrain(θ;h) =
1

N

N∑
i=1

ℓ(f(xi; θ, h), yi), (524)

where f(xi; θ, h) is the neural network output given the input xi, parameters θ, and hyperparameters
h, and ℓ(a, b) is the loss function quantifying the discrepancy between prediction a and ground truth
b. For classification tasks, ℓ often takes the form of cross-entropy loss:

ℓ(a, b) = −
C∑

k=1

bk log ak, (525)

where C is the number of classes, and ak and bk are the predicted and true probabilities for the
k-th class, respectively. Central to the training process is the optimization of θ via gradient-based
methods such as stochastic gradient descent (SGD). The parameter updates are governed by:

θ(t+1) = θ(t) − η∇θLtrain(θ(t);h), (526)

103



where η > 0 is the learning rate, a critical hyperparameter controlling the step size. The stability
and convergence of SGD depend on η, which must satisfy:

0 < η <
2

λmax(H)
, (527)

where λmax(H) is the largest eigenvalue of the Hessian matrix H = ∇2
θLtrain(θ;h). This condition

ensures that the gradient descent steps do not overshoot the minimum. To analyze convergence
behavior, the loss function Ltrain(θ;h) near a critical point θ∗ can be approximated via a second-
order Taylor expansion:

Ltrain(θ;h) ≈ Ltrain(θ∗;h) +
1

2
(θ − θ∗)⊤H(θ − θ∗), (528)

where H is the Hessian matrix of second derivatives. The eigenvalues of H reveal the local cur-
vature of the loss surface, with positive eigenvalues indicating directions of convexity and negative
eigenvalues corresponding to saddle points. Regularization is often introduced to improve gener-
alization by penalizing large parameter values. For L2 regularization, the modified training loss
is:

Lreg
train(θ;h) = Ltrain(θ;h) +

λ

2
∥θ∥22, (529)

where λ > 0 is the regularization coefficient. The gradient of the regularized loss becomes:

∇θLreg
train(θ;h) = ∇θLtrain(θ;h) + λθ. (530)

Another key hyperparameter is the weight initialization strategy, which affects the scale of activa-
tions and gradients throughout the network. For a layer with nin inputs, He initialization samples
weights from:

wij ∼ N
(

0,
2

nin

)
, (531)

to ensure that the variance of activations remains stable as data propagate through layers. The
activation function g(z) also plays a crucial role. The Rectified Linear Unit (ReLU), defined as
g(z) = max(0, z), introduces sparsity and mitigates vanishing gradients. However, it suffers from
the ”dying neuron” problem, as its derivative g′(z) is zero for z ≤ 0. The search for optimal hyper-
parameters can be approached using grid search, random search, or more advanced methods like
Bayesian optimization. In Bayesian optimization, a surrogate model p(Lval(h)), often a Gaussian
Process (GP), is constructed to approximate the validation loss. The acquisition function a(h), such
as Expected Improvement (EI), guides the exploration of H by balancing exploitation of regions
with low predicted loss and exploration of uncertain regions:

a(h) = E [max(0,Lval,min − Lval(h))] , (532)

where Lval,min is the best observed validation loss. Hyperparameter tuning is computationally
intensive due to the high dimensionality of H and the nested nature of the optimization problem.
Early stopping, a widely used strategy, halts training when the improvement in validation loss falls
below a threshold:

L(t+1)
val − L

(t)
val

L(t)
val

< ϵ, (533)

where ϵ > 0 is a small constant. Advanced techniques like Hyperband leverage multi-fidelity op-
timization, allocating resources dynamically to promising hyperparameter configurations based on
partial training evaluations.

In conclusion, hyperparameter tuning for training neural networks is an exceptionally mathemat-
ically rigorous process, grounded in nested optimization, gradient-based methods, probabilistic
modeling, and computational heuristics. Each component, from learning rates and regularization
to initialization and optimization strategies, contributes to the complex interplay that defines neural
network performance.
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6.4.1 Grid Search

Literature Review: Rohman and Farikhin (2025) [397] explored the impact of Grid Search and
Random Search in hyperparameter tuning for Random Forest classifiers in the context of dia-
betes prediction. The study provides a comparative analysis of different hyperparameter tuning
strategies and demonstrates that Grid Search improves classification accuracy by selecting optimal
hyperparameter combinations systematically. Rohman (2025) [398] applied Grid Search-based hy-
perparameter tuning to optimize machine learning models for early brain tumor detection. The
study emphasizes the importance of systematic hyperparameter selection and provides insights into
how Grid Search affects diagnostic accuracy and computational efficiency in medical applications.
Nandi et al. (2025) [399] examined the use of Grid Search for deep learning hyperparameter tuning
in baby cry sound recognition systems. The authors present a novel pipeline that systematically
selects the best hyperparameters for neural networks, improving both precision and recall in sound
classification. Sianga et. al. (2025) [400] applied Grid Search and Randomized Search to optimize
machine learning models predicting cardiovascular disease risk. The study finds that Grid Search
consistently outperforms randomized methods in accuracy, highlighting its effectiveness in medical
diagnostic models. Li et. al. (2025) [401] applied Stratified 5-fold cross-validation combined with
Grid Search to fine-tune Extreme Gradient Boosting (XGBoost) models in predicting post-surgical
complications. The results suggest that hyperparameter tuning significantly improves predictive
performance, with Grid Search leading to the best model stability and interpretability. Lázaro
et. al. (2025) [402] implemented Grid Search and Bayesian Optimization to optimize K-Nearest
Neighbors (KNN) and Decision Trees for incident classification in aviation safety. The research
underscores how different hyperparameter tuning methods affect the generalization of machine
learning models in NLP-based accident reports. Li et. al. (2025) [403] proposed RAINER, an en-
semble learning model that integrates Grid Search for optimal hyperparameter tuning. The study
demonstrates how parameter optimization enhances the predictive capabilities of rainfall models,
making Grid Search an essential step in climate modeling. Khurshid et. al. (2025) [404] compared
Bayesian Optimization with Grid Search for hyperparameter tuning in diabetes prediction models.
The study finds that while Bayesian methods are computationally faster, Grid Search delivers more
precise hyperparameter selection, especially for models with structured medical data. Kanwar et.
al. (2025) [405] applied Grid Search for tuning Random Forest classifiers in landslide susceptibility
mapping. The study demonstrates that fine-tuned models improve the identification of high-risk
zones, reducing false positives in predictive landslide models. Fadil et. al. (2025) [406] evaluated
the role of Grid Search and Random Search in hyperparameter tuning for XGBoost regression
models in corrosion prediction. The authors find that Grid Search-based models achieve higher R²
scores, making them ideal for complex chemical modeling applications.

Grid search is a highly structured and exhaustive method for hyperparameter tuning in machine
learning, where a predetermined grid of hyperparameter values is systematically explored. The goal
is to identify the set of hyperparameters h⃗ = (h1, h2, . . . , hp) that yields the optimal performance
metric for a given machine learning model. Let p represent the total number of hyperparameters
to be tuned, and for each hyperparameter hi, let the candidate set be Hi = {hi1, hi2, . . . , himi

},
where mi is the number of candidate values for hi. The hyperparameter search space is then the
Cartesian product of all candidate sets:

S = H1 ×H2 × · · · × Hp. (534)

Thus, the total number of configurations to be evaluated is:

|S| =
p∏

i=1

mi. (535)

For example, if we have two hyperparameters h1 and h2 with 3 possible values each, the total
number of combinations to explore is 9. This search space grows exponentially as the number
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of hyperparameters increases, posing a significant computational challenge. Grid search involves
iterating over all configurations in S, evaluating the model’s performance for each configuration.

Let us define the performance metric M (⃗h,Dtrain,Dval), which quantifies the model’s performance

for a given hyperparameter configuration h⃗, where Dtrain and Dval are the training and validation
datasets, respectively. This metric might represent accuracy, error rate, F1-score, or any other
relevant criterion, depending on the problem at hand. The hyperparameters are then tuned by
maximizing or minimizing M across the search space:

h⃗∗ = arg max
h⃗∈S

M (⃗h,Dtrain,Dval), (536)

or in the case of a minimization problem:

h⃗∗ = arg min
h⃗∈S

M (⃗h,Dtrain,Dval). (537)

For each hyperparameter combination, the model is trained on Dtrain and evaluated on Dval. The
process requires the repeated evaluation of the model over all |S| configurations, each yielding a
performance metric. To mitigate overfitting and ensure the reliability of the performance metric,
cross-validation is frequently used. In k-fold cross-validation, the dataset Dtrain is partitioned into
k disjoint subsets D1,D2, . . . ,Dk. The model is trained on D(j)

train =
⋃

i ̸=j Di and validated on Dj.
For each fold j, we compute the performance metric:

Mj (⃗h) = M (⃗h,D(j)
train,Dj). (538)

The overall cross-validation performance for a hyperparameter configuration h⃗ is the average of the
k individual fold performances:

M (⃗h) =
1

k

k∑
j=1

Mj (⃗h). (539)

Thus, the grid search with cross-validation aims to find the optimal hyperparameters by maximizing
or minimizing the average performance across all folds. The computational complexity of grid search
is a key consideration. If we denote C as the cost of training and evaluating the model for a single
configuration, the total cost for grid search is:

O

(
p∏

i=1

mi · k · C

)
, (540)

where k represents the number of folds in cross-validation. This results in an exponential increase in
the total computation time as the number of hyperparameters p and the number of candidate values
mi increase. For large search spaces, grid search can become computationally expensive, making it
infeasible for high-dimensional hyperparameter optimization problems. To illustrate with a specific
example, consider two hyperparameters h1 and h2 with the following sets of candidate values:

H1 = {0.01, 0.1, 1.0}, H2 = {0.1, 1.0, 10.0}. (541)

The search space is:

S = H1 ×H2 = {(0.01, 0.1), (0.01, 1.0), (0.01, 10.0), (0.1, 0.1), . . . , (1.0, 10.0)}. (542)

There are 9 configurations to evaluate. For each configuration, assume we perform 3-fold cross-
validation, where the performance metrics for the first fold are:

M1(0.1, 1.0) = 0.85, M2(0.1, 1.0) = 0.87, M3(0.1, 1.0) = 0.86, (543)
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giving the cross-validation performance:

M(0.1, 1.0) =
1

3

3∑
j=1

Mj(0.1, 1.0) =
1

3
(0.85 + 0.87 + 0.86) = 0.86. (544)

This process is repeated for all 9 combinations of h1 and h2. Grid search, while exhaustive and
deterministic, can fail to efficiently explore the hyperparameter space, especially when the num-
ber of hyperparameters is large. The search is confined to a discrete grid and cannot interpolate
between points to capture optimal configurations that may lie between grid values. Furthermore,
because grid search evaluates each configuration independently, it can be computationally expen-
sive for high-dimensional spaces, as the number of configurations grows exponentially with p and mi.

In conclusion, grid search is a methodologically rigorous and systematic approach to hyperpa-
rameter optimization, ensuring that all predefined configurations are evaluated exhaustively. How-
ever, its computational cost increases exponentially with the number of hyperparameters and their
respective candidate values, which can limit its applicability for large-scale problems. As a re-
sult, more advanced techniques such as random search, Bayesian optimization, or evolutionary
algorithms are often used for hyperparameter tuning when the computational budget is limited.
Despite these challenges, grid search remains a powerful tool for demonstrating the principles of
hyperparameter tuning and is well-suited for problems with relatively small search spaces. The
pros of grid search are:

1. Guaranteed to find the best combination within the search space.

2. Easy to implement and parallelize.

The cons of grid search are:

1. Computationally expensive, especially for high-dimensional hyperparameter spaces.

2. Inefficient if some hyperparameters have little impact on performance.

6.4.2 Random Search

Literature Review: Sianga et. al. (2025) [400] explored Random Search vs. Grid Search for
tuning machine learning models in cardiovascular disease risk prediction. It finds that Random
Search significantly reduces computation time while maintaining high accuracy, making it prefer-
able for high-dimensional datasets in medical applications. Lázaro et. al. (2025) [402] applied
Random Search and Grid Search to optimize models for accident classification using NLP. The
study highlights Random Search’s efficiency in tuning K-Nearest Neighbors (KNN) and Decision
Trees, leading to faster convergence with minimal loss in accuracy. Emmanuel et. al. (2025) [407]
introduced a hybrid approach combining Random Search with Differential Evolution optimization
to enhance deep-learning-based protein interaction models. The study demonstrates how Random
Search improves generalization and reduces overfitting. Gaurav et. al. (2025) [408] evaluated
Random Search optimization in Random Forest classifiers for driver identification. They compare
Random Search, Bayesian Optimization, and Genetic Algorithms, concluding that Random Search
provides a balance between efficiency and performance. Kanwar et. al. (2025) [405] applied Ran-
dom Search hyperparameter tuning to Random Forest models for landslide risk assessment. It
finds that Random Search significantly reduces computation time without compromising model
accuracy, making it ideal for large-scale geospatial analyses. Ning et al. (2025) [409] evaluated
Random Search for optimizing mortality prediction models in infected pancreatic necrosis patients.
The authors conclude that Random Search outperforms exhaustive Grid Search in finding optimal
hyperparameters with significant speed improvements. Muñoz et. al. (2025) [410] presented a
novel optimization strategy that combines Random Search with a secretary algorithm to improve
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hyperparameter tuning efficiency. It demonstrates how Random Search can be adapted to dy-
namic optimization problems in real-time AI applications. Balcan et. al. (2025) [411] explored
the theoretical underpinnings of Random Search in deep learning optimization. They provide a
rigorous analysis of the sample complexity required for effective tuning, establishing mathematical
guarantees for Random Search efficiency. Azimi et. al. (2025) [412] compared Random Search
with metaheuristic algorithms (e.g., Genetic Algorithms and Particle Swarm Optimization) in su-
percapacitor modeling. The results indicate that Random Search provides a robust baseline for
hyperparameter optimization in deep learning models. Shibina and Thasleema (2025) [413] applied
Random Search for optimizing ensemble learning classifiers in medical diagnosis. The results show
Random Search’s advantage in finding optimal hyperparameters for detecting Parkinson’s disease
using voice features, making it a practical alternative to Bayesian Optimization.

In machine learning, hyperparameter tuning is the process of selecting the best configuration of
hyperparameters h = (h1, h2, . . . , hd), where each hi represents the i-th hyperparameter. The hy-
perparameters h control key aspects of model learning, such as the learning rate, regularization
strength, or the architecture of the neural network. These hyperparameters are not directly opti-
mized through the learning process itself but are instead set before training begins. Given a set
of hyperparameters, the model performance is evaluated by computing a loss function L(h), which
typically represents the error on a validation set, and possibly regularization terms to mitigate over-
fitting. The objective is to minimize this loss function to find the optimal set of hyperparameters:

h∗ = arg min
h
L(h), (545)

where L(h) is the loss function that quantifies how well the model generalizes to unseen data. The
minimization of this function is often subject to constraints on the range or type of values that
each hi can take, forming a constrained optimization problem:

h∗ = arg min
h∈H

L(h), (546)

where H represents the feasible hyperparameter space. Hyperparameter tuning is typically carried
out by selecting a search method that explores this space efficiently, with the goal of finding the
global or local optimum of the loss function.

One such search method is random search, which is a straightforward yet effective approach
to exploring the hyperparameter space. Instead of exhaustively searching over a grid of val-
ues for each hyperparameter (as in grid search), random search samples hyperparameters ht =
(ht,1, ht,2, . . . , ht,d) from a predefined distribution for each hyperparameter hi. For each iteration
t, the hyperparameters are independently sampled from probability distributions Di associated
with each hyperparameter hi, where the probability distribution might be continuous or discrete.
Specifically, for continuous hyperparameters, ht,i is drawn from a uniform or normal distribution
over an interval Hi = [ai, bi]:

ht,i ∼ U(ai, bi), ht,i ∈ Hi, (547)

where U(ai, bi) denotes the uniform distribution between ai and bi. For discrete hyperparameters,
ht,i is sampled from a discrete set of valuesHi = {hi1, hi2, . . . , hiNi

} with each value equally probable:

ht,i ∼ Di, ht,i ∈ {hi1, hi2, . . . , hiNi
}, (548)

where Di denotes the discrete distribution over the set {hi1, hi2, . . . , hiNi
}. Thus, each hyperpa-

rameter is selected independently from its corresponding distribution. After selecting a new set of
hyperparameters ht, the model is trained with this configuration, and its performance is evaluated
by computing the loss function L(ht). The process is repeated for T iterations, generating a se-
quence of hyperparameter configurations h1,h2, . . . ,hT , and for each configuration, the associated
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loss function values L(h1), L(h2), . . . , L(hT ) are computed. The optimal set of hyperparameters h∗

is then selected as the one that minimizes the loss:

h∗ = arg min
t∈{1,2,...,T}

L(ht). (549)

Thus, random search performs an approximate optimization of the hyperparameter space, where
the computational cost per iteration is C (the time to evaluate the model’s performance for a
given set of hyperparameters), and the total computational cost is O(T · C). This makes random
search a computationally feasible approach, especially when T is moderate. The computational
efficiency of random search can be compared to that of grid search, which exhaustively searches the
hyperparameter space by discretizing each hyperparameter hi into a set of values hi1, hi2, . . . , hini

,
where ni is the number of values for the i-th hyperparameter. The total number of grid search
configurations is given by:

Ngrid =
d∏

i=1

ni, (550)

and the computational cost of grid search is O(Ngrid·C), which grows exponentially with the number
of hyperparameters d. In this sense, grid search can become prohibitively expensive when the
dimensionality d of the hyperparameter space is large. Random search, on the other hand, requires
only T evaluations, and since each evaluation is independent of the others, the computational
cost grows linearly with T , making it more efficient when d is large. The probabilistic nature of
random search further enhances its efficiency. Suppose that only a subset of hyperparameters,
say k, significantly influences the model’s performance. Let S be the subspace of H consisting of
hyperparameter configurations that produce low loss values, and let the complementary space H\S
correspond to configurations that are unlikely to achieve low loss. In this case, the task becomes one
of searching within the subspace S, rather than the entire space H. The random search method is
well-suited to such problems, as it can probabilistically focus on the relevant subspace by drawing
hyperparameter values from distributions Di that prioritize areas of the hyperparameter space
with low loss. More formally, the probability of selecting a hyperparameter set ht from the relevant
subspace S is given by:

P (ht ∈ S) =
d∏

i=1

P (ht,i ∈ Si), (551)

where Si is the relevant region for the i-th hyperparameter, and P (ht,i ∈ Si) is the probability that
the i-th hyperparameter lies within the relevant region. As the number of iterations T increases, the
probability that random search selects a hyperparameter set ht ∈ S increases as well, approaching
1 as T →∞:

P (ht ∈ S) = 1− (1− P0)
T , (552)

where P0 is the probability of sampling a hyperparameter set from the relevant subspace in one
iteration. Thus, random search tends to explore the subspace of low-loss configurations, improving
the chances of finding an optimal or near-optimal configuration as T increases.

The exploration behavior of random search contrasts with that of grid search, which, despite its
systematic nature, may fail to efficiently explore sparsely populated regions of the hyperparam-
eter space. When the hyperparameter space is high-dimensional, the grid search must evaluate
exponentially many configurations, regardless of the relevance of the hyperparameters. This leads
to inefficiencies when only a small fraction of hyperparameters significantly contribute to the loss
function. Random search, by sampling independently and uniformly across the entire space, is
not subject to this curse of dimensionality and can more effectively locate regions that matter for
model performance. Mathematically, random search has an additional advantage when the hyper-
parameters exhibit smooth or continuous relationships with the loss function. In this case, random
search can probe the space probabilistically, discovering gradients of loss that grid search, due to
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its fixed grid structure, may miss. Furthermore, random search is capable of finding the optimum
even when the loss function is non-convex, provided that the space is explored adequately. This
becomes particularly relevant in the presence of highly irregular loss surfaces, as random search
has the potential to escape local minima more effectively than grid search, which is constrained by
its fixed sampling grid.

In conclusion, random search is a highly efficient and scalable approach for hyperparameter op-
timization in machine learning. By sampling hyperparameters from predefined probability dis-
tributions and evaluating the associated loss function, random search provides a computationally
feasible method for high-dimensional hyperparameter spaces, outperforming grid search in many
cases. Its probabilistic nature allows it to focus on relevant regions of the hyperparameter space,
making it particularly advantageous when only a subset of hyperparameters significantly impacts
the model’s performance. As the number of iterations T increases, random search becomes more
likely to converge to the optimal configuration, making it a powerful tool for hyperparameter tuning
in complex models. The pros of Random search are:

1. More efficient than grid search, especially when some hyperparameters are less important.

2. Can explore a larger search space with fewer evaluations.

The cons of Random search are:

1. No guarantee of finding the optimal hyperparameters.

2. May still require many iterations for high-dimensional spaces.

6.4.3 Bayesian Optimization

Literature Review: Chang et. al. (2025) [414] applied Bayesian Optimization (BO) for hy-
perparameter tuning in machine learning models used for predicting landslide displacement. It
explores the impact of BO in optimizing Support Vector Machines (SVM), Long Short-Term Mem-
ory (LSTM), and Gated Recurrent Units (GRU), demonstrating how Bayesian techniques improve
model accuracy and convergence rates. Cihan (2025) [415] used Bayesian Optimization to fine-
tune XGBoost, LightGBM, Elastic Net, and Adaptive Boosting models for predicting biomass
gasification output. The study finds that Bayesian Optimization outperforms Grid and Random
Search in reducing computational overhead while improving predictive accuracy. Makomere et. al.
(2025) [416] integrated Bayesian Optimization for hyperparameter tuning in deep learning-based
industrial process modeling. The study provides insights into how BO improves model generaliza-
tion and reduces prediction errors in chemical process monitoring. Bakır (2025) [417] introduced
TuneDroid, an automated Bayesian Optimization-based framework for hyperparameter tuning of
Convolutional Neural Networks (CNNs) used in cybersecurity. The results suggest that Bayesian
Optimization accelerates model training while improving malware detection accuracy. Khurshid et.
al. (2025) [404] compared Bayesian Optimization and Random Search for tuning hyperparameters
in XGBoost-based diabetes prediction models. It concludes that Bayesian Optimization provides
a superior trade-off between speed and accuracy compared to traditional search methods. Liu et.
al. (2025) [418] explored Bayesian Optimization’s ability to fine-tune deep learning models for
predicting acoustic performance in engineering systems. The authors demonstrate how Bayesian
methods improve prediction accuracy while reducing computational costs. Balcan et. al. (2025)
[411] provided a rigorous analysis of the sample complexity required for Bayesian Optimization in
deep learning. The findings show that Bayesian Optimization requires fewer samples to converge
to optimal solutions compared to other hyperparameter tuning techniques. Ma et. al. (2025) [419]
integrated Bayesian Optimization with Support Vector Machines (SVMs) for anomaly detection
in high-speed machining. They find that Bayesian Optimization allows more effective exploration
of hyperparameter spaces, leading to improved model reliability. Bouzaidi et. al. (2025) [420]
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explored the impact of Bayesian Optimization on CNN-based models for image classification. It
demonstrates how Bayesian techniques outperform traditional methods like Grid Search in transfer
learning scenarios. Mustapha et. al. (2025) [421] integrated Bayesian Optimization for tuning
a hybrid deep learning framework combining Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs) for pneumonia detection. The results confirm that Bayesian Optimization
enhances the efficiency of multi-model architectures in medical imaging.

Bayesian Optimization (BO) is a powerful, mathematically sophisticated method for optimizing
complex, black-box objective functions, which is particularly useful in the context of hyperparame-
ter tuning in machine learning models. These objective functions, denoted as f : X → R, are often
expensive to evaluate due to factors such as time-consuming training of models or noisy obser-
vations. In hyperparameter tuning, the objective function typically represents some performance
metric of a machine learning model (e.g., accuracy, error, or loss) evaluated at specific hyperpa-
rameter configurations. The goal of Bayesian Optimization is to find the hyperparameter setting
x∗ ∈ X that minimizes (or maximizes) the objective function, such that:

x∗ = arg min
x∈X

f(x) (553)

Given that exhaustive search is computationally prohibitive, BO uses a probabilistic approach to
efficiently explore the hyperparameter space. This is achieved by treating the objective function
f(x) as a random function and utilizing a surrogate model to approximate it, which allows for
strategic decisions about which points in the space X to evaluate. The surrogate model is typically
represented by a Gaussian Process (GP), which provides both a prediction and an uncertainty
estimate at any point in X . The GP is a non-parametric, probabilistic model that assumes that
function values at any finite set of points follow a joint Gaussian distribution. Specifically, for a
set of observed points {x1,x2, . . . ,xn}, the corresponding function values {f(x1), f(x2), . . . , f(xn)}
are assumed to be jointly distributed as:

f(x1)
f(x2)

...
f(xn)

 ∼ N (m,K) (554)

where m = [m(x1),m(x2), . . . ,m(xn)]⊤ is the mean vector and K is the covariance matrix whose
entries are defined by a covariance (or kernel) function k(x,x′), which encodes assumptions about
the smoothness and periodicity of the objective function. The kernel function plays a crucial role
in determining the properties of the Gaussian Process. A commonly used kernel is the Squared
Exponential (SE) kernel, which is defined as:

k(x,x′) = σ2
f exp

(
−∥x− x′∥2

2ℓ2

)
(555)

where σ2
f is the variance, which scales the function values, and ℓ is the length scale, which controls

the smoothness of the function by dictating how quickly the function values can change with respect
to the inputs. Once the Gaussian Process has been specified, Bayesian Optimization proceeds by
updating the posterior distribution over the objective function after each new evaluation. Given a
set of n observed pairs {(xi, yi)}ni=1, where yi = f(xi)+ϵi and ϵi ∼ N (0, σ2) represents observational
noise, we update the posterior of the GP to reflect the observed data. The posterior mean µ(x∗)
and variance σ2(x∗) at a new point x∗ are given by the following equations:

µ(x∗) = k⊤
∗ K

−1y (556)

σ2(x∗) = k(x∗,x∗)− k⊤
∗ K

−1k∗ (557)
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where k∗ is the vector of covariances between the test point x∗ and the observed points x1,x2, . . . ,xn,
and K is the covariance matrix of the observed points. The updated mean µ(x∗) provides the
model’s best guess for the value of the function at x∗, and σ2(x∗) quantifies the uncertainty asso-
ciated with this estimate.

In Bayesian Optimization, the central objective is to select the next hyperparameter setting x∗
to evaluate in such a way that the number of function evaluations is minimized while still making
progress toward the global optimum. This is achieved by optimizing an acquisition function. The
acquisition function α(x) represents a trade-off between exploiting regions of the input space where
the objective function is expected to be low and exploring regions where the model’s uncertainty is
high. Several acquisition functions have been proposed, including Expected Improvement (EI),
Probability of Improvement (PI), and Upper Confidence Bound (UCB). The Expected
Improvement (EI) acquisition function is one of the most widely used and is defined as:

EI(x) = (fbest − µ(x))Φ

(
fbest − µ(x)

σ(x)

)
+ σ(x)ϕ

(
fbest − µ(x)

σ(x)

)
(558)

where fbest is the best observed value of the objective function, Φ(·) and ϕ(·) are the cumulative
distribution and probability density functions of the standard normal distribution, respectively,
and σ(x) is the standard deviation at x. The first term measures the potential for improvement,
weighted by the probability of achieving that improvement, and the second term reflects the uncer-
tainty at x, encouraging exploration in uncertain regions. The acquisition function is maximized
at each iteration to select the next point x∗:

x∗ = arg max
x∈X

EI(x) (559)

An alternative acquisition function is the Probability of Improvement (PI), which is simpler
and directly measures the probability that the objective function at x will exceed the current best
value:

PI(x) = Φ

(
fbest − µ(x)

σ(x)

)
(560)

Another common acquisition function is the Upper Confidence Bound (UCB), which balances
exploration and exploitation by selecting the point with the highest upper confidence bound:

UCB(x) = µ(x) + κσ(x) (561)

where κ is a hyperparameter that controls the trade-off between exploration (κ large) and exploita-
tion (κ small). After selecting x∗, the function is evaluated at this point, and the observed value
y∗ = f(x∗) is used to update the posterior distribution of the Gaussian Process. This process is
repeated iteratively, and each new observation refines the model’s understanding of the objective
function, guiding the search for the optimal x∗. One of the primary advantages of Bayesian Opti-
mization is its ability to efficiently optimize expensive-to-evaluate functions by focusing the search
on the most promising regions of the input space. However, as the number of observations in-
creases, the computational complexity of maintaining the Gaussian Process model grows cubically
with respect to the number of points, due to the need to invert the covariance matrix K. This
cubic complexity, O(n3), can be prohibitive for large datasets. To mitigate this, techniques such as
sparse Gaussian Processes have been developed, which approximate the full covariance matrix
by using a smaller set of inducing points, thus reducing the computational cost while maintaining
the flexibility of the Gaussian Process model.

In conclusion, Bayesian Optimization represents a mathematically rigorous and efficient method
for hyperparameter tuning, where a Gaussian Process surrogate model is used to approximate the
unknown objective function, and an acquisition function guides the search for the optimal solution
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by balancing exploration and exploitation. Despite its computational challenges, especially in high-
dimensional problems, the method is widely applicable in contexts where evaluating the objective
function is expensive, and it has been shown to outperform traditional optimization techniques in
many real-world scenarios. The pros of Bayesian Optimization are:

1. Efficient and requires fewer evaluations compared to grid/random search.

2. Balances exploration (trying new regions) and exploitation (focusing on promising regions).

The cons of Bayesian Optimization are:

1. Computationally expensive to build and update the surrogate model.

2. May struggle with high-dimensional spaces or noisy objective functions.

6.4.4 Genetic Algorithms

Literature Review: Li et. al. [432] proposed a Genetic Algorithm-tuned deep transfer learning
model for intrusion detection in IoT networks. The authors demonstrate that GA significantly
enhances model generalization and efficiency by systematically optimizing network hyperparame-
ters. Emmanuel et. al. (2025) [407] compared Genetic Algorithms, Bayesian Optimization, and
Evolutionary Strategies for hyperparameter tuning of deep-learning models in protein interaction
prediction. It highlights how GA efficiently explores large hyperparameter spaces, leading to faster
convergence and better model performance. Gül and Bakır [433] developed GA-based optimization
techniques for hyperparameter tuning in geophysical models. The authors demonstrate how GA
significantly improves predictive accuracy in water conductivity modeling by effectively selecting
optimal hyperparameters. Kalonia and Upadhyay (2025) [385] applied Genetic Algorithm-based
tuning for CNN-RNN models in software fault prediction. The authors compare GA with Parti-
cle Swarm Optimization (PSO) and find that GA provides better robustness in feature selection
and model optimization. Sen et. al. (2025) [434] explored a hybrid Genetic Algorithm-Particle
Swarm Optimization (GA-PSO) approach to optimize QLSTM models for weather forecasting.
The authors show that GA-based tuning enhances model adaptability in dynamic meteorological
environments. Roy et. al. (2025) [435] integrated Genetic Algorithms with Bayesian Optimization
to improve the diagnosis of glaucoma using deep learning. The study finds that GA helps in se-
lecting hyperparameters that lead to more stable and interpretable medical AI models. Jiang et.
al. (2025) [436] applied Genetic Algorithm hyperparameter tuning for machine learning models
used in coastal drainage system optimization. The results indicate GA’s ability to optimize models
for real-world engineering applications where trial-and-error is costly. Borah and Chandrasekaran
(2025) [437] applied Genetic Algorithm tuning to optimize machine learning models for predicting
mechanical properties of 3D-printed materials. The authors highlight GA’s ability to balance ex-
ploration and exploitation in hyperparameter tuning. Tan et. al. (2025) [438] integrated Genetic
Algorithms with Reinforcement Learning for tuning hyperparameters in transportation models.
The study finds that GA-based tuning reduces energy consumption while maintaining operational
efficiency. Galindo et. al. (2025) [439] applied Multi-Objective Genetic Algorithms (MOGA) to
hyperparameter tuning in fairness-aware machine learning models. The authors find that MOGA
leads to balanced models that maintain predictive performance while minimizing bias.

Hyperparameter tuning in machine learning is fundamentally an optimization problem where the
objective is to determine the best set of hyperparameters for a given model to achieve the lowest
possible validation error or the highest possible performance metric. Mathematically, if we denote
the hyperparameters as a vector

λ = (λ1, λ2, . . . , λn), (562)
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where each λi belongs to a search space Λi, then the optimization problem can be formally written
as

λ∗ = arg min
λ∈Λ

f(λ) (563)

where f : Λ→ R is an objective function, typically the validation loss of a machine learning model.
This function is often non-convex, non-differentiable, high-dimensional, and stochastic,
which makes conventional gradient-based methods inapplicable. Moreover, the search space Λ may
consist of both continuous and discrete hyperparameters, further complicating the problem. Given
the computational complexity of exhaustive search methods such as grid search and the ineffi-
ciency of purely random search methods, Genetic Algorithms (GAs) provide a heuristic but
powerful optimization framework inspired by principles of natural evolution.

Genetic Algorithms belong to the class of stochastic, population-based metaheuristic op-
timization methods. They are designed to iteratively evolve a population of candidate solutions
toward better solutions based on a fitness metric. Each iteration in a Genetic Algorithm is referred
to as a generation, and the core operations that drive evolution include selection, crossover,
and mutation. These operators collectively ensure that the algorithm explores and exploits the
hyperparameter space efficiently, balancing between global exploration (to avoid local optima)
and local exploitation (to refine promising solutions). Formally, at iteration t, the Genetic Al-
gorithm maintains a population of hyperparameter candidates

Pt = {λ(t)
1 ,λ

(t)
2 , . . . ,λ

(t)
N } (564)

where N is the population size, and each individual λ
(t)
i is evaluated using an objective function f ,

yielding a fitness value
F

(t)
i = f(λ

(t)
i ). (565)

The evolution of the population from generation t to t+ 1 follows a structured process, beginning
with Selection. The selection mechanism determines which hyperparameter candidates will serve
as parents to generate offspring for the next generation. A commonly used selection method is
fitness-proportional selection, also known as roulette wheel selection, where the probability
of selecting an individual λi is given by

P (λi) =
e−βFi∑N
j=1 e

−βFj

. (566)

Here, β > 0 controls the selection pressure, determining how much preference is given to high-
performing individuals. If β is too high, selection is overly greedy and can lead to premature
convergence; if too low, selection becomes nearly random, reducing the convergence rate. This
selection process ensures that better-performing hyperparameter configurations have a higher prob-
ability of propagating to the next generation while still allowing some stochastic diversity.

After selection, the next step is Crossover, also known as recombination, which involves combin-
ing the genetic information of two parents to produce offspring. Mathematically, given two parent
hyperparameter vectors λA and λB, a child λC is generated via a convex combination:

λC,j = αλA,j + (1− α)λB,j, α ∼ Uniform(0, 1). (567)

This is known as blend crossover, which ensures a smooth interpolation between parent solu-
tions. Other crossover techniques include one-point crossover, where a random split point k is
chosen and the first k components come from one parent while the remaining components come
from the other parent. The use of crossover ensures that useful information is inherited from
multiple parents, promoting efficient exploration of the search space. To maintain diversity and
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prevent premature convergence, Mutation is applied, introducing small random perturbations to
the offspring. Mathematically, this can be expressed as

λnewj = λj + δ, δ ∼ N (0, σ2), (568)

where σ controls the mutation step size. In adaptive genetic algorithms, σ decreases over time:

σt = σ0e
−γt (569)

for some decay rate γ > 0, implementing annealing-based exploration, which helps refine
solutions as the algorithm progresses. The convergence behavior of Genetic Algorithms can be
analyzed through the expected fitness improvement formula:

E[F (t+1)] ≤ E[F (t)]− η · Var[F (t)] (570)

where η is a learning rate influenced by the mutation rate µ. This follows a Lyapunov stabil-
ity argument, implying eventual convergence under bounded variance conditions. Additionally,
Genetic Algorithms operate as a Markov Chain, satisfying:

P (Pt+1|Pt,Pt−1, . . . ) = P (Pt+1|Pt). (571)

Thus, GAs approximate a randomized hill-climbing process with enforced diversity, ensuring
a good tradeoff between exploration and exploitation. Genetic Algorithms offer significant
advantages over traditional hyperparameter tuning methods. Grid Search, which evaluates all
combinations exhaustively, suffers from exponential complexity O(kn) for n hyperparameters with
k values each. Random Search, though more efficient, lacks any adaptation to previous eval-
uations. GAs, in contrast, leverage historical information and evolutionary dynamics to
efficiently search the space while maintaining diversity.

In summary, Genetic Algorithms provide a powerful, biologically inspired approach to hy-
perparameter tuning, leveraging evolutionary principles to efficiently explore high-dimensional,
non-convex, and discontinuous search spaces. Their combination of selection, crossover, and
mutation, along with well-defined convergence properties, makes them highly effective in opti-
mizing machine learning hyperparameters. The rigorous mathematical framework underlying GAs
ensures that they are not merely heuristic methods but robust, theoretically justified opti-
mization algorithms that can adapt dynamically to complex hyperparameter landscapes. The
pros of Genetic Algorithms are:

1. Can explore a wide range of hyperparameter combinations.

2. Suitable for non-differentiable or discontinuous objective functions.

The cons of Genetic Algorithms are:

1. Computationally expensive and slow to converge.

2. Requires careful tuning of mutation and crossover parameters.

6.4.5 Hyperband

Literature Review: Li et. al. (2018) [486] introduced the HyperBand algorithm. It provides a
theoretical foundation for HyperBand, demonstrating its efficiency in hyperparameter optimization
by dynamically allocating resources to promising configurations. The authors rigorously analyze its
performance compared to traditional methods like random search and Bayesian optimization, prov-
ing its superiority in terms of speed and scalability. Falkner et. al. (2018) [487] combined Bayesian
Optimization (BO) with HyperBand (HB) to create BOHB, a hybrid method that leverages the
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strengths of both approaches. It introduces a robust and scalable framework for hyperparameter
tuning, particularly effective for large-scale machine learning tasks. The authors provide exten-
sive empirical evaluations, demonstrating BOHB’s efficiency and robustness. Li et. al. (2020)
[488] extended HyperBand to a distributed computing environment, enabling massively parallel
hyperparameter tuning. The authors introduce a system architecture that scales HyperBand to
thousands of workers, making it practical for large-scale industrial applications. The paper also pro-
vides insights into the trade-offs between resource allocation and optimization performance. While
not exclusively about HyperBand, the paper by Snoek et. al. (2012) [489] laid the groundwork
for understanding Bayesian optimization, which is often compared to HyperBand. It provides a
comprehensive framework for hyperparameter tuning, which is useful for understanding the context
in which HyperBand operates and its advantages over Bayesian methods. Slivkins et. al. (2024)
[490] provided a thorough theoretical foundation for multi-armed bandit algorithms, which are the
basis for HyperBand. It explains the principles of resource allocation and exploration-exploitation
trade-offs, offering a deeper understanding of how HyperBand achieves efficient hyperparameter op-
timization. Hazan et. al. (2018) [491] explored spectral methods for hyperparameter optimization,
providing a theoretical perspective that complements HyperBand’s empirical approach. It discusses
the limitations of traditional methods and highlights the advantages of bandit-based approaches
like HyperBand. Domhan et. al. (2015) [492] introduced the concept of learning curve extrapola-
tion, which is a key component of HyperBand’s success. It demonstrates how early stopping and
resource allocation can be optimized by predicting the performance of hyperparameter configura-
tions, a technique that HyperBand later formalizes and extends. Agrawal (2021) [493] provided a
comprehensive overview of hyperparameter optimization techniques, including a detailed chapter
on HyperBand. It explains the algorithm’s mechanics, its advantages over other methods, and
practical implementation tips. The book is particularly useful for practitioners looking to apply
HyperBand in real-world scenarios. Shekhar et. al. (2021) [494] compared various hyperparameter
optimization tools, including HyperBand, Bayesian optimization, and random search. It provides
empirical evidence of HyperBand’s efficiency and scalability, particularly for large datasets and
complex models. The paper also discusses the trade-offs between different methods. Bergstra et.
al. (2011) [495] discussed the challenges of hyperparameter optimization in neural networks and
introduces early methods for addressing them. While it predates HyperBand, it provides valuable
context for understanding the evolution of hyperparameter optimization techniques and the need
for more efficient methods like HyperBand.

Let Λ denote the hyperparameter space, and let λ ∈ Λ be a hyperparameter configuration. The goal
is to minimize a loss function L(λ), which is evaluated using a validation set or cross-validation.
The evaluation of L(λ) is computationally expensive, as it typically involves training a model and
computing its performance. We assume:

• L(λ) is a black-box function with no known analytical form.

• Evaluating L(λ) with a budget b (e.g., number of epochs, dataset size) yields an approximation
L(λ, b), where L(λ, b)→ L(λ) as b→ R, and R is the maximum budget.

HyperBand relies on the following assumptions for its theoretical guarantees: For any λ, L(λ, b) is
non-increasing in b. That is, increasing the budget improves performance:

b1 ≤ b2 =⇒ L(λ, b1) ≥ L(λ, b2). (572)

The maximum budget R is finite, and L(λ,R) = L(λ). There exists a unique optimal configuration
λ∗ ∈ Λ such that:

L(λ∗) ≤ L(λ), ∀λ ∈ Λ. (573)

Successive Halving is the Building Block of HyperBand Method. HyperBand generalizes the Suc-
cessive Halving (SH) algorithm. SH operates as follows:
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1. Start with n configurations and allocate a small budget b to each.

2. Evaluate all configurations and keep the top 1/η fraction.

3. Increase the budget by a factor of η and repeat until one configuration remains.

The total cost of SH is:

CSH =
s−1∑
i=0

ni · bi, (574)

where ni = n
ηi

and bi = b · ηi. HyperBand introduces a bracket-based approach to explore different

trade-offs between n (number of configurations) and b (budget per configuration). It consists of two
nested loops: Outer Loop and Inner Loop. For Outer Loop, For each bracket s ∈ {0, 1, . . . , smax}
we have to compute the number of configurations n and the initial budget b:

n =

⌊
smax + 1

s+ 1
· ηs
⌋
, b = R · η−s. (575)

Here, smax = ⌊logη(R)⌋ is the number of brackets. We have to run the Inner Loop (Successive
Halving) with n configurations and initial budget b. For Inner Loop (Successive Halving), we have
to first randomly sample n configurations λ1, . . . , λn. For each round i ∈ {0, 1, . . . , s}:

• Allocate budget bi = b · ηi to each configuration.

• Evaluate L(λj, bi) for all j.

• Keep the top ni = n
ηi

configurations based on L(λj, bi).

Return the best configuration from the final round. HyperBand’s efficiency stems from its ability
to explore multiple resource allocation strategies. Below, we analyze its properties rigorously. The
total cost of HyperBand is the sum of costs across all brackets:

CHB =
smax∑
s=0

CSH(s), (576)

where CSH(s) is the cost of Successive Halving in bracket s. HyperBand balances exploration and
exploitation by varying s:

• For small s, it explores many configurations with small budgets.

• For large s, it exploits fewer configurations with large budgets.

This ensures that HyperBand does not prematurely discard potentially optimal configurations.
Under the assumptions of monotonicity and finite budget, HyperBand achieves the following:

• Near-Optimality: The best configuration found by HyperBand converges to λ∗ as R→∞.

• Logarithmic Scaling: The total cost CHB scales logarithmically with the number of con-
figurations.

We sketch a proof of HyperBand’s efficiency under the given assumptions. By monotonicity, the
ranking of configurations improves as the budget increases. Thus, the top configurations in early
rounds are likely to include λ∗. The cost of each bracket s is:

CSH(s) =
s∑

i=0

ni · bi =
s∑

i=0

n

ηi
· b · ηi = n · b · (s+ 1). (577)

117



Substituting n and b from the outer loop:

CSH(s) =

⌊
smax + 1

s+ 1
· ηs
⌋
·R · η−s · (s+ 1). (578)

For large smax, this simplifies to:

CSH(s) ≈ R · (smax + 1). (579)

Thus, the total cost CHB scales as:

CHB ≈ R · (smax + 1)2. (580)

Since smax = ⌊logη(R)⌋, the cost scales logarithmically with R. There are some impressive practical
implications of HyperBand Method. HyperBand’s theoretical guarantees make it highly effective
for:

• Large-Scale Optimization: It scales to high-dimensional hyperparameter spaces.

• Parallelization: Configurations can be evaluated independently, enabling distributed com-
putation.

• Adaptability: It works for both continuous and discrete hyperparameter spaces.

In conclusion, HyperBand is a mathematically rigorous and efficient algorithm for hyperparame-
ter optimization. By generalizing Successive Halving and exploring multiple resource allocation
strategies, it achieves a near-optimal balance between exploration and exploitation.

6.4.6 Gradient-Based Optimization

Literature Review: Snoek et. al. (2012) [489] introduced Bayesian optimization as a powerful
framework for hyperparameter tuning. While not strictly gradient-based, it lays the foundation
for gradient-based methods by emphasizing the importance of efficient search strategies in high-
dimensional spaces. It also discusses the use of Gaussian processes for modeling the hyperparameter
response surface, which can be combined with gradient-based techniques. Maclaurin et. al. (2015)
[497] introduced a novel method for gradient-based hyperparameter optimization by making the
learning process reversible. It allows gradients of the validation loss with respect to hyperparame-
ters to be computed efficiently, enabling the use of gradient descent for hyperparameter tuning. This
approach is particularly effective for tuning continuous hyperparameters. Pedregosa et. al. (2016)
[498] proposed a gradient-based method for hyperparameter optimization that uses an approxi-
mate gradient computed through implicit differentiation. It is particularly useful for large-scale
problems and provides a theoretical framework for understanding the convergence properties of
gradient-based hyperparameter optimization. Franceschi et. al. (2017) [500] compared forward-
mode and reverse-mode automatic differentiation for hyperparameter optimization. It provides
insights into the computational trade-offs between these methods and demonstrates their effec-
tiveness in tuning hyperparameters for deep learning models. While primarily focused on neural
architecture search (NAS), this paper by Zoph (2016) [496] introduced gradient-based methods for
optimizing hyperparameters in the context of reinforcement learning. It demonstrates how gradient-
based optimization can be applied to discrete and continuous hyperparameters in complex search
spaces. Hazan et. al. (2018) [491] proposed a spectral approach to hyperparameter optimization,
leveraging gradient-based methods to optimize hyperparameters in a low-dimensional subspace. It
provides theoretical guarantees for convergence and demonstrates practical improvements in tuning
efficiency. Bergstra et. al. (2011) [495] explored the use of gradient-based methods for hyperpa-
rameter optimization in neural networks. It highlights the challenges of applying gradient-based
methods to discrete hyperparameters and proposes solutions for handling such cases. Franceschi
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et. al. (2018) [499] formalized hyperparameter optimization as a bilevel programming problem and
proposes gradient-based methods to solve it. It provides a unified framework for understanding
hyperparameter optimization and meta-learning, with applications to both continuous and discrete
hyperparameters. Liu et. al. (2019) [501] introduced a differentiable architecture search (DARTS)
method that uses gradient-based optimization to tune hyperparameters in neural architectures. It
significantly reduces the computational cost of architecture search and demonstrates the effective-
ness of gradient-based methods in complex search spaces. Lorraine et. al. (2020) [502] introduced
a scalable method for gradient-based hyperparameter optimization using implicit differentiation.
It enables the optimization of millions of hyperparameters efficiently, making it suitable for large-
scale machine learning models. The paper also provides theoretical insights into the convergence
properties of the method.

In practical learning problems, we optimize over a function space rather than a finite-dimensional
vector space. Define:

• Hypothesis space: H as a Banach space equipped with norm ∥ · ∥H.

• Parameter space: Θ ⊆ H, where Θ is a closed, convex subset of H.

We optimize:
θ∗(λ) = arg min

θ∈Θ
Ltrain(θ, λ) (581)

where Ltrain is a Fréchet differentiable function on H. By Inner Product Structure in Hilbert
Spaces, if H is a Hilbert space, then there exists an inner product ⟨·, ·⟩H, which induces a norm:

∥θ∥H =
√
⟨θ, θ⟩H (582)

The optimization problem is now posed in a functional setting. Using Variational Formulation
of Hyperparameter Optimization, Instead of solving a constrained minimization, we express the
optimization problem using the Euler-Lagrange equation. The hyperparameter tuning problem
is:

λ∗ = arg min
λ
F(λ) (583)

where:
F(λ) = E(x,y)∼Dval

[Lval(θ
∗(λ), λ)] (584)

Since θ∗(λ) is the minimizer of Ltrain, it satisfies the Euler-Lagrange equation:

δLtrain

δθ
(θ∗(λ), λ) = 0 (585)

To differentiate F(λ), apply the chain rule in variational calculus:

d

dλ
F(λ) =

∂Lval

∂λ
+

〈
δLval

δθ
,
dθ∗

dλ

〉
H

(586)

Applying the second-order Gateaux derivative:

dθ∗

dλ
= −

(
δ2Ltrain

δθ2

)−1
δ2Ltrain

δλδθ
(587)

Substituting, we get the hyperparameter gradient:

∇λF(λ) =
∂Lval

∂λ
−

〈
δLval

δθ
,

(
δ2Ltrain

δθ2

)−1
δ2Ltrain

δλδθ

〉
H

(588)
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We should now do the Higher-Order Sensitivity Analysis. Beyond first and second derivatives, we
analyze third-order terms using Taylor expansions in Banach spaces:

θ∗(λ+ ∆λ) = θ∗(λ) +
dθ∗

dλ
∆λ+

1

2

d2θ∗

dλ2
(∆λ)2 +O(∥∆λ∥3) (589)

The second-order sensitivity term is:

d2θ∗

dλ2
= −

(
δ2Ltrain

δθ2

)−1 [
δ3Ltrain

δλδθ2
dθ∗

dλ
+
δ2Ltrain

δλ2δθ

]
(590)

Thus, the second-order expansion of the hyperparameter function is:

F(λ+ ∆λ) = F(λ) +∇λF(λ)∆λ+
1

2
∆λ⊤∇2

λλF(λ)∆λ+O(∥∆λ∥3) (591)

By Spectral Analysis of Hessians, The Hessian H = ∇2
θθLtrain governs curvature. We perform

eigenvalue decomposition:

H = QΛQ⊤, Λ = diag(λ1, λ2, . . . , λp) (592)

If λmin > 0, H is positive definite, ensuring local convexity and If λmin = 0, H is singular,
requiring pseudo-inversion. Using Tikhonov regularization, we modify:

Hϵ = H + ϵI, where ϵ > 0 (593)

Then, the modified inverse is:

H−1
ϵ = QΛ−1

ϵ Q⊤, Λ−1
ϵ = diag

(
1

λ1 + ϵ
, . . . ,

1

λp + ϵ

)
(594)

This prevents numerical instability. From a Manifold Perspective we have to do Optimization on
Riemannian Spaces. Instead of optimizing in Rp, let Θ be a Riemannian manifold with metric
g. The update rule becomes:

λt+1 = Expλt

(
−ηg−1

λt
∇λF(λt)

)
(595)

where Expλ(·) is the Riemannian exponential map. In conclusion, this analysis extends hy-
perparameter tuning to functional spaces, introducing variational methods, higher-order
derivatives, spectral analysis, and Riemannian optimization.

6.4.7 Population-Based Training (PBT)

Literature Review: Jaderberg et al. (2017) [504] introduced Population-Based Training (PBT).
It combines the strengths of random search and hand-tuning by maintaining a population of mod-
els that are trained in parallel. The key innovation is the use of exploitation (copying weights
from better-performing models) and exploration (perturbing hyperparameters) to dynamically op-
timize hyperparameters during training. The paper demonstrates PBT’s effectiveness on deep
reinforcement learning and supervised learning tasks. Liang et. al. (2017) [503] provided a com-
prehensive analysis of population-based methods for hyperparameter optimization in deep learn-
ing. It compares PBT with other evolutionary algorithms and highlights its advantages in terms
of computational efficiency and adaptability. The authors also discuss practical considerations for
implementing PBT in large-scale training scenarios. Co-Reyes et. al. [505] explored the use of PBT
for meta-optimization, specifically for evolving reinforcement learning algorithms. It demonstrates
how PBT can be used to discover novel RL algorithms by optimizing both hyperparameters and al-
gorithmic components. The work shows PBT’s versatility beyond standard hyperparameter tuning.
Song et. al. (2024) [506] applied PBT to Neural Architecture Search (NAS), showing how PBT
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can efficiently explore and exploit architectures and hyperparameters simultaneously. It provides
insights into how PBT can reduce the computational cost of NAS while maintaining competitive
performance. Wan et. al. (2022) [507] bridged the gap between Bayesian Optimization (BO) and
PBT by proposing a hybrid approach. It uses BO to guide the initial hyperparameter search and
PBT to refine hyperparameters dynamically during training. The paper demonstrates improved
performance over standalone PBT or BO. Garcia-Valdez et. al. (2023) [508] addressed the scal-
ability of PBT in distributed computing environments. It introduces an asynchronous variant of
PBT that reduces idle time and improves resource utilization. The work is particularly relevant
for large-scale machine-learning applications.

Let’s do the Mathematical Formulation of PBT: Dynamic Hyperparameter Optimization. For
that let us denote the population of models at time t as P(t) = {(θi, hi)}Ni=1, where:

• θi ∈ Rd represents the model parameters, with d being the dimensionality of the model
parameter space.

• hi ∈ H ⊂ Rm represents the hyperparameters of the i-th model, with m being the dimen-
sionality of the hyperparameter space H. The set H is a bounded subset of the positive real
numbers, such as learning rates, batch sizes, or regularization factors.

We have to now use the Loss Function as a Metric. The objective function L(θ, h) is a mapping
from the space of model parameters and hyperparameters to a scalar loss value. This loss function
is a non-convex, potentially non-differentiable function in high-dimensional spaces, particularly in
the context of deep neural networks.

L(θ, h) = Ltrain(θ, h) + Lval(θ, h) (596)

where Ltrain(θ, h) is the training loss, and Lval(θ, h) is the validation loss. Here, Lval serves as
the fitness function upon which the hyperparameter optimization process is based. Using the
Exploitation-Exploration Framework, the central mechanism of PBT revolves around two pro-
cesses: exploitation (model selection) and exploration (hyperparameter mutation). We will
delve into these components through the lens of Markov Decision Processes (MDPs), opti-
mization theory, and stochastic calculus. Regarding the Selection Mechanism (Exploitation), the
models in the population are ranked based on their validation fitness Mi(t) at each time step t:

Mi(t) = Lval(θi, hi) (597)

This ranking corresponds to a sorted order:

M1(t) ≥M2(t) ≥ · · · ≥MN(t) (598)

In terms of selection, the worst-performing models are replaced by the best-performing models.
We now formally express the selection step in terms of the updating mechanism. Given a population
of models P(t), at time step t, a new model θi(t+1), hi(t+1) inherits its hyperparameters hi(t) and
model parameters θi(t) from the best-performing models, denoted by i∗. Thus, the hyperparameter
update rule for the next iteration is:

hi(t+ 1) = hi∗(t), θi(t+ 1) = θi∗(t) (599)

This corresponds to the exploitation phase, where we take the best-performing hyperparameters
from the current generation to seed the next. Regarding the Mutation Mechanism (Exploration),
the mutation process injects randomness into the hyperparameters to encourage exploration of the
search space. To formally describe this process, we use a stochastic perturbation model. Let hi(t) be
the hyperparameters at time t. Mutation introduces a random perturbation to the hyperparameters
as:

hi(t+ 1) = hi(t) · (1 + ϵi(t)) (600)
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where ϵi(t) ∼ U(−α, α) represents a random perturbation drawn from a uniform distribution with
parameter α. This random perturbation ensures that the hyperparameters can adaptively escape
local minima, promoting a more global search in the hyperparameter space. The mutative process
can be seen as:

hi(t+ 1) = hi(t) · 10U(−α,α) (601)

This mutation process is a continuous stochastic process with a bounded magnitude, facilitating a
fine balance between exploitation and exploration. We now interpret PBT as a non-stationary,
stochastic optimization problem with dynamic model parameter and hyperparameter updates.
In optimization terms, PBT involves iteratively optimizing a non-convex function L(θ, h) with
respect to the hyperparameters h, and the model parameters θ. The stochastic update for hi(t)
can be modeled as:

hi(t+ 1) = hi(t) +∇hL(θi(t), hi(t)) + σ · N (0, I) (602)

where ∇hL(θi(t), hi(t)) is the gradient of the loss function with respect to the hyperparameters hi,
representing the exploitation mechanism (steepest descent direction), N (0, I) is a noise term with
zero mean and identity covariance matrix, modeling the exploration mechanism, σ is a hyperpa-
rameter that controls the magnitude of the noise, thus influencing the exploration rate. We shall
now do th Convergence Analysis via Lyapunov Stability. To rigorously analyze the convergence
of PBT, we leverage Lyapunov’s stability theory, which provides insight into whether the sys-
tem of updates stabilizes or diverges. Define the Lyapunov function V (t), which represents the
deviation from the optimal solution h∗ in terms of squared Euclidean distance:

V (t) =
N∑
i=1

∥hi(t)− h∗∥2 (603)

The evolution of V (t) over time gives us information about the behavior of the hyperparameters as
the population evolves. If the system converges to a local optimum, we expect that E[V (t+ 1)] <
V (t). Using the update rule for hi(t), we can compute the expected rate of change of the Lyapunov
function:

E[V (t+ 1)− V (t)] = −δV (t) (604)

where δ > 0 is a constant that guarantees exponential convergence towards the optimal hyperpa-
rameter configuration. This exponential decay implies that the population of models is moving
toward a global optimum at a rate proportional to the current deviation from the optimal solu-
tion. Regarding the Generalized Stochastic Optimization Framework, PBT can be viewed as an
instance of stochastic optimization under non-stationary conditions. The optimization pro-
cess evolves by sequentially adjusting the hyperparameters and parameters according to a noisy
gradient update:

hi(t+ 1) = hi(t) + η(t) · (∇hL(θi(t), hi(t)) + ϵi(t)) (605)

Here η(t) is a learning rate that decays over time, ensuring that the updates become smaller as the
optimization progresses. The term ϵi(t) introduces noise for exploration, and the gradient term
∇hL ensures that the system exploits the current state of the model for refinement. Regarding
the Theoretical Convergence Guarantees, Under appropriate conditions, PBT guarantees that the
models will converge to an optimal or near-optimal hyperparameter configuration. By applying
perturbation theory and large deviation principles, we can demonstrate that the population
converges to a near-optimal region of the hyperparameter space with high probability. Furthermore,
as N → ∞, the convergence rate improves, which underscores the efficiency of the population-
based approach in exploring high-dimensional hyperparameter spaces. Regarding Computational
Efficiency and Parallelism in PBT, One of the key advantages of PBT is its parallelizability.
Since each model in the population is trained independently, the process is well-suited to mod-
ern distributed computing environments, such as multi-GPU or multi-TPU setups. The time
complexity of the population-based optimization process can be analyzed as follows:

122



• At each iteration t, we perform:

– N forward passes to compute the losses Lval(θi(t), hi(t)).

– N selection and mutation operations for updating the population.

• This leads to a time complexity of O(N) per iteration.

Since each model is evaluated independently, this process can be easily parallelized, allowing for
significant speedup in hyperparameter optimization, particularly when the number of models in
the population is large.

6.4.8 Optuna

Literature Review: Akiba et. al. (2019) [509] wrote the foundational paper introducing Optuna.
It describes the framework’s design principles, including its define-by-run API, efficient sampling
algorithms, and pruning mechanisms. The paper highlights Optuna’s scalability and flexibility
compared to other hyperparameter optimization tools like Hyperopt and Bayesian Optimization.
Kadhim et. al. (2022) [511] provided a comprehensive overview of hyperparameter optimization
techniques, including Bayesian optimization, evolutionary algorithms, and bandit-based methods.
It contextualizes Optuna within the broader landscape of hyperparameter tuning tools and method-
ologies. Bergstra et. al. (2011) [495] introduced the concept of sequential model-based optimization
(SMBO) and tree-structured Parzen estimators (TPE), which are foundational to Optuna’s sam-
pling algorithms. It provides theoretical insights into efficient hyperparameter search strategies.
Snoek et. al. (2012) [489] introduced Bayesian optimization using Gaussian processes (GPs) for
hyperparameter tuning. While Optuna primarily uses TPE, this work is critical for understanding
the theoretical underpinnings of probabilistic modeling in hyperparameter optimization. Akiba
et. al. (2025) [510] expanded on the original Optuna paper, providing deeper insights into its
define-by-run paradigm, which allows users to dynamically construct search spaces. It also dis-
cusses advanced features like multi-objective optimization and distributed computing. Yang and
Shami (2020) [513] wrote a book that includes a practical guide to hyperparameter tuning, with
examples using Optuna. It emphasizes the importance of tuning in deep learning and provides
hands-on code snippets for integrating Optuna with Keras and TensorFlow. Wang (2024) [514] ex-
plained Optuna’s support for multi-objective optimization, which is crucial for tasks like balancing
model accuracy and computational cost. It provides practical examples and benchmarks. Frazier
(2018) [515] provided a thorough introduction to Bayesian optimization, which is closely related to
Optuna’s TPE algorithm. It covers acquisition functions, Gaussian processes, and practical consid-
erations for implementation. Jeba (2021) [512] wrote a collection of case studies that demonstrated
Optuna’s application in real-world scenarios, including hyperparameter tuning for deep learning,
reinforcement learning, and time-series forecasting. It highlights Optuna’s efficiency and ease of
use. Hutter et. al. (2019) [516] provided a comprehensive overview of automated machine learning
(AutoML), including hyperparameter optimization. It discusses Optuna in the context of AutoML
frameworks and compares it with other tools like Auto-sklearn and TPOT.

Hyperparameter tuning, in the context of machine learning, is fundamentally an optimization
problem defined over a hyperparameter space H, which is typically a high-dimensional and hetero-
geneous domain comprising continuous, discrete, and categorical variables. Formally, let

H = H1 ×H2 × · · · × Hn (606)

where each Hi represents the domain of the i-th hyperparameter. The objective is to identify the
optimal hyperparameter configuration h∗ ∈ H that minimizes (or maximizes) a predefined objective
function

f : H → R (607)
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which quantifies the performance of a machine learning model, such as validation loss or accuracy.
Mathematically, this is expressed as

h∗ = arg min
h∈H

f(h) (608)

The function f(h) is often expensive to evaluate, as it requires training and validating a model, and
is typically non-convex, noisy, and lacks an analytical gradient, rendering traditional optimization
methods ineffective.

Optuna addresses this challenge by employing a Bayesian optimization framework, which itera-
tively constructs a probabilistic surrogate model of the objective function f(h) and uses it to guide
the search for h∗. Specifically, Optuna utilizes a Tree-structured Parzen Estimator (TPE) as its
surrogate model, which is a non-parametric density estimator that models the distribution of hyper-
parameters conditioned on the observed values of f(h). The TPE approach partitions the observed
trials into two subsets: Ggood, containing hyperparameter configurations associated with the best
observed values of f(h), and Gbad, containing the remaining configurations. It then estimates two
probability density functions,

p(h | Ggood) and p(h | Gbad) (609)

which represent the likelihood of hyperparameters given good and bad performance, respectively.
The acquisition function a(h), defined as the ratio

a(h) =
p(h | Ggood)

p(h | Gbad)
(610)

is maximized to select the next hyperparameter configuration hnext, thereby balancing exploration
and exploitation in the search process. The optimization process begins with an initial phase of
random sampling to build a preliminary model of f(h), after which the TPE algorithm refines
its probabilistic model and focuses on regions of H that are more likely to contain h∗. This
adaptive sampling strategy ensures that the search is both efficient and effective, particularly in
high-dimensional spaces where the curse of dimensionality would otherwise render exhaustive search
methods intractable. Additionally, Optuna incorporates pruning mechanisms to further enhance
computational efficiency. Pruning involves terminating trials that are unlikely to yield improve-
ments in f(h) based on intermediate evaluations, thereby reducing the computational cost associ-
ated with unpromising configurations. This is achieved by comparing the performance of a trial at
a given step to the performance of other trials at the same step and applying a statistical criterion
to decide whether to continue or halt the trial. The convergence properties of Optuna’s optimiza-
tion process are grounded in the theoretical foundations of Bayesian optimization and TPE. Under
mild assumptions, such as the smoothness of f(h) and the proper calibration of the acquisition
function, the algorithm is guaranteed to converge to the global optimum h∗ as the number of trials
N approaches infinity. However, in practice, the rate of convergence depends on the dimensionality
of H, the noise level of f(h), and the efficiency of the surrogate model in capturing the underlying
structure of the objective function. Optuna’s implementation also supports advanced features such
as conditional hyperparameter spaces, where the domain of one hyperparameter may depend on the
value of another, and parallelization, which enables distributed evaluation of trials across multiple
computational nodes.

In summary, Optuna provides a rigorous and mathematically sound framework for hyperparam-
eter tuning by leveraging Bayesian optimization, TPE, and pruning mechanisms. Its ability to
efficiently navigate complex and high-dimensional hyperparameter spaces, combined with its theo-
retical guarantees of convergence, makes it a powerful tool for optimizing machine learning models.
The framework’s flexibility, scalability, and integration with modern machine learning pipelines
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further enhance its utility in both research and practical applications. By formalizing hyperpa-
rameter tuning as a probabilistic optimization problem and employing advanced sampling and
pruning strategies, Optuna achieves a balance between computational efficiency and optimization
performance, ensuring that the identified hyperparameter configuration h∗ is both optimal and
robust.

6.4.9 Successive Halving

Literature Review: Egele et. al. (2024) [536] investigated an aggressive early stopping strat-
egy for hyperparameter tuning in neural networks using Successive Halving. It compares standard
SHA with learning curve extrapolation (LCE) and LC-PFN models, showing that early discarding
significantly reduces computational costs while preserving model performance. Wojciuk et. al.
(2024) [537] systematically compared different hyperparameter optimization methods, including
Asynchronous Successive Halving (ASHA), Bayesian Optimization, and Grid Search, in tuning
CNN models. It highlights the efficiency of ASHA in reducing the search space without sacrificing
classification accuracy. Geissler et. al. (2024) [538] proposed an energy-efficient version of SHA
called SM2. Their method adapts the Successive Halving process to reduce redundant energy-
intensive training cycles, particularly beneficial for resource-constrained computing environments.
Sarcheshmeh et. al. (2024) [539] applied SHA in engineering contexts, demonstrating how it op-
timizes hyperparameters in machine learning models for predicting concrete compressive strength.
It provides insights into SHA’s performance in structured regression problems. Sankar et. al.
(2024) [540] applied Asynchronous Successive Halving (ASHA) for medical image analysis. It com-
bines ASHA with PNAS (Progressive Neural Architecture Search) to improve disease classification,
demonstrating SHA’s capability in complex feature selection tasks. Zhang and Duh (2024) [541]
rigorously examined how SHA can be optimized for neural machine translation models. It pro-
vides detailed experimental insights into how different configurations of SHA influence translation
accuracy and computational efficiency. Aach et. al. (2024) [542] extended SHA by incorporating
a ”successive doubling” approach, dynamically adjusting resource allocation based on dataset size.
This method improves performance when tuning models on high-performance computing (HPC)
clusters. Jang et. al. (2024) [543] introduced QHB+, an optimization framework integrating SHA
for automatic tuning of Spark SQL queries. It demonstrates how SHA can efficiently allocate
computational resources in data-intensive applications. Chen et. al. (2024) [544] refined SHA’s
exploration-exploitation balance by integrating it with multi-armed bandit techniques. It evalu-
ates different strategies for pruning underperforming hyperparameter configurations to accelerate
optimization. Zhang et. al. (2024) [545] proposed FlexHB that extended SHA by introducing
GloSH, an improved version of Successive Halving that dynamically adjusts resource allocation.
The study highlights its advantages in reducing wasted computational resources while maintaining
high-quality hyperparameter selection.

Hyperparameter optimization is a fundamental problem in machine learning, requiring the identi-
fication of an optimal configuration λ∗ within a given search space Λ that minimizes a prescribed
objective function. Mathematically, this optimization problem is formulated as the minimization
of an expectation over the joint probability distribution of training and validation datasets, i.e.,

λ∗ = arg min
λ∈Λ

EDtrain,Dval
[L(M(λ),Dval)] (611)

where M(λ) is the machine learning model trained using hyperparameters λ, and L(·) represents
a loss function such as cross-entropy loss, mean squared error, or negative log-likelihood. Due to
the large cardinality of Λ and the computational expense of evaluating L(M(λ),Dval), exhaustive
evaluation of all configurations is infeasible. To mitigate this computational burden, Successive
Halving (SH) is employed as a multi-fidelity optimization technique that dynamically allocates
computational resources to promising candidates while progressively eliminating inferior configu-
rations in a statistically justified manner.
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The Successive Halving algorithm proceeds in a sequence of K iterative stages, where each stage
consists of training, evaluation, ranking, and pruning of hyperparameter configurations. Let N
denote the initial number of hyperparameter candidates sampled from Λ, and let B denote the
total computational budget. The algorithm initializes each configuration with a budget of B0 such
that the sum of allocated budgets across all iterations remains bounded by B. Specifically, defining
the reduction factor η > 1, the number of surviving configurations at each iteration is recur-
sively defined as Nk = N/ηk, while the budget allocated to each surviving configuration follows the
exponential growth pattern Bk = ηBk−1. The number of iterations required to reduce the search
space to a single surviving configuration is given by K = logηN . Thus, the total computational
cost incurred by the algorithm satisfies

CSH =
K∑
k=0

NkBk =
K∑
k=0

N

ηk
· ηkB0 = O(B logηN) (612)

Compared to brute-force grid search, which incurs an evaluation cost of Cgrid = NB, this result
demonstrates that SH achieves an exponential reduction in computational complexity while
maintaining high fidelity in identifying near-optimal hyperparameter configurations. A key proba-
bilistic aspect of SH is its ability to retain at least one optimal configuration with high probability.
Let λ∗ denote an optimal configuration in Λ, and let fk(λ) represent the performance metric (e.g.,
validation accuracy) evaluated at iteration k. Assuming fk(λ) follows a sub-Gaussian distribution,
the probability that λ∗ survives elimination at each iteration satisfies

Pk = P (fk(λ∗) ≥ fk(λ) for surviving λ) (613)

Applying Chernoff bounds, the probability of discarding λ∗ at any given iteration is at most 1
ηk

,
leading to a final retention probability of

Pfinal = 1− 1

ηlogη N
(614)

As N → ∞, the term 1

ηlogη N asymptotically vanishes, ensuring that SH converges to an optimal

configuration with probability approaching unity. The asymptotic convergence rate of SH is
given by

O

(
logN

N

)
(615)

which significantly outperforms naive random search while being slightly suboptimal compared to
adaptive bandit-based methods such as Hyperband. Hyperband extends SH by employing multiple
independent SH runs with varying initial budget allocations, thereby balancing exploration (many
configurations trained briefly) and exploitation (few configurations trained extensively). The
expected number of evaluations required by Hyperband satisfies

E[evaluations] = O

(
B logN

log η

)
(616)

which achieves sublinear dependence on N and further enhances computational efficiency. Com-
pared to traditional SH, Hyperband is more robust to hyperparameter configurations with delayed
performance gains, making it particularly effective for deep learning applications. Despite its com-
putational advantages, SH has several practical limitations. The choice of the reduction factor η
influences the algorithm’s efficiency; larger values accelerate pruning but increase the risk of dis-
carding promising configurations prematurely. Additionally, SH assumes that partial evaluations
of configurations provide an unbiased estimate of their final performance, which may not hold for
all machine learning models, particularly those with complex training dynamics. Finally, for small

126



computational budgets B, SH may allocate insufficient resources to any configuration, leading to
suboptimal tuning outcomes.

In conclusion, Successive Halving provides a mathematically principled approach to hyperparameter
tuning by leveraging sequential resource allocation and early stopping strategies to reduce
computational costs. Its theoretical guarantees ensure that near-optimal configurations are retained
with high probability while significantly improving the sample complexity compared to exhaustive
search. When coupled with adaptive methods such as Hyperband, SH serves as a cornerstone of
modern hyperparameter optimization, enabling efficient tuning of high-dimensional models
across diverse machine learning applications.

6.4.10 Reinforcement Learning (RL)

Literature Review: Dong et. al. (2019) [519] presented a meta-learning framework where an
RL agent learns to optimize hyperparameters across multiple tasks. The authors propose a policy
gradient method to train the agent, which generalizes well to unseen optimization problems. The
work highlights the transferability of RL-based hyperparameter tuning across different domains.
Rijsdijk et. al. (2021) [520] focused on using RL to tune hyperparameters in deep learning mod-
els, particularly for neural networks. It introduces a novel RL algorithm that leverages Bayesian
optimization as a baseline to guide the search process. The authors demonstrate significant im-
provements in model performance on benchmark datasets like CIFAR-10 and ImageNet. While not
exclusively focused on RL, this work by Snoek et. al. (2012) [489] laid the groundwork for using
sequential decision-making in hyperparameter optimization. It introduces Gaussian Process-based
Bayesian Optimization, which is often combined with RL techniques. The paper provides a rigorous
theoretical framework and practical insights for tuning hyperparameters efficiently. Jaderberg et.
al. (2017) [504] proposed a hybrid approach combining RL and evolutionary strategies for hyper-
parameter tuning. It introduces Population-Based Training (PBT), where a population of models
is trained in parallel, and RL is used to adapt hyperparameters dynamically. The method achieves
state-of-the-art results in deep reinforcement learning tasks. Jaafra et. al. (2018) [521] explored
the use of neural networks as RL agents to optimize hyperparameters. The authors propose a
neural architecture search (NAS) framework where the RL agent learns to generate and evaluate
hyperparameter configurations. The paper demonstrates the scalability of RL-based methods for
large-scale hyperparameter optimization. Afshar and Zhang (2022) [522] introduced a practical
RL framework for hyperparameter tuning in machine learning pipelines. It uses a tree-structured
Parzen estimator (TPE) to guide the RL agent, enabling efficient exploration of the hyperparam-
eter space. The authors provide empirical evidence of the method’s superiority over traditional
approaches. Wu et. al. (2020) [523] proposed a model-based RL approach for hyperparameter tun-
ing, where a surrogate model is used to approximate the performance of different hyperparameter
configurations. The method reduces the number of evaluations required to find optimal hyperpa-
rameters, making it highly efficient for large-scale applications. Iranfar et. al. (2021) [524] focused
on using deep RL algorithms, such as Deep Q-Networks (DQN), to optimize hyperparameters in
neural networks. The authors demonstrate how deep RL can handle high-dimensional hyperparam-
eter spaces and achieve competitive results on tasks like image classification and natural language
processing. While not exclusively about RL, this survey by He et al. (2021) [525] provides a
comprehensive overview of automated machine learning (AutoML) techniques, including RL-based
hyperparameter tuning. It discusses the strengths and limitations of RL in the context of AutoML
and provides a roadmap for future research in the field.

The hyperparameter tuning problem can be rigorously formulated as a stochastic optimization
problem:

θ∗ = arg max
θ∈Θ

EDval
[P (M(θ);Dval)] (617)
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where θ ∈ Θ is the vector of hyperparameters, with Θ being the feasible hyperparameter space,
M(θ) is the machine learning model parameterized by θ, Dval is the validation dataset, drawn
from a data distribution D, P (M(θ);Dval) is the performance metric (e.g., validation accuracy,
negative loss) of the model M(θ) on Dval. This formulation emphasizes that the goal is to optimize
the expected performance of the model over the distribution of validation datasets. Let’s cast
Reinforcement Learning as a Markov Decision Process (MDP). The problem is cast as a Markov
Decision Process (MDP), defined by the tuple (S,A, P,R, γ):

• State Space (S): The state st ∈ S encodes the current hyperparameter configuration θt,
the history of performance metrics, and any other relevant information (e.g., computational
resources used).

• Action Space (A): The action at ∈ A represents a perturbation to the hyperparameters,
such that:

θt+1 = θt + at. (618)

• Transition Dynamics (P ): The transition probability P (st+1 | st, at) describes the stochas-
tic evolution of the state. This includes the effect of training the model M(θt) and evaluating
it on Dval.

• Reward Function (R): The reward rt = R(st, at, st+1) quantifies the improvement in model
performance, e.g.,

rt = P (M(θt+1);Dval)− P (M(θt);Dval). (619)

• Discount Factor (γ): The discount factor γ ∈ [0, 1] balances immediate and future rewards.

The objective is to find a policy π : S → A that maximizes the expected discounted return:

J(π) = Eπ

[
∞∑
t=0

γtrt

]
. (620)

Let’s do Policy Optimization via Stochastic Gradient Ascent, the policy πϕ is parameterized by ϕ
and optimized using stochastic gradient ascent. The gradient of the expected return J(πϕ) with
respect to ϕ is given by the policy gradient theorem:

∇ϕJ(πϕ) = Eπϕ
[∇ϕ log πϕ(at | st)Qπ(st, at)] (621)

where Qπ(st, at) is the action-value function, representing the expected return of taking action at
in state st and following policy π thereafter:

Qπ(st, at) = Eπ

[
∞∑
k=t

γk−trk | st, at

]
. (622)

∇ϕ log πϕ(at | st) is the score function, which measures the sensitivity of the policy to changes
in ϕ. To estimate Qπ(st, at), a parameterized value function Qw(st, at) is used, where w are the
parameters. The value function is optimized by minimizing the mean squared Bellman error:

L(w) = Eπϕ

[
(Qw(st, at)− (rt + γQw(st+1, at+1)))

2
]
. (623)

This is typically solved using stochastic gradient descent:

w ← w − αw∇wL(w) (624)

where αw is the learning rate. We can do exploration via Entropy Regularization. To encourage
exploration, an entropy regularization term is added to the policy objective:

Jreg(πϕ) = J(πϕ) + λH(πϕ), (625)
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where H(πϕ) is the entropy of the policy:

H(πϕ) = Es∼dπ ,a∼π[− log πϕ(a | s)]. (626)

The entropy term ensures that the policy remains stochastic, thereby facilitating better exploration
of the hyperparameter space. Modern RL algorithms for hyperparameter tuning often use advanced
policy optimization techniques, such as Proximal Policy Optimization (PPO)

LCLIP(ϕ) = Et

[
min

(
πϕ(at|st)
πϕold

(at|st)
At,

(
πϕ(at|st)
πϕold

(at|st)
, 1− ϵ, 1 + ϵ

)
At

)]
(627)

where the advantage function is defined as:

At = Qw(st, at)− Vw(st). (628)

Trust Region Policy Optimization (TRPO) is

max
ϕ

Et

[
πϕ(at|st)
πϕold

(at|st)
At

]
(629)

subject to Et [KL (πϕold
(·|st)∥πϕ(·|st))] ≤ δ, (630)

where KL is the Kullback-Leibler divergence. There are some Theoretical Convergence Guarantees,
under certain conditions, RL-based hyperparameter tuning algorithms converge to the optimal
policy π∗. Key assumptions include. The MDP satisfies the Bellman optimality principle:

Q∗(st, at) = E
[
rt + γmax

at+1

Q∗(st+1, at+1) | st, at
]
. (631)

The policy and value function are Lipschitz continuous with respect to their parameters. The
learning rates αϕ and αw satisfy the Robbins-Monro conditions:

∞∑
t=0

αt =∞,
∞∑
t=0

α2
t <∞. (632)

There are some Practical Implementation and Scalability issues. To scale RL-based hyperparameter
tuning to high-dimensional spaces, techniques such as:

• Neural Network Function Approximation: Use deep neural networks to parameterize
the policy πϕ and value function Qw.

• Parallelization: Distribute the evaluation of hyperparameter configurations across multiple
workers.

• Early Stopping: Use techniques like Hyperband to terminate poorly performing configura-
tions early.

We should rigorously analyze the exploration-exploitation tradeoff using multi-armed bandit theory
and regret minimization. The cumulative regret R(T ) after T steps is defined as:

R(T ) =
T∑
t=1

(P (M(θ∗);Dval)− P (M(θt);Dval)) . (633)

Algorithms like Upper Confidence Bound (UCB) and Thompson Sampling provide theoretical guar-
antees on the regret, e.g.,

R(T ) = O(
√
T ). (634)

In summary, hyperparameter tuning using reinforcement learning is a mathematically rigorous
process that involves first formulating the problem as a stochastic optimization problem within an
MDP framework and then Optimizing the policy using advanced gradient-based methods and value
function approximation. We then balance exploration and exploitation using entropy regularization
and regret minimization and then ensure theoretical convergence and scalability through careful
algorithm design and analysis.
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6.4.11 Meta-Learning

Literature Review: Gomaa et. al. (2024) [526] introduced SML-AutoML, a novel meta-learning-
based automated machine learning (AutoML) framework. It addresses the challenge of model
selection and hyperparameter optimization by learning from past experiences. The framework
leverages meta-learning to dynamically select the best model architecture and hyperparameters
based on historical performance. This research is significant in making AutoML more efficient
and adaptable to different datasets. Khan et. al. (2025) [527] explored federated learning where
multiple decentralized models collaborate. It proposes a consensus-driven hyperparameter tuning
approach using meta-learning to optimize models across nodes. This study is crucial for ensuring
model convergence in non-IID (non-independent and identically distributed) data environments,
where traditional hyperparameter optimization methods often fail. Morrison and Ma (2025) [528]
focused on meta-optimization for improving machine learning optimizers. The study evaluates
various optimization algorithms, demonstrating that meta-learning can fine-tune optimizer hyper-
parameters to improve model efficiency, particularly in nanophotonic inverse design tasks. This
approach is applicable in physics-driven AI models that require precise parameter tuning. Berdy-
shev et. al. (2025) [529] presented EEG-Reptile, a meta-learning framework for brain-computer
interfaces (BCI) that tunes hyperparameters dynamically during learning. The study introduces a
Reptile-based meta-learning approach that enables fast adaptation of models to individual brain
signal patterns, making AI-powered BCI systems more personalized and efficient. Pratellesi (2025)
[530] applied meta-learning to biomedical classification problems, specifically in flow cytometry cell
analysis. The paper demonstrates that meta-learning can optimize hyperparameter selection for
imbalanced biomedical datasets, improving classification accuracy while reducing computational
costs. Garcia et. al. (2022) [531] introduced a meta-learned Bayesian hyperparameter search tech-
nique for metabolite annotation. It highlights how meta-learning can improve molecular property
prediction by selecting optimal descriptors and hyperparameters for chemical space exploration.
Deng et. al. (2024) [532] introduced a surrogate modeling approach that leverages meta-learning
for efficient hyperparameter search. The proposed method significantly reduces the computational
cost of hyperparameter tuning while maintaining high performance. The study is particularly
useful for computationally expensive AI models like deep neural networks. Jae et. al. (2024)
[533] integrated reinforcement learning with meta-learning to optimize hyperparameters for quan-
tum state learning. It demonstrates how reinforcement learning agents can dynamically adjust
hyperparameters, improving black-box optimization methods for quantum computing applications.
Upadhyay et. al. (2025) [534] investigated meta-learning-based sparsity optimization in multi-task
networks. By learning the optimal sparsity structure and hyperparameters, this approach enhances
memory efficiency and computational scalability for large-scale deep learning applications. Paul
et. al. (2025) [535] provided a comprehensive theoretical and practical overview of meta-learning
for neural network design. It discusses how meta-learning can automate hyperparameter tuning,
improve transfer learning strategies, and enhance architecture search.

The selection of hyperparameters, denoted by θ, plays a pivotal role in determining the model’s
performance. This selection process, when viewed through the lens of optimization theory, can be
formulated as a global optimization problem where the goal is to minimize the expected loss over
a distribution of datasets p(D):

θ∗ = arg min
θ

ED∼p(D) [L(fθ(D))] (635)

Here, D denotes the dataset, and L is the loss function used to measure the quality of the model.
The challenge arises because the hyperparameters θ are fixed before training begins, unlike the
model parameters that are learned via optimization techniques such as gradient descent. This
problem becomes computationally intractable when θ is high-dimensional or when traditional grid
and random search methods are employed. Meta-learning, often referred to as ”learning to learn,”
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provides a sophisticated framework to address hyperparameter tuning. The key objective in meta-
learning is to develop a meta-model that can efficiently adapt to new tasks with minimal data.
Mathematically, consider a set of tasks T = {T1, T2, . . . , TN}, where each task Ti consists of a
dataset Di and a corresponding loss function Li. The meta-learning framework aims to find meta-
parameters ϕ that minimize the expected loss across tasks:

ϕ∗ = arg min
ϕ

ET∼p(T ) [L(fθT , T )] (636)

Here, θT = h(DT , ϕ) is a task-specific hyperparameter derived from the meta-parameters ϕ. The
inner optimization problem, which corresponds to the task-specific optimization of θT , is given by:

θ∗T = arg min
θ
LT (fθ,DT ) (637)

Meanwhile, the outer optimization problem concerns learning ϕ, the meta-parameters, from multi-
ple tasks:

ϕ∗ = arg min
ϕ

∑
Ti∈T

LT (fh(DT ,ϕ),DT ) (638)

This nested optimization structure, wherein the inner optimization problem is task-specific and the
outer optimization problem is meta-specific, requires careful treatment via gradient-based methods
and implicit differentiation. The meta-learning process can be understood as a bi-level optimization
problem. To analyze this, we first consider the inner optimization, which optimizes the task-
specific hyperparameters θ for each task Ti. This is given by:

θ∗i = arg min
θ
Li(fθ,Di) (639)

For each task, the hyperparameter θ is chosen to minimize the corresponding task-specific loss. The
outer optimization then aims to find the optimal meta-parameters ϕ across tasks. The outer
objective can be written as:

ϕ∗ = arg min
ϕ

N∑
i=1

Li(fh(Di,ϕ),Di) (640)

Since the task-specific loss Li depends on θ∗i , which in turn depends on ϕ, we require the application
of implicit differentiation. By applying the chain rule, we obtain the gradient of the outer
objective with respect to ϕ:

∇ϕLi(fθ∗i ,Di) = ∇θ∗i
Li ·

∂θ∗i
∂ϕ

(641)

The term
∂θ∗i
∂ϕ

involves the inverse of the Hessian matrix of the loss function with respect to θ,
leading to a computationally expensive second-order update rule:

∂θ∗i
∂ϕ
≈ −

(
∇2

θi
Li

)−1∇θih(Di, ϕ) (642)

This analysis demonstrates the intricate dependencies between the task-specific hyperparame-
ters and the meta-parameters, requiring sophisticated optimization strategies for practical use.
Gradient-Based Meta-Learning (e.g., Model-Agnostic Meta-Learning or MAML) seeks to find an
optimal initialization θ0 for the hyperparameters that can be adapted to new tasks with a small
number of gradient steps. For a single task Ti, the hyperparameters are adapted as follows:

θ′i = θ0 − α∇θLi(fθ0 ,Di) (643)

Here, α is the learning rate for task-specific updates. The goal is to optimize θ0 such that, after a
few gradient steps, the model performs well on any task Ti. The meta-objective is given by:

min
θ0

N∑
i=1

Li(fθ′i ,Di) (644)
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Taking the gradient of the meta-objective with respect to θ0, we obtain:

∇θ0

(
N∑
i=1

Li(fθ′i ,Di)

)
=

N∑
i=1

∇θ′i
Li ·

∂θ′i
∂θ0

(645)

Here,
∂θ′i
∂θ0

involves a term that accounts for the task-specific gradients, leading to an efficient update
rule. The application of second-order optimization methods such as Hessian-free optimization
or L-BFGS is critical in achieving computational efficiency. Bayesian meta-learning models the
uncertainty over hyperparameters using probabilistic methods, with a primary focus on uncertainty
propagation. In this approach, we assume that hyperparameters follow a distribution:

θ ∼ p(θ|D) =
p(D|θ)p(θ)
p(D)

(646)

A popular choice is the Gaussian Process (GP), which provides a distribution over functions.
For hyperparameter optimization, we define a prior over the hyperparameters as:

θ ∼ GP(µ,K) (647)

where K(x, x′) = exp
(
−∥x−x′∥2

2l2

)
is the RBF kernel, and l is the length scale parameter. The

posterior distribution over θ given the observed data is:

p(θ|D) =
p(D|θ)p(θ)
p(D)

(648)

Using this posterior, we define an acquisition function such as Expected Improvement (EI):

EI(θ) = E [max(0, f(θ)− f ∗)] (649)

which helps guide the optimization of θ by balancing exploration and exploitation. The com-
putational challenges in this approach are mitigated by using sparse Gaussian Processes or
variational inference methods, which approximate the posterior more efficiently. In conclusion,
Meta-learning offers a mathematically rigorous framework for hyperparameter tuning, leveraging
advanced optimization techniques and probabilistic models to adapt to new tasks efficiently. The
bi-level optimization problem, second-order derivatives, and Bayesian frameworks provide both
theoretical depth and practical utility. These sophisticated methods represent a powerful toolkit
for hyperparameter optimization in complex machine learning systems.

7 Convolution Neural Networks

Literature Review: Goodfellow et. al. (2016) [112] wrote one of the most foundational text-
books on deep learning, covering CNNs in depth. It introduces theoretical principles, including
convolutions, backpropagation, and optimization methods. The book also discusses applications of
CNNs in image processing and beyond. LeCun et. al. (2015) [117] provides a historical overview
of CNNs and deep learning. LeCun, one of the inventors of CNNs, explains why convolutions help
in image recognition and discusses their applications in vision, speech, and reinforcement learning.
Krizhevsky et. al. (2012) [146] and Krizhevsky et. al. (2017) [147] introduced AlexNet, the first
modern deep CNN, which won the 2012 ImageNet Challenge. It demonstrated that deep CNNs can
achieve unprecedented accuracy in image classification tasks, paving the way for deep learning’s
dominance. Simonyan and Zisserman (2015) [148] introduced VGGNet, which demonstrated that
increasing network depth using small 3x3 convolutions can improve performance. It also provided
insights into layer design choices and their effects on accuracy. He et. al. (2016) [149] introduced
ResNet, which solved the vanishing gradient problem in deep networks by using skip connections.
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This revolutionized CNN design by allowing models as deep as 1000 layers to be trained efficiently.
Cohen and Welling (2016) [150] extended CNNs using group theory, enabling equivariant feature
learning. This improved CNN robustness to rotations and translations, making them more efficient
in symmetry-based tasks. Zeiler and Fergus (2014) [151] introduced deconvolution techniques to
visualize CNN feature maps, making it easier to interpret and debug CNNs. It showed how different
layers detect patterns, textures, and objects. Liu et.al. (2021) [152] introduced Vision Transform-
ers (ViTs) that outperform CNNs in some vision tasks. This paper discusses the limitations of
CNNs and how transformers can be hybridized with CNN architectures. Lin et.al. (2013) [153]
introduced the 1x1 convolution, which improved feature learning efficiency. This concept became
a key component of modern CNN architectures such as ResNet and MobileNet. Rumelhart et.
al. (1986) [154] formalized backpropagation, the training method used for CNNs. Without this
discovery, CNNs and deep learning would not exist today.

7.1 Key Concepts

A Convolutional Neural Network (CNN) is a deep learning model primarily used for analyzing
grid-like data, such as images, video, and time-series data with spatial or temporal dependencies.
The fundamental operation of CNNs is the convolution operation, which is employed to extract
local patterns from the input data. The input to a CNN is generally represented as a tensor
I ∈ RH×W×C , where H is the height, W is the width, and C is the number of channels (for RGB
images, C = 3).

At the core of a CNN is the convolutional layer, where the input image I is convolved with a
set of filters or kernels K ∈ Rfh×fw×C , where fh and fw are the height and width of the filter,
respectively. The filter K slides across the input image I, and the result of this convolution is a
set of feature maps that are indicative of certain local patterns in the image. The element-wise
convolution at location (i, j) of the feature map is given by:

I ∗K =

fh∑
p=1

fw∑
q=1

C∑
r=1

Ii+p−1,j+q−1,r ·Kp,q,r (650)

where Ii+p−1,j+q−1,r denotes the value of the r-th channel of the input image at position (i + p −
1, j + q − 1), and Kp,q,r is the corresponding filter value at (p, q, r). This operation is done for
each location (i, j) of the output feature map. The resulting feature map F has spatial dimensions
H ′ ×W ′, where:

H ′ =

⌊
H + 2p− fh

s

⌋
+ 1, W ′ =

⌊
W + 2p− fw

s

⌋
+ 1 (651)

where p is the padding, and s is the stride of the filter during its sliding motion. The convolution
operation provides a translation-invariant representation of the input image, as each filter detects
patterns across the entire image. After this convolution, a non-linear activation function, typically
the Rectified Linear Unit (ReLU), is applied to introduce non-linearity into the network and
ensure it can model complex patterns. The ReLU activation function operates element-wise and is
given by:

ReLU(x) = max(0, x) (652)

Thus, for each feature map F, the output after ReLU is:

F′
i,j,k = max(0,Fi,j,k) (653)

This ensures that negative values in the feature map are discarded, which helps with the sparse
representation of activations, mitigating the vanishing gradient problem in deeper layers. In CNNs,
pooling operations follow the convolution and activation layers. Pooling serves to reduce the spa-
tial dimensions of the feature maps, thus decreasing computational complexity and making the
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representation more invariant to translations. Max pooling, which is the most common form,
selects the maximum value within a specified window size ph × pw. Given an input feature map
F ∈ RH′×W ′×K , max pooling operates as follows:

Pi,j,k = max (Fi,j,k,Fi+1,j,k,Fi,j+1,k,Fi+1,j+1,k) (654)

where P is the pooled feature map. This pooling operation effectively reduces the spatial dimensions
of each feature map, resulting in an output P ∈ RH′′×W ′′×K , where:

H ′′ =

⌊
H ′

ph

⌋
, W ′′ =

⌊
W ′

pw

⌋
(655)

Max pooling introduces an element of robustness by capturing only the strongest features within
the local regions, discarding irrelevant information, and ensuring that the network is invariant to
small translations. The CNN architecture typically contains multiple convolutional layers followed
by pooling layers. After these operations, the feature maps are flattened into a one-dimensional
vector and passed into one or more fully connected (dense) layers. A fully connected layer
computes a linear transformation of the form:

z(l) = W(l)a(l−1) + b(l) (656)

where a(l−1) is the input to the layer, W(l) is the weight matrix, and b(l) is the bias vector. The
output of this linear transformation is then passed through a non-linear activation function, such as
ReLU or softmax for classification tasks. For classification, the softmax function is often applied
to convert the output into a probability distribution:

yi =
exp(zi)∑C
j=1 exp(zj)

(657)

where C is the number of output classes, and yi is the probability of the i-th class. The softmax
function ensures that the output probabilities sum to 1, providing a valid classification output.
The CNN is trained using backpropagation, which computes the gradients of the loss function
L with respect to the network’s parameters (i.e., weights and biases). Backpropagation uses the
chain rule to propagate the error gradients through each layer. The gradients with respect to the
convolutional filters K are computed by:

∂L
∂K

=
∂L
∂F
∗ I (658)

where ∗ denotes the convolution operation. Similarly, the gradients for the fully connected layers
are computed by:

∂L
∂W(l)

= a(l−1) · ∂L
∂z(l)

(659)

Once the gradients are computed, the weights are updated using an optimization algorithm like
gradient descent:

W(l) ←W(l) − η ∂L
∂W(l)

(660)

where η is the learning rate. This optimization ensures that the network’s parameters are adjusted
in the direction of the negative gradient, minimizing the loss function and thereby improving the
performance of the CNN. Regularization techniques are commonly applied to avoid overfitting.
Dropout, for instance, randomly deactivates a subset of neurons during training, preventing the
network from becoming too reliant on any specific feature and promoting better generalization.
The dropout operation at a given layer l with dropout rate p is defined as:

a(l) ∼ Dropout(a(l), p) (661)
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where the activations a(l) are randomly set to zero with probability p, and the remaining activations
are scaled by 1

1−p
. Another regularization technique is batch normalization, which normalizes

the inputs of each layer to have zero mean and unit variance, thus improving training speed and
stability. Mathematically, batch normalization is defined as:

x̂ =
x− µB

σB
, y = γx̂+ β (662)

where µB and σB are the mean and standard deviation of the batch, and γ and β are learned
scaling and shifting parameters.

In conclusion, the mathematical backbone of a Convolutional Neural Network (CNN) relies
heavily on the convolution operation, non-linear activations, pooling, and fully connected trans-
formations. The convolutional layers extract hierarchical features by applying filters to the input
data, while pooling reduces the spatial dimensions and introduces invariance to translations. The
fully connected layers aggregate these features for classification or regression tasks. The network is
trained using backpropagation and optimization techniques such as gradient descent. Regulariza-
tion methods like dropout and batch normalization are used to improve generalization and training
efficiency. The mathematical formalism behind CNNs is essential for understanding their power in
various machine learning tasks, particularly in computer vision.

7.2 Applications in Image Processing

7.2.1 Image Classification

Literature Review: Thiriveedhi et. al. (2025) [185] presented a novel CNN-based architecture
for diagnosing Acute Lymphoblastic Leukemia (ALL), integrating explainable AI (XAI) techniques.
The proposed model outperforms traditional CNNs by providing human-interpretable insights into
medical image classification. The research highlights how CNNs can be effectively applied to med-
ical imaging with enhanced transparency. Ramos-Briceño et. al. (2025) [186] demonstrated the
superior classification accuracy of CNNs in malaria parasite detection. The research uses deep
CNNs to classify malaria species in blood samples and achieves state-of-the-art performance. The
paper provides valuable insights into CNN-based image classification for biomedical applications.
Espino-Salinas et. al. (2025) [187] applied CNNs to mental health diagnostics by classifying motion
activity patterns as images. The paper explores the novel application of CNNs beyond traditional
image classification by transforming time-series data into visual representations and utilizing CNNs
to detect psychiatric disorders. Ran et. al. (2025) [188] introduced a CNN-based hyperspectral
imaging method for early diagnosis of pancreatic neuroendocrine tumors. The paper highlights
CNNs’ ability to process multispectral data for complex medical imaging tasks, further expanding
their utility in pathology and cancer detection. Araujo et. al. (2025) [189] demonstrated how CNNs
can be employed in industrial monitoring and predictive maintenance. The research introduces an
innovative CNN-based approach for detecting faults in ZnO surge arresters using thermal imaging,
proving CNNs’ robustness in non-destructive testing applications. Sari et. al. (2025) [190] applied
CNNs to cultural heritage preservation, specifically Batik pattern classification. The study show-
cases CNNs’ adaptability in fine-grained image classification and highlights the importance of deep
learning in automated textile pattern recognition. Wang et. al. (2025) [191] proposed CF-WIAD,
a novel semi-supervised learning method that leverages CNNs for skin lesion classification. The
research demonstrates how CNNs can be used to effectively classify dermatological images, partic-
ularly in low-data environments, which is a key challenge in medical AI. Cai et. al. (2025) [192]
introduced DFNet, a CNN-based residual network that improves feature extraction by incorporat-
ing differential features. The study highlights CNNs’ role in advanced feature engineering, which
is crucial for applications such as facial recognition and object classification. Vishwakarma and
Deshmukh (2025) [193] presented CNNM-FDI, a CNN-based fire detection model that enhances
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real-time safety monitoring. The study explores CNNs’ application in environmental monitoring,
emphasizing fast-response classification models for early disaster prevention. Ranjan et. al. (2025)
[194] merged CNNs, Autoencoders, GANs, and Zero-Shot Learning to improve hyperspectral image
classification. The research underscores how CNNs can be augmented with generative models to
enhance classification in limited-label datasets, a crucial area in remote sensing applications.

The process of image classification in Convolutional Neural Networks (CNNs) involves a sophisti-
cated interplay of linear algebra, calculus, probability theory, and optimization. The primary goal
is to map a high-dimensional input image to a specific class label. Let I ∈ RH×W×C represent the
input image, where H, W , and C are the height, width, and number of channels (usually 3 for
RGB images) of the image, respectively. Each pixel of the image can be represented as I(i, j, c),
which denotes the intensity of the c-th channel at pixel position (i, j). The objective of the CNN
is to transform this raw input image into a label, typically one of M classes, using a hierarchical
feature extraction process that includes convolutions, nonlinearities, pooling, and fully connected
layers.

The convolution operation is central to CNNs and forms the basis for the feature extraction process.
Let K ∈ Rk×k×C be a filter (or kernel) with spatial dimensions k × k and C channels, where k is
typically a small odd integer, such as 3 or 5. The filter K is convolved with the input image I
to produce a feature map S ∈ R(H−k+1)×(W−k+1)×F , where F is the number of filters used in the
convolution. For a given spatial position (i, j) in the feature map, the convolution operation is
defined as:

Si,j,f =
k−1∑
m=0

k−1∑
n=0

C−1∑
c=0

I(i+m, j + n, c) ·Km,n,c,f (663)

where Si,j,f represents the value at position (i, j) in the feature map corresponding to the f -th filter.
This operation computes a weighted sum of pixel values in the receptive field of size k × k × C
around pixel (i, j), where the weights are given by the filter values. The result is a new feature map
that captures local patterns such as edges or textures in the image. This local feature extraction
is performed for each position (i, j) across the entire image, producing a set of feature maps for
each filter. To introduce non-linearity into the network and allow it to model complex functions,
the feature map S is passed through a non-linear activation function, typically the Rectified Linear
Unit (ReLU), which is defined element-wise as:

σ(x) = max(0, x) (664)

This activation function outputs 0 for negative values and passes positive values unchanged, en-
suring that the network can learn complex, non-linear relationships. The output of the activation
function for the feature map is denoted as S+, where each element of S+ is computed as:

S+
i,j,f = max(0,Si,j,f ) (665)

This element-wise operation enhances the network’s ability to capture and represent complex pat-
terns, thereby aiding in the learning process. After the convolution and activation, the feature map
is downsampled using a pooling operation. The most common form of pooling is max pooling,
which selects the maximum value in a local region of the feature map. Given a pooling window of
size p× p and stride s, the max pooling operation for the feature map S+ is given by:

Pi,j,f = max
(u,v)∈p×p

S+
i+u,j+v,f (666)

where P represents the pooled feature map. This operation reduces the spatial dimensions of the
feature map by a factor of p, while preserving the most important features in each region. Pooling
serves several purposes, including dimensionality reduction, translation invariance, and noise re-
duction. It also helps prevent overfitting by limiting the number of parameters and computations
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in the network.

Once the feature maps are obtained through convolution, activation, and pooling, they are flat-
tened into a one-dimensional vector F ∈ RN , where N is the total number of elements in the
pooled feature map. The flattened vector F is then fed into one or more fully connected layers.
These layers perform linear transformations of the input, which are essentially weighted sums of
the inputs, followed by the addition of a bias term. The output of a fully connected layer can be
expressed as:

O = W · F + b (667)

where W ∈ RM×N is the weight matrix, b ∈ RM is the bias vector, and O ∈ RM is the raw output
or logit for each of the M classes. The fully connected layer computes a set of logits for the classes
based on the learned features from the convolutional and pooling layers. To convert the logits into
class probabilities, a softmax function is applied. The softmax function is a generalization of the
logistic function to multiple classes and transforms the logits into a probability distribution. The
probability of class k is given by:

P (y = k | O) =
eOk∑M
k=1 e

Ok

(668)

where Ok is the logit corresponding to class k, and the denominator ensures that the sum of
probabilities across all classes equals 1. The class label with the highest probability is selected as
the final prediction:

y = arg max
k
P (y = k | O) (669)

The prediction is made based on the computed class probabilities, and the network aims to minimize
the discrepancy between the predicted probabilities and the true labels during training. To optimize
the network’s parameters, we minimize a loss function that measures the difference between
the predicted probabilities and the actual labels. The cross-entropy loss is commonly used in
classification tasks and is defined as:

L = −
M∑
k=1

yk logP (y = k | O) (670)

where yk is the true label in one-hot encoding, and P (y = k | O) is the predicted probability for
class k. The goal of training is to minimize this loss function, which corresponds to maximizing
the likelihood of the correct class under the predicted probability distribution.

The optimization of the network parameters is performed using gradient descent and its variants,
such as stochastic gradient descent (SGD), which iteratively updates the parameters based on the
gradients of the loss function. The gradients are computed using backpropagation, a method
that applies the chain rule of calculus to compute the partial derivatives of the loss with respect
to each parameter. For a fully connected layer, the gradient of the loss with respect to the weights
W is given by:

∇WL =
∂L
∂O
· ∂O
∂W

= δ · FT (671)

where δ = ∂L
∂O

is the error term (also known as the delta) for the logits, and FT is the transpose of
the flattened feature vector. The parameters are updated using the following rule:

W←W − η∇WL (672)

where η is the learning rate, controlling the step size of the updates. This process is repeated
for each batch of training data until the network converges to a set of parameters that minimize
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the loss function. Through this complex and iterative process, CNNs are able to learn to classify
images by automatically extracting hierarchical features from raw input data. The combination of
convolution, activation, pooling, and fully connected layers enables the network to learn increasingly
abstract and high-level representations of the input image, ultimately achieving high accuracy in
image classification tasks.

7.2.2 Object Detection

Literature Review: Naseer and Jalal (2025) [195] presented a multimodal deep learning frame-
work that integrates RGB-D images for enhanced semantic scene classification. The study leverages
a Convolutional Neural Network (CNN)-based object detection model to extract and process fea-
tures from RGB and depth images, aiming to improve scene recognition accuracy in cluttered and
complex environments. By incorporating multimodal inputs, the model effectively addresses the
challenges associated with occlusions and background noise, which are common issues in tradi-
tional object detection frameworks. The researchers demonstrate how CNNs, when combined with
depth-aware semantic information, can significantly enhance object localization and classification
performance. Through extensive evaluations, they validate that their framework outperforms con-
ventional single-stream CNNs in various real-world scenarios, making a compelling case for RGB-D
integration in deep learning-based object detection systems. Wang and Wang (2025) [196] builds
upon the Faster R-CNN object detection framework, introducing a novel improvement that signif-
icantly enhances detection accuracy in highly dynamic and complex environments. The study pro-
poses an optimized anchor box generation mechanism, which allows the network to efficiently detect
objects of varying scales and aspect ratios, particularly those that are small or heavily occluded. By
incorporating a refined region proposal network (RPN), the authors mitigate localization errors and
reduce false-positive detections. The paper also explores the impact of feature pyramid networks
(FPNs) in hierarchical feature extraction, demonstrating their effectiveness in improving the detec-
tion of fine-grained details. The authors conduct an extensive empirical evaluation, comparing their
improved Faster R-CNN model against existing object detection architectures, proving its superior
performance in terms of precision and recall, particularly for applications involving customized icon
generation and user interface design. Ramana et. al. (2025) [197] introduced a Deep Convolutional
Graph Neural Network (DCGNN) that integrates Spectral Pyramid Pooling (SPP) and fused key-
point generation to significantly improve 3D object detection performance. The study employs
ResNet-50 as the backbone CNN architecture and enhances its feature extraction capability by
introducing multi-scale spectral feature aggregation. Through the integration of graph neural net-
works (GNNs), the model can effectively capture spatial relationships between object components,
leading to highly accurate 3D bounding box predictions. The proposed methodology is rigorously
evaluated on multiple benchmark datasets, demonstrating its superior ability to handle occlusion,
scale variation, and viewpoint changes. Additionally, the paper presents a novel fusion strategy
that combines keypoint-based object representation with spectral domain feature embeddings, al-
lowing the model to achieve unparalleled robustness in automated 3D object detection tasks. Shin
et. al. (2025) [198] explores the application of deep learning-based object detection in the field
of microfluidics and droplet-based bioengineering. The authors utilize YOLOv10n, an advanced
CNN-based object detection framework, to develop an automated system for tracking and catego-
rizing double emulsion droplets in high-throughput experimental setups. By fine-tuning the YOLO
architecture, the study achieves remarkable improvements in detection sensitivity and classification
accuracy, enabling real-time identification of droplet morphology, phase separation dynamics, and
stability characteristics. The researchers further introduce an adaptive feature refinement strategy,
wherein the CNN model continuously learns from real-time experimental variations, allowing for
automated calibration and correction of droplet misclassification. The paper also demonstrates
the practical implications of this AI-driven approach in drug delivery systems, encapsulation tech-
nologies, and synthetic biology applications. Taca et. al. (2025) [199] provided a comprehensive
comparative analysis of multiple CNN-based object detection architectures applied to aphid clas-
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sification in large-scale agricultural datasets. The researchers evaluate the performance of YOLO,
SSD, Faster R-CNN, and EfficientDet, analyzing their trade-offs in terms of accuracy, inference
speed, and computational efficiency. Through an extensive experimental setup involving 48,000
annotated images, the authors demonstrate that certain CNN models excel in specific detection
scenarios, such as YOLO for real-time aphid localization and Faster R-CNN for high-precision clas-
sification. Furthermore, the paper introduces an innovative hybrid ensemble strategy, combining
the strengths of multiple CNN architectures to achieve optimal detection performance. The au-
thors validate their findings on real-world agricultural environments, emphasizing the importance
of deep learning-driven pest detection in sustainable farming practices. Ulaş et. al. (2025) [200]
explored the application of CNN-based object detection in the domain of astronomical time-series
analysis, specifically targeting oscillation-like patterns in eclipsing binary light curves. The study
systematically evaluates multiple state-of-the-art object detection models, including YOLO, Faster
R-CNN, and SSD, to determine their effectiveness in identifying transient light fluctuations that
indicate oscillatory behavior in celestial bodies. One of the key contributions of this paper is the
introduction of a customized pre-processing pipeline that optimizes raw observational data by re-
moving noise and enhancing feature visibility using wavelet-based signal decomposition techniques.
The researchers further implement a hybrid detection mechanism, integrating CNN-based spatial
feature extraction with recurrent neural networks (RNNs) to capture both spatial and temporal
dependencies within light curve datasets. Extensive validation on large-scale astronomical datasets
demonstrates that this approach significantly outperforms traditional statistical methods in detect-
ing oscillatory behavior, paving the way for AI-driven automation in astrophysical event classifica-
tion. Valensi et. al. (2025) [201] presents an advanced semi-supervised deep learning framework for
pleural line detection and segmentation in lung ultrasound (LUS) imaging, leveraging the power of
foundation models and CNN-based object detection architectures. The study highlights the short-
comings of conventional fully supervised learning in medical imaging, where annotated datasets
are limited and labor-intensive to create. To overcome this challenge, the researchers incorporate a
semi-supervised learning strategy, utilizing self-training techniques combined with pseudo-labeling
to improve model generalization. The framework employs YOLOv8-based object detection, specif-
ically optimized for medical feature localization, which significantly enhances detection accuracy
in cases of low-contrast and high-noise ultrasound images. Furthermore, the study integrates a
multi-scale feature extraction strategy, combining convolutional layers with attention mechanisms
to ensure precise identification of pleural lines across different imaging conditions. Experimen-
tal results demonstrate that this hybrid approach achieves a substantial increase in segmentation
accuracy, particularly in detecting subtle abnormalities linked to pneumothorax and pleural effu-
sion, making it a highly valuable tool in clinical diagnostic applications. Arulalan et. al. (2025)
[202] proposed an optimized object detection pipeline that integrates a novel convolutional neural
network (CNN) architecture, BS2ResNet, with bidirectional LSTM (LTK-Bi-LSTM) for improved
spatiotemporal object recognition. Unlike conventional CNN-based object detectors, which focus
solely on static spatial features, this study introduces a hybrid deep learning framework that cap-
tures both spatial and temporal dependencies. The proposed BS2ResNet model enhances feature
extraction by utilizing bottleneck squeeze-and-excitation blocks, which selectively emphasize impor-
tant spatial information while suppressing redundant feature maps. Additionally, the integration of
LTK-Bi-LSTM layers allows the model to effectively capture temporal correlations, making it highly
robust for detecting moving objects in dynamic environments. This approach is validated on mul-
tiple benchmark datasets, including autonomous driving and video surveillance datasets, where it
demonstrates superior performance in handling occlusions, rapid motion, and low-light conditions.
The findings indicate that combining deep convolutional networks with sequence-based modeling
significantly improves object detection accuracy in complex real-world scenarios, offering critical
advancements for applications in intelligent transportation, security, and real-time monitoring. Zhu
et. al. (2025) [203] investigated a novel adversarial attack strategy targeting CNN-based object
detection models, with a specific focus on binary image segmentation tasks such as salient object
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detection and camouflage object detection. The paper introduces a high-transferability adversarial
attack framework, which generates adversarial perturbations capable of fooling a wide range of
deep learning models, including YOLO, Mask R-CNN, and U-Net-based segmentation networks.
The researchers employ adversarial example augmentation, where synthetic adversarial patterns
are iteratively refined through gradient-based optimization techniques, ensuring that the adversar-
ial attacks remain effective across different architectures and datasets. A particularly important
contribution is the introduction of a dual-stage attack pipeline, wherein the model first learns to
generate localized, high-impact adversarial noise and then optimizes for cross-model generalization.
Extensive experiments demonstrate that this approach significantly degrades detection performance
across multiple state-of-the-art models, revealing critical vulnerabilities in current CNN-based ob-
ject detectors. This research provides valuable insights into deep learning security and underscores
the urgent need for robust adversarial defense mechanisms in high-stakes applications such as au-
tonomous systems, medical imaging, and biometric security. Guo et. al. (2025) [204] introduced
a deep learning-based agricultural monitoring system, utilizing CNNs for agronomic entity detec-
tion and attribute extraction. The research highlights the limitations of traditional rule-based and
manual annotation systems in agricultural monitoring, which are prone to errors and inefficiencies.
By leveraging CNN-based object detection models, the proposed system enables real-time crop
analysis, accurately identifying key agronomic attributes such as plant height, leaf structure, and
disease symptoms. A significant innovation in this study is the incorporation of inter-layer feature
fusion, wherein multi-scale convolutional features are integrated across different network depths to
improve detection robustness under varying lighting and environmental conditions. Additionally,
the authors employ a hybrid feature selection mechanism, combining spatial attention networks
with spectral domain feature extraction, which enhances the model’s ability to distinguish between
healthy and diseased crops with high precision. The research is validated through rigorous field
trials, demonstrating that CNN-based agronomic monitoring can significantly enhance crop yield
predictions, reduce human labor in precision agriculture, and optimize resource allocation in farm-
ing operations.

Object detection in Convolutional Neural Networks (CNNs) is a multifaceted computational process
that intertwines both classification and localization. It involves detecting objects within an image
and predicting their positions via bounding boxes. This task can be mathematically decomposed
into the combined problems of classification and regression, both of which are intricately handled
by the convolutional layers of a deep neural network. These layers extract hierarchical features at
different levels of abstraction, starting from low-level features like edges and corners to high-level
semantic concepts such as textures and object parts. These feature maps are then processed by
fully connected layers for classification and bounding box regression tasks.

In the mathematical framework, let the input image be represented by a matrix I ∈ RH×W×C ,
where H, W , and C are the height, width, and number of channels (typically 3 for RGB images).
Convolution operations in a CNN serve as the fundamental building blocks to extract spatial hier-
archies of features. The convolution operation involves the application of a kernel K ∈ Rm×n×C to
the input image, where m and n are the spatial dimensions of the kernel, and C is the number of
input channels. The convolution operation is performed by sliding the kernel over the image and
computing the element-wise multiplication between the kernel and the image patch, yielding the
following equation for the feature map O(x, y):

O(x, y) =
m−1∑
i=0

n−1∑
j=0

C−1∑
c=0

I(x+ i, y + j, c) ·K(i, j, c) (673)

Here, O(x, y) represents the feature map at the location (x, y), which is generated by applying the
kernel K. The sum is taken over the spatial extent of the kernel as it slides over the image. This
convolutional operation helps the network capture local patterns in the input image, such as edges,
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corners, and textures, which are crucial for identifying objects. Once the convolution is performed,
a non-linear activation function such as the Rectified Linear Unit (ReLU) is applied to introduce
non-linearity into the system. The ReLU activation function is given by:

f(x) = max(0, x) (674)

This activation function helps the network model complex non-linear relationships between fea-
tures and is computationally efficient. The application of ReLU ensures that the network can learn
complex decision boundaries that are necessary for tasks like object detection.

In CNN-based object detection, the goal is to predict the class of an object and localize its position
via a bounding box. The bounding box is parametrized by four coordinates: (x, y) for the center
of the box, and w, h for the width and height. The task can be viewed as a twofold problem: (1)
classify the object and (2) predict the bounding box that best encodes the object’s spatial posi-
tion. Mathematically, this requires the network to output both class probabilities and bounding
box coordinates for each object within the image. The classification task is typically performed
using a softmax function, which converts the network’s raw output logits zi for each class i into
probabilities P (yi|r). The softmax function is defined as:

P (yi|r) =
exp(zi)∑k
j=1 exp(zj)

(675)

where k is the number of possible classes, zi is the raw score for class i, and P (yi|r) is the probability
that the region r belongs to class yi. This function ensures that the predicted scores are valid
probabilities that sum to one, which allows the network to make a probabilistic decision regarding
the class of the object in each region. Simultaneously, the network must also predict the four
parameters of the bounding box for each object. The network’s predicted bounding box parameters
are typically denoted as B̂ = (x̂, ŷ, ŵ, ĥ), while the ground truth bounding box is denoted by
B = (x, y, w, h). The error between the predicted and true bounding boxes is quantified using a
loss function, with the smooth L1 loss being a commonly used metric for bounding box regression.
The smooth L1 loss for each parameter of the bounding box is defined as:

Lbbox =
4∑

i=1

SmoothL1(Bi − B̂i) (676)

The smooth L1 function is defined as:

SmoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 if |x| ≥ 1
(677)

This loss function is used to reduce the impact of large errors, thereby making the training process
more robust. The goal is to minimize this loss during the training phase to improve the network’s
ability to predict both the class and the bounding box of objects.

For training, a combined loss function is used that combines both the classification loss and the
bounding box regression loss. The total loss function can be written as:

L = Lcls + Lbbox (678)

where Lcls is the classification loss, typically computed using the cross-entropy between the pre-
dicted probabilities and the ground truth labels. The cross-entropy loss for classification is given
by:

Lcls = −
k∑

i=1

yi log(ŷi) (679)
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where yi is the true label, and ŷi is the predicted probability for class i. The total objective
function for training is therefore a weighted sum of the classification and bounding box regression
losses, and the network is optimized to minimize this combined loss function. Object detection
architectures like Region-based CNNs (R-CNNs) take a two-stage approach where the task is broken
into generating region proposals and classifying these regions. Region Proposal Networks (RPNs)
are employed to generate candidate regions r1, r2, . . . , rn, which are then passed through the network
to obtain their feature representations. The bounding box refinement and classification for each
proposal are then performed by a fully connected layer. The loss function for R-CNNs combines
both classification and bounding box regression losses for each proposal, and the objective is to
minimize:

LR-CNN = Lcls + Lbbox (680)

Another popular architecture, YOLO (You Only Look Once), frames object detection as a single
regression task. The image is divided into a grid of S × S cells, where each cell predicts the class
probabilities and bounding box parameters. The output vector for each cell consists of:

ŷi = (x, y, w, h, c, P1, P2, . . . , Pk) (681)

where (x, y) are the coordinates of the bounding box center, w and h are the dimensions of the box,
c is the confidence score, and P1, P2, . . . , Pk are the class probabilities. The total loss for YOLO
combines the classification loss, bounding box regression loss, and confidence loss, which can be
written as:

LYOLO = Lcls + Lbbox + Lconf (682)

where Lcls is the classification loss, Lbbox is the bounding box regression loss, and Lconf is the
confidence loss, which penalizes predictions with low confidence. This approach allows YOLO to
make object detection predictions in a single pass through the network, enabling faster inference.
The Single Shot Multibox Detector (SSD) improves on YOLO by generating bounding boxes at
multiple feature scales, which allows for detecting objects of varying sizes. The loss function for
SSD is similar to that of YOLO, comprising the classification loss and bounding box localization
loss, given by:

LSSD = Lcls + Lloc (683)

where Lcls is the classification loss, and Lloc is the smooth L1 loss for bounding box regression.
This multi-scale approach enhances the network’s ability to detect objects at different levels of
resolution, improving its robustness to objects of different sizes.

Thus, object detection in CNNs involves a sophisticated architecture of convolution, activation,
pooling, and multi-stage loss functions that guide the network in accurately detecting and local-
izing objects in an image. The choice of architecture and loss function plays a critical role in the
performance and efficiency of the detection system, with modern architectures like R-CNN, YOLO,
and SSD each offering distinct advantages depending on the application requirements.

7.3 Real-World Applications

7.3.1 Medical Imaging

Literature Review: Yousif et. al. (2024) [205] applied CNNs for melanoma skin cancer detec-
tion, integrating a Binary Grey Wolf Optimization (GWO) algorithm to enhance feature selection.
It demonstrates the effectiveness of deep learning in classifying dermatoscopic images and high-
lights feature extraction techniques for accurate classification. Rahman et. al. (2025) [206] gave
a systematic review that covers CNN-based leukemia detection using medical imaging. The study
compares different deep learning architectures such as ResNet, VGG, and EfficientNet, providing
a benchmark for future studies. Joshi and Gowda (2025) [207] introduced an attention-guided
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Graph CNN (VSA-GCNN) for brain tumor segmentation and classification. It leverages spatial
relationships within MRI scans to improve diagnostic accuracy. The use of graph neural networks
(GNNs) combined with CNNs is a novel approach in medical imaging. Ng et al. (2025) [208]
developed a CNN-based cardiac MRI analysis model to predict ischemic cardiomyopathy without
contrast agents. It highlights the ability of deep learning models to extract diagnostic informa-
tion from non-contrast images, reducing the need for invasive procedures. Nguyen et al. (2025)
[209] presented a multi-view tumor region-adapted synthesis model for mammograms using CNNs.
The approach enhances breast cancer detection by using 3D spatial feature extraction techniques,
improving tumor localization and classification. Chen et. al. (2025) [210] explored CNN-based de-
noising for medical images using a penalized least squares (PLS) approach. The study applies deep
learning for noise reduction in MRI scans, leading to improved clarity in low-signal-to-noise ratio
(SNR) images. Pradhan et al. (2025) [211] discussed CNN-based diabetic retinopathy detection.
It introduces an Atrous Residual U-Net architecture, enhancing image segmentation performance
for early-stage diagnosis of retinal diseases. Örenç et al. (2025) [212] evaluated ensemble CNN
models for adenoid hypertrophy detection in X-ray images. It demonstrates transfer learning and
feature fusion techniques, which improve CNN-based medical diagnostics. Jiang et al. (2025) [213]
introduced a cross-modal attention network for MRI image denoising, particularly effective when
some imaging modalities are missing. It highlights cross-domain knowledge transfer using CNNs.
Al-Haidri et. al. (2025) [214] developed a CNN-based framework for automatic myocardial fibrosis
segmentation in cardiac MRI scans. It emphasizes quantitative feature extraction techniques that
enhance precision in cardiac diagnostics.

Convolutional Neural Networks (CNNs) have become an indispensable tool in the field of med-
ical imaging, driven by their ability to automatically learn spatial hierarchies of features directly
from image data without the need for handcrafted feature extraction. The convolutional layers in
CNNs are designed to exploit the spatial structure of the input data, making them particularly
well-suited for tasks in medical imaging, where spatial relationships in images often encode critical
diagnostic information. The fundamental building block of CNNs, the convolution operation, is
mathematically expressed as

S(i, j) =
k∑

m=−k

k∑
n=−k

I(i+m, j + n) ·K(m,n), (684)

where S(i, j) represents the value of the output feature map at position (i, j), I(i, j) is the input
image, K(m,n) is the convolutional kernel (a learnable weight matrix), and k denotes the kernel
radius (for example, k = 1 for a 3 × 3 kernel). This equation fundamentally captures how local
patterns, such as edges, textures, and more complex features, are extracted by sliding the kernel
across the image. The convolution operation is performed for each channel of a multi-channel input
(e.g., RGB images or multi-modal medical images), and the results are summed across channels,
leading to multi-dimensional feature maps. For a 3D input tensor, the convolution extends to
include depth:

S(i, j, d′) =
D∑

d=1

k∑
m=−k

k∑
n=−k

I(i+m, j + n, d) ·K(m,n, d), (685)

where D is the depth of the input tensor, and d′ is the depth index of the output feature map. CNNs
incorporate nonlinear activation functions after convolutional layers to introduce nonlinearity into
the model, allowing it to learn complex mappings. A commonly used activation function is the
Rectified Linear Unit (ReLU), mathematically defined as

f(x) = max(0, x). (686)

This function ensures sparsity in the activations, which is advantageous for computational efficiency
and generalization. More advanced activation functions, such as parametric ReLU (PReLU), extend
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this concept by allowing learnable parameters for the negative slope:

f(x) =

{
x if x > 0,

ax if x ≤ 0,
(687)

where a is a learnable parameter. Pooling layers are employed in CNNs to downsample the spatial
dimensions of feature maps, thereby reducing computational complexity and the risk of overfitting.
Max pooling is defined mathematically as

P (i, j) = max
(m,n)∈R

S(i+m, j + n), (688)

where R is the pooling region (e.g., 2× 2). Average pooling computes the mean value instead:

P (i, j) =
1

|R|
∑

(m,n)∈R

S(i+m, j + n). (689)

In medical imaging, CNNs are widely used for image classification tasks such as detecting abnor-
malities (e.g., tumors, fractures, or lesions). Consider a classification problem where the input is a
mammogram image, and the output is a binary label y ∈ {0, 1}, indicating benign or malignant.
The CNN model outputs a probability score ŷ, computed as

ŷ = σ(z) =
1

1 + e−z
, (690)

where z is the output of the final layer before the sigmoid activation. The binary cross-entropy loss
function is then used to train the model:

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] . (691)

For image segmentation tasks, where the goal is to assign a label to each pixel, architectures such
as U-Net are commonly used. U-Net employs an encoder-decoder structure, where the encoder ex-
tracts features through a series of convolutional and pooling layers, and the decoder reconstructs the
image through upsampling and concatenation operations. The objective function for segmentation
is often the Dice coefficient loss, defined as

LDice = 1− 2
∑

i pigi∑
i pi +

∑
i gi

, (692)

where pi and gi are the predicted and ground truth values for pixel i, respectively. In the context of
image reconstruction, such as in magnetic resonance imaging (MRI), CNNs are used to reconstruct
high-quality images from undersampled k-space data. The reconstruction problem is formulated as
minimizing the difference between the reconstructed image Ipred and the ground truth Itrue, often
using the ℓ2-norm:

Lreconstruction = ∥Ipred − Itrue∥22. (693)

Generative adversarial networks (GANs) have also been applied to medical imaging, particularly
for enhancing image resolution or synthesizing realistic images from noisy inputs. A GAN consists
of a generator G and a discriminator D, where G learns to generate images G(z) from latent noise
z, and D distinguishes between real and fake images. The loss functions for G and D are given by

LD = −E[logD(x)]− E[log(1−D(G(z)))], (694)

LG = −E[logD(G(z))]. (695)
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Multi-modal imaging, where data from different modalities (e.g., MRI and PET) are combined,
further highlights the utility of CNNs. For instance, feature maps from MRI and PET images are
concatenated at intermediate layers to exploit complementary information, improving diagnostic
accuracy. Attention mechanisms are often incorporated to focus on the most relevant regions of
the image. For example, a spatial attention map As can be computed as

As = σ(W2 · ReLU(W1 · F + b1) + b2), (696)

where F is the input feature map, W1 and W2 are learnable weight matrices, and b1 and b2 are
biases. Despite their success, CNNs in medical imaging face challenges, including data scarcity
and interpretability. Transfer learning addresses data scarcity by fine-tuning pre-trained models
on small medical datasets. Techniques such as Grad-CAM provide interpretability by visualiz-
ing regions that influence the network’s predictions. Mathematically, Grad-CAM computes the
importance of a feature map Ak for a class c as

αc
k =

1

Z

∑
i,j

∂yc

∂Ak
i,j

, (697)

where yc is the score for class c and Z is a normalization constant. The class activation map is
then obtained as

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k

)
. (698)

In summary, CNNs have transformed medical imaging by enabling automated and highly accu-
rate analysis of complex medical images. Their applications span disease detection, segmentation,
reconstruction, and multi-modal imaging, with continued advancements addressing challenges in
data efficiency and interpretability. Their mathematical foundations and computational frameworks
provide a robust basis for future innovations in this critical field.

7.3.2 Autonomous Vehicles

Literature Review: Ojala and Zhou (2024) [323] proposed a CNN-based approach for detecting
and estimating object distances from thermal images in autonomous driving. They developed a
deep convolutional model for distance estimation using a single thermal camera and introduced the-
oretical formulations for thermal imaging data preprocessing within CNN pipelines. Popordanoska
and Blaschko (2025) [324] investigated the mathematical underpinnings of CNN calibration in high-
risk domains, including autonomous vehicles. They analyzed the confidence calibration problem in
CNNs used for self-driving perception and developed a Bayesian-inspired regularization approach to
improve CNN decision reliability in autonomous driving. Alfieri et. al. (2024) [325] explored deep
reinforcement learning (DRL) methods with CNNs for optimizing route planning in autonomous
vehicles. They bridged CNN-based vision models with Deep Q-Learning, enabling adaptive path
optimization in real-world driving conditions and established a novel theoretical connection be-
tween Q-learning and CNN-based object detection for autonomous navigation. Zanardelli (2025)
[326] examined decision-making frameworks using CNNs in autonomous vehicle systems. He devel-
oped a statistical model integrating CNNs with reinforcement learning to improve self-driving car
decision-making and provided a rigorous probabilistic analysis of how CNNs handle uncertainty
in real-world driving environments. Norouzi et. al. (2025) [327] analyzed the role of transfer
learning in CNN models for autonomous vehicle perception. They introduced pre-trained CNNs
for vehicle object detection using multi-sensor data fusion and provided a rigorous theoretical jus-
tification for integrating Kalman filtering and Dempster-Shafer theory with CNNs. Wang et. al.
(2024) [328] investigated the mathematics of uncertainty quantification in CNN-based perception
models for self-driving cars. They used Bayesian CNNs to model uncertainty in semantic segmen-
tation for autonomous driving and proposed a Dempster-Shafer theory-based fusion mechanism
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for combining multiple CNN outputs. Xia et. al. [329] integrated CNN-based perception models
with reinforcement learning (RL) to improve autonomous vehicle trajectory tracking. They uses
CNNs for lane detection and integrated them into a RL-based path planner. They also estab-
lished a theoretical framework linking CNN-based scene recognition to control theory. Liu et. al.
(2024) [330] introduced a CNN-based multi-view feature extraction framework for spatial-temporal
analysis in self-driving cars. They developed a hybrid CNN-graph attention model to extract
temporal driving patterns. They also made theoretical advancements in multi-view learning and
feature fusion for CNNs in autonomous vehicle decision-making. Chakraborty and Deka (2025)
[331] applied CNN-based multimodal sensor fusion to autonomous vehicles and UAVs for real-time
navigation. They did theoretical analysis of CNN feature fusion mechanisms for real-time per-
ception and developed mask region-based CNNs (Mask-RCNNs) for enhanced object recognition
in autonomous navigation. Mirindi et. al. (2025) [332] investigated the role of CNNs and AI in
smart autonomous transportation. They did theoretical discussion on the Unified Theory of AI
Adoption in autonomous driving and introduced hybrid Recurrent Neural Networks (RNNs) and
CNN architectures for vehicle trajectory prediction.

Convolutional Neural Networks (CNNs) are fundamental in the implementation of autonomous
vehicles, forming the backbone of the perception and decision-making systems that allow these
vehicles to interpret and respond to their environment. At the core of a CNN is the convolution
operation, which mathematically transforms an input image or signal into a feature map, allowing
the extraction of spatial hierarchies of information. The convolution operation in its continuous
form is defined as:

s(t) =

∫ ∞

−∞
x(τ)w(t− τ) dτ, (699)

where x(τ) represents the input, w(t− τ) is the filter or kernel, and s(t) is the output feature. In
the discrete domain, especially for image processing, this operation can be written as:

S(i, j) =
k∑

m=−k

k∑
n=−k

X(i+m, j + n) ·W (m,n), (700)

where X(i, j) denotes the pixel intensity at coordinate (i, j) of the input image, and W (m,n)
represents the convolutional kernel values. This operation enables the detection of local patterns
such as edges, corners, or textures, which are then aggregated across layers to recognize complex
features like shapes and objects. In the context of autonomous vehicles, CNNs process sensor data
from cameras, LiDAR, and radar to identify critical features such as other vehicles, pedestrians,
road signs, and lane boundaries. For object detection, CNN-based architectures such as YOLO
(You Only Look Once) and Faster R-CNN employ a backbone network like ResNet, which uses
successive convolutional layers to extract hierarchical features from the input image. The object
detection task involves two primary outputs: bounding box coordinates and object class probabil-
ities. Mathematically, bounding box regression is modeled as a multi-task learning problem. The
loss function for bounding box regression is often formulated as:

Lreg =
N∑
i=1

∑
j∈{x,y,w,h}

SmoothL1(tij − t̂ij), (701)

where tij and t̂ij are the ground-truth and predicted bounding box parameters (e.g., center coordi-
nates x, y and dimensions w, h). Simultaneously, the classification loss, typically cross-entropy, is
computed as:

Lcls = −
N∑
i=1

C∑
c=1

yi,c log(pi,c), (702)
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where yi,c is a binary indicator for whether the object at index i belongs to class c, and pi,c is the
predicted probability. The total loss function is a weighted combination:

Ltotal = αLreg + βLcls. (703)

Semantic segmentation, another critical task, requires pixel-level classification to assign a label
(e.g., road, vehicle, pedestrian) to each pixel in an image. Fully Convolutional Networks (FCNs)
or U-Net architectures are commonly used for this purpose. These architectures utilize an encoder-
decoder structure where the encoder extracts spatial features, and the decoder reconstructs the
spatial resolution to generate pixel-wise predictions. The loss function for semantic segmentation
is a sum over all pixels and classes, given as:

L = −
N∑
i=1

C∑
c=1

yi,c log(pi,c), (704)

where yi,c is the ground-truth binary label for pixel i and class c, and pi,c is the predicted prob-
ability. Advanced architectures also employ skip connections to preserve high-resolution spatial
information, enabling sharper segmentation boundaries.

Depth estimation is essential for autonomous vehicles to understand the 3D structure of their
surroundings. CNNs are used to predict depth maps from monocular images or stereo pairs. The
depth estimation process is modeled as a regression problem, where the loss function is designed to
minimize the difference between the predicted depth d̂i and the ground-truth depth di. A commonly
used loss function for this task is the scale-invariant loss:

Lscale-inv =
1

n

n∑
i=1

(
log di − log d̂i

)2
− 1

n2

(
n∑

i=1

(
log di − log d̂i

))2

. (705)

This loss ensures that the relative depth differences are minimized, which is critical for accurate
3D reconstruction. Lane detection, another critical application, uses CNNs to detect road lanes
and boundaries. The task often involves predicting the lane markings as polynomial curves. CNNs
process the input image to extract lane features, and post-processing involves fitting a curve, such
as:

y = ax2 + bx+ c, (706)

where a, b, c are the coefficients predicted by the network. The fitting process minimizes an error
function, typically the sum of squared differences between the detected lane points and the curve:

E =
N∑
i=1

(yi − (ax2i + bxi + c))2. (707)

In autonomous vehicles, these CNN tasks are integrated into an end-to-end pipeline. The input
data from cameras, LiDAR, and radar is first processed using CNNs to extract features relevant to
the vehicle’s perception. The outputs, including object detections, semantic maps, depth maps, and
lane boundaries, are then passed to the planning module, which computes the vehicle’s trajectory.
For instance, detected objects provide information about obstacles, while lane boundaries guide
path planning algorithms. The planning process involves solving optimization problems where
the objective function incorporates constraints from the CNN outputs. For example, a trajectory
optimization problem may minimize a cost function:

J =

∫ T

0

(
w1ẋ

2 + w2ẏ
2 + w3c(t)

)
dt, (708)

where ẋ and ẏ are the lateral and longitudinal velocities, and c(t) is a collision penalty based on
object detections.

147



In conclusion, CNNs provide the computational framework for perception tasks in autonomous
vehicles, enabling real-time interpretation of complex sensory data. By leveraging mathematical
principles of convolution, loss optimization, and hierarchical feature extraction, CNNs transform
raw sensor data into actionable insights, paving the way for safe and efficient autonomous naviga-
tion.

7.4 Popular CNN Architectures

Literature Review: Choudhury et. al. (2024) [333] presented a comparative theoretical study
of CNN architectures, including AlexNet, VGG, and ResNet, for satellite-based aircraft identifica-
tion. They analyzed the architectural differences and learning strategies used in VGG, AlexNet, and
ResNet and theoretically explained how VGG’s depth, AlexNet’s feature extraction, and ResNet’s
residual learning contribute to CNN advancements. Almubarok and Rosiani (2024) [334] discussed
the computational efficiency of CNN architectures, particularly focusing on AlexNet, VGG, and
ResNet in comparison to MobileNetV2. They established theoretical efficiency trade-offs between
depth, parameter count, and accuracy in AlexNet, VGG, and ResNet and highlighted ResNet’s
advantage in optimization due to skip connections, compared to AlexNet and VGG’s traditional
deep structures. Ding (2024) [335] explored CNN architectures (AlexNet, VGG, and ResNet) for
medical image classification, particularly in Traditional Chinese Medicine (TCM). He introduced
ResNet-101 with Squeeze-and-Excitation (SE) blocks, expanding theoretical understanding of deep
feature representations in CNNs and discussed VGG’s weight-sharing strategy and AlexNet’s lay-
ered feature extraction, improving classification accuracy. He et. al. (2015) [336] introduced
Residual Learning, demonstrating how deep CNNs benefit from identity mappings to tackle van-
ishing gradients. They formulated the mathematical justification of residual blocks in deep networks
and Established the theoretical backbone of ResNet’s identity mapping for deep optimization. Si-
monyan and Zisserman (2014) [148] presented the VGG architecture, which demonstrates how
depth improvement enhances feature extraction. They developed the theoretical formulation of
increasing CNN depth and its impact on feature hierarchies and provided an analytical framework
for receptive field expansion in deep CNNs. Krizhevsky et. al. (2012) [337] introduced AlexNet,
the first CNN model to achieve state-of-the-art performance in ImageNet classification. They intro-
duced ReLU activation as a breakthrough in CNN training and established dropout regularization
theory, preventing overfitting in deep networks. Sultana et. al. (2019) [338] compared the feature
extraction strategies of AlexNet, VGG, and ResNet for object recognition. They gave theoretical
explanation of hierarchical feature learning in CNN architectures and examined VGG’s use of small
convolutional filters and how it impacts feature map depth. Sattler et. al. (2019) [339] investi-
gated the fundamental limitations of CNN architectures such as AlexNet, VGG, and ResNet. They
established formal constraints on convolutional filters in CNNs and developed a theoretical model
for CNN generalization error in classification tasks.

7.4.1 AlexNet

The AlexNet Convolutional Neural Network (CNN) is a deep learning model that operates
on raw pixel values to perform image classification. Given an input image, represented as a 3D
tensor I0 ∈ RH×W×C , where H is the height, W is the width, and C represents the number of input
channels (typically C = 3 for RGB images), the network performs a series of operations, such as
convolutions, activation functions, pooling, and fully connected layers, to transform this input into
a final output vector y ∈ RK , where K is the number of output classes. The objective of AlexNet
is to minimize a loss function that measures the discrepancy between the predicted output and the
true label, typically using the cross-entropy loss function.

At the heart of AlexNet’s architecture are the convolutional layers, which are designed to
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learn local patterns in the image by convolving a set of filters over the input image. Specifi-
cally, the first convolutional layer performs a convolution of the input image I0 with a set of filters
W

(k)
1 ∈ RF1×F1×C , where F1 is the size of the filter and C is the number of channels in the input.

The convolution operation for a given filter W
(k)
1 and input image I0 at position (i, j) is defined as:

Y
(k)
1 (i, j) =

F1∑
u=1

F1∑
v=1

C∑
c=1

W
(k)
1 (u, v, c) · I0(i+ u− 1, j + v − 1, c) + b

(k)
1 (709)

where b
(k)
1 is the bias term for the k-th filter, and the output of this convolution is a feature map

Y
(k)
1 (i, j) that captures the response of the filter at each spatial location (i, j). The result of this

convolution operation is a set of feature maps Y
(k)
1 ∈ RH′×W ′

, where the dimensions of the output
are H ′ = H−F1+1 and W ′ = W −F1+1 if no padding is applied. Subsequent to the convolutional
operation, the output feature maps Y

(k)
1 are passed through a ReLU (Rectified Linear Unit)

activation function, which introduces non-linearity into the network. The ReLU function is defined
as:

ReLU(z) = max(0, z) (710)

This function transforms negative values in the feature map Y
(k)
1 into zero, while leaving positive

values unchanged, thus allowing the network to model complex, non-linear patterns in the data.
The output of the ReLU activation function is denoted by A

(k)
1 (i, j) = ReLU(Y

(k)
1 (i, j)). Following

the activation function, a max-pooling operation is performed to downsample the feature maps
and reduce their spatial dimensions. Given a pooling window of size P × P , the max-pooling
operation computes the maximum value in each window, which is mathematically expressed as:

Y pool
1 (i, j) = max

(
A

(k)
1 (i′, j′) : (i′, j′) ∈ pooling window

)
(711)

where A
(k)
1 is the feature map after ReLU, and the resulting pooled output Y pool

1 (i, j) has reduced
spatial dimensions, typically H ′′ = H′

P
and W ′′ = W ′

P
. This operation helps retain the most

important features while discarding irrelevant spatial details, which makes the network more robust
to small translations in the input image. The convolutional and pooling operations are repeated
across multiple layers, with each layer learning progressively more complex patterns from the input
data. In the second convolutional layer, for example, we convolve the feature maps from the first
layer A

(k)
1 with a new set of filters W

(k)
2 ∈ RF2×F2×K1 , where K1 is the number of feature maps

produced by the first convolutional layer. The convolution for the second layer is expressed as:

Y
(k)
2 (i, j) =

F2∑
u=1

F2∑
v=1

K1∑
c=1

W
(k)
2 (u, v, c) · A(c)

1 (i+ u− 1, j + v − 1) + b
(k)
2 (712)

This process is iterated for each subsequent convolutional layer, where each new set of filters learns
higher-level features, such as edges, textures, and object parts. The activation maps produced
by each convolutional layer are passed through the ReLU activation function, and max-pooling is
applied after each convolutional layer to reduce the spatial dimensions.

After the last convolutional layer, the feature maps are flattened into a 1D vector af ∈ RN , where
N is the total number of activations across all channels and spatial dimensions. This flattened
vector is then passed to fully connected (FC) layers for classification. Each fully connected
layer performs a linear transformation, followed by a non-linear activation. The output of the i-th
neuron in the fully connected layer is given by:

zi =
N∑
j=1

Wij · af (j) + bi (713)
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where Wij is the weight connecting neuron j in the previous layer to neuron i in the current layer,
and bi is the bias term. The output of the fully connected layer is a vector of class scores z ∈ RK ,
which represents the unnormalized log-probabilities of the input image belonging to each class. To
convert these scores into a valid probability distribution, the softmax function is applied:

σ(zi) =
ezi∑K
j=1 e

zj
(714)

The softmax function ensures that the output values are in the range [0, 1] and sum to 1, thus
representing a probability distribution over the K classes. The final output of the network is a
probability vector ŷ ∈ RK , where each element ŷi corresponds to the predicted probability that
the input image belongs to class i. To train the AlexNet model, the network minimizes the cross-
entropy loss function between the predicted probabilities ŷ and the true labels y, which is given
by:

L = −
K∑
i=1

yi log(ŷi) (715)

where yi is the true label (1 if the image belongs to class i, 0 otherwise), and ŷi is the predicted
probability for class i. The goal of training is to adjust the weights W and biases b in the network
to minimize this loss. The parameters of the network are updated using gradient descent. To
compute the gradients, the backpropagation algorithm is used. The gradient of the loss with
respect to the weights W in a fully connected layer is given by:

∂L

∂W
=
∂L

∂z
· ∂z
∂W

(716)

where ∂L
∂z

is the gradient of the loss with respect to the output of the layer, and ∂z
∂W

is the gradient
of the output with respect to the weights. These gradients are then used to update the weights
using the gradient descent update rule:

W ← W − η · ∂L
∂W

(717)

where η is the learning rate. This process is repeated iteratively for each layer of the network.

Regularization techniques such as dropout are often applied to prevent overfitting during training.
Dropout involves randomly setting a fraction of the activations to zero during each training step,
which helps prevent the network from relying too heavily on any one feature and encourages the
model to learn more robust features. Once trained, the AlexNet model can be used to classify
new images by passing them through the network and selecting the class with the highest proba-
bility. The combination of convolutional layers, ReLU activations, pooling, fully connected layers,
and softmax activation makes AlexNet a powerful and efficient architecture for image classification
tasks.

7.4.2 ResNet

At the heart of the ResNet architecture lies the notion of residual learning, where instead of learning
the direct transformation y = f(x;W), the network learns the residual function F(x,W), i.e., the
difference between the input and output. The network output y can therefore be expressed as:

y = F(x;W) + x (718)

This formulation represents the core difference from traditional neural networks where the model
learns a mapping directly from the input x to the output y. The introduction of the identity short-
cut connection x introduces a powerful mechanism by which the network can learn the residual,
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and if the optimal residual transformation is the identity function, the network can essentially learn
y = x, improving optimization. This reduces the challenge of training deeper networks, where deep
layers often lead to vanishing gradients, because the gradient can propagate directly through these
shortcuts, bypassing intermediate layers.

Let’s formalize this residual learning. Let the input to the residual block be xl and the output
yl. In a conventional neural network, the transformation from input to output at the l-th layer
would be:

yl = F(xl;Wl) (719)

where F represents the function learned by the layer, parameterized by Wl. In contrast, for ResNet,
the output is the sum of the learned residual function F(xl;Wl) and the input xl itself, yielding:

yl = F(xl;Wl) + xl (720)

This addition of the identity shortcut connection enables the network to bypass layers if needed,
facilitating the learning process and addressing the vanishing gradient issue. To formalize the
optimization problem, we define the residual learning objective as the minimization of the loss
function L with respect to the parameters Wl:

L =
N∑
i=1

Li(yi, ti) (721)

where N is the number of training samples, ti are the target outputs, and Li is the loss for the i-th
sample. The training process involves adjusting the parameters Wl via gradient descent, which
in turn requires the gradients of the loss function with respect to the network parameters. The
gradient of L with respect to Wl can be expressed as:

∂L
∂Wl

=
N∑
i=1

∂Li

∂yi

· ∂yi

∂Wl

(722)

Since the residual block adds the input directly to the output, the derivative of the output with
respect to the weights Wl is given by:

∂yl

∂Wl

=
∂F(xl;Wl)

∂Wl

(723)

Now, let’s explore how this addition of the residual connection directly influences the backpropa-
gation process. In a traditional feedforward network, the backpropagated gradients for each layer
depend solely on the output of the preceding layer. However, in a residual network, the gradient
flow is enhanced because the identity mapping xl is directly passed to the subsequent layer. This
ensures that the gradients will not be lost as the network deepens, a phenomenon that becomes
critical in very deep networks. The gradient with respect to the loss L at layer l is:

∂L
∂xl

=
∂L
∂yl

· ∂yl

∂xl

(724)

Since yl = F(xl;Wl) + xl, the derivative of yl with respect to xl is:

∂yl

∂xl

= I +
∂F(xl;Wl)

∂xl

(725)

where I is the identity matrix. This ensures that the gradient ∂L
∂xl

can propagate more easily
through the network, as it is now augmented by the identity matrix term. Thus, this term helps
preserve the gradient’s magnitude during backpropagation, solving the vanishing gradient problem
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that typically arises in deep networks. Furthermore, to ensure that the dimensions of the input
and output of a residual block match, especially when the number of channels changes, ResNet
introduces projection shortcuts. These are used when the dimensionality of xl and yl do not align,
typically through a 1× 1 convolution. The projection shortcut modifies the residual block’s output
to be:

yl = F(xl;Wl) + Wx · xl (726)

where Wx is a convolutional filter, and F(xl;Wl) is the residual transformation. The introduction
of the 1×1 convolution ensures that the input xl is mapped to the appropriate dimensionality, while
still benefiting from the residual learning framework. The ResNet architecture can be extended by
stacking multiple residual blocks. For a network with L layers, the output after passing through
the entire network can be written recursively as:

y(L) = x + F(y(L−1);WL) (727)

where y(L−1) is the output after L − 1 layers. The recursive nature of this formula ensures that
the network’s output is built layer by layer, with each layer contributing a transformation rela-
tive to the input passed to it. Mathematically, the gradient of the loss function with respect to
the parameters in deep residual networks can be expressed recursively, where each layer’s gradient
involves contributions from the identity shortcut connection. This facilitates the training of very
deep networks by maintaining a stable and consistent flow of gradients during the backpropagation
process.

Thus, the Residual Neural Network (ResNet) significantly improves the trainability of deep neural
networks by introducing residual learning, allowing the network to focus on learning the difference
between the input and output rather than the entire transformation. This approach, combined
with identity shortcut connections and projection shortcuts for dimensionality matching, ensures
that gradients flow effectively through the network, even in very deep architectures. The resulting
ResNet architecture has been proven to enable the training of networks with hundreds of layers,
yielding impressive performance on a wide range of tasks, from image classification to semantic
segmentation, while mitigating issues such as vanishing gradients. Through its recursive structure
and rigorous mathematical formulation, ResNet has become a foundational architecture in modern
deep learning.

7.4.3 VGG

The Visual Geometry Group (VGG) Convolutional Neural Network (CNN), introduced
by Simonyan and Zisserman in 2014, presents a detailed exploration of the effect of depth on the
performance of deep neural networks, specifically within the context of computer vision tasks such
as image classification. The VGG architecture is grounded in the hypothesis that deeper networks,
when constructed with small, consistent convolutional kernels, are more capable of capturing hi-
erarchical patterns in data, particularly in the domain of visual recognition. In contrast to other
CNN architectures, VGG prioritizes the usage of small 3× 3 convolution filters (with a stride of 1)
stacked in increasing depth, rather than relying on larger filters (e.g., 5× 5 or 7× 7), thus offering
computational benefits without sacrificing representational power. This design choice inherently
encourages sparse local receptive fields, which ensures a richer learning capacity when extended
across deeper layers.

Let I ∈ RH×W×C represent an input image of height H, width W , and C channels, where the
channels correspond to different color representations (e.g., RGB for C = 3). For the convolution
operation applied at a particular layer k, the output feature map O(k) can be computed by con-
volving the input I with a set of kernels K(k) corresponding to the k-th layer. The convolution for
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each spatial location i, j can be described as:

O
(k)
i,j =

kh∑
u=1

kw∑
v=1

Cin∑
c′=1

K
(k)
u,v,c′,cIi+u,j+v,c′ + b(k)c (728)

where O
(k)
i,j is the output value at location (i, j) of the feature map for the k-th filter, K

(k)
u,v,c′,c is

the u, v-th spatial element of the c′-to-c filter in layer k, and b
(k)
c represents the bias term for the

output channel c. The convolutional layer’s kernel K(k) is typically initialized with small values
and learned during training, while the bias b(k) is added to shift the activation of the neuron. A key
aspect of the VGG architecture is that these convolution layers are consistently followed by non-
linear ReLU (Rectified Linear Unit) activation functions, which introduce local non-linearity
to the model. The ReLU function is mathematically defined as:

ReLU(x) = max(0, x) (729)

This transformation is applied element-wise, ensuring that negative values are mapped to zero,
which, as an effect, activates only positive feature responses. The non-linearity introduced by
ReLU aids the network in learning complex patterns and overcoming issues such as vanishing
gradients that often arise in deeper networks. In VGG, the network is constructed by stacking
these convolutional layers with ReLU activations. Each convolution layer is followed by max-
pooling operations, typically with 2× 2 filters and a stride of 2. Max-pooling reduces the spatial
dimensions of the feature maps and extracts the most significant features from each region of the
image. The max-pooling operation is mathematically expressed as:

Oi,j = max
(u,v)∈P

Ii+u,j+v (730)

where P is the pooling window, and Oi,j is the pooled value at position (i, j). The pooling oper-
ation performs downsampling, ensuring translation invariance while retaining the most prominent
features. The effect of this pooling operation is to reduce computational complexity, lower the
number of parameters, and make the network invariant to small translations and distortions in
the input image. The architecture of VGG typically culminates in a series of fully connected
(FC) layers after several convolutional and pooling layers have extracted relevant features from
the input image. Let the output of the final convolutional layer, after flattening, be denoted as
X ∈ Rd, where d represents the dimensionality of the feature vector obtained by flattening the last
convolutional feature map. The fully connected layers then transform this vector into the output,
as expressed by:

O = WX + b (731)

where W ∈ Rd′×d is the weight matrix of the fully connected layer, b ∈ Rd′ is the bias vector, and
O ∈ Rd′ is the output vector. The output vector O represents the unnormalized scores for each
of the d′ possible classes in a classification task. This is typically followed by the application of a
softmax function to convert these raw scores into a probability distribution:

σ(oi) =
eoi∑d′

j=1 e
oj

(732)

where oi is the score for class i, and the softmax function ensures that the outputs are positive
and sum to one, facilitating their interpretation as class probabilities. This softmax function is
a crucial step in multi-class classification tasks as it normalizes the output into a probabilistic
format. During the training phase, the model minimizes the cross-entropy loss between the
predicted probabilities and the actual class labels, often represented as one-hot encoded vectors.
The cross-entropy loss is given by:

L = −
d′∑
i=1

yi log(pi) (733)
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where yi is the true label for class i in one-hot encoded form, and pi is the predicted probability
for class i. This loss function is the appropriate objective for classification tasks, as it measures
the difference between the true and predicted probability distributions. The optimization of the
parameters in the VGG network is carried out using stochastic gradient descent (SGD) or its
variants. The weight update rule in gradient descent is:

W←W − η∇WL (734)

where η is the learning rate, and ∇WL is the gradient of the loss with respect to the weights.
The gradient is computed through backpropagation, applying the chain rule of derivatives to
propagate errors backward through the network, updating the weights at each layer based on the
contribution of each parameter to the final output error.

A key advantage of the VGG architecture lies in its use of smaller, deeper layers compared to
previous networks like AlexNet, which used larger convolution filters. By using multiple small
kernels (such as 3× 3), the VGG network can create richer representations without exponentially
increasing the number of parameters. The depth of the network, achieved by stacking these small
convolution filters, enables the model to extract increasingly abstract and hierarchical features from
the raw pixel data. Despite its success, VGG’s computational demands are relatively high due to
the large number of parameters, especially in the fully connected layers. The fully connected lay-
ers, which connect every neuron in one layer to every neuron in the next, account for a significant
portion of the model’s total parameters. To mitigate this limitation, later architectures, such as
ResNet, introduced skip connections, which allow gradients to flow more efficiently through the
network, thus enabling even deeper architectures without incurring the same computational costs.
Nevertheless, the VGG network set an important precedent in the design of deep convolutional net-
works, demonstrating the power of deep architectures and the effectiveness of small convolutional
filters. The model’s simplicity and straightforward design have influenced subsequent architectures,
reinforcing the notion that deeper models, when carefully constructed, can achieve exceptional per-
formance on complex tasks like image classification, despite the challenges posed by computational
cost and model complexity.

8 Recurrent Neural Networks (RNNs)

Literature Review: Schmidhuber (2015) [114] provided an extensive historical perspective on
neural networks, including RNNs. Schmidhuber describes key architectures such as Long Short-
Term Memory (LSTM) and their importance in solving the vanishing gradient problem. He also
explains fundamental learning algorithms for training RNNs and provides insights into applications
like sequence prediction and speech recognition. Lipton et. al. (2015) [264] offers a rigorous critique
of RNNs and their various implementations. The authors discuss the fundamental challenges of
training RNNs, including long-range dependencies and computational inefficiencies. The paper
also presents benchmarks comparing different architectures like vanilla RNNs, LSTMs, and GRUs.
offers a rigorous critique of RNNs and their various implementations. The authors discuss the
fundamental challenges of training RNNs, including long-range dependencies and computational
inefficiencies. The paper also presents benchmarks comparing different architectures like vanilla
RNNs, LSTMs, and GRUs. Pascanu et. al. (2013) [265] formally analyzes why training RNNs
is difficult, particularly focusing on the vanishing and exploding gradient problem. The authors
propose gradient clipping as a practical solution and discuss ways to improve training efficiency for
RNNs. Goodfellow et. al. (2016) [112] in their book book dedicates an entire chapter to recurrent
neural networks, discussing their theoretical foundations, backpropagation through time (BPTT),
and key architectures such as LSTMs and GRUs. It also provides mathematical derivations of
optimization techniques used in training deep RNNs. Jaeger (2001) [266] introduced the Echo
State Network (ESN), an alternative recurrent architecture that requires only the output weights
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to be trained. The ESN approach has become highly influential in RNN research, particularly for
solving stability and efficiency problems. Hochreiter and Schmidhuber (1997) [267] introduced the
LSTM architecture, which solves the vanishing gradient problem in RNNs by incorporating memory
cells with gating mechanisms. LSTMs are now a standard in sequence modeling tasks, such as
speech recognition and natural language processing. Kawakami (2008) [268] provided a deep dive
into supervised learning techniques for RNNs, particularly for sequence labeling problems. Graves
discusses Connectionist Temporal Classification (CTC), a popular loss function for RNN-based
speech and handwriting recognition. Bengio et. al. (1994) [269] mathematically proved why RNNs
struggle with learning long-term dependencies. It identifies the root causes of the vanishing and
exploding gradient problems, setting the stage for future architectures like LSTMs. Bhattamishra
et. al. (2020) [270] rigorously compared the theoretical capabilities of RNNs and Transformers.
The authors analyze expressiveness, memory retention, and training efficiency, providing insights
into why Transformers are increasingly replacing RNNs in NLP. Siegelmann (1993) [271] provided a
rigorous theoretical treatment of RNNs, analyzing their convergence properties, stability conditions,
and computational complexity. It discusses mathematical frameworks for understanding RNN
generalization and optimization challenges.

8.1 Key Concepts

Recurrent Neural Networks (RNNs) are a class of neural architectures specifically designed for
processing sequential data, leveraging their recursive structure to model temporal dependencies.
At the core of an RNN lies the concept of a hidden state ht ∈ Rm, which evolves over time as
a function of the current input xt ∈ Rn and the previous hidden state ht−1. This evolution is
governed by the recurrence relation:

ht = fh (Wxhxt + Whhht−1 + bh) , (735)

where Wxh ∈ Rm×n is the input-to-hidden weight matrix, Whh ∈ Rm×m is the hidden-to-hidden
weight matrix, bh ∈ Rm is the bias vector, and fh is a non-linear activation function, typically

tanh(x) =
ex − e−x

ex + e−x
(736)

or the rectified linear unit ReLU(x) = max(0, x). The recursive nature of this update equation
ensures that ht inherently encodes information about the sequence {x1,x2, . . . ,xt}, allowing the
network to maintain a dynamic representation of past inputs. The output yt ∈ Ro at time t is
computed as:

yt = fy (Whyht + by) , (737)

where Why ∈ Ro×m is the hidden-to-output weight matrix, by ∈ Ro is the output bias, and fy is
an activation function such as the softmax function:

fy(z)i =
ezi∑o
j=1 e

zj
(738)

for classification tasks. Expanding the recurrence relation iteratively, the hidden state at time t
can be expressed as:

ht = fh (Wxhxt + Whhfh (Wxhxt−1 + Whhfh (. . . fh (Wxhx1 + Whhh0 + bh) + bh) + bh) + bh) .
(739)

This expansion illustrates the depth of temporal dependency captured by the network and highlights
the computational challenges of maintaining long-term memory. Specifically, the gradient of the
loss function L, given by:

L =
T∑
t=1

ℓ
(
yt,y

true
t

)
, (740)
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with ℓ (yt,y
true
t ) representing a task-specific loss such as cross-entropy:

ℓ
(
yt,y

true
t

)
= −

o∑
i=1

ytrue
t (i) log yt(i), (741)

is computed through backpropagation through time (BPTT). The gradient of L with respect to
Whh, for instance, is given by:

∂L

∂Whh

=
T∑
t=1

t∑
k=1

∂ℓt
∂ht

t∏
j=k+1

∂hj

∂hj−1

∂hk

∂Whh

, (742)

where
∏t

j=k+1
∂hj

∂hj−1
represents the chain of derivatives from time step k to t. Unlike feedforward

neural networks, where each input is processed independently, RNNs maintain a hidden state ht
that acts as a dynamic memory, evolving recursively as the input sequence progresses. Formally,
given an input sequence {x1, x2, . . . , xT}, where xt ∈ Rn represents the input vector at time t, the
hidden state ht ∈ Rm is updated via the recurrence relation:

ht = fh(Wxhxt +Whhht−1 + bh), (743)

where Wxh ∈ Rm×n, Whh ∈ Rm×m, and bh ∈ Rm are learnable parameters, and fh is a nonlinear
activation function such as tanh or ReLU. The recursive structure inherently allows the hidden
state ht to encode the entire history of the sequence up to time t. The output yt ∈ Ro at each time
step is computed as:

yt = fy(Whyht + by), (744)

where Why ∈ Ro×m and by ∈ Ro are additional learnable parameters, and fy is an optional output
activation function, such as the softmax function for classification. To elucidate the recursive
dynamics, we can expand ht explicitly in terms of the initial hidden state h0 and all previous
inputs {x1, . . . , xt}:

ht = fh(Wxhxt +Whhfh(Wxhxt−1 +Whhfh(. . . fh(Wxhx1 +Whhh0 + bh) + bh) + bh) + bh). (745)

This nested structure highlights the temporal dependencies and the potential challenges in training,
such as the vanishing and exploding gradient problems. During training, the loss function L, which
aggregates the discrepancies between the predicted outputs yt and the ground truth ytruet , is typically
defined as:

L =
T∑
t=1

ℓ(yt, y
true
t ), (746)

where ℓ is a task-specific loss function, such as the mean squared error (MSE)

ℓ(y, ytrue) =
1

2
∥y − ytrue∥2 (747)

for regression or the cross-entropy loss for classification. To optimize L, gradient-based methods
are employed, requiring the computation of derivatives of L with respect to all parameters, such as
Wxh, Whh, and bh. Using backpropagation through time (BPTT), the gradient of L with respect
to Whh is expressed as:

∂L

∂Whh

=
T∑
t=1

t∑
k=1

∂ℓt
∂ht

t∏
j=k+1

∂hj
∂hj−1

∂hk
∂Whh

. (748)

Here,
t∏

j=k+1

∂hj
∂hj−1

(749)
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is the product of Jacobian matrices that encode the influence of hk on ht. The Jacobian
∂hj

∂hj−1
itself

is given by:
∂hj
∂hj−1

= Whh ⊙ f ′
h(aj), (750)

where
aj = Wxhxj +Whhhj−1 + bh, (751)

and f ′
h(aj) denotes the elementwise derivative of the activation function. The repeated multipli-

cation of these Jacobians can lead to exponential growth or decay of the gradients, depending on
the spectral radius ρ(Whh). Specifically, if ρ(Whh) > 1, gradients explode, whereas if ρ(Whh) < 1,
gradients vanish, severely hampering the training process for long sequences. To address these
issues, modifications such as Long Short-Term Memory (LSTM) networks and Gated Recurrent
Units (GRUs) introduce gating mechanisms that explicitly regulate the flow of information. In
LSTMs, the cell state ct, governed by additive dynamics, prevents vanishing gradients. The cell
state is updated as:

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt + Ucht−1 + bc), (752)

where ft is the forget gate, it is the input gate, and Uc, Wc, and bc are learnable parameters.

8.2 Sequence Modeling and Long Short-Term Memory (LSTM) and GRUs

Literature Review: Potter and Egon (2024) [387] provided an extensive study of RNNs and
their enhancements (LSTM and GRU) for time-series forecasting. The authors conduct an empir-
ical comparison between these architectures and analyze their effectiveness in capturing long-term
dependencies in sequential data. The study concludes that GRUs are computationally efficient
but slightly less expressive than LSTMs, whereas standard RNNs suffer from vanishing gradients.
Yatkin et. al. (2025) [388] introduced a topological perspective to RNNs, including LSTM and
GRU, to address inconsistencies in real-world applications. The authors propose stability-enhancing
mechanisms to improve RNN performance in finance and climate modeling. Their results show that
topologically-optimized GRUs outperform traditional LSTMs in maintaining memory over long se-
quences. Saifullah (2024) [389] applied LSTM and GRU networks to biomedical image classification
(chicken egg fertility detection). The paper demonstrates that GRU’s simpler architecture leads to
faster convergence while LSTMs achieve slightly higher accuracy due to better memory retention.
The results highlight domain-specific strengths of LSTM vs. GRU, particularly in handling sparse
feature representations. Alonso (2024) [390] rigorously explored the mathematical foundations of
RNNs, LSTMs, and GRUs. The author provides a deep analysis of gating mechanisms, vanishing
gradient solutions, and optimization techniques that improve sequence modeling. A theoretical
comparison is drawn between hidden state dynamics in GRUs vs. LSTMs, supporting their appli-
cation in NLP and time-series forecasting. Tu et. al. (2024) [391] in a medical AI study evaluates
LSTMs and GRUs for predicting patient physiological metrics during sedation. The authors find
that LSTMs retain more long-term dependencies in time-series medical data, making them suit-
able for patient monitoring, while GRUs are preferable for real-time predictions due to their lower
computational overhead. Zuo et. al. (2025) [392] applied hybrid GRUs for predicting customer
movements in stores using real-time location tracking. The authors propose a modified GRU-
LSTM hybrid model that achieves state-of-the-art accuracy in trajectory prediction. The study
demonstrates that GRUs alone may lack fine-grained memory retention, but a hybrid approach
improves forecasting ability. Lima et. al. (2025) [393] developed an industrial AI application that
demonstrated the efficiency of GRUs in process optimization. The study finds that GRUs out-
perform LSTMs in real-time predictive control of steel slab heating, showcasing their efficiency in
applications where faster computations are required. Khan et. al. (2025) [394] integrated LSTMs
with statistical ARIMA models to improve wind power forecasting. They demonstrate that hybrid
LSTM-ARIMA models outperform standalone RNNs in handling weather-related sequential data,
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which is highly volatile. Guo and Feng (2024) [395] in an environmental AI study proposed a
temporal attention-enhanced LSTM model to predict greenhouse climate variables. The research
introduces a novel position-aware LSTM architecture that improves multi-step forecasting, which
is critical for precision agriculture. Abdelhamid (2024) [396] explored IoT-based energy forecasting
using deep RNN architectures, including LSTM and GRU. The study concludes that GRUs provide
faster inference speeds but LSTMs capture more accurate long-range dependencies, making them
more reliable for complex forecasting.

Sequence modeling in Recurrent Neural Networks (RNNs) represents a powerful framework for
capturing temporal dependencies in sequential data, enabling the learning of both short-term and
long-term patterns. The primary characteristic of RNNs lies in their recurrent architecture, where
the hidden state ht at time step t is updated as a function of both the current input xt and the
hidden state at the previous time step ht−1. Mathematically, this recurrent relationship can be
expressed as:

ht = f(Whht−1 +Wxxt + bh) (753)

Here, Wh and Wx are weight matrices corresponding to the previous hidden state ht−1 and the
current input xt, respectively, while bh is a bias term. The function f(·) is a non-linear activation
function, typically chosen as the hyperbolic tangent tanh or rectified linear unit (ReLU). The output
yt at each time step is derived from the hidden state ht through a linear transformation, followed
by a non-linear activation, yielding:

yt = g(Wyht + by) (754)

where Wy is the weight matrix connecting the hidden state to the output space, and by is the
associated bias term. The function g(·) is generally a softmax activation for classification tasks or
a linear activation for regression problems. The key feature of this structure is the interdependence
of the hidden state across time steps, allowing the model to capture the history of past inputs and
produce predictions that incorporate temporal context. Training an RNN involves minimizing a
loss function L, which quantifies the discrepancy between the predicted outputs yt and the true
outputs ytruet across all time steps. A common loss function used in classification tasks is the cross-
entropy loss, while regression tasks often utilize mean squared error. To optimize the parameters
of the network, the model employs Backpropagation Through Time (BPTT), a variant of the
standard backpropagation algorithm adapted for sequential data. The primary challenge in BPTT
arises from the recurrent nature of the network, where the hidden state at each time step depends
on the previous hidden state. The gradient of the loss function with respect to the hidden state at
time step t is computed recursively, reflecting the temporal structure of the model. The chain rule
is applied to compute the gradient of the loss with respect to the hidden state:

∂L

∂ht
=
∂L

∂yt
· ∂yt
∂ht

+
T∑

t′=t+1

∂L

∂ht′
· ∂ht

′

∂ht
(755)

Here, ∂L
∂yt

is the gradient of the loss with respect to the output, and ∂yt
∂ht

represents the Jacobian of
the output with respect to the hidden state. The second term in this expression corresponds to the
accumulated gradients propagated from future time steps, incorporating the temporal dependencies
across the entire sequence. This recursive gradient calculation allows for updating the weights and
biases of the RNN, adjusting them to minimize the total error across the sequence. The gradients
of the loss function with respect to the parameters of the network, such as Wh, Wx, and Wy, are
computed using the chain rule. For example, the gradient of the loss with respect to Wx is:

∂L

∂Wx

=
T∑
t=1

∂L

∂ht
· x⊤t (756)
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This captures the contribution of each input to the overall error at all time steps, ensuring that the
model learns the correct relationships between inputs and hidden states. Similarly, the gradients
with respect to Wh and bh account for the recurrence in the hidden state, enabling the model
to adjust its internal parameters in response to the sequential nature of the data. Despite their
theoretical elegance, RNNs face significant practical challenges during training, primarily due to
the vanishing gradients problem. This issue arises when the gradients propagate through
many time steps, causing them to decay exponentially, especially when using activation functions
like tanh. As a result, the influence of distant time steps diminishes, making it difficult for the
network to learn long-term dependencies. The mathematical manifestation of this problem is seen
in the norm of the Jacobian matrices associated with the hidden state updates. If the spectral
radius of the weight matrices Wh is close to or greater than 1, the gradients can either vanish or
explode, leading to unstable training dynamics. To mitigate this issue, several solutions have been
proposed, including the use of Long Short-Term Memory (LSTM) networks and Gated Recurrent
Units (GRUs), which introduce gating mechanisms to better control the flow of information through
the network. LSTMs, for example, incorporate a memory cell Ct, which allows the network to store
information over long periods of time. The update rules for the LSTM are governed by three gates:
the forget gate ft, the input gate it, and the output gate ot, which control how much of the previous
memory and new information to retain. The equations governing the LSTM are:

ft = σ(Wfht−1 + Ufxt + bf ) (757)

it = σ(Wiht−1 + Uixt + bi) (758)

ot = σ(Woht−1 + Uoxt + bo) (759)

C̃t = tanh(WCht−1 + UCxt + bC) (760)

Ct = ft · Ct−1 + it · C̃t (761)

ht = ot · tanh(Ct) (762)

In these equations, the forget gate ft determines how much of the previous memory cell Ct−1 to
retain, the input gate it governs how much new information to store in the candidate memory cell
C̃t, and the output gate ot controls how much of the memory cell should influence the current
output. The LSTM’s architecture allows for the maintenance of long-term dependencies by se-
lectively forgetting or retaining information, effectively alleviating the vanishing gradient problem
and enabling the network to learn from longer sequences. The GRU, an alternative to the LSTM,
simplifies this architecture by combining the forget and input gates into a single update gate zt,
and introduces a reset gate rt to control the influence of the previous hidden state. The GRU’s
update rules are:

zt = σ(Wzht−1 + Uzxt + bz) (763)

rt = σ(Wrht−1 + Urxt + br) (764)

h̃t = tanh(Wht−1 + Uxt + b) (765)

ht = (1− zt) · ht−1 + zt · h̃t (766)

Here, zt controls the amount of the previous hidden state ht−1 to retain, and rt determines how
much of the previous hidden state should influence the candidate hidden state h̃t. The GRU’s
simplified structure still allows it to effectively capture long-range dependencies while being com-
putationally more efficient than the LSTM.

In summary, sequence modeling in RNNs involves a series of recurrent updates to the hidden
state, driven by both the current input and the previous hidden state, and is trained via backprop-
agation through time. The introduction of specialized gating mechanisms in LSTMs and GRUs
alleviates issues such as vanishing gradients, enabling the networks to learn and maintain long-term
dependencies. Through these advanced architectures, RNNs can effectively model complex tem-
poral relationships, making them powerful tools for tasks such as time-series prediction, natural
language processing, and sequence generation.
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8.3 Applications in Natural Language Processing

Literature Review: Yang et. al. (2020) [377] explored the effectiveness of deep learning mod-
els, including RNNs, for sentiment analysis in e-commerce platforms. It emphasizes how RNN
architectures, including LSTMs and GRUs, outperform traditional NLP techniques by capturing
sequential dependencies in customer reviews. The study provides empirical evidence demonstrat-
ing the superior accuracy of RNNs in analyzing consumer sentiment. Manikandan et. al. (2025)
[378] investigated how RNNs can improve spam detection in email filtering. By leveraging re-
current structures, the study demonstrates how RNNs effectively identify patterns in email text
that indicate spam or phishing attempts. It also compares RNN-based models with other ML
approaches, highlighting the robustness of RNNs in handling contextual word sequences. Isiaka
et. al. (2025) [379] examined AI technologies, particularly deep learning models, for predictive
healthcare applications. It highlights how RNNs can analyze patient records and medical reports
using NLP techniques. The study shows that RNN-based NLP models enhance medical diagnos-
tics and decision-making by extracting meaningful insights from unstructured text data. Petrov
et. al. (2025) [380] discussed the role of RNNs in emotion classification from textual data, an
essential NLP task. The paper evaluates various RNN-based architectures, including BiLSTMs, to
enhance the accuracy of emotion recognition in social media texts and chatbot responses. Liang
(2025) [381] focused on the application of RNNs in educational settings, specifically for automated
grading and feedback generation. The study presents an RNN-based NLP system capable of ana-
lyzing student responses, providing real-time assessments, and generating contextual feedback. Jin
(2025) [382] explored how RNNs optimize text generation tasks related to pharmaceutical edu-
cation. It demonstrates how NLP-powered RNN models generate high-quality textual summaries
from medical literature, ensuring accurate knowledge dissemination in the pharmaceutical indus-
try. McNicholas et. al. (2025) [383] investigated how RNNs facilitate clinical decision-making in
critical care by extracting insights from unstructured medical text. The research highlights how
RNN-based NLP models enhance patient care by predicting outcomes based on clinical notes and
physician reports. Abbas and Khammas (2024) [384] introduced an RNN-based NLP technique
for detecting malware in IoT networks. The study illustrates how RNN classifiers process logs
and textual patterns to identify malicious software, making RNNs crucial in cybersecurity appli-
cations. Kalonia and Upadhyay (2025) [385] applied RNNs to software fault prediction using NLP
techniques. It shows how recurrent networks analyze bug reports and software documentation to
predict potential failures in software applications, aiding developers in proactive debugging. Han
et. al. (2025) [386] discussed RNN applications in conversational AI, focusing on chatbots and
virtual assistants. The study presents an RNN-driven NLP model for improving dialogue manage-
ment and user interactions, significantly enhancing the responsiveness of AI-powered chat systems.

Recurrent Neural Networks (RNNs) are deep learning architectures that are explicitly designed
to handle sequential data, a key feature that makes them indispensable for applications in Natural
Language Processing (NLP). The mathematical foundation of RNNs lies in their ability to process
sequences of inputs, x1, x2, . . . , xT , where T denotes the length of the sequence. At each time step
t, the network updates its hidden state, ht, using both the current input xt and the previous hidden
state ht−1. This recursive relationship is represented mathematically by the following equation:

ht = σ(Whht−1 +Wxxt + b) (767)

Here, σ is a nonlinear activation function such as the hyperbolic tangent (tanh) or the rectified
linear unit (ReLU), Wh is the weight matrix associated with the previous hidden state ht−1, Wx

is the weight matrix associated with the current input xt, and b is a bias term. The nonlinearity
introduced by σ allows the network to learn complex relationships between the input and the
output. The output yt at each time step is computed as:

yt = Wyht + c (768)
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where Wy is the weight matrix corresponding to the output and c is the bias term for the output.
The output yt is then used to compute the predicted probability distribution over possible outputs
at each time step, typically through a softmax function for classification tasks:

P (yt|ht) = softmax(Wyht + c) (769)

In NLP tasks such as language modeling, the objective is to predict the next word in a sequence
given all previous words. The RNN is trained to estimate the conditional probability distribution
P (wt|w1, w2, . . . , wt−1) of the next word wt based on the previous words. The full likelihood of the
sequence w1, w2, . . . , wT can be written as:

P (w1, w2, . . . , wT ) =
T∏
t=1

P (wt|w1, w2, . . . , wt−1) (770)

For an RNN, this conditional probability is modeled by recursively updating the hidden state and
generating a probability distribution for each word. At each time step, the probability of the next
word is computed as:

P (wt|ht−1) = softmax(Wyht + c) (771)

The network is trained by minimizing the negative log-likelihood of the true word sequence:

L = −
T∑
t=1

logP (wt|ht−1) (772)

This loss function guides the optimization of the weight matrices Wh, Wx, and Wy to maximize the
likelihood of the correct word sequences. As the network learns from large datasets, it develops the
ability to predict words based on the context provided by previous words in the sequence. A key
extension of RNNs in NLP is machine translation, where one sequence of words in one language
is mapped to another sequence in a target language. This is typically modeled using sequence-to-
sequence (Seq2Seq) architectures, which consist of two RNNs: the encoder and the decoder. The
encoder RNN processes the input sequence x1, x2, . . . , xT , updating its hidden state at each time
step:

henct = σ(W enc
h henct−1 +W enc

x xt + benc) (773)

The final hidden state hencT of the encoder is passed to the decoder as its initial hidden state. The
decoder RNN generates the target sequence y1, y2, . . . , yT by updating its hidden state at each time
step, using both the previous hidden state hdect−1 and the previous output yt−1:

hdect = σ(W dec
h hdect−1 +W dec

x yt−1 + bdec) (774)

The decoder produces a probability distribution over the target vocabulary at each time step:

P (yt|hdect ) = softmax(W dec
y hdect + cdec) (775)

The training of the Seq2Seq model is based on minimizing the cross-entropy loss function:

L = −
T∑
t=1

logP (yt|hdect ) (776)

This ensures that the network learns to map input sequences to output sequences. By training
on a large corpus of paired sentences, the Seq2Seq model learns to translate sentences from one
language to another, with the encoder capturing the context of the input sentence and the decoder
generating the translated sentence.

RNNs are also effective in sentiment analysis, a task where the goal is to classify the sentiment
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of a sentence (positive, negative, or neutral). Given a sequence of words x1, x2, . . . , xT , the RNN
processes each word sequentially, updating its hidden state:

ht = σ(Whht−1 +Wxxt + b) (777)

After processing the entire sentence, the final hidden state hT is used to classify the sentiment. The
output is obtained by applying a softmax function to the final hidden state:

y = softmax(WyhT + c) (778)

where Wy is the weight matrix associated with the output layer. The network is trained to minimize
the cross-entropy loss:

L = −
T∑
t=1

logP (y|hT ) (779)

This allows the RNN to classify the overall sentiment of the sentence by learning the relationships
between words and sentiment labels. Sentiment analysis is useful for applications such as customer
feedback analysis, social media monitoring, and opinion mining. In Named Entity Recognition
(NER), RNNs are used to identify and classify named entities, such as people, locations, and
organizations, in a text. The RNN processes each word xt in the sequence, updating its hidden
state at each time step:

ht = σ(Whht−1 +Wxxt + b) (780)

The output at each time step is a probability distribution over possible entity labels:

P (yt|ht) = softmax(Wyht + c) (781)

The network is trained to minimize the cross-entropy loss:

L = −
T∑
t=1

logP (yt|ht) (782)

By learning to classify each word with the appropriate entity label, the RNN can perform infor-
mation extraction tasks, such as identifying people, organizations, and locations in text. This is
crucial for applications such as document categorization, knowledge graph construction, and ques-
tion answering. In speech recognition, RNNs are used to transcribe spoken language into text.
The input to the RNN consists of a sequence of acoustic features, such as Mel-frequency cepstral
coefficients (MFCCs), which are extracted from the audio signal. At each time step t, the RNN
updates its hidden state:

ht = σ(Whht−1 +Wxxt + b) (783)

The output at each time step is a probability distribution over phonemes or words:

P (wt|ht) = softmax(Wyht + c) (784)

The network is trained by minimizing the negative log-likelihood:

L = −
T∑
t=1

logP (wt|ht) (785)

By learning the mapping between acoustic features and corresponding words or phonemes, the
RNN can transcribe speech into text, which is fundamental for applications such as voice assis-
tants, transcription services, and speech-to-text systems.

In summary, RNNs are powerful tools for processing sequential data in NLP tasks such as ma-
chine translation, sentiment analysis, named entity recognition, and speech recognition. Their
ability to process input sequences in a time-dependent manner allows them to capture long-range
dependencies, making them well-suited for complex tasks in NLP and beyond. However, chal-
lenges such as the vanishing and exploding gradient problems necessitate the use of more advanced
architectures, like LSTMs and GRUs, to enhance their performance in real-world applications.
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9 Advanced Architectures

9.1 Transformers and Attention Mechanisms

Literature Review: Vaswani et. al. [340] introduced the Transformer architecture, replacing
recurrent models with a fully attention-based framework for sequence processing. They formulated
the self-attention mechanism, mathematically defining query-key-value (QKV) transformations.
They proved scalability advantages over RNNs, showing O(1) parallelization benefits and intro-
duced multi-head attention, enabling contextualized embeddings. Nannepagu et. al. [341] explored
hybrid AI architectures integrating Transformers with deep reinforcement learning (DQN). They
developed a theoretical framework for transformer-augmented reinforcement learning and discussed
how self-attention refines feature representations for financial time-series prediction. Rose et. al.
[342] investigated Vision Transformers (ViTs) for cybersecurity applications, examining attention-
based anomaly detection. They theoretically compared self-attention with CNN feature extraction
and proposed a new loss function for attention weight refinement in cybersecurity detection mod-
els. Buehler [343] explored the theoretical interplay between Graph Neural Networks (GNNs) and
Transformer architectures. They developed isomorphic self-attention, which preserves graph topo-
logical information and introduced graph-structured positional embeddings within Transformer
attention. Tabibpour and Madanizadeh [344] investigated Set Transformers as a theoretical exten-
sion of Transformers for high-dimensional dynamic systems and introduced permutation-invariant
self-attention mechanisms to replace standard Transformers in decision-making tasks and theoreti-
cally formalized attention mechanisms for non-sequential data. Kim et. al. (2024) [310] developed
a Transformer-based anomaly detection framework for video surveillance. They formalized a new
spatio-temporal self-attention mechanism to detect anomalies in videos and extended standard
Transformer architectures to handle high-dimensional video data. Li and Dong [345] examined
Transformer-based attention mechanisms for wireless communication networks. They introduced
hybrid spatial and temporal attention layers for large-scale MIMO channel estimation and pro-
vided a rigorous mathematical proof of attention-based signal recovery. Asefa and Assabie [346]
investigated language-specific adaptations of Transformer-based translation models. They intro-
duced attention mechanism regularization for low-resource language translation and analyzed the
impact of different positional encoding strategies on translation quality. Liao and Chen [347] ap-
plied transformer architectures to deepfake detection, analyzing self-attention mechanisms for facial
feature analysis. They theoretically compared CNNs and ViTs for forgery detection and introduced
attention-head dropout to improve robustness against adversarial attacks. Jiang et. al. [348] pro-
posed a novel Transformer-based approach for medical imaging reconstruction. They introduced
Spatial and Channel-wise Transformer (SCFormer) for enhanced attention-based feature aggrega-
tion and theoretically extended contrastive learning to Transformer encoders.

The Transformer model is an advanced neural network architecture fundamentally defined by the
self-attention mechanism, which enables global context-aware computations on sequential data.
The model processes an input sequence represented by

X ∈ Rn×dmodel , (786)

where n denotes the sequence length and dmodel the embedding dimensionality. Each token in
this sequence is projected into three learned spaces—queries Q, keys K, and values V—using the
trainable matrices WQ, WK , and WV , such that

Q = XWQ, K = XWK , V = XWV , (787)

where WQ,WK ,WV ∈ Rdmodel×dk , with dk being the dimensionality of queries and keys. The
pairwise similarity between tokens is determined by the dot product QK⊤, scaled by the factor
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1√
dk

to ensure numerical stability, yielding the raw attention scores:

S =
QK⊤
√
dk

, (788)

where S ∈ Rn×n. These scores are normalized using the softmax function, producing the attention
weights A, where

Aij =
exp(Sij)∑n
k=1 exp(Sik)

, (789)

ensuring
∑n

j=1Aij = 1. The output of the attention mechanism is computed as a weighted sum of
the values:

Z = AV, (790)

where Z ∈ Rn×dv , with dv being the dimensionality of the value vectors. This process can be
expressed compactly as

Attention(Q,K,V) = softmax

(
QK⊤
√
dk

)
V. (791)

Multi-head attention extends this mechanism by splitting Q,K,V into h distinct heads, each
operating in its subspace. For the i-th head:

headi = Attention(Qi,Ki,Vi) (792)

where Qi = XWQ
i , Ki = XWK

i , Vi = XWV
i . The outputs of all heads are concatenated and

linearly transformed:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO, (793)

where WO ∈ Rhdv×dmodel . This architecture enables the model to capture multiple types of rela-
tionships simultaneously. Positional encodings are added to the input embeddings X to preserve
sequence order. These encodings P ∈ Rn×dmodel are defined as:

P(pos,2i) = sin
( pos

100002i/dmodel

)
, P(pos,2i+1) = cos

( pos

100002i/dmodel

)
, (794)

ensuring unique representations for each position pos and dimension index i. The feedforward
network (FFN) applies two dense layers with an intermediate ReLU activation:

FFN(z) = max(0, zW1 + b1)W2 + b2, (795)

where W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel , and dff > dmodel. Residual connections and layer normal-
ization are applied throughout to stabilize training, with the output given by

Hout = LayerNorm(Hin + FFN(Hin)). (796)

Training optimizes the cross-entropy loss over the output distribution:

L = −
T∑
t=1

logP (yt | y<t,x), (797)

where P (yt | y<t,x) is modeled using the softmax over the logits ztWout + bout, with parame-
ters Wout,bout. The Transformer achieves a complexity of O(n2dk) per attention layer due to the
computation of QK⊤, yet its parallelization capabilities render it more efficient than recurrent net-
works. This mathematical formalism, coupled with innovations like sparse attention and dynamic
programming, has solidified the Transformer as the cornerstone of modern sequence modeling tasks.
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While this quadratic complexity poses challenges for very long sequences, it allows for greater par-
allelization compared to RNNs, which require O(n) sequential steps. Furthermore, the memory
complexity of O(n2) for storing attention weights can be mitigated using sparse approximations or
hierarchical attention structures. The Transformer architecture’s flexibility and effectiveness stem
from its ability to handle diverse tasks by appropriately modifying its components. For example,
in Vision Transformers (ViTs), the input sequence is formed by flattening image patches, and the
positional encodings capture spatial relationships. In contrast, in sequence-to-sequence tasks like
translation, the cross-attention mechanism enables the decoder to focus on relevant parts of the
encoder’s output.

In conclusion, the Transformer represents a paradigm shift in neural network design, replacing
recurrence with attention and enabling unprecedented scalability and performance. The rigorous
mathematical foundation of attention mechanisms, combined with the architectural innovations
of multi-head attention, positional encoding, and feedforward layers, underpins its success across
domains.

9.2 Generative Adversarial Networks (GANs)

Literature Review: Goodfellow et. al. [349] in their landmark paper introduced Generative
Adversarial Networks (GANs), where a generator and a discriminator compete in a minimax game.
They established the theoretical foundation of adversarial learning and developed the mathematical
formulation of GANs using game theory. They also introduced non-cooperative minimax optimiza-
tion in deep learning. Chappidi and Sundaram [350] extended GANs with graph neural networks
(GNNs) for complex real-world perception tasks. They theoretically integrated GANs with re-
inforcement learning for self-improving models and developed dual Q-learning mechanisms that
enhance GAN convergence stability. Joni [351] provided a comprehensive theoretical overview of
GAN-based generative models for advanced image synthesis. They formalized GAN loss functions
and their optimization challenges and introduced progressive growing GANs as a solution for high-
resolution image generation. Li et. al. (2024) [305] extended GANs to materials science, optimizing
the crystal structure prediction process. They developed a GAN framework for molecular modeling
and demonstrates GANs in scientific simulations beyond computer vision tasks. Sekhavat (2024)
[299] analyzed the philosophy and theoretical basis of GANs in artistic image generation. He dis-
cussed GANs from a cognitive science perspective and established a link between GAN training
and computational aesthetics. Kalaiarasi and Sudharani (2024) [352] examined GAN-based image
steganography, optimizing data hiding techniques using adversarial training. They extended the
theoretical properties of adversarial training to security applications and demonstrated how GANs
can minimize perceptual distortion in data hiding. Arjmandi-Tash and Mansourian (2024) [353]
explored GANs in scientific computing, generating realistic photodetector datasets. They demon-
strated GANs as a theoretical tool for synthetic data augmentation and formulated a probabilistic
approach to GAN loss functions for sensor modeling. Gao (2024) [354] bridged the gap between
GANs and Partial Differential Equations (PDEs) in physics-informed learning. He established a
theoretical framework for solving PDEs using GAN-based architectures and developed a new loss
function combining adversarial and variational methods. Hisama et. al. [355] applied GANs to
computational chemistry, generating new alloy catalyst structures. They introduced Wasserstein
GANs (WGANs) for molecular design and used GAN-generated latent spaces to predict catalyst
activity. Wang and Zhang (2024) [356] proposed an improved GAN framework for medical image
segmentation. They developed a novel attention-enhanced GAN for robust segmentation and pro-
vided a mathematical formulation for adversarial segmentation loss functions.

Generative Adversarial Networks (GANs) are an intricate mathematical framework designed to
model complex probability distributions by leveraging a competitive dynamic between two neural
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networks, the generator G and the discriminator D. These networks are parametrized by weights
θG ∈ ΘG and θD ∈ ΘD, and their interaction is mathematically formulated as a two-player zero-
sum game. The generator G : Rd → Rn maps latent variables z ∼ pz(z), where pz is a prior
probability distribution (commonly uniform or Gaussian), to a synthetic data sample x̂ = G(z).
The discriminator D : Rn → [0, 1] assigns a probability score D(x) indicating whether x originates
from the true data distribution pdata(x) or the generated distribution pg(x), implicitly defined as
the pushforward measure of pz under G, i.e., pg = G#pz. The optimization problem governing
GANs is expressed as

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))], (798)

where E denotes the expectation operator. This objective seeks to maximize the discriminator’s
ability to distinguish between real and generated samples while simultaneously minimizing the
generator’s ability to produce samples distinguishable from real data. For a fixed generator G, the
optimal discriminator D∗ is obtained by maximizing V (D,G), yielding

D∗(x) =
pdata(x)

pdata(x) + pg(x)
. (799)

Substituting D∗ back into the value function simplifies it to

V (D∗, G) = Ex∼pdata

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)

pdata(x) + pg(x)

]
. (800)

This expression is equivalent to minimizing the Jensen-Shannon (JS) divergence between pdata and
pg, defined as

JS(pdata∥pg) =
1

2
KL(pdata∥M) +

1

2
KL(pg∥M), (801)

where M = 1
2
(pdata + pg) and KL(p∥q) =

∫
p(x) log p(x)

q(x)
dx is the Kullback-Leibler divergence. At

the Nash equilibrium, pg = pdata, the JS divergence vanishes, and D∗(x) = 1
2

for all x. The gradient
updates during training are derived using stochastic gradient descent. For the discriminator, the
gradients are given by

∇θDV (D,G) = Ex∼pdata [∇θD logD(x)] + Ez∼pz [∇θD log(1−D(G(z)))] . (802)

Training Generative Adversarial Networks (GANs) involves iterative updates to the parameters
θD of the discriminator and θG of the generator. The discriminator’s parameters are updated
via gradient ascent to maximize the value function V (D,G), while the generator’s parameters are
updated via gradient descent to minimize the same value function. Denoting the gradients of D
and G with respect to their parameters as ∇θD and ∇θG , the updates are given by:

θD ← θD + ηD∇θD [Ex∼pdata [logD(x)] + Ez∼pz [log (1−D(G(z)))]] , (803)

and
θG ← θG − ηG∇θG [Ez∼pz [log (1−D(G(z)))]] . (804)

In practice, to address issues of vanishing gradients, an alternative loss function for the generator
is often used, defined as:

−Ez∼pz [logD(G(z))] . (805)

This modification ensures stronger gradient signals when the discriminator is performing well,
effectively improving the generator’s training dynamics. For the generator, the gradients in the
original formulation are expressed as

∇θGV (D,G) = −Ez∼pz [∇θG log(1−D(G(z)))] , (806)
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but due to vanishing gradients when D(G(z)) is near 0, the non-saturating generator loss is pre-
ferred:

LG = −Ez∼pz [logD(G(z))]. (807)

The convergence of GANs is inherently linked to the properties of D∗(x) and the alignment of
pg with pdata. However, mode collapse and training instability are frequently observed due to the
non-convex nature of the objective functions. Wasserstein GANs (WGANs) address these issues
by replacing the JS divergence with the Wasserstein-1 distance, defined as

W (pdata, pg) = inf
γ∈Π(pdata,pg)

E(x,y)∼γ[∥x− y∥], (808)

where Π(pdata, pg) is the set of all couplings of pdata and pg. Using Kantorovich-Rubinstein duality,
the Wasserstein distance is reformulated as

W (pdata, pg) = sup
∥f∥L≤1

Ex∼pdata [f(x)]− Ex∼pg [f(x)], (809)

where f is a 1-Lipschitz function. To enforce the Lipschitz constraint, gradient penalties are ap-
plied, ensuring that ∥∇f(x)∥ ≤ 1.

The mathematical framework of GANs integrates elements from game theory, optimization, and
information geometry. Their training involves solving a high-dimensional non-convex game, where
theoretical guarantees for convergence are challenging due to saddle points and complex interac-
tions between G and D. Nevertheless, GANs represent a mathematically elegant paradigm for
generative modeling, with ongoing research extending their theoretical and practical capabilities.

9.3 Autoencoders and Variational Autoencoders

Literature Review: Zhang et. al. (2024) [303] explored a theoretical connection between VAEs
and rate-distortion theory in image compression. They established a mathematical framework link-
ing probabilistic autoencoding to lossy image compression and introduced hierarchical variational
inference for improving generative modeling capacity. Wang and Huang (2025) [304] developed a
formal mathematical proof of convergence in over-parameterized VAEs. They established rigorous
mathematical limits for training VAEs and introduced Neural Tangent Kernel (NTK) theory to
study how VAEs behave under over-parameterization. Li et. al. (2024) [305] extended VAEs to
materials science, optimizing crystal structure prediction. They developed a VAE-based molecular
modeling framework and demonstrates the role of generative models beyond image-based applica-
tions. Huang (2024) [306] reviewed key techniques in VAEs, GANs, and Diffusion Models for image
generation. They analyzed probabilistic modeling in VAEs compared to diffusion-based methods
and also established a theoretical hierarchy of generative models. Chenebuah (2024) [307] inves-
tigated Autoencoders for energy materials simulation and molecular property prediction. They
introduced a novel AE-VAE hybrid model for physical simulations and established a theoretical
link between Density Functional Theory (DFT) and Autoencoders. Furth et. al. (2024) [308]
explored Graph Neural Networks (GNNs) and VAEs for predicting chemical properties. They es-
tablished theoretical properties of VAEs for graph-based learning and extended Autoencoders to
chemical reaction prediction. Gong et. al. [309] investigated Conditional Variational Autoencoders
(CVAEs) for material design. They introduced new loss functions for conditional generative mod-
eling and theoretically proved how VAEs can optimize material selection. Kim et. al. [310] uses
Transformer-based Autoencoders (AEs) for video anomaly detection. They established theoreti-
cal improvements of AEs for time-series anomaly detection and used spatio-temporal Autoencoder
embeddings to capture anomalies in videos. Albert et. al. (2024) [311] compared Kernel Learning
Embeddings (KLE) and Variational Autoencoders for dimensionality reduction. They introduced
VAE-based models for atmospheric modeling and established a mathematical comparison between
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VAEs and kernel-based models. Sharma et. al. (2024) [312] explored practical applications of
Autoencoders in network intrusion detection. They established Autoencoders as robust feature
extractors for anomaly detection and provided a formal study of Autoencoder latent space repre-
sentations.

An Autoencoder (AE) is an unsupervised learning model that attempts to learn a compact
representation of the input data x ∈ Rd in a lower-dimensional latent space. This model consists
of two primary components: an encoder function fθe and a decoder function fθd . The encoder
fθe : Rd → Rl maps the input data x to a latent code z, where l ≪ d, representing the com-
pressed information. The decoder fθd : Rl → Rd then reconstructs the input from this latent code,
producing an approximation x̂. The loss function typically used to train the autoencoder is the
reconstruction loss, often formulated as the Mean Squared Error (MSE):

L(x, x̂) = ∥x− x̂∥22. (810)

The optimization procedure seeks to minimize the reconstruction error over the dataset D, assuming
a distribution p(x) over the input data x. The objective is to learn the optimal parameters θe and
θd, by solving the following optimization problem:

min
θe,θd

Ex∼p(x)

[
∥x− fθd(fθe(x))∥22

]
. (811)

This formulation drives the encoder-decoder architecture towards learning a latent representation
that preserves key features of the input data, allowing it to be efficiently reconstructed. The solution
to this problem is typically pursued via stochastic gradient descent (SGD), where gradients
of the loss with respect to the model parameters are computed and backpropagated through the
network. In contrast to the deterministic autoencoder, the Variational Autoencoder (VAE)
introduces a probabilistic model to better capture the distribution of the latent variables. A VAE
models the data generation process using a latent variable z ∈ Rl, and aims to maximize the
likelihood of observing the data x by integrating over all possible latent variables. Specifically, we
have the joint distribution:

p(x, z) = p(x|z)p(z), (812)

where p(x|z) is the likelihood of the data given the latent variables, and p(z) is the prior distribution
of the latent variables, typically chosen to be a standard Gaussian N (z; 0, I). The prior assumption
that p(z) = N (0, I) simplifies the modeling, as it imposes no particular structure on the latent
space, which allows for flexible modeling of the data distribution. The encoder in a VAE outputs
a distribution qθe(z|x) over the latent variables, typically modeled as a multivariate Gaussian with
mean µθe(x) and variance σθe(x), i.e. qθe(z|x) = N (z;µθe(x), σ2

θe
(x)I). The decoder generates the

likelihood of the data x given the latent variable z, expressed as pθd(x|z), which typically takes the
form of a Gaussian distribution for continuous data. A central challenge in VAE training is the
marginal likelihood p(x), which represents the probability of the observed data. This marginal
likelihood is intractable due to the integral over the latent variables:

p(x) =

∫
pθd(x|z)p(z) dz. (813)

To address this, VAE training employs variational inference, which approximates the true pos-
terior p(z|x) with a variational distribution qθe(z|x). The goal is to optimize the Evidence Lower
Bound (ELBO), which is a lower bound on the log-likelihood log p(x). The ELBO is derived
using Jensen’s inequality:

log p(x) ≥ Eqθe (z|x) [log pθd(x|z)]−KL (qθe(z|x) || p(z)) , (814)

where the first term is the expected log-likelihood of the data given the latent variables, and
the second term is the Kullback-Leibler (KL) divergence between the approximate posterior
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qθe(z|x) and the prior p(z). The KL divergence acts as a regularizer, penalizing deviations from
the prior distribution. The ELBO can then be written as:

LVAE(x) = Eqθe (z|x) [log pθd(x|z)]−KL (qθe(z|x) || p(z)) . (815)

This formulation balances two competing objectives: maximizing the likelihood of reconstructing
x from z, and minimizing the divergence between the posterior qθe(z|x) and the prior p(z). In
order to perform optimization, we need to compute the gradient of the ELBO with respect to the
parameters θe and θd. However, since sampling from the distribution qθe(z|x) is non-differentiable,
the reparameterization trick is applied. This trick allows us to reparameterize the latent variable
z as:

z = µθe(x) + σθe(x) · ϵ, (816)

where ϵ ∼ N (0, I) is a standard Gaussian noise vector. This enables the backpropagation of
gradients through the latent space and allows the optimization process to proceed via stochastic
gradient descent. In practice, the Monte Carlo method is used to estimate the expectation
in the ELBO. This involves drawing K samples zk from the variational posterior qθe(z|x) and
approximating the expectation as:

L̂VAE(x) =
1

K

K∑
k=1

log pθd(x|zk)− 1

K

K∑
k=1

log qθe(zk|x). (817)

This approximation allows for efficient optimization, even when the latent space is high-dimensional
and the exact expectation is computationally prohibitive. Thus, the training process of a VAE
involves the following steps: first, the encoder produces a distribution qθe(z|x) for each input x;
then, latent variables z are sampled from this distribution; finally, the decoder reconstructs the
data x̂ from the latent variable z. The network is trained to maximize the ELBO, which effectively
balances the reconstruction loss and the KL divergence term.

In this rigorous exploration, we have presented the mathematical foundations of both autoencoders
and variational autoencoders. The core distinction between the two lies in the introduction of a
probabilistic framework in the VAE, which leverages variational inference to optimize a tractable
lower bound on the marginal likelihood. Through this process, the VAE learns to generate data by
sampling from the latent space and reconstructing the input, while maintaining a well-structured
latent distribution through regularization by the KL divergence term. The optimization framework
for VAEs is grounded in variational inference and the reparameterization trick, enabling gradient-
based optimization techniques to efficiently train deep generative models.

9.4 Graph neural networks (GNNs)

Literature Review: Scarselli et. al. (2009) [446] wrote a foundational paper that introduced the
concept of Graph Neural Networks (GNNs). It formalized the idea of processing graph-structured
data using neural networks, where nodes iteratively update their representations by aggregating
information from their neighbors. The paper laid the theoretical groundwork for GNNs, includ-
ing convergence guarantees and computational frameworks. Kipf and Welling (2017) [447] intro-
duced Graph Convolutional Networks (GCNs), a simplified and highly effective variant of GNNs.
It proposed a localized first-order approximation of spectral graph convolutions, making GNNs
scalable and practical for large graphs. GCNs became a cornerstone for many subsequent GNN
architectures. Hamilton et. al. (2017) [448] introduced GraphSAGE, a framework for inductive
representation learning on large graphs. Unlike transductive methods (e.g., GCN), GraphSAGE
generates embeddings for unseen nodes by sampling and aggregating features from a node’s local
neighborhood. It also introduced mean, LSTM, and pooling aggregators, which are widely used in
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GNNs. Veličković et. al. (2018) [449] proposed Graph Attention Networks (GATs), which use self-
attention mechanisms to compute node representations. GATs assign different weights to neighbors
during aggregation, allowing the model to focus on more important nodes. This introduced a new
paradigm for handling heterogeneous graph structures. Xu et. al. (2019) [450] analyzed the theoret-
ical expressiveness of GNNs, particularly their ability to distinguish graph structures. It introduced
the Graph Isomorphism Network (GIN), which is as powerful as the Weisfeiler-Lehman (WL) graph
isomorphism test. The work provided a rigorous framework for understanding the limitations and
strengths of GNNs. Gilmer et. al. (2017) [451] formalized the Message Passing Neural Network
(MPNN) framework, which generalizes many GNN variants. It introduced a unified view of GNNs
as iterative message-passing algorithms, where nodes exchange information with their neighbors.
The framework has been widely adopted in molecular and chemical graph analysis. Battaglia et.
al. (2018) [452] presented the Graph Networks (GN) framework, which generalizes GNNs to handle
relational reasoning over structured data. It introduced a block-based architecture for processing
entities, relations, and global attributes, making it applicable to a wide range of tasks, including
physics simulations and combinatorial optimization. Bruna et. al. (2014) [453] wrote one of the
earliest works that proposed spectral graph convolutions, which use the graph Fourier transform to
define convolutional operations on graphs. It laid the foundation for spectral-based GNNs, which
later inspired spatial-based methods like GCNs. Ying et. al. (2018) [454] demonstrated the practi-
cal application of GNNs in large-scale recommender systems. It introduced PinSage, a GNN-based
model that leverages random walks and efficient sampling techniques to handle web-scale graphs.
This work highlighted the scalability and real-world impact of GNNs. Zhou et. al. (2020) [455]
wrote a comprehensive review paper that summarized the state-of-the-art in GNNs, covering a
wide range of methods, applications, and challenges. It provided a taxonomy of GNN architec-
tures, discussed their theoretical foundations, and highlighted open research directions, making it
an essential resource for researchers and practitioners.

Graph Neural Networks (GNNs) are a profound and mathematically intricate class of deep learn-
ing models specifically designed to handle and process data that is naturally structured as graphs.
Unlike traditional neural networks that operate on Euclidean data structures such as vectors, se-
quences, or grids, GNNs generalize deep learning to non-Euclidean spaces by directly leveraging the
underlying graph topology. The mathematical foundation of GNNs is deeply rooted in algebraic
graph theory, spectral graph theory, and the principles of geometric deep learning, all of which
contribute to the rigorous understanding of how neural networks can be extended to structured
relational data. At the core of any graph-based machine learning model lies the mathematical
representation of a graph. Formally, a graph G is defined as an ordered pair G = (V,E), where V
represents the set of nodes (or vertices), and E ⊆ V ×V represents the set of edges that define the
relationships between nodes. The total number of nodes in the graph is denoted by |V | = N , while
the number of edges is given by |E|. The connectivity of the graph is encoded in the adjacency
matrix A ∈ RN×N , where Aij is nonzero if and only if there exists an edge between nodes i and j.
The adjacency matrix can be either binary (indicating the mere presence or absence of an edge)
or weighted, in which case Aij encodes the strength or affinity of the connection. In addition to
graph connectivity, each node i is often associated with a feature vector xi ∈ Rd, and collecting
these feature vectors across all nodes forms the node feature matrix X ∈ RN×d, where d is the
dimensionality of the feature space.

One of the fundamental challenges in extending neural networks to graph domains is the lack
of a consistent node ordering, which makes standard operations such as convolutions, pooling,
and fully connected layers non-trivial. Unlike images where a fixed spatial structure allows for
well-defined convolutional kernels, graphs exhibit arbitrary structure and permutation invariance,
meaning that the labels of nodes can be permuted without altering the intrinsic properties of
the graph. This necessitates the development of graph-specific neural network architectures that
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respect the graph topology while maintaining permutation invariance. To facilitate learning on
graphs, GNNs employ a neighborhood aggregation or message-passing scheme, wherein each node
iteratively gathers information from its neighbors to update its representation. This process can
be formulated mathematically using recursive feature propagation rules. Let H(l) ∈ RN×dl denote
the node feature matrix at layer l, where each row H

(l)
i represents the embedding of node i at that

layer. The most fundamental form of feature propagation follows the update equation:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
, (818)

where W (l) ∈ Rdl×dl+1 is a learnable weight matrix that transforms the feature representation, σ(·)
is a nonlinear activation function such as ReLU, and Ã = A+ I is the adjacency matrix augmented
with self-loops to ensure that each node includes its own features in the aggregation process. The
diagonal matrix D̃ is the degree matrix of Ã, defined as D̃ii =

∑
j Ãij, which normalizes the feature

propagation to avoid scale distortion. The initial node features are represented as H(0) = X, where
X is the matrix of initial node features. The weight matrix at layer l is denoted as W (l) ∈ Rdl×dl+1 ,
where dl and dl+1 are the dimensions of the input and output feature spaces at layer l, respectively.
The weight matrix is trainable. The adjacency matrix A is augmented with self-loops, denoted as
Ã = A+I, where I is the identity matrix. The degree matrix D̃ is the diagonal matrix corresponding
to the adjacency matrix with self-loops, defined as:

D̃ii =
∑
j

Ãij, (819)

where Ãij is the entry in the augmented adjacency matrix. The function σ(·) is a nonlinear
activation function (such as ReLU) applied element-wise to the node features. This operation
ensures that each node aggregates information from its local neighborhood, facilitating feature
propagation across the graph. More generally, GNNs can be defined using a message passing
scheme, which consists of two key steps. Each node i receives messages from its neighbors j ∈ N(i).
The aggregated message at node i at layer l is computed as:

m
(l)
i =

∑
j∈N(i)

fm(H
(l)
j , H

(l)
i , Aij), (820)

where fm is a learnable function that determines how information is aggregated. The node em-
bedding is updated using the function fu, which takes the current node embedding H

(l)
i and the

aggregated message m
(l)
i . The updated embedding for node i at layer l + 1 is given by:

H
(l+1)
i = fu(H

(l)
i ,m

(l)
i ), (821)

where fu is another learnable function. A popular choice for the functions fm and fu is:

H
(l+1)
i = σ

W (l)
∑

j∈N(i)

ÃijD̃
−1
ii H

(l)
j

 , (822)

where W (l) is the trainable weight matrix, Ãij are the entries of the augmented adjacency matrix,
and D̃−1

ii is the inverse of the degree matrix. This formulation is permutation invariant, ensuring
that the node embeddings do not depend on the order in which neighbors are processed.

A deeper mathematical understanding of GNNs can be obtained by analyzing their connection
to spectral graph theory. The Laplacian matrix, central to spectral graph analysis, is defined as

L = D − A (823)
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where D is the degree matrix. The normalized Laplacian is given by

Lsym = I −D− 1
2AD− 1

2 (824)

which possesses an orthonormal eigenbasis. The eigenvalues of the Laplacian encode fundamental
properties of the graph, such as connectivity and diffusion characteristics. Spectral methods define
graph convolutions in the Fourier domain using the eigen-decomposition

Lsym = UΛU⊤ (825)

where U is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. The graph
Fourier transform of a signal x is then given by

x̂ = U⊤x (826)

and graph convolutions are defined as

gθ ∗ x = Ugθ(Λ)U⊤x (827)

However, this formulation is computationally expensive, requiring the full eigen-decomposition of L,
motivating approximations such as Chebyshev polynomials and first-order simplifications like those
used in Graph Convolutional Networks (GCNs). Beyond GCNs, several other variants of GNNs
have been developed to address limitations and enhance expressivity. Graph Attention Networks
(GATs) introduce an attention mechanism to dynamically weight the contributions of neighboring
nodes using learnable attention coefficients. The attention mechanism is formulated as:

αij =
exp(LeakyReLU(a⊤[Whi ∥ Whj]))∑

k∈N (i) exp(LeakyReLU(a⊤[Whi ∥ Whk]))
(828)

where ∥ denotes concatenation, a is a learnable parameter vector, and attention scores αij de-
termine the importance of neighbors in updating node features. Another variant, GraphSAGE,
employs different aggregation functions (mean, LSTM-based, or pooling-based) to sample and ag-
gregate information from local neighborhoods, ensuring scalability to large graphs. The theoretical
expressivity of GNNs is an active area of research, particularly in the context of the Weisfeiler-
Lehman graph isomorphism test. The Graph Isomorphism Network (GIN) is designed to match
the expressiveness of the 1-dimensional Weisfeiler-Lehman test, using an aggregation function of
the form:

H
(l+1)
i = MLP

(1 + ϵ)H
(l)
i +

∑
j∈N(i)

H
(l)
j

 , (829)

where MLP(·) is a multi-layer perceptron, and ϵ is a learnable parameter that controls the contri-
bution of self-information. This formulation has been shown to be more powerful in distinguishing
graph structures compared to traditional GCNs. Applications of GNNs span multiple domains,
ranging from molecular property prediction in chemistry and biology, where molecules are repre-
sented as graphs with atoms as nodes and chemical bonds as edges, to recommendation systems
that model users and items as bipartite graphs. Other applications include knowledge graph rea-
soning, social network analysis, and combinatorial optimization problems.

In summary, Graph Neural Networks represent a mathematically rich extension of deep learn-
ing to structured relational data. Their foundation in spectral graph theory, algebraic topology,
and geometric deep learning provides a rigorous framework for understanding their function and
capabilities. Despite their success, open research challenges remain in improving their expressiv-
ity, generalization, and computational efficiency, making them an active and evolving field within
modern machine learning.
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9.5 Physics Informed Neural Networks (PINNs)

Literature Review: Raissi et. al. (2019) [456] wrote a seminal paper that introduced the foun-
dational framework of PINNs. It demonstrates how neural networks can be trained to solve both
forward and inverse problems for nonlinear PDEs by incorporating physical laws (e.g., conservation
laws, boundary conditions) directly into the loss function. The authors show the effectiveness of
PINNs in solving high-dimensional PDEs, such as the Navier-Stokes equations, and highlight their
ability to handle noisy and sparse data. Karniadakis et. al. (2021) [457] wrote a review article that
provided a comprehensive overview of physics-informed machine learning, with a focus on PINNs.
It discusses the theoretical foundations, challenges, and applications of PINNs in solving PDEs,
uncertainty quantification, and data-driven modeling. The paper also highlights the integration of
PINNs with other machine learning techniques and their potential for multi-scale and multi-physics
problems. Lu et. al. (2021) [458] introduced DeepXDE, a Python library for solving differential
equations using deep learning, particularly PINNs. The authors provide a detailed explanation of
the library’s architecture, its flexibility in handling various types of PDEs, and its ability to solve
high-dimensional problems. The paper also includes benchmarks and comparisons with traditional
numerical methods. Sirignano and Spiliopoulos (2018) [459] introduced the Deep Galerkin Method
(DGM), a precursor to PINNs, which uses deep neural networks to approximate solutions to high-
dimensional PDEs. The authors demonstrate the method’s effectiveness in solving problems in
finance and physics, laying the groundwork for later developments in PINNs. Wang et. al. (2021)
[460] addressed a key challenge in training PINNs: the imbalance in gradient flow during optimiza-
tion, which can lead to poor convergence. The authors propose adaptive weighting schemes and
novel architectures to mitigate these issues, significantly improving the robustness and accuracy of
PINNs. Mishra and Molinaro (2021) [461] provided a rigorous theoretical analysis of the general-
ization error of PINNs. The authors derive bounds on the error and discuss the conditions under
which PINNs can reliably approximate solutions to PDEs. This paper is crucial for understanding
the theoretical limitations and guarantees of PINNs. Zhang et. al. (2020) [462] extended PINNs to
solve time-dependent stochastic PDEs by learning in modal space. The authors demonstrate how
PINNs can handle uncertainty quantification and stochastic processes, making them applicable to
problems in fluid dynamics, materials science, and finance. Jin et. al. (2021) [463] focused on
applying PINNs to the incompressible Navier-Stokes equations, a challenging class of PDEs in fluid
dynamics. The authors introduce NSFnets, a specialized variant of PINNs, and demonstrate their
effectiveness in solving complex flow problems, including turbulent flows. Chen et. al. (2020)
[464] showcased the application of PINNs to inverse problems in nano-optics and metamaterials.
The authors demonstrate how PINNs can infer material properties and design parameters from
limited experimental data, highlighting their potential for real-world engineering applications. Al-
though not explicitly about PINNs, the early work of Psichogios and Ungar (1992) [465] laid the
groundwork for integrating physical principles with neural networks. It introduces the concept of
hybrid modeling, where neural networks are combined with domain knowledge, a precursor to the
physics-informed approach used in PINNs.

Physics Informed Neural Networks (PINNs) are a class of neural networks explicitly designed to
incorporate partial differential equations (PDEs) and boundary/initial conditions into their training
process. The goal is to find approximate solutions to the PDEs governing physical systems using
neural networks, while directly embedding the governing physical laws (described by PDEs) into
the training mechanism.A typical PDE problem is represented as:

Lu(x) = f(x), for x ∈ Ω (830)

where:

• L is a differential operator, for instance, the Laplace operator ∇2, or the Navier-Stokes oper-
ator for fluid dynamics.

173



• u(x) is the unknown solution we wish to approximate.

• f(x) is a known source term, which could represent external forces or other sources in the
system.

• Ω is the domain in which the equation is valid, such as a bounded region in Rn (e.g., Ω ⊆ R3).

The solution u(x) is approximated by a neural network û(x, θ), where θ denotes the parameters
(weights and biases) of the neural network. A neural network approximates a function û(x) as a
composition of nonlinear mappings, typically as:

û(x, θ) = fθ(x) = σ(Wkσ(Wk−1 · · ·σ(W1x+ b1) + b2) · · ·+ bk) (831)

where:

• σ is a nonlinear activation function, such as ReLU or sigmoid.

• Wi and bi are the weight matrices and bias vectors of the i-th layer.

• The function fθ(x) is a feedforward neural network with multiple layers.

Thus, the neural network learns a representation û(x, θ) that approximates the physical solution to
the PDE. The accuracy of this approximation depends on the choice of the network architecture,
activation function, and the training process. To enforce that the neural network approximates a
solution to the PDE, we introduce a physics-informed loss function. This loss function typically
consists of two parts:

1. Data-driven loss term: This term enforces the agreement between the model predictions and
any available data points (boundary or initial conditions).

2. Physics-driven loss term: This term enforces the satisfaction of the governing PDE at collo-
cation points within the domain Ω.

The data-driven component aims to minimize the discrepancy between the predicted solution and
the observed values at certain data points. For a set of training data {xi, ui}, the data-driven loss
is given by:

Ldata =
N∑
i=1

|û(xi, θ)− ui|2 (832)

where û(xi, θ) is the predicted value of u(x) at xi, and ui is the observed value.

The physics-driven term ensures that the predicted solution satisfies the PDE. Let r(xi) repre-
sent the PDE residual evaluated at collocation points xi ∈ Ω. The residual r(xi) is defined as the
difference between the left-hand side and the right-hand side of the PDE:

r(xi) = Lû(xi, θ)− f(xi) (833)

Here, Lû(xi, θ) is the differential operator acting on the neural network approximation û(xi, θ). By
applying automatic differentiation (AD), we can compute the required derivatives of û(xi, θ) with
respect to x. For instance, in the case of a second-order differential equation, AD will compute:

∂2û(x)

∂x2
(834)

The physics-driven loss is then defined as:

Lphysics =
M∑
i=1

r(xi)
2 (835)
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where r(xi) represents the residuals at the collocation points xi distributed throughout the do-
main Ω. The number of these points M can vary depending on the problem’s complexity and
dimensionality. The total loss function is a weighted sum of the data-driven and physics-driven
terms:

Ltotal = Ldata + λLphysics (836)

where λ is a hyperparameter controlling the balance between the two loss terms. Minimizing this
loss function during training ensures that the neural network learns to approximate the solution
u(x) that satisfies both the data and the governing physical laws. A key feature of PINNs is the
use of automatic differentiation (AD), which allows us to compute the derivatives of the neural
network approximation û(x, θ) with respect to its inputs (i.e., the spatial coordinates in the PDE).
The chain rule of differentiation is applied recursively through the layers of the neural network.

For a neural network with the following architecture:

û(x) = fθ(x) = σ(Wkσ(· · ·σ(W1x+ b1) · · ·+ bk)) (837)

we can apply backpropagation and automatic differentiation to compute the derivatives ∂û(x)
∂x

, ∂2û(x)
∂x2 ,

and higher derivatives required by the PDE. For example, for the Laplace operator in a 1D setting:

∂2û(x)

∂x2
=

k∑
j=1

Wj
∂2σ(·)
∂x2

(838)

This automatic differentiation procedure ensures that the PDE residual r(xi) = Lû(xi, θ) − f(xi)
is computed efficiently and accurately. The formulation of PINNs extends naturally to higher-
dimensional PDEs. In the case of a system of partial differential equations, the operator L may
involve higher-order derivatives in multiple dimensions. For instance, in fluid dynamics, the gov-
erning equations might involve the Navier-Stokes equations, which require computing derivatives
in 3D space:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u + f (839)

Here, u(x, t) is the velocity field, p is the pressure field, and ν is the kinematic viscosity. The neural
network architecture in PINNs can be extended to multi-output networks that solve for vector fields,
ensuring that all components of the velocity and pressure fields satisfy the corresponding PDEs.
For inverse problems, where we aim to infer unknown parameters of the system (e.g., material
properties, boundary conditions), PINNs provide a natural framework. The inverse problem is
framed as the optimization of the loss function with respect to both the neural network parameters
θ and the unknown physical parameters α:

Ltotal(θ, α) = Ldata(θ, α) + λLphysics(θ) (840)

Multi-fidelity PINNs involve using data at multiple levels of fidelity (e.g., coarse vs. fine simula-
tions, experimental data vs. high-fidelity models) to improve training efficiency and accuracy.

Physics-Informed Neural Networks (PINNs) provide an elegant and powerful approach to solv-
ing PDEs by embedding physical laws directly into the training process. The use of automatic
differentiation allows for efficient computation of residuals, and the combined loss function enforces
both data-driven and physics-driven constraints. With applications spanning across many domains
in engineering, physics, and biology, PINNs represent a significant advancement in the integration
of machine learning with scientific computing.
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9.6 Implementation of the Deep Galerkin Methods (DGM) using the
Physics-Informed Neural Networks (PINNs)

Consider the general form of a partial differential equation (PDE) given by:

L(u(x)) = f(x), for x ∈ Ω (841)

where L is a differential operator (either linear or nonlinear), u(x) is the unknown solution, and
f(x) is a given source or forcing term. The domain Ω ⊂ Rd represents the spatial region where the
solution u(x) is sought. In the case of nonlinear PDEs, L may involve both u(x) and its derivatives
in a nonlinear fashion. Additionally, boundary conditions are specified as:

u(x) = g(x), x ∈ ∂Ω (842)

where g(x) is a prescribed function at the boundary ∂Ω of the domain. The weak formulation of
the PDE is obtained by multiplying both sides of the differential equation by a test function v(x)
and integrating over the domain Ω:∫

Ω

v(x)L(u(x)) dx =

∫
Ω

v(x)f(x) dx (843)

This weak formulation is valid in spaces of functions that satisfy appropriate regularity conditions,
such as Sobolev spaces. The weak formulation transforms the problem into an integral form,
making it easier to handle numerically. The Deep Galerkin Method (DGM) is a deep learning-
based method for approximating the solution of PDEs. The fundamental idea is to construct a
neural network-based approximation û(x; θ) for the unknown function u(x), such that the residual
of the PDE (the error in satisfying the equation) is minimized in a Galerkin sense. This means that
the neural network is trained to minimize the weak form of the PDE’s residuals over the domain.
In the case of DGM using Physics-Informed Neural Networks (PINNs), the solution is embedded
in the architecture of a neural network, and the physics of the problem is enforced through the
loss function. The PINN aims to minimize the residual of the weak formulation of the PDE,
incorporating both the differential equation and boundary conditions. The neural network used to
approximate the solution û(x; θ) is typically a feedforward neural network with an input x ∈ Rd

(where d is the dimension of the domain) and output û(x; θ), which represents the predicted solution
at x. The parameters θ represent the weights and biases of the network, and the architecture is
chosen to be deep enough to capture the complexity of the solution. The neural network can be
expressed as:

û(x; θ) = NN(x; θ) (844)

Here, NN(x; θ) denotes the neural network function that maps the input x to an output û(x; θ).
The network layers can include nonlinear activation functions such as ReLU or tanh to capture
complex behavior. The PINN minimizes a loss function that combines the residual of the PDE and
the boundary condition enforcement. Let the loss function be:

L(θ) = LPDE(θ) + LBC(θ) (845)

where LPDE(θ) represents the loss due to the PDE residual, and LBC(θ) enforces the boundary
conditions. The PDE residual LPDE(θ) is defined as the error in satisfying the PDE at a set of
collocation points {xi}Ncoll

i=1 in the domain Ω, where Ncoll is the number of collocation points. The
residual at a point xi is given by the difference between the differential operator applied to the
predicted solution û(xi; θ) and the forcing term f(xi):

LPDE(θ) =
1

Ncoll

Ncoll∑
i=1

(L (û(xi; θ))− f(xi))
2 (846)
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Here, L (û(xi; θ)) is the result of applying the differential operator to the output of the neural
network at the collocation point xi. For nonlinear PDEs, the operator L might involve both u(x)
and its derivatives, and the derivatives of û(x; θ) are computed using automatic differentiation. The
boundary condition loss LBC(θ) ensures that the neural network’s predictions at boundary points
{xbi}

NBC
i=1 satisfy the boundary condition u(x) = g(x). This loss is computed as:

LBC(θ) =
1

NBC

NBC∑
i=1

(û(xbi ; θ)− g(xbi))
2 (847)

where xbi are points on the boundary ∂Ω, and g(xbi) is the prescribed boundary value. For the
Training the Neural Network, The objective is to minimize the total loss function:

θ∗ = arg min
θ

(LPDE(θ) + LBC(θ)) (848)

This minimization is achieved using gradient-based optimization algorithms, such as Stochastic
Gradient Descent (SGD) or Adam. The gradients of the loss function with respect to the parameters
θ are computed using automatic differentiation, which is a powerful technique in modern deep
learning frameworks (e.g., TensorFlow, PyTorch). To achieve a solution in the Galerkin sense, we
need to minimize the weak residual of the PDE. The weak residual is derived by integrating the
product of the residual and a test function v(x) over the domain:

R(x) = L(u(x))− f(x) (849)

The weak formulation of the PDE in Galerkin methods ensures that the solution minimizes the
projection of the residual onto the space of test functions. In the case of PINNs, the network
implicitly constructs this weak form by adjusting the network’s parameters to minimize the residual
at sampled points. For a general linear PDE, this weak formulation can be expressed as:∫

Ω

v(x) (L(û(x; θ))− f(x)) dx = 0 (850)

The neural network is designed to minimize the residual R(x) in the weak sense, over the points
where the loss is computed.

For nonlinear PDEs, such as the Navier-Stokes equations or nonlinear Schrödinger equations, the
neural network’s ability to approximate complex functions is key. The operator L(û(x)) may in-
volve terms like û(x)∇û(x) (nonlinear convection terms), and the neural network can model these
nonlinearities by introducing appropriate activation functions in the layers (e.g., ReLU, sigmoid,
or tanh). For a nonlinear PDE such as the incompressible Navier-Stokes equations:

∂û

∂t
+ û · ∇û = −∇p+ ν∇2û+ f (851)

where û is the velocity field, p is the pressure, ν is the kinematic viscosity, and f is the external
forcing, the network learns the solution û(x; θ) and p̂(x; θ), such that:

L(û(x; θ), p̂(x; θ)) = f(x) (852)

This requires the network to compute the derivatives of û and p̂ and use them in the residual
computation. Collocation points xi are typically sampled using Monte Carlo methods or Latin
hypercube sampling. This allows for efficient exploration of the domain Ω, especially in high-
dimensional spaces. Boundary points xbi are selected to enforce boundary conditions accurately.
The training process uses an iterative optimization procedure (e.g., Adam optimizer) to update
the neural network parameters θ. The gradients of the loss function are computed using automatic
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differentiation in deep learning frameworks, ensuring accurate and efficient computation of the
derivatives of û(x). Convergence is determined by monitoring the reduction in the total loss L(θ),
which should approach zero as the solution is refined. Residuals are monitored for both the PDE
and boundary conditions, ensuring that the solution satisfies the PDE and boundary conditions to
a high degree of accuracy.

In the Deep Galerkin Method (DGM) using Physics-Informed Neural Networks (PINNs), we con-
struct a neural network to approximate the solution of a PDE in the weak form. The loss function
enforces both the PDE residual and boundary conditions, and the network is trained to minimize
this loss using gradient-based optimization. The method is highly flexible and can handle both
linear and nonlinear PDEs, leveraging the power of neural networks to solve complex differential
equations in a scientifically and mathematically rigorous manner. This rigorous framework can be
applied to a wide variety of differential equations, from simple linear cases to complex nonlinear
systems, and serves as a powerful tool for solving high-dimensional and difficult-to-solve PDEs.

10 Deep Kolmogorov Methods

Literature Review: Han and Jentzen (2017) [479] introduced the Deep BSDE (Backward Stochas-
tic Differential Equation) solver, a foundational framework for solving high-dimensional PDEs using
deep learning. It demonstrates how neural networks can approximate solutions to parabolic PDEs
by reformulating them as stochastic control problems. The authors rigorously prove the conver-
gence of the method and provide numerical experiments for high-dimensional problems, such as the
Hamilton-Jacobi-Bellman equation. Beck et. al. (2021) [480] extended the Deep BSDE method to
solve Kolmogorov PDEs, which describe the evolution of probability densities for stochastic pro-
cesses. The authors provide a theoretical analysis of the approximation capabilities of deep neural
networks for these equations and demonstrate the method’s effectiveness in high-dimensional set-
tings. While not exclusively focused on Kolmogorov methods, the paper by Raissi et. al. (2019)
[456] introduces Physics-Informed Neural Networks (PINNs), which have become a cornerstone
in deep learning for PDEs. PINNs incorporate physical laws (e.g., PDEs) directly into the loss
function, enabling the solution of forward and inverse problems. The framework is applicable to
high-dimensional PDEs and has inspired many subsequent works. Han and Jentzen (2018) [481]
provided a comprehensive theoretical and empirical analysis of the Deep BSDE method. It high-
lights the method’s ability to overcome the curse of dimensionality and demonstrates its application
to high-dimensional nonlinear PDEs, including those arising in finance and physics. Sirignano and
Spiliopoulos (2018) [459] proposed the Deep Galerkin Method (DGM), which uses deep neural net-
works to approximate solutions to PDEs without requiring a mesh. The method is particularly
effective for high-dimensional problems and is shown to outperform traditional numerical methods
in certain settings. Yu (2018) [483] introduced the Deep Ritz Method, which uses deep learning
to solve variational problems associated with elliptic PDEs. The method is closely related to Kol-
mogorov methods and provides a powerful alternative for high-dimensional problems. Zhang et.
al. (2020) [462] extended PINNs to solve time-dependent stochastic PDEs, including Kolmogorov-
type equations. The authors propose a modal decomposition approach to improve the efficiency
and accuracy of the method in high dimensions. Jentzen et. al. (2021) [482] provided a rigor-
ous mathematical foundation for deep learning-based methods for nonlinear parabolic PDEs. It
includes error estimates and convergence proofs, making it a key reference for understanding the
theoretical underpinnings of Deep Kolmogorov Methods. Khoo et. al. (2021) [484] explored the
use of neural networks to solve parametric PDEs, which are closely related to Kolmogorov equa-
tions. The authors provide a unified framework for handling high-dimensional parameter spaces and
demonstrate the method’s effectiveness in various applications. While not strictly a deep learning
method, the paper by Hutzenthaler et. al. (2020) [485] introduced the Multilevel Picard method,
which has inspired many deep learning approaches for high-dimensional PDEs. It provides a theo-
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retical framework for approximating solutions to semilinear parabolic PDEs, including Kolmogorov
equations.

The Deep Kolmogorov Method (DKM) is a deep learning-based approach to solving high-
dimensional partial differential equations (PDEs), particularly those arising from stochastic pro-
cesses governed by Itô diffusions. The rigorous foundation of DKM is built upon stochastic
analysis, functional analysis, variational principles, and neural network approximation
theory. To fully understand the method, one must rigorously derive the Kolmogorov backward
equation, justify its probabilistic representation via Feynman-Kac theory, and establish the error
bounds for deep learning approximations within appropriate function spaces. Let us explore these
aspects in their maximal mathematical depth.

10.1 The Kolmogorov Backward Equation and Its Functional Formulation

Let Xt be a d-dimensional Itô diffusion process defined on a complete filtered probability
space (Ω,F , {Ft}t≥0,P), satisfying the stochastic differential equation (SDE):

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x, (853)

where µ : Rd → Rd is the drift function and σ : Rd → Rd×d is the diffusion function. We
assume that both µ and σ satisfy global Lipschitz continuity conditions:

∥µ(x)− µ(y)∥ ≤ C∥x− y∥, ∥σ(x)− σ(y)∥ ≤ C∥x− y∥, ∀x, y ∈ Rd. (854)

These conditions guarantee the existence of a unique strong solution Xt to the SDE, satisfying
E[sup0≤t≤T ∥Xt∥2] < ∞. The Kolmogorov backward equation describes the evolution of a
function u(t, x), which is defined as the expected value of a terminal function g(XT ) and an integral
source term f(t,Xt):

u(t, x) = E
[
g(XT ) +

∫ T

t

f(s,Xs)ds | Xt = x

]
. (855)

This function satisfies the parabolic PDE:

∂u

∂t
+ Lu = f, u(T, x) = g(x), (856)

where the second-order differential operator L, known as the infinitesimal generator of Xt,
is given by:

Lu =
d∑

i=1

µi(x)
∂u

∂xi
+

1

2

d∑
i,j=1

(σσT )ij
∂2u

∂xi∂xj
. (857)

This equation is well-posed in function spaces such as Sobolev spaces Hk(Rd), Hölder spaces
Ck,α(Rd), or Bochner spaces Lp(Ω;Hk(Rd)) under standard parabolic regularity assumptions.

10.2 The Feynman-Kac Representation and Its Justification

To rigorously justify the probabilistic representation of u(t, x), we define the stochastic process:

Mt = g(XT ) +

∫ T

t

f(s,Xs)ds− u(t,Xt). (858)

Applying Itô’s Lemma to u(t,Xt), we obtain:

dMt =

(
∂u

∂t
+ Lu− f

)
dt+∇uTσdWt. (859)
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Since u satisfies the PDE, the drift term vanishes, leaving:

dMt = ∇uTσdWt. (860)

Taking expectations and noting that the stochastic integral has zero mean, we conclude that Mt

is a martingale, which establishes the Feynman-Kac representation:

u(t, x) = E
[
g(XT ) +

∫ T

t

f(s,Xs)ds | Xt = x

]
. (861)

To prove the above equation, we assume that Xt is a diffusion process satisfying the stochastic
differential equation (SDE):

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, X0 = x. (862)

Here Wt is a standard Brownian motion on a filtered probability space (Ω,F , (Ft)t≥0,P). The
drift µ(x, t) and diffusion σ(x, t) are assumed to be Lipschitz continuous in x and measurable
in t, ensuring existence and uniqueness of a strong solution to the SDE. The filtration (Ft) is the
natural filtration of Wt, satisfying the usual conditions (right-continuity and completeness).
We consider the backward parabolic partial differential equation (PDE):

∂u

∂t
+ µ(x, t)

∂u

∂x
+

1

2
σ2(x, t)

∂2u

∂x2
= V (x, t)u+ f(x, t), (863)

with final condition:
u(x, T ) = g(x). (864)

The Feynman-Kac representation states that:

u(x, t) = E
[∫ T

t

e−
∫ s
t V (Xr,r)drf(Xs, s)ds+ e−

∫ T
t V (Xr,r)drg(XT )

∣∣∣Xt = x

]
. (865)

This provides a probabilistic representation of the solution to the PDE. Let’s now revisit some
prerequisites from Stochastic Calculus and Functional Analysis. For that, we first discuss the
existence of the Stochastic Process Xt. The existence of Xt follows from the standard existence
and uniqueness theorem for SDEs when µ(x, t) and σ(x, t) satisfy the Lipschitz continuity
condition:

|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)| ≤ L|x− y|. (866)

Under these conditions, there exists a unique strong solution Xt that is adapted to Ft. Let’s use
the Itô’s Lemma for Stochastic Processes, for a sufficiently smooth function ϕ(Xt, t), Itô’s lemma
states:

dϕ(Xt, t) =

(
∂ϕ

∂t
+ µ

∂ϕ

∂x
+

1

2
σ2∂

2ϕ

∂x2

)
dt+ σ

∂ϕ

∂x
dWt. (867)

This will be crucial in proving the Feynman-Kac formula. Now let us prove the Feynman-Kac
Formula. The first step is to define the Stochastic Process Ys. Define:

Ys = e−
∫ s
t V (Xr,r)dru(Xs, s). (868)

Applying Itô’s Lemma to Ys, we expand:

dYs = d
(
e−

∫ s
t V (Xr,r)dru(Xs, s)

)
. (869)

Using the product rule for stochastic calculus:

dYs = e−
∫ s
t V (Xr,r)drdu(Xs, s) + u(Xs, s)d

(
e−

∫ s
t V (Xr,r)dr

)
+ d

[
e−

∫ s
t V (Xr,r)dr, u(Xs, s)

]
. (870)
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Applying Itô’s formula, we get

du(Xs, s) =

(
∂u

∂t
+ µ

∂u

∂x
+

1

2
σ2∂

2u

∂x2

)
ds+ σ

∂u

∂x
dWs. (871)

Differentiating the exponential term:

d
(
e−

∫ s
t V (Xr,r)dr

)
= −V (Xs, s)e

−
∫ s
t V (Xr,r)drds. (872)

Thus:

dYs = e−
∫ s
t V (Xr,r)dr

(
∂u

∂t
+ µ

∂u

∂x
+

1

2
σ2∂

2u

∂x2
− V u

)
ds+ e−

∫ s
t V (Xr,r)drσ

∂u

∂x
dWs. (873)

The second step shall be taking the expectation and using the Martingale Property. Define the
process:

Ms =

∫ s

t

e−
∫ r
t V (Xq ,q)dqσ

∂u

∂x
dWr. (874)

Since Ms is a stochastic integral, it is a martingale with expectation zero:

E[MT |Xt] = 0. (875)

Taking expectations on both sides of the equation for Ys:

E[YT |Xt] = Yt + E
[∫ T

t

e−
∫ s
t V (Xr,r)drfds

∣∣∣Xt

]
. (876)

Using the terminal condition YT = e−
∫ T
t V (Xr,r)drg(XT ), we obtain:

u(x, t) = E
[∫ T

t

e−
∫ s
t V (Xr,r)drf(Xs, s)ds+ e−

∫ T
t V (Xr,r)drg(XT )

∣∣∣Xt = x

]
. (877)

10.3 Deep Kolmogorov Method: Neural Network Approximation

The Deep Kolmogorov Method approximates the function u(t, x) using a deep neural network
uθ(t, x), parameterized by θ. The loss function is constructed as:

L(θ) = E

[
T∑
t=0

(
uθ(t,Xt)− g(XT )−

∫ T

t

f(s,Xs)ds

)2
]
. (878)

The parameters θ are optimized via stochastic gradient descent (SGD):

θn+1 = θn − η∇θL(θn), (879)

where η is the learning rate. By the universal approximation theorem, a sufficiently deep
network with ReLU activation satisfies:

∥u− uθ∥L2 ≤ C(L−1/2W−1/d), (880)

where L is the network depth and W is the network width. Let u : [0, T ] × Rd → R be the exact
solution to the Kolmogorov backward equation:

∂u

∂t
+ Lu = f, (t, x) ∈ [0, T ]× Rd, (881)
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where L is the differential operator:

Lu =
d∑

i=1

bi(x)
∂u

∂xi
+

1

2

d∑
i,j=1

aij(x)
∂2u

∂xi∂xj
, (882)

with bi(x) and aij(x) satisfying smoothness and uniform ellipticity conditions:

∃λ,Λ > 0 such that λ|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2 ∀ξ ∈ Rd. (883)

We approximate u(t, x) with a neural network function uθ(t, x) of the form:

uθ(t, x) =
M∑
j=1

βjσ(Wjx+ bj), (884)

where σ : R→ R is the activation function, Wj ∈ Rd, bj ∈ R, βj ∈ R are trainable parameters, M
represents the number of neurons. We seek a bound on the approximation error:

∥u− uθ∥Hs . (885)

From Sobolev Space Approximation by Deep Neural Networks. We assume u ∈ Hs(Rd) with
s > d/2, so by the Sobolev embedding theorem, we obtain:

Hs(Rd) ↪→ C0,α(Rd), α = s− d/2. (886)

This ensures u is Hölder continuous, which is crucial for pointwise approximation. From the
Universal Approximation in Sobolev Norms, Barron space theorem and error estimates in
Sobolev norms, there exists a neural network uθ such that:

inf
θ
∥u− uθ∥Hs ≤ CW−s/dL−s/(2d). (887)

where W is the network width,L is the depth, C depends on the smoothness of u. This error bound
refines the classical universal approximation theorem by considering derivatives up to order s.

To find the Neural Network Approximation Error, let us do the Neural Network Approximation of
the Kolmogorov Equation. We now examine the residual error:

Rθ(t, x) =
∂uθ
∂t

+ Luθ − f. (888)

From Sobolev estimates, we obtain:

∥Rθ∥L2 ≤ CW−s/dL−s/(2d). (889)

This follows from the regularity of solutions to parabolic PDEs, specifically that:

∥Lu− Luθ∥L2 ≤ C∥u− uθ∥Hs . (890)

Thus, the overall error is:
∥u− uθ∥Hs ≤ CW−s/dL−s/(2d). (891)

To find the Asymptotic Rates of Convergence, For large width W and depth L, we analyze the
asymptotic behavior:

lim
W,L→∞

∥u− uθ∥Hs = 0. (892)
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Moreover, for fixed computational resources, the optimal allocation satisfies:

W ∼ Ld/s. (893)

This achieves the best rate:
∥u− uθ∥Hs = O(L−s/(2d)). (894)

We have established that the approximation error for deep neural networks in solving the Kol-
mogorov backward equation satisfies the rigorous bound:

∥u− uθ∥Hs ≤ CW−s/dL−s/(2d), (895)

which follows from Sobolev theory, parabolic PDE regularity, and universal approxima-
tion in higher-order norms.

Consider the backward Kolmogorov partial differential equation:

∂u

∂t
+ Lu = f, (t, x) ∈ [0, T ]× Rd, (896)

where the differential operator L is:

Lu =
d∑

i=1

bi(x)
∂u

∂xi
+

1

2

d∑
i,j=1

aij(x)
∂2u

∂xi∂xj
. (897)

By the Feynman-Kac representation, the solution is expressed in terms of an expectation over
stochastic trajectories:

u(t, x) = E
[
g(XT ) +

∫ T

t

f(s,Xs)ds | Xt = x

]
. (898)

where Xs follows the Itô diffusion:

dXs = b(Xs)ds+ σ(Xs)dWs (899)

for a standard Brownian motion Ws. We approximate this expectation using Monte Carlo sampling.
Given N independent samples X

(i)
T ∼ p(x, T ), the empirical Monte Carlo estimator is:

uN(t, x) =
1

N

N∑
i=1

[
g(X

(i)
T ) +

∫ T

t

f(s,X(i)
s )ds

]
. (900)

The Monte Carlo sampling error is the deviation:

EN = uN(t, x)− u(t, x). (901)

For the Measure-Theoretic Representation of Error. Define the probability space:

(Ω,F ,P), (902)

where Ω is the sample space of Brownian paths, F is the filtration generated by Ws, P is the Wiener
measure. The random variable EN is thus defined over this probability space. By the Law of Large
Numbers (LLN), we have

P
(

lim
N→∞

EN = 0
)

= 1. (903)

However, for finite N , we quantify the error using advanced probability bounds. Regarding the
Asymptotic Analysis of Monte Carlo Error, the expectation of the squared error is:

E[E2
N ] =

1

N
Var

(
g(XT ) +

∫ T

t

f(s,Xs)ds

)
. (904)
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Applying the Central Limit Theorem (CLT), we obtain the asymptotic distribution:

√
NEN

d−→ N (0, σ2), (905)

where:

σ2 = Var

(
g(XT ) +

∫ T

t

f(s,Xs)ds

)
. (906)

Thus, the Monte Carlo error satisfies:

EN = Op

(
1√
N

)
. (907)

We need to find Refined Error Bounds via Concentration Inequalities. To rigorously bound the
error, we employ Hoeffding’s inequality :

P (|EN | ≥ ϵ) ≤ 2 exp

(
−2Nϵ2

σ2

)
. (908)

For a higher-order bound, we use the Berry-Esseen theorem:

sup
x

∣∣∣∣∣P
(√

NEN

σ
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ C√
N
, (909)

where C depends on the third moment:

E

[∣∣∣∣g(XT ) +

∫ T

t

f(s,Xs)ds− u(t, x)

∣∣∣∣3
]
. (910)

From a Functional Analysis Perspective, we need to find Operator Norm Bounds. Define the Monte
Carlo estimator as a linear operator :

MN : L2(Ω)→ R, (911)

such that:

MNϕ =
1

N

N∑
i=1

ϕ(X
(i)
T ). (912)

The error is then the operator norm deviation:

∥MN − E∥L2 = O
(

1√
N

)
. (913)

By the spectral decomposition of the covariance operator, the error satisfies:

∥EN∥L2 ≤ λ
1/2
max√
N
, (914)

where λmax is the largest eigenvalue of the covariance matrix. For a more precise error characteri-
zation, we use the Edgeworth Series for Higher-Order Expansion:

P

(√
NEN

σ
≤ x

)
= Φ(x) +

ρ3

6
√
N

(1− x2)ϕ(x) +O
(

1

N

)
, (915)

where ρ3 is the skewness of g(XT )+
∫ T

t
f(s,Xs)ds, ϕ(x) is the standard normal density. We have now

mathematically rigorously proved that the Monte Carlo sampling error in the Deep Kolmogorov
method satisfies:

EN = Op

(
1√
N

)
, (916)
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but with precise higher-order refinements via Berry-Esseen theorem (finite sample error), Ho-
effding’s inequality (concentration bound), Functional norm bounds (operator analysis),Edgeworth
expansion (higher-order moment corrections). Thus, the optimal error decay rate remains 1/

√
N ,

but the prefactors depend on problem-specific variance and moment conditions.

Therefore, the total approximation error consists of two primary components:

1. Neural Network Approximation Error:

∥u− uθ∥L2 ≤ C(L−1/2W−1/d). (917)

2. Monte Carlo Sampling Error:
O(N−1/2), (918)

where N is the number of samples used in SGD.

Combining these estimates, we obtain:

∥u− uθ∥L2 ≤ C
(
L−1/2W−1/d +N−1/2

)
. (919)

The Deep Kolmogorov Method (DKM) provides a framework for solving high-dimensional
PDEs using deep learning, with rigorous theoretical justification from stochastic calculus, func-
tional analysis, and neural network theory.

11 Reinforcement Learning

Literature Review: Sutton and Barto (2018) [272] [273] (2021) wrote a definitive textbook on
reinforcement learning. It covers the fundamental concepts, including Markov decision processes
(MDPs), temporal difference learning, policy gradient methods, and function approximation. The
second edition expands on deep reinforcement learning, covering advanced algorithms like DDPG,
A3C, and PPO. Bertsekas and Tsitsiklis (1996) [274] laid the theoretical foundation for reinforce-
ment learning by introducing neuro-dynamic programming, an extension of dynamic programming
methods for decision-making under uncertainty. It rigorously covers approximate dynamic pro-
gramming, policy iteration, and value function approximation. Kakade (2003) [275] in his thesis
formalized the sample complexity of RL, providing theoretical guarantees for how much data is
required for an agent to learn optimal policies. It introduces the PAC-RL (Probably Approxi-
mately Correct RL) framework, which has significantly influenced how RL algorithms are evaluated.
Szepesvári (2010) [276] presented a rigorous yet concise overview of reinforcement learning algo-
rithms, including value iteration, Q-learning, SARSA, function approximation, and policy gradient
methods. It provides deep theoretical insights into convergence proofs and performance bounds.
Haarnoja et. al. (2018) [277] introduced Soft Actor-Critic (SAC), an off-policy deep reinforce-
ment learning algorithm that maximizes expected reward and entropy simultaneously. It provides
a strong theoretical framework for handling exploration-exploitation trade-offs in high-dimensional
continuous action spaces. Mnih et al. (2015) [278] introduced Deep Q-Networks (DQN), demon-
strating how deep learning can be combined with Q-learning to achieve human-level performance
in Atari games. The authors address key challenges in reinforcement learning, including function
approximation and stability improvements. Konda and Tsitsiklis (2003) [279]. provided a rigorous
theoretical analysis of Actor-Critic methods, which combine policy-based and value-based learning.
It formally establishes convergence proofs for actor-critic algorithms and introduces the natural
gradient method for policy improvement. Levine (2018) [280] introduced a probabilistic inference
framework for reinforcement learning, linking RL to Bayesian inference. It provides a theoreti-
cal foundation for maximum entropy reinforcement learning, explaining why entropy-regularized
objectives lead to better exploration and stability. Mannor et. al. (2022) [281] gave one of the
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most rigorous mathematical treatments of reinforcement learning theory. It covers several topics:
PAC guarantees for RL algorithms, Complexity bounds for exploration, Connections between RL
and control theory, Convergence rates of popular RL methods. Borkar (2008) [282] rigorously an-
alyzed stochastic approximation methods, which form the theoretical backbone of RL algorithms
like TD-learning, Q-learning, and policy gradient methods. Borkar provides a dynamical systems
perspective to convergence analysis, offering deep mathematical insights.

11.1 Key Concepts

Reinforcement Learning (RL) is a branch of machine learning that deals with agents making de-
cisions in an environment to maximize cumulative rewards over time. This formalized decision-
making process can be described using concepts such as agents, states, actions, and rewards, all of
which are mathematically formulated within the framework of a Markov Decision Process (MDP).
The following provides an extremely mathematically rigorous discussion of these key concepts. An
agent interacts with the environment by taking actions based on the current state of the environ-
ment. The goal of the agent is to maximize the expected cumulative reward over time. A policy
π is a mapping from states to probability distributions over actions. Formally, the policy π can be
written as:

π : S → P(A), (920)

where S is the state space, A is the action space, and P(A) is the set of probability distributions
over the actions. The policy can be either deterministic:

π(at|st) =

{
1 if at = π(st),

0 otherwise,
(921)

where π(st) is the action chosen in state st, or stochastic, in which case the policy assigns a
probability distribution over actions for each state st. The goal of reinforcement learning is to find
an optimal policy π∗(st), which maximizes the expected return (cumulative reward) from any initial
state. The optimal policy is defined as:

π∗(st) = arg max
π

E

[
∞∑
k=0

γkrt+k | st

]
, (922)

where γ is the discount factor that determines the weight of future rewards, and E[·] represents
the expectation under the policy π. The optimal policy can be derived from the optimal action-
value function Q∗(st, at), which we define in the next section. The state st ∈ S describes the
current situation of the agent at time t, encapsulating all relevant information that influences the
agent’s decision-making process. The state space S may be either discrete or continuous. The state
transitions are governed by a probability distribution P (st+1|st, at), which represents the probability
of moving from state st to state st+1 given action at. These transitions satisfy the Markov property,
meaning the future state depends only on the current state and action, not the history of previous
states or actions:

P (st+1|st, at) = P (st+1|st, at) ∀st, st+1 ∈ S, at ∈ A. (923)

Additionally, the transition probabilities satisfy the normalization condition:∑
st+1∈S

P (st+1|st, at) = 1 ∀st, at. (924)

The state distribution ρt(st) represents the probability of the agent being in state st at time t. The
state distribution evolves over time according to the transition probabilities:

ρt+k(st+k) =
∑
st∈S

P (st+k|st, at)ρt(st), (925)
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where ρt(st) is the initial distribution at time t, and ρt+k(st+k) is the distribution at time t+ k. An
action at taken at time t by the agent in state st leads to a transition to state st+1 and results in a
reward rt. The agent aims to select actions that maximize its long-term reward. The action-value
function Q(st, at) quantifies the expected cumulative reward from taking action at in state st and
following the optimal policy thereafter. It is defined as:

Q(st, at) = E

[
∞∑
k=0

γkrt+k | st, at

]
. (926)

The optimal action-value function Q∗(st, at) satisfies the Bellman Optimality Equation:

Q∗(st, at) = R(st, at) + γ
∑

st+1∈S

P (st+1|st, at) max
at+1

Q∗(st+1, at+1). (927)

This recursive equation provides the foundation for dynamic programming methods such as value
iteration and policy iteration. The optimal policy π∗(st) is derived by choosing the action that
maximizes the action-value function:

π∗(st) = arg max
at∈A

Q∗(st, at). (928)

The optimal value function V ∗(st), representing the expected return from state st under the optimal
policy, is given by:

V ∗(st) = max
at∈A

Q∗(st, at). (929)

The optimal value function satisfies the Bellman equation:

V ∗(st) = max
at∈A

R(st, at) + γ
∑

st+1∈S

P (st+1|st, at)V ∗(st+1)

 . (930)

The reward rt at time t is a scalar value that represents the immediate benefit (or cost) the agent
receives after taking action at in state st. It is a function R(st, at) mapping state-action pairs to
real numbers:

rt = R(st, at). (931)

The agent’s objective is to maximize the cumulative reward, which is given by the total return from
time t:

Gt =
∞∑
k=0

γkrt+k. (932)

The agent seeks to find a policy π that maximizes the expected return. The Bellman equation for
the expected return is:

V π(st) = R(st, π(st)) + γ
∑

st+1∈S

P (st+1|st, π(st))V
π(st+1). (933)

This recursive relation helps in solving for the optimal value function. An RL problem is typically
modeled as a Markov Decision Process (MDP), which is defined as the tuple:

M = (S,A, P, R, γ), (934)

where:

• S is the state space,

• A is the action space,
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• P (st+1|st, at) is the state transition probability,

• R(st, at) is the reward function,

• γ is the discount factor.

The agent’s goal is to solve the MDP by finding the optimal policy π∗(st) that maximizes the
cumulative expected reward. Reinforcement Learning provides a powerful framework for decision-
making in uncertain environments, where the agent seeks to maximize cumulative rewards over
time. The core concepts—agents, states, actions, rewards—are formalized mathematically within
the structure of a Markov Decision Process, enabling the application of optimization techniques
such as dynamic programming, Q-learning, and policy gradient methods to solve complex decision-
making problems.

11.2 Deep Q-Learning

Literature Review: Alonso and Arias (2025) [357] rigorously explored the mathematical foun-
dations of Q-learning and its convergence properties. The authors analyze viscosity solutions and
the Hamilton-Jacobi-Bellman (HJB) equation, demonstrating how Q-learning approximations align
with these principles. The work provides new theoretical guarantees for Q-learning under different
function approximation settings. Lu et. al. (2024) [358] proposed a factored empirical Bellman
operator to mitigate the curse of dimensionality in Deep Q-learning. The authors provide rigorous
theoretical analysis on how factorization reduces complexity while preserving optimality. The study
improves the scalability of deep reinforcement learning models. Humayoo (2024) [359] extended
Temporal Difference (TD) Learning to deep Q-learning using time-scale separation techniques. It
introduces a Q(∆)-learning approach that improves stability and convergence speed in complex
environments. Empirical results validate its performance in Atari benchmarks. Jia et. al. (2024)
[360] integrated Deep Q-learning (DQL) with Game Theory for anti-jamming strategies in wireless
networks. It provides a rigorous theoretical framework on how multi-agent Q-learning can improve
resilience against adversarial attacks. The study introduces multi-armed bandit algorithms and
their convergence properties. Chai et. al. (2025) [361] provided a mathematical analysis of transfer
learning in non-stationary Markov Decision Processes (MDPs). It extends Deep Q-learning to set-
tings where the environment changes over time, establishing error bounds for Q-learning in these
domains. Yao and Gong (2024) [362] developed a resilient Deep Q-network (DQN) model for multi-
agent systems (MASs) under Byzantine attacks. The work introduces a novel distributed Q-learning
approach with provable robustness against adversarial perturbations. Liu et. al. (2025) [363] intro-
duced SGD-TripleQNet, a multi-Q-learning framework that integrates three Deep Q-networks. The
authors provide a mathematical foundation and proof of convergence for their model. The paper
bridges reinforcement learning with stochastic gradient descent (SGD) optimization. Masood et.
al. (2025) [364] merged Deep Q-learning with Game Theory (GT) to optimize energy efficiency
in smart agriculture. It proposes a mathematical model for dynamic energy allocation, proving
the existence of Nash equilibria in Q-learning-based decision-making environments. Patrick (2024)
[365] bridged economic modeling with Deep Q-learning. It formulates dynamic pricing strategies
using deep reinforcement learning (DRL) and provides mathematical proofs on how RL adapts
to economic shocks. Mimouni and Avrachenkov (2025) [366] introduced a novel Deep Q-learning
algorithm that incorporates the Whittle index, a key concept in optimal stopping problems. It
proves convergence bounds and applies the model to email recommender systems, demonstrating
improved performance over traditional Q-learning methods.

Deep Q-Learning (DQL) is an advanced reinforcement learning (RL) technique where the goal
is to approximate the optimal action-value function Q∗(s, a) through the use of deep neural net-
works. In traditional Q-learning, the action-value function Q(s, a) maps a state-action pair to the
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expected return or cumulative discounted reward from that state-action pair, under the assumption
of following an optimal policy. Formally, the Q-function is defined as:

Q(s, a) = E

[
∞∑
t=0

γtrt | s0 = s, a0 = a

]
(935)

where γ ∈ [0, 1] is the discount factor, which determines the weight of future rewards relative to
immediate rewards, and rt is the reward received at time step t. The optimal Q-function Q∗(s, a)
satisfies the Bellman optimality equation:

Q∗(s, a) = E
[
rt + γmax

a′
Q∗(st+1, a

′) | s0 = s, a0 = a
]

(936)

where st+1 is the next state after taking action a in state s, and the maximization term represents
the optimal future expected reward. This equation represents the recursive structure of the optimal
action-value function, where each Q-value is updated based on the reward obtained in the current
step and the maximum future reward expected from the next state. The goal is to learn the optimal
Q-function through iterative updates, typically using the Temporal Difference (TD) method. In
Deep Q-Learning, the Q-function is approximated by a deep neural network, as directly storing
Q-values for every state-action pair is computationally infeasible for large state and action spaces.
Let the approximated Q-function be Qθ(s, a), where θ denotes the parameters (weights and biases)
of the neural network that approximates the action-value function. The deep Q-network (DQN)
aims to learn Qθ(s, a) such that it closely approximates Q∗(s, a) over time. The update of the
Q-function follows the TD error principle, where the goal is to minimize the difference between the
current Q-values and the target Q-values derived from the Bellman equation. The loss function for
training the DQN is given by:

L(θ) = E(st,at,rt,st+1)∼D
[
(yt −Qθ(st, at))

2] (937)

where D denotes the experience replay buffer containing previous transitions (st, at, rt, st+1). The
target yt for the Q-values is defined as:

yt = rt + γmax
a′

Qθ−(st+1, a
′) (938)

Here, θ− represents the parameters of the target network, which is a slowly updated copy of the
online network parameters θ. The target network Qθ− is used to generate stable targets for the
Q-value updates, and its parameters are updated periodically by copying the parameters from the
online network θ after every T steps. The idea behind this is to stabilize the training by preventing
rapid changes in the Q-values due to feedback loops from the Q-network’s predictions. The update
rule for the network parameters θ follows the gradient descent method and is expressed as:

∇θL(θ) = E(st,at,rt,st+1)∼D [(yt −Qθ(st, at))∇θQθ(st, at)] (939)

where ∇θQθ(st, at) is the gradient of the Q-function with respect to the parameters θ, which is
computed using backpropagation through the neural network. This gradient is used to update the
parameters of the Q-network to minimize the loss function. In reinforcement learning, the agent
must balance exploration (trying new actions) and exploitation (selecting actions that maximize
the reward). This is often handled by using an epsilon-greedy policy, where the agent selects a
random action with probability ϵ and the action with the highest Q-value with probability 1 − ϵ.
The epsilon value is decayed over time to ensure that, as the agent learns, it shifts from exploration
to more exploitation. The epsilon-greedy action selection rule is given by:

at =

{
random action, with probability ϵ

arg maxaQθ(st, a), with probability 1− ϵ
(940)

189



This policy encourages the agent to explore different actions at the beginning of training and
gradually exploit the learned Q-values as training progresses. The decay of ϵ typically follows an
annealing schedule to balance exploration and exploitation effectively. A critical component in
stabilizing training in Deep Q-Learning is the use of experience replay. In standard Q-learning,
the updates are based on consecutive transitions, which can lead to high correlations between
consecutive data points. This correlation can slow down learning or even lead to instability. Ex-
perience replay addresses this issue by storing a buffer of past experiences and sampling random
mini-batches from this buffer during training. This breaks the correlation between consecutive
samples and results in more stable and efficient updates. Mathematically, the loss function for
training the network involves random sampling of transitions (st, at, rt, st+1) from the experience
replay buffer D, and the update to the Q-values is computed using the Bellman error based on the
sampled experiences:

L(θ) = E(st,at,rt,st+1)∼D

[(
rt + γmax

a′
Qθ−(st+1, a

′)−Qθ(st, at)
)2]

(941)

This method ensures that the Q-values are updated in a way that is less sensitive to the order in
which experiences are observed, promoting more stable learning dynamics.

Despite its success, the DQL algorithm can still suffer from certain issues such as overestimation
bias and instability due to the maximization step in the Bellman equation. Overestimation bias
occurs because the maximization operation maxa′ Qθ−(st+1, a

′) tends to overestimate the true value,
as the Q-values are updated based on the same Q-network. To address this, Double Q-learning was
introduced, which uses two separate Q-networks for action selection and value estimation, reducing
overestimation bias. In Double Q-learning, the target Q-value is computed using the following
equation:

yt = rt + γQθ−

(
st+1, arg max

a′
Qθ(st+1, a

′)
)

(942)

This approach helps to mitigate the overestimation problem by decoupling the action selection
from the Q-value estimation process. The value of arg max is taken from the online network Qθ,
while the Q-value for the next state is estimated using the target network Qθ− . Another extension
to improve the DQL framework is Dueling Q-Learning, which decomposes the Q-function into two
separate components: the state value function Vθ(s) and the advantage function Aθ(s, a). The
Q-function is then expressed as:

Qθ(s, a) = Vθ(s) + Aθ(s, a) (943)

This decomposition allows the agent to learn the value of a state Vθ(s) independently of the specific
actions, thus reducing the number of parameters needed for learning. This is particularly beneficial
in environments where many actions have similar expected rewards, as it enables the agent to focus
on identifying the value of states rather than overfitting to individual actions.

In conclusion, Deep Q-Learning is an advanced reinforcement learning method that utilizes deep
neural networks to approximate the optimal Q-function, enabling agents to handle large state and
action spaces. The mathematical formulation of DQL involves minimizing the loss function based
on the temporal difference error, utilizing experience replay to stabilize learning, and using target
networks to prevent instability. Extensions such as Double Q-learning and Dueling Q-learning
further improve the performance and stability of the algorithm. Despite its remarkable successes,
Deep Q-Learning still faces challenges such as overestimation bias and instability, which have been
addressed with innovative modifications to the original algorithm.

11.3 Applications in Games and Robotics

Literature Review: Khlifi (2025) [368] applied Double Deep Q-Networks (DDQN) to autonomous
driving. The paper discusses the transfer of RL techniques from gaming into self-driving cars, show-
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ing how deep RL can handle complex decision-making in dynamic environments. A novel reward
function is introduced to improve path efficiency and safety. Kuczkowski (2024) [369] extended
multi-objective RL (MORL) to traffic and robotic systems and introduced energy-efficient rein-
forcement learning for robotics in smart city applications. He also evaluated how RL-based traffic
control systems optimize travel time and reduce energy consumption. Krauss et. al. (2025) [370]
explored evolutionary algorithms for training RL-based neural networks. The approach integrates
mutation-based evolution with reinforcement learning, optimizing RL policies for robot control and
gaming AI. This approach shows improvements in learning speed and adaptability in multi-agent
robotic environments. Ahamed et. al. (2025) [371] developed RL strategies for robotic soccer,
implementing adaptive ball-kicking mechanics and used game engines to train robots, bridging
simulated learning and real-world robotics. They also proposed modular robot formations, demon-
strating how RL can optimize team play. Elmquist et. al. (2024) [372] focused on sim-to-real
transfer in RL for robotics and developed an RL model that can adapt to real-world imperfections
(e.g., lighting, texture variations). They used deep learning and image-based metrics to measure
differences between simulated and real-world training environments. Kobanda et. al. (2024) [373]
introduced a hierarchical approach to offline reinforcement learning (ORL) for robotic control and
gaming AI. The study proposes policy subspaces that allow RL models to transfer knowledge across
different tasks and demonstrated its effectiveness in goal-conditioned RL for adaptive video game
AI. Shefin et. al. (2024) [367] focused on safety-critical RL applications in games and robotic ma-
nipulation. They introduced a framework for explainable reinforcement learning (XRL), making
AI decisions more interpretable and applied to robotic grasping tasks, ensuring safe and reliable
interactions. Xu et. al. (2025) [374] developed UPEGSim, a Gazebo-based simulation framework
for underwater robotic games. They used reinforcement learning to optimize evasion strategies
in underwater drone combat and highlighted RL applications in military and search-and-rescue
robotics. Patadiya et. al. (2024) [375] used Deep RL to create autonomous players in racing
games (Forza Horizon 5). They combined AlexNet with DRL for vision-based self-driving agents
in gaming. The model learns optimal driving strategies through self-play. Janjua et. al. (2024)
[376] explored RL scalability challenges in robotics and open-world games. They studied RL’s
adaptability in dynamic, open-ended environments (e.g., procedural game worlds) and discussed
generalization techniques for RL agents, improving their performance in unpredictable scenarios.

Reinforcement Learning (RL) is a subfield of machine learning where an agent learns to make
decisions by interacting with an environment. The goal of the agent is to maximize a cumulative
reward signal over time by taking actions that affect its environment. The RL framework is for-
mally represented by a Markov Decision Process (MDP), which is defined by a 5-tuple (S,A, P, r, γ),
where:

• S is the state space, which represents all possible states the agent can be in.

• A is the action space, which represents all possible actions the agent can take.

• P (s′|s, a) is the state transition probability, which defines the probability of transitioning
from state s to state s′ under action a.

• r(s, a) is the reward function, which defines the immediate reward received after taking action
a in state s.

• γ ∈ [0, 1) is the discount factor, which determines the importance of future rewards.

The objective in RL is for the agent to learn a policy π : S → A that maximizes its expected return
(the cumulative discounted reward), which is mathematically expressed as:

J(π) = Eπ

[
∞∑
t=0

γtr(st, at)

]
, (944)
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where st denotes the state at time t, and at = π(st) is the action taken according to the policy π.
The expectation is taken over the agent’s interaction with the environment, under the policy π.
The agent seeks to maximize this expected return by choosing actions that yield the most reward
over time. The optimal value function V ∗(s) is defined as the maximum expected return that can
be obtained starting from state s, and is governed by the Bellman optimality equation:

V ∗(s) = max
a

E [r(s, a) + γV ∗(s′)] , (945)

where s′ is the next state, and the expectation is taken with respect to the transition dynamics
P (s′|s, a). The action-value function Q∗(s, a) represents the maximum expected return from taking
action a in state s, and then following the optimal policy. It satisfies the Bellman optimality
equation for Q∗(s, a):

Q∗(s, a) = E
[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
, (946)

where a′ is the next action to be taken, and the expectation is again over the state transition
probabilities. These Bellman equations form the basis of many RL algorithms, which iteratively
approximate the value functions to learn an optimal policy. To solve these equations, one of
the most widely used methods is Q-learning, an off-policy, model-free RL algorithm. Q-learning
iteratively updates the action-value function Q(s, a) according to the following rule:

Q(st, at)← Q(st, at) + α
[
r(st, at) + γmax

a′
Q(st+1, a

′)−Q(st, at)
]
, (947)

where α is the learning rate that controls the step size of updates, and γ is the discount factor.
The key idea behind Q-learning is that the agent learns the optimal action-value function Q∗(s, a)
without needing a model of the environment. The agent improves its action-value estimates over
time by interacting with the environment and receiving feedback (rewards). The iterative nature of
this update ensures convergence to the optimal Q∗, under the condition that all state-action pairs
are visited infinitely often and α is decayed appropriately. Policy Gradient methods, in contrast,
directly optimize the policy πθ, which is parameterized by a vector θ. These methods are useful
in high-dimensional or continuous action spaces where action-value methods may struggle. The
objective in policy gradient methods is to maximize the expected return, J(πθ), which is given by:

J(πθ) = Est,at∼πθ

[
∞∑
t=0

γtr(st, at)

]
. (948)

The policy is updated using the gradient ascent method, and the gradient of the expected return
with respect to θ is computed as:

∇θJ(πθ) = Est,at∼πθ
[∇θ log πθ(at|st)Q(st, at)] , (949)

where Q(st, at) is the action-value function, and ∇θ log πθ(at|st) is the score function, representing
the sensitivity of the policy’s likelihood to the policy parameters. By following this gradient, the
policy parameters θ are updated to improve the agent’s performance. This method, known as
REINFORCE, is particularly effective when the action space is large or continuous, and the policy
needs to be parameterized with complex models, such as deep neural networks. In both Q-learning
and policy gradient methods, exploration and exploitation are essential concepts. Exploration refers
to trying new actions that have not been sufficiently tested, whereas exploitation involves choosing
actions that are known to yield high rewards. The epsilon-greedy strategy is a common way to
balance exploration and exploitation, where with probability ϵ, the agent chooses a random action,
and with probability 1 − ϵ, it chooses the action with the highest expected reward. As the agent
learns, ϵ is typically decayed over time to reduce exploration and focus more on exploiting the
learned policy. In more complex environments, Boltzmann exploration or entropy regularization
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techniques are used to maintain a controlled amount of randomness in the policy to encourage
exploration. In multi-agent games, RL takes on additional complexity. When multiple agents
interact, the environment is no longer static, as each agent’s actions affect the others. In this
context, RL can be used to find optimal strategies through game theory. A fundamental concept
here is the Nash equilibrium, where no agent can improve its payoff by changing its strategy,
assuming all other agents’ strategies remain fixed. In mathematical terms, for two agents i and j,
a Nash equilibrium (π∗

i , π
∗
j ) satisfies:

ri(π
∗
i , π

∗
j ) ≥ ri(πi, π

∗
j ) and rj(π

∗
i , π

∗
j ) ≥ rj(π

∗
i , πj), (950)

where ri(πi, πj) is the payoff function of agent i when playing policy πi against agent j’s policy
πj. Finding Nash equilibria in multi-agent RL is a complex and computationally challenging task,
requiring the agents to learn in a non-stationary environment where the other agents’ strategies
are also changing over time. In the context of robotics, RL is used to solve high-dimensional
control tasks, such as motion planning and trajectory optimization. The robot’s state space is often
represented by vectors of its position, velocity, and other physical parameters, while the action space
consists of control inputs, such as joint torques or linear velocities. In this setting, RL algorithms
learn to map states to actions that optimize the robot’s performance in a task-specific way, such as
minimizing energy consumption or completing a task in the least time. The dynamics of the robot
are often modeled by differential equations:

ẋ(t) = f(x(t), u(t)), (951)

where x(t) is the state vector at time t, and u(t) is the control input. Through RL, the robot
learns to optimize the control policy u(t) to maximize a reward function, typically involving a
combination of task success and efficiency. Deep RL, specifically, allows for the representation of
highly complex control policies using neural networks, enabling robots to tackle tasks that require
high-dimensional sensory input and decision-making, such as object manipulation or autonomous
navigation.

In games, RL has revolutionized the field by enabling agents to learn complex strategies in en-
vironments where hand-crafted features or simple tabular representations are insufficient. A key
challenge in Deep Reinforcement Learning (DRL) is stabilizing the training process, as neural
networks are prone to issues such as overfitting, exploding gradients, and vanishing gradients. Tech-
niques such as experience replay and target networks are used to mitigate these challenges, ensuring
stable and efficient learning. Thus, Reinforcement Learning, with its theoretical underpinnings in
MDPs, Bellman equations, and policy optimization methods, provides a mathematically rich and
deeply rigorous approach to solving sequential decision-making problems. Its application to fields
such as games and robotics not only illustrates its versatility but also pushes the boundaries of
machine learning into real-world, high-complexity scenarios.

12 Kernel Regression

Literature Review: Fan et. al. (2025) [672] explored kernel regression techniques in causal
inference, particularly in the presence of interference among observations. The authors propose
an innovative nonparametric estimator that integrates kernel regression with trimming methods,
improving robustness in observational studies. Atanasov et. al. (2025) [673] generalized kernel
regression by linking it to high-dimensional linear models and stochastic gradient dynamics. The
authors present new asymptotics that extend classical results in nonparametric regression and ran-
dom feature models. Mishra et. al. (2025) [674] applied Gaussian kernel-based regression to image
classification and feature extraction. The authors demonstrate how kernel selection significantly
impacts model performance in plant leaf detection tasks. Elsayed and Nazier (2025) [675] com-
bined kernel smoothing regression with decomposition analysis to study labor market trends. It
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highlights the application of kernel-based regression techniques in socio-economic modeling. Kong
et. al. (2025) [676] applied Bayesian Kernel Machine Regression (BKMR) to analyze complex
relationships between heavy metal exposure and health indicators. It extends kernel regression to
toxicology and epidemiological studies. Bracale et. al. (2025) [677] explored antitonic regression
methods, establishing new concentration inequalities for regression problems. It highlights ker-
nel methods’ superiority over traditional parametric approaches in pricing models. Köhne et. al.
(2025) [678] provided a theoretical foundation for kernel regression within Hilbert spaces, focusing
on error bounds for kernel approximations in dynamical systems. Sadeghi and Beyeler (2025) [679]
applied Gaussian Process Regression (GPR) with a Matérn kernel to estimate perceptual thresholds
in retinal implants, showcasing kernel-based regression in biomedical engineering. Naresh et. al.
(2025) [680] in a book chapter discussed logistic regression and kernel methods in network security.
It illustrates how kernelized models can enhance cybersecurity measures in firewalls. Zhao et. al.
(2025) [681] proposed Deep Additive Kernel (DAK) models, which unify kernel methods with deep
learning. This approach enhances Bayesian neural networks’ interpretability and robustness.

Kernel regression is a non-parametric statistical learning technique that estimates an unknown
function f(x) based on a given dataset:

{(xi, yi)}ni=1, (952)

where xi ∈ Rd and yi ∈ R. The fundamental kernel regression estimator is given by:

f̂(x) =
n∑

i=1

αiK(x, xi), (953)

where K(x, x′) is a positive definite kernel function, ensuring that the Gram matrix

K = [K(xi, xj)]
n
i,j=1 (954)

is symmetric positive semi-definite (PSD). The spectral properties of K are crucial for under-
standing kernel regression’s behavior, particularly in the context of regularization, overfitting, and
generalization error analysis. To rigorously analyze kernel regression, we consider the Reproducing
Kernel Hilbert Space (RKHS) HK induced by K(x, x′), where functions satisfy:

f(x) =
∞∑
i=1

αiφi(x), (955)

where φi(x) are the eigenfunctions of the integral operator associated with K(x, x′):

Kf(x) =

∫
Ω

K(x, x′)f(x′)dµ(x′). (956)

The spectral decomposition of the Kernel Function K takes the form:

Kφi = λiφi, i = 1, 2, . . . (957)

where
λ1 ≥ λ2 ≥ · · · ≥ 0 (958)

are the eigenvalues of K. These eigenvalues and eigenfunctions determine the approximation ca-
pacity of kernel regression and its regularization properties.
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12.1 Nadaraya–Watson kernel regression

Literature Review: Agua and Bouzebda (2024) [662] explored the Nadaraya–Watson estimator
for locally stationary functional time series. It presents asymptotic properties of kernel regres-
sion estimators in functional settings, emphasizing how they behave in nonstationary time series.
Bouzebda et. al. (2024) [663] generalized Nadaraya–Watson estimators using asymmetric kernels.
It rigorously analyzes the Dirichlet kernel estimator and provides first theoretical justifications for
its application in conditional U-statistics. Zhao et. al. (2025) [664] applied Nadaraya–Watson
regression in engineering applications, specifically in high-voltage circuit breaker degradation mod-
eling. The method smooths interpolated datasets to eliminate measurement errors. Patil et. al.
(2024) [665] addressed the bias-variance tradeoff in Nadaraya–Watson kernel regression, showing
how optimal smoothing can improve signal denoising and estimation accuracy in noisy environ-
ments. Kakani and Radhika (2024) [666] evaluated Nadaraya–Watson estimation in medical data
analysis, comparing it with regression trees and other machine learning methods. It highlights
the role of bandwidth selection in clinical prediction tasks. Kato (2024) [667] presented a debiased
version of Nadaraya–Watson regression, improving its root-N consistency and performance in condi-
tional mean estimation. Sadek and Mohammed (2024) [668] did a comparative study of kernel-based
Nadaraya–Watson regression and ordinary least squares (OLS), showing scenarios where nonpara-
metric regression outperforms classical regression techniques. Gong et. al. (2024) [669] introduced
Kernel-Thinned Nadaraya–Watson Estimator (KT-NW), which reduces computational cost while
maintaining accuracy. This work is highly relevant for large-scale machine learning applications.
Zavatone-Veth and Pehlevan (2025) [670] established a theoretical link between Nadaraya–Watson
kernel smoothing and statistical physics through the random energy model. It offers new per-
spectives on kernel regression in high-dimensional settings. Ferrigno (2024) [671] explored how
Nadaraya–Watson kernel regression can be applied to reference curve estimation, a key technique
in medical statistics and economic forecasting.

Kernel regression is a non-parametric regression technique that estimates a function f(x)
using a weighted sum of observed values yi. Given training data {(xi, yi)}ni=1, where xi ∈ Rd and
yi ∈ R, the Nadaraya–Watson kernel regression estimator takes the form

f̂(x) =

∑n
i=1Kh(x− xi)yi∑n
i=1Kh(x− xi)

(959)

where Kh(x) is the scaled kernel function defined as

Kh(x) =
1

hd
K
(x
h

)
, (960)

where h is the bandwidth parameter that determines the smoothing level. A crucial property of
kernel functions is their normalization condition,∫

Rd

K(x) dx = 1. (961)

A common choice for K(x) is the Gaussian kernel:

K(x) =
1

(2π)d/2
e−

1
2
∥x∥2 . (962)

Let us now do the Bias-Variance Decomposition and Overfitting in Kernel Regression. The perfor-
mance of kernel regression is governed by the bias-variance tradeoff :

E[(f̂(x)− f(x))2] = Bias2 + Variance + σ2
noise. (963)

where
Bias(f̂(x)) = E[f̂(x)]− f(x), (964)
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and
Var(f̂(x)) = E[(f̂(x)− E[f̂(x)])2]. (965)

Expanding f(x) via Taylor series, we obtain

f(xi) ≈ f(x) + (xi − x)T∇f(x) +
1

2
(xi − x)THf (x)(xi − x). (966)

The expectation of the kernel estimate gives

E[f̂(x)] = f(x) +
h2

2

d∑
j=1

(∫
u2jK(u)du∫
K(u)du

)
∂2f

∂x2j
+O(h4), (967)

showing bias scales as O(h2). The variance analysis yields

Var(f̂(x)) ≈ σ2

nhdfX(x)

∫
K2(u)du. (968)

Thus, variance scales as O((nhd)−1), leading to the optimal bandwidth selection

h∗ ∝ n− 1
d+4 . (969)

However, when h is too small, overfitting occurs, characterized by high variance:

Var(f̂(x))≫ 0, Bias2(f̂(x)) ≈ 0. (970)

Kernel Ridge Regression (KRR) is one of the best Regularization Techniques to Prevent Overfitting.
To control overfitting, we introduce Tikhonov regularization in kernel space. Define the Gram
matrix K with entries

Kij = Kh(xi − xj). (971)

We solve the regularized least squares problem:

α = (K + λI)−1y. (972)

The regularization term λ modifies the eigenvalues σi of K, giving

αi =
σi

σi + λ
vTi y. (973)

For small λ, inverse eigenvalues σ−1
i amplify noise, whereas for large λ, the regularization term

suppresses high-frequency components. In the spectral decomposition of K, we write

K =
∑
i

σiviv
T
i . (974)

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the eigenvalues of the kernel matrix K and vi are the orthonormal
eigenvectors, i.e.,

vT
i vj = δij (975)

where δij is the Kronecker delta. The rank of K is equal to the number of nonzero eigenvalues
σi. The eigenvalues of K encode the spectrum of feature space correlations. If the kernel function
K(x, x′) is smooth, the eigenvalues decay exponentially: regularization, the solution is

σi ≈ O(i−τ ) (976)
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for some decay exponent τ > 0. The spectral decay controls the effective degrees of freedom of
kernel regression. Applying regularization, the solution is

f̂(x) =
n∑

i=1

σi
σi + λ

vTi y · vi(x). (977)

The regularization smoothly filters the high-frequency components of f(x), preventing overfitting.
For Controlling Model Complexity in Spectral Filtering, we have to note that large σi corresponds
to low-frequency components retained in the solution while small σi are high-frequency components,
attenuated by regularization. The cutoff occurs around defining the effective model complexity. For
very small λ,

σi
σi + λ

≈ 1, (978)

causing high variance. For large λ,
σi

σi + λ
≈ σi

λ
, (979)

which heavily suppresses small eigenvalues, leading to underfitting. The optimal λ is selected via
cross-validation, minimizing

CV (h) =
1

n

n∑
i=1

(yi − f̂−i(xi))
2. (980)

An alternative approach is smoothing Splines in Kernel Regression which is done by minimizing

n∑
i=1

(yi − f(xi))
2 + λ∥Lf∥2, (981)

where L is a differential operator like

L =
d2

dx2
. (982)

This results in the smoothing spline estimator

f̂(x) =
n∑

i=1

αiKh(x− xi). (983)

where α now depends on K and L. In conclusion, Kernel regression is powerful but prone to
overfitting when h is too small, leading to high variance. Regularization techniques such as kernel
ridge regression, Tikhonov regularization, and smoothing splines mitigate overfitting by
modifying the spectral properties of the kernel matrix.

There is a Bias-Variance Tradeoff in Spectral Terms. The expected bias measures the deviation of
f̂(x) from f(x):

Bias2 =
n∑

i=1

(1− g(σi))
2c2i . (984)

where
g(σi) =

σi
σi + λ

. (985)

Large λ shrinks eigenmodes, increasing bias. The variance measures sensitivity to noise:

Var = σ2

n∑
i=1

g(σi)
2. (986)
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For small λ, the model overfits, leading to high variance. The expected generalization bound error
in Spectral Terms is given by:

E[(f̂(x)− f(x))2] =
∑
i

(1− g(σi))
2c2i + σ2

∑
i

g(σi)
2. (987)

Using asymptotic analysis, the optimal choice of λ is:

λ∗ = O(n− 1
d+4 ). (988)

which minimizes error and maximizes generalization.

In conclusion, Spectral Properties play an important role in Kernel Regression. The spectral
properties of kernel regression determine its ability to generalize and avoid overfitting:

• The eigenvalue decay rate controls approximation power.

• Spectral filtering via regularization prevents high-frequency noise.

• Generalization is optimized when balancing bias and variance.

By leveraging spectral decomposition, we gain a deep understanding of how kernel regression in-
terpolates data while controlling complexity. The optimal choice of λ and h ensures an optimal
tradeoff between bias and variance, leading to a robust kernel regression model.

12.2 Priestley–Chao kernel estimator

Literature Review: Neumann and Thorarinsdottir (2006) [654] discussed improvements on the
Priestley-Chao estimator by addressing its limitations in nonparametric regression. It provides an
asymptotic minimax framework for better estimation, particularly in autoregressive models. The
modification proposed mitigates the issues arising from bandwidth selection. Steland (2014) [655]
applied the Priestley-Chao kernel estimator to stopping rules in time series control charts. This
study is significant because it explores its efficiency in dependent data, particularly focusing on
bandwidth choice formulas that enhance estimation precision in practical scenarios. Makkulau et.
al. (2023) [656] applied the Priestley-Chao estimator in multivariate semiparametric regression.
It highlights the estimator’s dependence on optimal bandwidth selection and explores modifica-
tions that enhance its adaptability in multiple dimensions. Staniswalis (1989) [657] examined the
likelihood-based interpretation of kernel estimators and connects the Priestley-Chao approach with
generalized maximum likelihood estimation. It rigorously analyzes the estimator’s weighting prop-
erties and neighborhood selection criteria. Jennen-Steinmetz and Gasser (1988) [652] provided a
comparative framework between the Priestley-Chao estimator and other kernel regression estima-
tors. They explore its mathematical properties, convergence rates, and advantages over alternative
methods such as Nadaraya-Watson. Mack and Müller (1988) [658] evaluated the Priestley-Chao
estimator’s error behavior in nonparametric regression. The paper highlights how convolution-
type adjustments can improve estimation accuracy under random design conditions. Jones et. al.
(2024) [659] categorized various kernel regression estimators, including the Priestley-Chao estima-
tor. It critically evaluates its statistical efficiency and variance properties in comparison to other
kernel methods. Ghosh (2015) [660] introduced a variance estimation technique specifically for
the Priestley-Chao kernel estimator. The paper presents a method to avoid nuisance parameter
estimation, improving computational efficiency. Liu and Luor (2023) [661] integrated fractal in-
terpolants with the Priestley-Chao estimator to handle complex regression problems. It explores
modifications to kernel functions that enhance estimation in high-dimensional datasets. Gasser
and Muller (1979) [644] wrote a foundational work that revisits the Priestley-Chao estimator in the
context of kernel regression. The authors propose two alternative definitions for kernel estimation,
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aiming to refine the estimator’s application in empirical data analysis.

Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random variables
drawn from an unknown probability density function (PDF) f(x), with cumulative distribution
function (CDF) F (x). The goal of nonparametric density estimation is to construct an estimator
f̂(x) such that

lim
n→∞

f̂(x) = f(x) (989)

in some suitable sense, such as pointwise convergence, mean squared error (MSE) consistency, or
uniform convergence over compact subsets. In kernel density estimation (KDE), a common
approach is to define

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(990)

where K(·) is a kernel function satisfying∫ ∞

−∞
K(u) du = 1 (991)

and h is a bandwidth parameter controlling the level of smoothing. However, KDE relies on a
fixed bandwidth h, which can lead to oversmoothing in regions of high density and un-
dersmoothing in regions of low density. The Priestley–Chao estimator improves upon
this by adapting the bandwidth locally, based on the spacings between consecutive order
statistics.

There is an important role of Order Statistics and Spacings. Let us define the order statistics of
the sample as

X(1) ≤ X(2) ≤ · · · ≤ X(n) (992)

The fundamental insight behind the Priestley–Chao estimator is that the spacings between
order statistics contain direct information about the local density. Define the spacing
between two consecutive order statistics as

Di = X(i+1) −X(i), i = 1, . . . , n− 1 (993)

Using results from order statistics theory, we obtain the key approximation

E[Di] ≈
1

nf(X(i))
(994)

which follows from the fact that the probability of observing a sample in a small interval around X(i)

is approximately given by the density f(X(i)) times the width of the interval. Thus, rearranging,
we obtain the fundamental estimator

f̂(X(i)) ≈
1

nDi

(995)

This provides a direct data-driven way to estimate the density without choosing a fixed band-
width h, as in classical KDE methods. Let’s now state the formal Definition of the Priestley–Chao
Estimator. The Priestley–Chao kernel estimator is defined as

f̂(x) =
1

n

n−1∑
i=1

1

Di

K

(
x−X(i)

Di

)
(996)

where K(·) is a symmetric kernel function satisfying∫ ∞

−∞
K(u) du = 1,

∫ ∞

−∞
uK(u) du = 0, and

∫ ∞

−∞
u2K(u) du <∞ (997)
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Unlike fixed-bandwidth KDE, here the bandwidth Di varies with location, allowing better
adaptation to the underlying density structure. To understand the performance of the estimator,
we analyze its bias and variance. Using a first-order Taylor expansion of Di around its
expectation, we write

Di =
1

nf(X(i))
+ ϵi (998)

where ϵi represents the stochastic deviation from the expected value. Substituting this into the
estimator,

f̂(X(i)) =
1

n

n−1∑
i=1

(
f(X(i)) + nf(X(i))

2ϵi
)
K

(
x−X(i)

Di

)
(999)

Taking expectations, we obtain the leading-order bias term

E[f̂(x)] = f(x) +
1

2
h2f ′′(x) +O(n−2/5) (1000)

where h = Di represents the local bandwidth. The variance of the estimator follows from the
variance of the spacings, which satisfies

Var[Di] = O(n−2) (1001)

Since f̂(x) involves a sum over n terms, its variance is

Var[f̂(x)] = O(n−1) (1002)

Thus, the mean squared error (MSE) is given by

E
[
(f̂(x)− f(x))2

]
= Bias2 + Var = O(n−4/5) (1003)

This shows that the Priestley–Chao estimator achieves the optimal nonparametric rate of
convergence. The kernel function K(·) plays a crucial role in smoothing the estimate. Common
choices include:

1. Uniform kernel:

K(u) =
1

2
1(|u| ≤ 1) (1004)

2. Epanechnikov kernel (optimal in MSE sense):

K(u) =
3

4
(1− u2)1(|u| ≤ 1) (1005)

3. Gaussian kernel:

K(u) =
1√
2π
e−u2/2 (1006)

The integrated squared error (ISE) is used to optimize kernel selection:

ISE =

∫ ∞

−∞

(
f̂(x)− f(x)

)2
dx (1007)
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12.3 Gasser–Müller kernel estimator

Literature Review: Gasser and Muller (1979) [644] wrote one of the foundational papers intro-
ducing the Gasser–Müller estimator. It presents the kernel smoothing method and its advantages
over existing nonparametric regression techniques, particularly in terms of bias reduction. Gasser
and Muller (1984) [645] extended the original estimator to include derivative estimation. It pro-
vides rigorous asymptotic analysis of bias and variance, demonstrating the estimator’s robustness
in various statistical applications. Härdle and Gasser (1985) [646] refined the Gasser–Müller ap-
proach by introducing robustness into kernel estimation of derivatives, addressing outlier sensitivity
and proposing adaptive bandwidth selection. Müller (1987) [647] generalized the Gasser–Müller
estimator by incorporating weighted local regression, improving performance in scenarios with non-
uniform data distributions. Chu (1993) [648] proposed an improved version of the Gasser–Müller
estimator by modifying its weighting function, leading to better numerical stability and efficiency
in practical applications. Peristera and Kostaki (2005) [649] compared various kernel estimators,
showing that the Gasser–Müller estimator with a local bandwidth performs better in mortality
rate estimation. Müller (1991) [650] addressed the problem of kernel estimators near boundaries,
proposing modifications to the Gasser–Müller estimator for improved accuracy at endpoints. Gasser
et. al. (2004) [651] expanded on kernel estimation techniques, including the Gasser–Müller es-
timator, applying them to shape-invariant modeling and structural analysis. Jennen-Steinmetz
and Gasser (1988) [652] developed a unified framework for kernel-based estimators, situating the
Gasser–Müller approach within a broader nonparametric regression context. Müller (1997) [653]
introduced density-adjusted kernel smoothers, improving upon Gasser–Müller estimators in set-
tings with non-uniformly distributed data points.

The Gasser-Müller kernel estimator is a sophisticated nonparametric method for estimating
the probability density function (PDF) of a continuous random variable. It is an improvement upon
the classical kernel density estimator (KDE) and is specifically designed to minimize the boundary
bias often present in density estimates near the edges of the sample space. This is achieved by
placing the kernel functions at the midpoints between adjacent data points rather than directly
at the data points themselves. The fundamental modification introduced by Gasser and Müller is
crucial for improving the estimator’s accuracy in regions close to the boundaries, where traditional
kernel density estimation methods tend to perform poorly due to limited data near the boundaries.

Let’s now describe the Mathematical Framework of the Gasser-Müller kernel estimator. Let
X1, X2, . . . , Xn represent a set of n independent and identically distributed (i.i.d.) random variables
drawn from an unknown distribution with a probability density function f(x). The goal of kernel
density estimation is to estimate this unknown density f(x) based on the observed data. For the
Gasser-Müller kernel estimator f̂h(x), the core idea is to place the kernel function at the midpoint
between two consecutive data points, Xi and Xi+1, as follows:

f̂h(x) =
1

n

n−1∑
i=1

Kh

(
x− Xi +Xi+1

2

)
(1008)

where ξi = Xi+Xi+1

2
is the midpoint between consecutive data points, often referred to as the

”midpoint shift”, Kh(x) = 1
h
K
(
x
h

)
is the scaled kernel function with bandwidth h, K(x) is

the kernel function, typically chosen to be a symmetric probability density, such as the Gaussian
kernel:

K(x) =
1√
2π
e−

x2

2 (1009)

The key difference between the Gasser-Müller estimator and the traditional kernel estimator is the
use of midpoints ξi instead of the individual data points. The kernel function Kh(x) is applied
to the midpoint shift, effectively smoothing the data and addressing boundary bias by utilizing
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information from adjacent points.

The bias of the estimator can be derived by expanding f̂h(x) in a Taylor series around the true
density f(x). To compute the expected value of f̂h(x), we first express the expected kernel evalua-
tion:

E[f̂h(x)] =
1

n

n−1∑
i=1

E[Kh(x− ξi)] (1010)

Since ξi is the midpoint of adjacent points Xi and Xi+1, we perform a Taylor expansion around the
true density f(x), resulting in:

E[f̂h(x)] = f(x) +
h2

2
f ′′(x)

∫ ∞

−∞
u2K(u) du+O(h4) (1011)

where
∫∞
−∞ u2K(u) du is the second moment of the kernel function, denoted σ2

K . The term
h2

2
f ′′(x)σ2

K represents the bias of the estimator, which is quadratic in h. Thus, the bias decreases
as h becomes smaller, and for sufficiently smooth densities, this bias is small. The main advantage
of the Gasser-Müller method is that it leads to a smaller bias compared to standard kernel density
estimators, especially at the boundaries. The variance of f̂h(x) represents the fluctuation of the
estimator across different samples. The variance is given by:

Var[f̂h(x)] =
1

n

(∫ ∞

−∞
K2(u) du

)
f(x) (1012)

where
∫∞
−∞K2(u) du is the second moment of the kernel function K(x). The variance decreases

as the sample size n increases, but it also depends on the bandwidth h. For a fixed sample size,
the variance is inversely proportional to both h and n, i.e.,

Var[f̂h(x)] ∝ 1

nh
(1013)

Thus, larger sample sizes and smaller bandwidths lead to smaller variance, but the optimal band-
width must balance the trade-off between bias and variance. The mean squared error (MSE)
combines both the bias and the variance to evaluate the overall performance of the estimator. The
MSE is given by:

MSE[f̂h(x)] = Bias2 + Var (1014)

Substituting the expressions for bias and variance, we obtain:

MSE[f̂h(x)] =

(
h2

2
f ′′(x)σ2

K

)2

+
1

nh
f(x)

∫ ∞

−∞
K2(u) du (1015)

To minimize the MSE, we select an optimal bandwidth hopt. By differentiating the MSE with
respect to h and setting the derivative to zero, we obtain the optimal bandwidth that balances the
bias and variance:

hopt ∝ n−1/5. (1016)

Thus, the optimal bandwidth decreases as the sample size increases, and this scaling behavior is a
fundamental characteristic of kernel density estimation.

The Gasser-Müller estimator performs exceptionally well when compared to other kernel density
estimators, such as the Parzen-Rosenblatt estimator. The Parzen-Rosenblatt method places
kernels directly at the data points Xi, whereas the Gasser-Müller method places kernels at the
midpoints ξi = Xi+Xi+1

2
. This simple modification significantly reduces boundary bias and results

in smoother and more accurate estimates, especially at the boundaries of the sample. Boundary
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bias occurs in standard KDE methods because kernels at the boundaries have fewer data points to
influence them, which leads to a less accurate estimate of the density. Moreover, the Gasser-Müller
estimator excels in derivative estimation. When estimating the first or second derivatives of the
density function, the Gasser-Müller method provides more accurate estimates with lower variance
compared to traditional methods. The use of midpoints ensures that the kernel function is better
centered relative to the data, reducing boundary effects that are particularly problematic when
estimating derivatives. Regarding the Asymptotic Properties, The Gasser-Müller kernel estimator
exhibits asymptotic efficiency. As the sample size n approaches infinity, the estimator achieves
the optimal convergence rate of O(n−1/5) for the optimal bandwidth hopt. This convergence rate is
the same as that for other kernel density estimators, indicating that the Gasser-Müller estimator
is asymptotically efficient. In the limit, the Gasser-Müller estimator is asymptotically unbiased
and asymptotically efficient, meaning that as the sample size increases, the estimator approaches
the true density f(x) without bias and with minimal variance. The estimator becomes more accu-
rate as the sample size grows, and the optimal choice of bandwidth ensures that the bias-variance
trade-off is well balanced.

In summary, the Gasser-Müller kernel estimator offers several distinct advantages over other
nonparametric density estimators. Its primary strength lies in its ability to reduce boundary bias
by placing kernels at midpoints between adjacent data points. This leads to smoother and more
accurate density estimates, especially near the sample boundaries. The optimal choice of band-
width, which scales as n−1/5, balances the bias and variance of the estimator, minimizing the mean
squared error. The Gasser-Müller estimator is particularly useful in applications involving density
estimation and derivative estimation, where boundary effects and accuracy are crucial. It is a highly
effective tool for nonparametric statistical analysis and provides accurate, unbiased estimates even
in challenging settings.

12.4 Parzen-Rosenblatt method

Literature Review: Devroye (1992) [557] investigated the efficiency of superkernels in improving
the performance of kernel density estimation (KDE). The study introduces higher-order kernels that
lead to reduced asymptotic variance without increasing computational complexity. Zambom and
Dias (2013) [635] provided a comprehensive review of KDE, discussing its theoretical foundations,
bandwidth selection methods, and practical applications in econometrics. The authors emphasize
how KDE can outperform traditional histogram methods in economic data analysis. Reyes et. al.
(2016) [636] extended KDE to grouped data, proposing a modified Parzen-Rosenblatt estimator for
censored and truncated observations. It addresses practical limitations in standard kernel methods
when dealing with incomplete datasets. Tenreiro (2024) [637] developed a KDE adaptation for
circular data (e.g., angles and periodic phenomena). It provides exact and asymptotic solutions for
optimal bandwidth selection in circular KDE. Devroye and Penrod (1984) [638] proved the consis-
tency of automatic KDE methods. It establishes theoretical guarantees on the convergence of den-
sity estimates when the bandwidth is chosen through data-driven methods. Machkouri (2011) [639]
established asymptotic normality results for KDE when applied to dependent data, particularly
strongly mixing random fields. The paper is crucial for extending KDE applications in time series
and spatial statistics. Slaoui (2018) [640] introduced a bias reduction technique for KDE, provid-
ing theoretical results and practical improvements over the standard Parzen-Rosenblatt estimator.
The modifications significantly enhance density estimation in small-sample scenarios. Michalski
(2016) [641] used KDE in hydrology to estimate groundwater level distributions. It demonstrates
how KDE outperforms parametric methods in environmental science applications. Gramacki and
Gramacki (2018) [642] covered KDE fundamentals, implementation details, and computational op-
timizations. It is an excellent resource for both theoretical insights and practical applications.
Desobry et. al. (2007) [643] extended KDE to unordered sets, exploring its use in kernel-based sig-
nal processing. It bridges the gap between statistical estimation and machine learning applications.
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The Parzen-Rosenblatt Kernel Density Estimation (KDE) Method is a foundational tech-
nique in non-parametric statistics that allows for the estimation of an unknown probability density
function f(x) from a given sample without imposing restrictive parametric assumptions. Math-
ematically, let X1, X2, . . . , Xn be a set of independent and identically distributed (i.i.d.) random
variables drawn from an unknown density f(x). The KDE, which serves as an estimate of f(x), is
rigorously defined as

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(1017)

where K(·) is the kernel function, and h > 0 is the bandwidth parameter. The kernel
function K(x) serves as a local weighting function that smooths the empirical distribution, while
the bandwidth parameter h determines the scale over which the data points contribute to the
density estimate. The fundamental goal of KDE is to ensure that f̂h(x) provides an asymptotically
consistent, unbiased, and efficient estimator of f(x), all of which require rigorous mathematical
conditions to be satisfied. There are some important Properties of the Kernel Function. To ensure
the validity of f̂h(x) as a probability density function estimator, the kernel function K(x) must
satisfy the following conditions:

1. Normalization Condition: ∫ ∞

−∞
K(x) dx = 1 (1018)

This ensures that the kernel behaves like a proper probability density function and does not
introduce artificial bias into the estimation.

2. Symmetry Condition:
K(x) = K(−x), ∀x ∈ R (1019)

Symmetry guarantees that the kernel function does not introduce directional bias in the
estimation of f(x).

3. Non-negativity:
K(x) ≥ 0, ∀x ∈ R (1020)

While not strictly necessary, this property ensures that f̂h(x) remains a valid probability
density estimate in a practical sense.

4. Finite Second Moment (Variance Condition):

µ2(K) =

∫ ∞

−∞
x2K(x) dx <∞ (1021)

This ensures that the kernel function does not assign an excessive amount of probability mass
far from the origin, preserving local smoothness properties.

5. Unbiasedness Condition (Mean Zero Constraint):∫ ∞

−∞
xK(x) dx = 0 (1022)

This ensures that the kernel function does not introduce artificial shifts in the density estimate.

Let’s discuss the choice of Kernel Function and Examples. Several kernel functions satisfy the
above mathematical constraints and are commonly used in KDE:
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• Gaussian Kernel:

K(x) =
1√
2π
e−x2/2 (1023)

This kernel has the advantage of being infinitely differentiable and providing smooth density
estimates.

• Epanechnikov Kernel:

K(x) =
3

4
(1− x2)⊮|x|≤1 (1024)

This kernel is optimal in the mean integrated squared error (MISE) sense, meaning
that it minimizes the variance of f̂h(x) while preserving local smoothness properties.

• Uniform Kernel:

K(x) =
1

2
⊮|x|≤1 (1025)

This kernel is simple but suffers from discontinuities, making it less desirable for smooth
density estimation.

Regarding the Asymptotic Properties of the KDE, The bias of the KDE can be rigorously derived
using a second-order Taylor expansion of f(x) around a given evaluation point. Specifically, if f(x)
is twice continuously differentiable, we obtain

E[f̂h(x)]− f(x) =
h2

2
f ′′(x)µ2(K) +O(h4) (1026)

where µ2(K) =
∫
x2K(x) dx is the second moment of the kernel. The leading term in this expansion

shows that the bias is proportional to h2, implying that a smaller h reduces bias, though at the
expense of increasing variance. The variance of the KDE is given by

Var[f̂h(x)] =
1

nh
f(x)R(K) +O

(
1

n

)
(1027)

where R(K) =
∫
K2(x) dx measures the roughness of the kernel function. The key observation

here is that variance scales as O(1/(nh)), implying that a larger h reduces variance but increases
bias. To minimize the mean integrated squared error (MISE), one must choose an optimal
bandwidth hopt that balances bias and variance. The optimal bandwidth is given by

hopt =

(
4σ̂5

3n

)1/5

(1028)

where σ̂ is the sample standard deviation. This scaling rule, known as Silverman’s rule of
thumb, follows from an asymptotic minimization of

E
[∫ ∞

−∞
(f̂h(x)− f(x))2 dx

]
(1029)

which encapsulates both bias and variance effects.

In conclusion, the Parzen-Rosenblatt method provides a highly flexible, consistent, and asymp-
totically optimal approach to density estimation. The choice of kernel function and bandwidth
selection is critical, as they directly impact the bias-variance tradeoff. Future refinements, such
as adaptive bandwidth selection and higher-order kernel corrections, further enhance its
performance.
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13 Natural Language Processing (NLP)

Literature Review: Jurafsky and Martin 2023 [225] wrote book that is a cornerstone of NLP the-
ory, covering fundamental concepts like syntax, semantics, and discourse analysis, alongside deep
learning approaches to NLP. The book integrates linguistic theory with probabilistic and neural
methodologies, making it an essential resource for students and researchers alike. It thoroughly
explains sequence labeling, parsing, transformers, and BERT models. Manning and Schütze 1999
[226] wrote a foundational text in NLP, particularly for probabilistic models. It covers hidden
Markov models (HMMs), n-gram language models, and expectation-maximization (EM), concepts
that still underpin modern transformer-based NLP models. It also introduces latent semantic
analysis (LSA), a precursor to modern word embeddings. Liu and Zhang (2018) [227] presented
a detailed exploration of deep learning-based NLP, including word embeddings, recurrent neural
networks (RNNs), LSTMs, GRUs, and transformers. It introduces the mathematical foundations
of neural networks, making it a bridge between classical NLP and deep learning. Allen (1994)
[228] wrote a seminal book in NLP, focusing on symbolic and rule-based approaches. It provides
detailed coverage of semantic parsing, discourse modeling, and knowledge representation. While it
predates deep learning, it forms a strong theoretical foundation for logical and linguistic approaches
to NLP. wrote Koehn (2009) [231] wrote a definitive work on statistical NLP, particularly machine
translation techniques like phrase-based translation, alignment models, and decoder algorithms. It
remains relevant even as neural translation models (e.g., Transformer-based systems) dominate.
We now mention some of the recent works in Natural Language Processing (NLP). Hempelmann
[230] explored how linguistic theories of humor can be incorporated into Large Language Models
(LLMs). It discusses the integration of formal humor theories into neural models and whether
LLMs can be used to test linguistic hypotheses. Eisenstein (2020) [232] wrote a modern NLP text-
book that bridges theory and practice. It covers both probabilistic and deep learning approaches,
including dependency parsing, sequence-to-sequence models, and attention mechanisms. Unlike
many texts, it also discusses ethics and bias in NLP models. Otter et. al. (2018) [233] provides
a comprehensive review of neural architectures in NLP, covering CNNs, RNNs, attention mecha-
nisms, and reinforcement learning for NLP. It discusses both theoretical implications and empirical
advancements, making it an essential reference for deep learning in language tasks. The Oxford
Handbook of Computational Linguistics (2022) [234] provides a comprehensive collection of essays
covering the entire field of NLP and computational linguistics, including morphology, syntax, se-
mantics, discourse processing, and deep learning applications. It presents theoretical debates and
practical applications across different NLP domains. Li et. al. (2025) [229] introduced an advanced
multi-head attention mechanism that combines explorative factor analysis with NLP models. It
enhances our understanding of how transformers encode syntactic and semantic relationships.

13.1 Text Classification

Literature Review: Liu et. al. (2024) [235] provided a systematic review of text classifica-
tion techniques, covering traditional machine learning methods (e.g., SVM, Näıve Bayes, Decision
Trees) and deep learning approaches (CNNs, RNNs, LSTMs, and transformers). It also discusses
feature extraction techniques such as TF-IDF, word embeddings, and BERT-based representations.
Çekik (2025) [236] introduced a rough set-based approach for text classification, highlighting how
term weighting strategies impact classification accuracy. It explores feature reduction and entropy-
based selection methods to enhance text classifiers. Zhu et. al. (2025) [237] presented a novel
entropy-based prefix tuning method for hierarchical text classification. It demonstrates how en-
tropy regularization can enhance transformer-based classifiers like BERT and GPT for multi-label
and hierarchical categorization. Matrane et. al. (2024) [238] investigated dialectal text classifi-
cation challenges in Arabic NLP. It proposes preprocessing optimizations for low-resource dialects
and demonstrates how transfer learning improves classification accuracy. Moqbel and Jain (2025)
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[239] applies text classification to detect deception in online product reviews. It integrates cognitive
appraisal theory and NLP-based text mining to distinguish fake vs. genuine reviews. Kumar et. al.
(2025) [240] focused on medical text classification, demonstrating how NLP techniques can be ap-
plied to diagnose diseases using electronic health records (EHRs) and patient symptoms extracted
from text data. Yin (2024) [241] provided a deep dive into aspect-based sentiment analysis (ABSA),
discussing challenges in fine-grained text classification. It introduces new BERT-based techniques
to improve aspect-level sentiment classification accuracy. Raghavan (2024) [242] examines personal-
ity classification using text data. It evaluates the performance of NLP-based personality prediction
models and compares lexicon-based, deep learning, and transformer-based approaches. Semeraro
et. al. (2025) [243] introduced EmoAtlas, a tool that merges psychological lexicons, artificial in-
telligence, and network science to perform emotion classification in textual data. It compares its
accuracy with BERT and ChatGPT. Cai and Liu (2024) [244] provides a practical approach to text
classification in discourse analysis. It explores Python-based techniques for analyzing therapy talk
and sentiment classification in conversational texts.

Text classification is a fundamental problem in machine learning and natural language process-
ing (NLP), where the goal is to assign predefined categories to a given text based on its content.
This process involves several steps, including text preprocessing, feature extraction, model train-
ing, and evaluation. In this answer, we will explore these steps with a focus on the underlying
mathematical principles and models used in text classification. The first step in text classification
is preprocessing the raw text data. This typically involves the following operations:

• Tokenization: Breaking the text into words or tokens.

• Stopword Removal: Removing common words (such as ”and”, ”the”, etc.) that do not
carry significant meaning.

• Stemming and Lemmatization: Reducing words to their base or root form, e.g., ”running”
becomes ”run”.

• Lowercasing: Converting all words to lowercase to ensure consistency.

• Punctuation Removal: Removing punctuation marks.

These operations result in a cleaned and standardized text, ready for feature extraction. Once the
text is preprocessed, the next step is to convert the text into numerical representations that can
be fed into machine learning models. The most common methods for feature extraction include:

1. Bag-of-Words (BoW) model

2. Term Frequency-Inverse Document Frequency (TF-IDF)

In the first method (Bag-of-Words (BoW) model), each document is represented as a vector
where each dimension corresponds to a unique word in the corpus. The value of each dimension is
the frequency of the word in the document. If we have a corpus of N documents and a vocabulary
of M words, the document i can be represented as a vector xi ∈ RM , where:

xi = [f(w1, di), f(w2, di), . . . , f(wM , di)] (1030)

where f(wj, di) is the frequency of the word wj in the document di. The BoW model captures only
the frequency of terms within the document and disregards their order. While simple and com-
putationally efficient, this model does not capture the syntactic or semantic relationships between
words in the document.

A more sophisticated and improved representation can be obtained through Term Frequency-
Inverse Document Frequency (TF-IDF), which scales the raw frequency of words by their
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relative importance in the corpus. TF-IDF is a more advanced technique that aims to weight
words based on their importance. It considers both the frequency of a word in a document and the
rarity of the word across all documents. The term frequency (TF) of a word w in document d is
defined as:

TF(w, d) =
count(w, d)

total number of words in d
(1031)

The inverse document frequency (IDF) is given by:

IDF(w) = log

(
N

DF(w)

)
(1032)

where N is the total number of documents and DF(w) is the number of documents containing the
word w. The TF-IDF score is the product of these two:

TF-IDF(w, d) = TF(w, d) · IDF(w) (1033)

There are several machine learning models that can be used for text classification, ranging from
simpler models to more complex ones. A common approach to text classification is to use a linear
model such as logistic regression or linear support vector machines (SVM). Given a feature vector
xi for document i, the prediction of the class label yi can be made as:

ŷi = σ(wTxi + b) (1034)

where σ is the sigmoid function for binary classification, and w and b are the weight vector and bias
term, respectively. The model parameters w and b are learned by minimizing a loss function, such
as the binary cross-entropy loss. More complex models, such as Neural Networks (NN), involve
deeper mathematical formulations. In a typical feedforward neural network, the goal is to learn
a set of parameters that map an input vector xi to an output label yi. The network consists of
multiple layers of interconnected neurons, each of which applies a non-linear transformation to the
input. Given an input vector xi, the output of the network is computed as:

h
(l)
i = σ(W(l)h

(l−1)
i + b(l)) (1035)

where h
(l)
i is the activation of layer l, σ is the activation function (e.g., ReLU, sigmoid, or tanh),

W(l) is the weight matrix, and b(l) is the bias term for layer l. The input to the network is passed
through several hidden layers before producing the final classification output. The output layer
typically applies a softmax function to obtain a probability distribution over the possible classes:

P (yc|xi) =
exp(WT

c hi + bc)∑
c′ exp(WT

c′hi + bc′)
(1036)

where Wc and bc are the weights and bias for class c, and hi is the output of the last hidden layer.
The network is trained by minimizing a cross-entropy loss function:

L(W,b) = −
C∑
c=1

yi,c logP (yc|xi) (1037)

where yi,c is the one-hot encoded label for class c, and the goal is to minimize the difference be-
tween the predicted probability distribution and the true class distribution. Throughout the entire
process, optimization plays a crucial role in fine-tuning model parameters to minimize classification
errors. Common optimization techniques include stochastic gradient descent (SGD) and its variants,
such as Adam and RMSProp, which update model parameters iteratively based on the gradient of
the loss function with respect to the parameters. Given the loss function L(θ) parameterized by θ,
the gradient of the loss with respect to a parameter θi is computed as:

∂L(θ)

∂θi
(1038)
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The parameter update rule for gradient descent is then:

θi ← θi − η
∂L(θ)

∂θi
(1039)

where η is the learning rate. For each iteration, this update rule adjusts the model parameters in
the direction of the negative gradient, ultimately converging to a set of parameters that minimizes
the classification error.

In summary, text classification is an advanced and multifaceted problem that requires a deep
understanding of various mathematical principles, including linear algebra, probability theory, opti-
mization, and functional analysis. The entire process, from text preprocessing to feature extraction,
model training, and evaluation, involves the application of rigorous mathematical techniques that
enable the effective classification of text into meaningful categories. Each of these steps, whether
simple or complex, plays an integral role in transforming raw text data into actionable insights
using mathematically sophisticated models and algorithms.

13.2 Machine Translation

Literature Review: Wu et. al. (2020) [245] introduced end-to-end neural machine translation
(NMT), focusing on sequence-to-sequence models, attention mechanisms, and transformer archi-
tectures. It explains encoder-decoder frameworks, self-attention, and positional encoding, laying
the groundwork for modern NMT. Hettiarachchi et. al. (2024) [246] presented Amharic-to-English
machine translation using transformers. It introduces character embeddings and regularization
techniques for handling low-resource languages, a critical challenge in multilingual NLP. Das and
Sahoo (2024) [247] discussed word alignment models, a fundamental concept in SMT. It explains
IBM Model 1-5, HMM alignments, and the role of alignment in phrase-based models. It also ex-
plores challenges in handling syntactic divergence across languages. Oluwatoki et. al. (2024) [248]
presented one of the first transformer-based Yoruba-to-English MT systems. It highlights how
multilingual NLP models struggle with resource-scarce languages and proposes Rouge-based eval-
uation for MT systems. Uçkan and Kurt [249] discusses the role of word embeddings (Word2Vec,
GloVe, FastText) in MT. It covers semantic representation in vector spaces, crucial for context-
aware translation in NMT. discussed multiword expressions (MWEs) in MT, a major challenge in
NLP. It covers idiomatic expressions, collocations, and phrasal verbs, showing how neural models
struggle with multiword disambiguation. Pastor et. al. (2024) [250] discussed multiword expres-
sions (MWEs) in MT, a major challenge in NLP. It covers idiomatic expressions, collocations, and
phrasal verbs, showing how neural models struggle with multiword disambiguation. Fernandes
(2024) [251] compared open-source large language models (LLMs) and NMT systems in translating
spatial semantics in EN-PT-BR (English-Portuguese-Brazilian Portuguese) subtitles. It highlights
the limitations of both traditional and neural MT in capturing contextual spatial meanings. Jozić
(2024) [252] evaluated ChatGPT’s translation capabilities against specialized MT systems like
eTranslation (EU Commission MT model). It shows how general-purpose LLMs can rival dedi-
cated NMT systems but struggle with domain-specific translations. Yang (2025) [253] introduced
error-detection models for NMT output, using transformer-based classifiers to detect syntactic and
semantic errors in machine-generated translations.

Machine Translation (MT) in Natural Language Processing (NLP) is a highly intricate compu-
tational task that requires converting text from one language (source language) to another (target
language) by using statistical, rule-based, and deep learning models, often underpinned by proba-
bilistic and neural network-based frameworks. The goal is to determine the most probable target
sequence T = {t1, t2, . . . , tN} from the given source sequence S = {s1, s2, . . . , sT}, by modeling the
conditional probability P (T | S). The optimal translation is typically defined by:

T ∗ = arg max
T

P (T | S) (1040)
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This involves estimating the probability of T given S, with the assumption that the translation
can be described probabilistically. In the most fundamental form of statistical machine translation
(SMT), this probability is often modeled through a series of translation models that decompose the
translation process into manageable components. The conditional probability P (T | S) in SMT
can be factorized using Bayes’ theorem:

P (T | S) =
P (S, T )

P (S)
=
P (T | S)P (S)

P (S)
(1041)

Given this decomposition, the core of early SMT models, such as IBM models, sought to model the
joint probability P (S, T ) over source and target language pairs. Specifically, in word-based models
like IBM Model 1, the task reduces to estimating the probability of translating each word in the
source language S to its corresponding word in the target language T . The joint probability can
be written as:

P (S, T ) =
T∏
i=1

N∏
j=1

t(si | tj) (1042)

where t(si | tj) is the probability of translating word si in the source sentence to word tj in the
target sentence. The estimation of these probabilities, t(si | tj), is typically achieved by analyzing
parallel corpora through various techniques such as Expectation-Maximization (EM), which allows
the unsupervised learning of these translation probabilities from large amounts of bilingual text
data. The EM algorithm iterates between computing the expected alignments of words in the source
and target languages and refining the model parameters accordingly. The word-based translation
models, however, do not take into account the structure of the language, which often leads to
suboptimal translations, especially in languages with significantly different syntactic structures.
The challenges stem from the word order differences and idiomatic expressions that cannot be
captured through a simple word-to-word mapping. To overcome these limitations, IBM Model 2
introduced the concept of word alignments, where an additional hidden variable A is introduced,
representing a possible alignment between words in the source and target sentences. This can be
expressed as:

P (S, T,A) =
T∏
i=1

N∏
j=1

t(si | tj)a(si | tj) (1043)

where a(si | tj) denotes the alignment probability between word si in the source language and word
tj in the target language. By optimizing these alignment probabilities, SMT systems improve the
quality of translations by better modeling the relationship between the source and target sentences.
Estimating a(si | tj), however, requires computationally expensive algorithms, which can be han-
dled by methods like EM for iterative refinement.

A more sophisticated approach was introduced with sequence-to-sequence (Seq2Seq) models, which
significantly improved the translation process by leveraging deep learning techniques. The core of
Seq2Seq is the encoder-decoder framework, where an encoder processes the entire source sentence
and encodes it into a context vector, and a decoder generates the target sequence. In this approach,
the translation probability is formulated as:

P (T | S) = P (t1 | S)
N∏
i=2

P (ti | t<i, S) (1044)

where t<i denotes the previously generated target words, capturing the sequential nature of trans-
lation. The key advantage of the Seq2Seq model is its ability to model entire sentences at once,
providing a richer, more flexible representation of both the source and target sequences compared to
word-based models. The encoder, typically implemented using Recurrent Neural Networks (RNNs)
or more advanced variants such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit
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(GRU) networks, encodes the source sequence S into hidden states. The hidden state at time step
t is computed recursively, based on the input xt (the source word representation at time step t)
and the previous hidden state ht−1:

ht = f(ht−1, xt) (1045)

where f represents the update function, which is often parameterized as a non-linear function, such
as a sigmoid or tanh. This recursion generates a sequence of hidden states {h1, h2, . . . , hT}, each
encoding the relevant information of the source sentence. In this model, the decoder generates the
target sequence one token at a time by conditioning on the previous tokens t<i and the context
vector c, which is typically the last hidden state from the encoder. The conditional probability of
generating the next target word is given by:

P (ti | t<i, S) = softmax(Wht) (1046)

where W is a learned weight matrix, and ht is the hidden state of the decoder at time step t.
The softmax function converts the output of the network into a probability distribution over the
vocabulary, and the word with the highest probability is chosen as the next target word.

A significant improvement to Seq2Seq was introduced through the attention mechanism. This
allows the decoder to dynamically focus on different parts of the source sentence during transla-
tion, instead of relying on a single fixed-length context vector. The attention mechanism computes
a set of attention weights αt,i for each source word, which are used to compute a weighted sum of
the encoder’s hidden states to form a dynamic context vector ct. The attention weight αt,i for time
step t in the decoder and source word i is calculated as:

αt,i =
exp(et,i)∑T
k=1 exp(et,k)

(1047)

where et,i = score(ht, hi) is a learned scoring function, which can be modeled as:

et,i = v⃗⊤ tanh(W1ht +W2hi) (1048)

This attention mechanism allows the model to adaptively focus on relevant parts of the source
sentence while generating each word in the target sentence, thus overcoming the limitations of fixed-
length context vectors in long sentences. Training a machine translation model typically involves
optimizing a loss function that quantifies the difference between the predicted target sequence and
the true target sequence. The most common loss function is the negative log-likelihood:

L(θ) = −
N∑
i=1

logP (ti | t<i, S; θ) (1049)

where θ represents the parameters of the model. The parameters of the neural network are up-
dated using gradient-based optimization techniques, such as stochastic gradient descent (SGD) or
Adam, with the gradient of the loss function with respect to each parameter being computed via
backpropagation. In backpropagation, the gradient is computed by recursively applying the chain
rule through the layers of the network. For a parameter θ, the gradient is given by:

∂L(θ)

∂θ
=
∂L(θ)

∂y

∂y

∂θ
(1050)

where y represents the output of the network, and ∂L(θ)
∂y

is the gradient of the loss with respect
to the output. These gradients are then propagated backward through the network to update the
parameters, thereby minimizing the loss function. The quality of a translation is often evaluated
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using automatic metrics such as BLEU (Bilingual Evaluation Understudy), which measures the n-
gram overlap between the machine-generated translation and human references. The BLEU score
for an n-gram of length n is computed as:

BLEU(T,R) = exp

(
N∑

n=1

wn log pn(T,R)

)
(1051)

where pn(T,R) is the precision of n-grams between the target translation T and reference R, and
wn is the weight assigned to each n-gram length. Despite advancements, machine translation still
faces challenges, such as handling rare or out-of-vocabulary words, idiomatic expressions, and the
alignment of complex syntactic structures across languages. Approaches such as transfer learning,
unsupervised learning, and domain adaptation are being explored to address these issues and
improve the robustness and accuracy of MT systems.

13.3 Chatbots and Conversational AI

Literature Review: Linnemann and Reimann (2024) [254] explored how conversational AI, par-
ticularly chatbots, affects human interactions and social psychology. It discusses the role of Large
Language Models (LLMs) and their applications in dialogue systems, providing a theoretical per-
spective on chatbot integration into human communication. Merkel and Schorr (2024) [255] catego-
rizes different types of conversational agents and their NLP capabilities. It discusses the evolution
from rule-based chatbots to transformer-based models, emphasizing how natural language process-
ing has enhanced chatbot usability. Kushwaha and Singh (2022) [256] provided a technical analysis
of chatbot architectures, covering intent recognition, entity extraction, and dialogue management.
It compares traditional ML-based chatbot models with deep learning approaches. Macedo et.
al. (2024) [257] presented a healthcare-oriented chatbot that leverages conversational AI to assist
Parkinson’s patients. It details speech-to-text and NLP techniques used for interactive healthcare
applications. Gupta et. al. (2024) [258] outlines the theoretical foundations of generative AI-based
chatbots, explaining how LLMs like ChatGPT influence conversational AI. It also introduces a
framework for evaluating chatbot effectiveness. Foroughi and Iranmanesh (2025) [259] examined
how AI-powered chatbots influence consumer behavior in e-commerce. It introduces a theoretical
framework to understand chatbot adoption and trust. Jandhyala (2024) [260] provided a deep dive
into chatbot development, covering NLP techniques, intent recognition, and multi-turn dialogue
management. It also discusses best practices for chatbot deployment. Pavlović and Savić (2024)
[261] explored the use of conversational AI in digital marketing, analyzing how LLM-based chatbots
improve customer experience. It also evaluates sentiment analysis and feedback loops in chatbot in-
teractions. Mannava et. al. (2024) [262] examined the ethical and functional aspects of chatbots in
child education, focusing on how NLP models must be adjusted for child-appropriate interactions.
Sherstinova and Mikhaylovskiy (2024) [263] focused on language-specific challenges in chatbot NLP,
discussing how conversational AI models struggle with morphologically rich languages like Russian.

Chatbots and Conversational AI have evolved as some of the most sophisticated applications of
Natural Language Processing (NLP), a subfield of artificial intelligence that strives to enable ma-
chines to understand, generate, and interact in human language. At the core of conversational
AI is the ability to generate meaningful, contextually appropriate responses in a coherent and flu-
ent manner. This challenge is deeply rooted in both the complexities of natural language itself
and the mathematical models that attempt to approximate human understanding. This intricate
task involves processing language at different levels: syntactic (structure), semantic (meaning),
and pragmatic (context). These systems employ probabilistic and algebraic techniques to handle
language complexities and employ statistical models, deep neural networks, and optimization algo-
rithms to generate, understand, and respond to language.
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In mathematical terms, conversational AI can be seen as a sequence of transformations from one
set of words or symbols (the input) to another (the output). The first mathematical aspect is lan-
guage modeling, which is crucial for predicting the likelihood of word sequences. The probability
distribution of a sequence of words w1, w2, . . . , wn is generally computed using the chain rule of
probability:

P (w1, w2, . . . , wn) =
n∏

i=1

P (wi|w1, w2, . . . , wi−1) (1052)

where P (wi|w1, w2, . . . , wi−1) models the conditional probability of the word wi given all the pre-
ceding words. This is a central concept in language generation tasks. In traditional n-gram models,
this conditional probability is estimated by considering only a fixed number of previous words. The
bigram model, for instance, assumes that the probability of a word depends only on the previous
word, leading to:

P (wi|w1, w2, . . . , wi−1) ≈ P (wi|wi−1) (1053)

However, more advanced conversational AI systems, such as those based on recurrent neural net-
works (RNNs), attempt to model dependencies over much longer sequences. RNNs, in particular,
process the input sequence w1, w2, . . . , wn recursively by maintaining a hidden state ht that captures
the context up to time t. The hidden state is computed by:

ht = σ(Whht−1 +Wxxt + b) (1054)

where σ is a non-linear activation function (e.g., tanh or sigmoid), Wh, Wx are weight matrices,
and b is a bias term. While RNNs provide a mechanism to capture sequential dependencies, they
suffer from the vanishing gradient problem, particularly for long sequences. To address this issue,
Long Short-Term Memory (LSTM) units and Gated Recurrent Units (GRUs) were introduced, with
special gating mechanisms that help mitigate the loss of information over long time horizons. These
networks introduce memory cells and gates, which regulate the flow of information in the network.
For instance, the LSTM memory cell is governed by the following equations:

ft = σ(Wfxt + Ufht−1 + bf ), it = σ(Wixt + Uiht−1 + bi), ot = σ(Woxt + Uoht−1 + bo) (1055)

ct = ft · ct−1 + it · tanh(Wcxt + Ucht−1 + bc), ht = ot · tanh(ct) (1056)

where ft, it, ot are the forget, input, and output gates, respectively, and ct represents the cell state,
which carries information across time steps. The LSTM thus enables better capture of long-range
dependencies by controlling the flow of information in a more structured way. In more recent
times, transformer models have revolutionized conversational AI by replacing the sequential nature
of RNNs with parallelized self-attention mechanisms. The transformer model uses multi-head self-
attention to weigh the importance of each word in a sequence relative to all other words. The
self-attention mechanism computes a weighted sum of values V based on queries Q and keys K,
with the attention being computed as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1057)

where dk is the dimension of the key vectors. This operation allows the model to attend to all parts
of the input sequence simultaneously, enabling better handling of long-range dependencies and
improving computational efficiency by processing sequences in parallel. Unlike RNNs, transformers
do not process tokens in a fixed order but instead utilize positional encoding to inject sequence
order information. The positional encoding for position i and dimension 2k is given by:

PE(i, 2k) = sin

(
i

100002k/d

)
, PE(i, 2k + 1) = cos

(
i

100002k/d

)
(1058)
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where d is the embedding dimension and k is the index for the dimension of the positional encoding.
This approach allows transformers to handle longer sequences more efficiently than RNNs and
LSTMs, and is the basis for models like BERT, GPT, and other state-of-the-art conversational
models. Semantic understanding in conversational AI involves translating sentences into formal
representations that can be manipulated by the system. A well-known approach for capturing
meaning is compositional semantics, which treats the meaning of a sentence as a function of the
meanings of its parts. For this, lambda calculus is often employed to represent the meaning of
sentences as functions that operate on their arguments. For example, the sentence ”John saw the
car” can be represented as a lambda expression:

λx.see(x, car) (1059)

where see(x, y) is a predicate representing the action of seeing, and λx quantifies over the sub-
ject of the action. This allows for the compositional building of complex meanings from simpler
components. Dialogue management is another critical aspect of conversational AI systems. This
is the process of maintaining coherence and context over the course of a conversation. It involves
understanding the user’s input in light of prior dialogue history and generating a response that is
contextually relevant. To model the dialogue state, Markov Decision Processes (MDPs) are com-
monly employed. In this context, the dialogue state is represented as a set of possible states, with
actions being transitions between these states. The goal is to select actions (responses) that maxi-
mize cumulative rewards, which, in this case, corresponds to maintaining a coherent and engaging
conversation. The value function V (s) at state s can be computed using the Bellman equation:

V (s) = max
a

[
R(s, a) + γ

∑
s′

P (s′|s, a)V (s′)

]
(1060)

where R(s, a) is the immediate reward for taking action a from state s, γ is the discount factor, and
P (s′|s, a) represents the transition probability to the next state s′ given action a. By solving this
equation, the system can determine the optimal policy for responding to user inputs in a way that
maximizes long-term conversational quality. Once the dialogue state is updated, the next step in
conversational AI is to generate a response. This is typically achieved using sequence-to-sequence
models, in which the input sequence (e.g., the user’s query) is processed by an encoder to produce a
fixed-size context vector, and a decoder generates the output sequence (e.g., the chatbot’s response).
The basic structure of these models can be expressed as:

yt = Decoder(yt−1, ht) (1061)

where yt represents the token generated at time t, and ht is the hidden state passed from the
encoder. Attention mechanisms are incorporated into this framework to allow the decoder to
focus on different parts of the input sequence at each step, improving the quality of the generated
response. Training conversational models requires optimizing parameters through backpropagation
and gradient descent. The loss function, typically cross-entropy loss, is minimized to update the
model’s parameters:

L(θ) = −
N∑
i=1

yi log(ŷi) (1062)

where ŷi is the predicted probability for the correct token yi, and N is the length of the sequence.
The parameters θ are updated iteratively through gradient descent, adjusting the weights to mini-
mize the error.

In summary, chatbots and conversational AI systems are grounded in a rich mathematical frame-
work involving statistics, linear algebra, optimization, and neural networks. Each step, from lan-
guage modeling to dialogue management, relies on carefully constructed mathematical foundations
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that drive the ability of machines to interact intelligently and meaningfully with humans. Through
advancements in deep learning and optimization techniques, conversational AI continues to push
the boundaries of what machines can understand and generate in natural language, leading to more
sophisticated, human-like interactions.

14 Deep Learning Frameworks

14.1 TensorFlow

Literature Review: Takhsha et. al. (2025) [283] introduced a TensorFlow-based framework for
medical deep learning applications. The authors propose a novel deep learning diagnostic system
that integrates Choquet integral theory with TensorFlow-based models, improving the explain-
ability of deep learning decisions in medical imaging. Singh and Raman (2025) [284] extended
TensorFlow to Graph Neural Networks (GNNs), discussing how TensorFlow’s computational graph
structure aligns with graph theory. It provides a rigorous mathematical foundation for applying
deep learning to non-Euclidean data structures. Yao et. al. (2024) [285] critically analyzed Tensor-
Flow’s vulnerabilities to adversarial attacks and introduces a robust deep learning ensemble frame-
work. The authors explore autoencoder-based anomaly detection using TensorFlow to enhance
cybersecurity defenses. Chen et. al. (2024) [286] provided an extensive comparison of TensorFlow
pretrained models for various big data applications. It discusses techniques like transfer learning,
fine-tuning, and self-supervised learning, emphasizing how TensorFlow automates hyperparameter
tuning. Dumić (2024) [287] wrote as a rigorous educational resource, guiding learners through
neural network construction using TensorFlow. It bridges the gap between deep learning theory
and TensorFlow’s practical implementation, emphasizing gradient descent, backpropagation, and
weight initialization. Bajaj et. al. (2024) [288] implemented CNNs for handwritten digit recogni-
tion using TensorFlow and provides a rigorous mathematical breakdown of convolution operations,
activation functions, and optimization techniques. It highlights TensorFlow’s computational ef-
ficiency in large-scale character recognition tasks. Abbass and Fyath (2024) [289] introduced a
TensorFlow-based framework for optical fiber communication modeling. It explores how deep
learning can optimize fiber optic transmission efficiency by using TensorFlow for predictive analyt-
ics and channel equalization. Prabha et. al. (2024) [290] rigorously analyzed TensorFlow’s role in
precision agriculture, focusing on time-series analysis, computer vision, and reinforcement learning
for crop monitoring. It delves into TensorFlow’s API optimizations for handling sensor data and
remote sensing images. Abdelmadjid and Abdeldjallil (2024) [291] examined TensorFlow Lite for
edge computing, rigorously testing optimized CNN architectures on low-power devices. It provides
a theoretical comparison of computational efficiency, energy consumption, and model accuracy
in resource-constrained environments. Mlambo (2024) [292] bridged Bayesian inference and deep
learning, providing a rigorous derivation of Bayesian Neural Networks (BNNs) implemented in Ten-
sorFlow. It explores how TensorFlow integrates probabilistic models with deep learning frameworks.

TensorFlow operates primarily on tensors, which are multi-dimensional arrays generalizing scalars,
vectors, and matrices. For instance, a scalar is a rank-0 tensor, a vector is a rank-1 tensor, a matrix
is a rank-2 tensor, and tensors of higher ranks represent multi-dimensional arrays. These tensors
can be written mathematically as:

T ∈ Rd1×d2×···×dn (1063)

where d1, d2, . . . , dn represent the dimensions of the tensor. TensorFlow leverages efficient tensor
operations that allow the manipulation of large-scale data in a computationally optimized manner.
These operations are the foundation of all the transformations and calculations within TensorFlow
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models. For example, the dot product of two vectors a⃗ and b⃗ is a scalar:

a⃗ · b⃗ =
n∑

i=1

aibi (1064)

Similarly, for matrices, operations like matrix multiplication A · B are highly optimized, taking
advantage of batch processing and parallelism on devices such as GPUs and TPUs. TensorFlow’s
underlying libraries, such as Eigen, employ these parallel strategies to optimize memory usage and
reduce computation time. The heart of TensorFlow’s efficiency lies in its computation graph, which
represents the relationships between different operations. The computation graph is a directed
acyclic graph (DAG) where nodes represent computational operations, and the edges represent the
flow of data (tensors). Each operation in the graph is a function, f , that maps a set of inputs to
an output tensor:

y = f(x1, x2, . . . , xn) (1065)

The graph is built by users or automatically by TensorFlow, where the nodes represent operations
such as addition, multiplication, or more complex transformations. Once the computation graph is
defined, TensorFlow optimizes the graph by reordering computations, applying algebraic transfor-
mations, or parallelizing independent subgraphs. The graph is executed either in a dynamic manner
(eager execution) or after optimization (static graph execution), depending on the user’s preference.
Automatic differentiation is another key feature of TensorFlow, and it relies on the chain rule of
differentiation to compute gradients. The gradient of a scalar-valued function f(x1, x2, . . . , xn) with
respect to an input tensor xi is computed as:

∂f

∂xi
=

n∑
j=1

∂f

∂yj

∂yj
∂xi

(1066)

where yj represents intermediate variables computed during the forward pass of the network. In
the context of a neural network, this chain rule is used to propagate errors backward from the
output to the input layers during the backpropagation process, where the objective is to update
the network’s weights to minimize the loss function L. Consider a neural network with a simple
architecture, consisting of an input layer, one hidden layer, and an output layer. Let X represent
the input tensor, W1 and b1 the weights and biases of the hidden layer, and W2 and b2 the weights
and biases of the output layer. The forward pass can be written as:

h = σ(W1X + b1) (1067)

ŷ = W2h+ b2 (1068)

where σ is the activation function, such as the ReLU function σ(x) = max(0, x), and ŷ is the
predicted output. The objective in training a model is to minimize a loss function L(ŷ, y), where
y represents the true labels. The loss function can take different forms, such as the mean squared
error for regression tasks:

L(ŷ, y) =
1

N

N∑
i=1

(yi − ŷi)2 (1069)

or the cross-entropy loss for classification tasks:

L(ŷ, y) = −
C∑
i=1

yi log(ŷi) (1070)

where C is the number of classes, and ŷi is the predicted probability of class i under the softmax
function. The optimization of this loss function requires the computation of the gradients of L with
respect to the model parameters W1, b1,W2, b2. This is achieved through backpropagation, which
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applies the chain rule iteratively through the layers of the network. To perform optimization,
TensorFlow employs algorithms like Gradient Descent (GD). The basic gradient descent update
rule for parameters θ is:

θt+1 = θt − η∇θL(θ) (1071)

where η is the learning rate, and ∇θL(θ) represents the gradient of the loss function with respect
to the model parameters θ. Variants of gradient descent, such as Stochastic Gradient Descent
(SGD), update the parameters using a subset (mini-batch) of the training data rather than the
entire dataset:

θt+1 = θt − η∇θ
1

m

m∑
i=1

L(θ, xi, yi) (1072)

where m is the batch size, and (xi, yi) are the data points in the mini-batch. More sophisticated
optimizers like Adam (Adaptive Moment Estimation) use both momentum (first moment) and
scaling (second moment) to adapt the learning rate for each parameter. The update rule for Adam
is:

mt = β1mt−1 + (1− β1)∇θL(θ) (1073)

vt = β2vt−1 + (1− β2)(∇θL(θ))2 (1074)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(1075)

θt+1 = θt − η
m̂t√
v̂t + ϵ

(1076)

where β1 and β2 are the exponential decay rates, and ϵ is a small constant to prevent division by
zero. The inclusion of both the first and second moments allows Adam to adaptively adjust the
learning rate, speeding up convergence. In addition to standard optimization methods, TensorFlow
supports distributed computing, enabling model training across multiple devices, such as GPUs and
TPUs. In a distributed setting, the model’s parameters are split across different workers, each
handling a portion of the data. The gradients computed by each worker are averaged, and the
global parameters are updated:

θt+1 = θt − η
1

N

N∑
i=1

∇θLi(θ) (1077)

where Li(θ) is the loss computed on the i-th device, and N is the total number of devices. Tensor-
Flow’s efficient parallelism ensures that large-scale data processing tasks can be carried out with
high computational throughput, thus speeding up model training on large datasets.

TensorFlow also facilitates model deployment on different platforms. TensorFlow Lite enables
model inference on mobile devices by converting trained models into optimized, smaller formats.
This process involves quantization, which reduces the precision of the weights and activations,
thereby reducing memory consumption and computation time. The conversion process aims to
balance model accuracy and performance, ensuring that deep learning models can run efficiently
on resource-constrained devices like smartphones and IoT devices. For web applications, TensorFlow
offers TensorFlow.js, which allows users to run machine learning models directly in the browser,
leveraging the computational power of the client-side GPU or CPU. This is particularly useful for
real-time interactions where low-latency predictions are required without sending data to a server.
Moreover, TensorFlow provides an ecosystem that extends beyond basic machine learning tasks.
For instance, TensorFlow Extended (TFX) supports the deployment of machine learning models
in production environments, automating the steps from model training to deployment. Tensor-
Flow Probability supports probabilistic modeling and uncertainty estimation, which are critical in
domains such as reinforcement learning and Bayesian inference.
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14.2 PyTorch

Literature Review: Galaxy Yanshi Team of Beihang University [293] examined the use of Py-
Torch as a deep learning framework for real-time astronaut facial recognition in space stations.
It explores the Bayesian coding theory within PyTorch models and its significance in optimizing
neural network architectures. It provides a theoretical exploration of probability distributions in
PyTorch models, demonstrating how deep learning can be used in constrained computational envi-
ronments. Tabel (2024) [294] extended PyTorch to Spiking Neural Networks (SNNs), a biologically
inspired neural network type. It details a new theoretical approach for learning spike timings us-
ing PyTorch’s computational graph. The paper bridges neuromorphic computing and PyTorch’s
automatic differentiation, expanding the theory behind temporal deep learning. Naderi et. al.
(2024) [295] introduced a hybrid physics-based deep learning framework that integrates discrete
element modeling (DEM) with PyTorch-based networks. It demonstrates how physical simula-
tion problems can be formulated as deep learning models in PyTorch, providing new insights into
neural solvers for scientific computing. Polaka (2024) [296] evaluated reinforcement learning (RL)
theories within PyTorch, exploring the mathematical rigor of RL frameworks in safe AI applica-
tions. The author provided a strong theoretical foundation for understanding deep reinforcement
learning (DeepRL) in PyTorch, emphasizing how state-of-the-art RL theories are embedded in
the framework. Erdogan et. al. (2024) [297] explored the theoretical framework for reducing
stochastic communication overheads in large-scale recommendation systems built using PyTorch.
It introduced an optimized gradient synchronization method that can enhance PyTorch-based deep
learning models for distributed computing. Liao et. al. (2024) [298] extended the Iterative Partial
Diffusion Model (IPDM) framework, implemented in PyTorch, for medical image processing and
advanced the theory of deep generative models in PyTorch, specifically in diffusion-based learning
techniques. Sekhavat et. al. (2024) [299] examined the theoretical intersection between deep learn-
ing in PyTorch and artificial intelligence creativity, referencing Nietzschean philosophical concepts.
The author also explored how PyTorch enables neural creativity and provides a rigorous theoretical
model for computational aesthetics. Cai et. al. (2025) [300] developed a new theoretical framework
for explainability in neural networks using Shapley values, implemented in PyTorch and enhanced
the mathematical rigor of explainable AI (XAI) using PyTorch’s autograd system to analyze feature
importance. Na (2024) [301] proposed a novel ensemble learning theory using PyTorch, specifically
in weakly supervised learning (WSL). The paper extends Bayesian learning models in PyTorch for
handling sparse labeled data, addressing critical gaps in WSL. Khajah (2024) [302] combined item
response theory (IRT) and Bayesian knowledge tracing (BKT) using PyTorch to model generaliz-
able skill discovery. This study presents a rigorous statistical theory for adaptive learning systems
using PyTorch’s probabilistic programming capabilities.

The dynamic computation graph in PyTorch forms the core of its ability to perform efficient
and flexible machine learning tasks, especially deep learning models. To understand the underly-
ing mathematical and computational principles, we must explore how the graph operates, what it
represents, and how it changes during the execution of a machine learning program. Unlike the
static computation graphs employed in frameworks like TensorFlow (pre-Eager execution mode),
PyTorch constructs the computation graph dynamically, as the operations are performed in the
forward pass. This allows PyTorch to adapt to various input sizes, model structures, and control
flows that can change during execution. This adaptability is essential in enabling PyTorch to han-
dle models like recurrent neural networks (RNNs), which operate on sequences of varying lengths,
or models that incorporate conditionals in their computation steps.

The computation graph itself can be mathematically represented as a directed acyclic graph
(DAG), where the nodes represent operations and intermediate results, while the edges represent
the flow of data between these nodes. Each operation (e.g., addition, multiplication, or non-linear
activation) is applied to tensors, and the outputs of these operations are used as inputs for subse-
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quent operations. The central feature of PyTorch’s dynamic computation graph is its construction
at runtime. For instance, when a tensor A is created, it might be involved in a series of operations
that eventually lead to the calculation of a loss function L. As each operation is executed, PyTorch
constructs an edge from the node representing the input tensor A to the node representing the
output tensor B. Mathematically, the transformation between these tensors can be described by:

B = f(A; θ) (1078)

where f represents the transformation function (which could be a linear or nonlinear operation),
and θ represents the parameters involved in this transformation (e.g., weights or biases in the
case of neural networks). The construction of the dynamic graph allows PyTorch to deal with
variable-length sequences, which are common in tasks such as time-series prediction, nat-
ural language processing (NLP), and speech recognition. The length of the sequence can
change depending on the input data, and thus, the number of iterations or layers required in the
computation will also vary. In a recurrent neural network (RNN), for example, the hidden
state ht at each time step t is a function of the previous hidden state ht−1 and the input at the
current time step xt. This can be described mathematically as:

ht = f(Whht−1 + Wxxt + b) (1079)

where f is typically a non-linear activation function (e.g., a hyperbolic tangent or a sigmoid), and
Wh,Wx,b represent the weight matrices and bias vector, respectively. This equation encapsulates
the recursive nature of RNNs, where each output depends on the previous output and the current
input. In a static computation graph, the number of operations for each sequence would need to
be predefined, leading to inefficiency when sequences of different lengths are processed. However,
in PyTorch, the computation graph is created dynamically for each sequence, which allows for the
efficient handling of varying-length sequences and avoids redundant computation.

The key to PyTorch’s efficiency lies in automatic differentiation, which is managed by its au-
tograd system. When a tensor A has the property requires grad=True, PyTorch starts tracking
all operations performed on it. Suppose that the tensor A is involved in a sequence of operations
to compute a scalar loss L. For example, if the loss is a function of Y, the output tensor, which is
computed through multiple layers, the objective is to find the gradient of L with respect to A. This
requires the computation of the Jacobian matrix, which represents the gradient of each component
of Y with respect to each component of A. Using the chain rule of differentiation, the gradient of
the loss with respect to A is given by:

∂L
∂A

=
∑
i

∂L
∂Yi

· ∂Yi

∂A
(1080)

This is an application of the multivariable chain rule, where ∂L
∂Yi

represents the gradient of the

loss with respect to the output tensor at the i-th component, and ∂Yi

∂A
is the Jacobian matrix for the

transformation from A to Y. This computation is achieved by backpropagating the gradients
through the computation graph that PyTorch builds dynamically. Every operation node in the
graph has an associated gradient, which is propagated backward through the graph as we move
from the loss back to the input parameters. For example, if Y = A · B, the gradient of the loss
with respect to A would be:

∂L
∂A

=
∂L
∂Y
·BT (1081)

Similarly, the gradient with respect to B would be:

∂L
∂B

=
∂L
∂Y
·AT (1082)
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This shows how the gradients are passed backward through the computation graph, utilizing the
stored operations at each node to calculate the required derivatives. The advantage of this dy-
namic construction of the graph is that it does not require the entire graph to be constructed
beforehand, as in the static graph approach. Instead, the graph is dynamically updated as op-
erations are executed, making it both more memory-efficient and computationally efficient.
An important feature of PyTorch’s dynamic graph is its ability to handle conditionals within the
computation. Consider a case where we have different branches in the computation based on a
conditional statement. In a static graph, such conditionals would require the entire graph to be
predetermined, including all possible branches. In contrast, PyTorch constructs the relevant part
of the graph depending on the input data, effectively enabling a branching computation. For
instance, suppose that we have a decision-making process in a neural network model, where the
output depends on whether an input tensor exceeds a threshold xi > t:

yi =

{
A · xi + b if xi > t

C · xi + d otherwise
(1083)

In a static graph, we would have to design two separate branches and potentially deal with the
computational cost of unused branches. In PyTorch’s dynamic graph, only the relevant branch is
executed, and the graph is updated accordingly to reflect the necessary operations. The mem-
ory efficiency in PyTorch’s dynamic graph construction is particularly evident when handling
large models and training on large datasets. When building models like deep neural networks
(DNNs), the operations performed on each tensor during both the forward and backward passes
are recorded in the computation graph. This allows for efficient reuse of intermediate results, and
only the necessary memory is allocated for each tensor during the graph’s construction. This stands
in contrast to static computation graphs, where the full graph needs to be defined and memory
allocated up front, potentially leading to unnecessary memory consumption.

To summarize, the dynamic computation graph in PyTorch is a powerful tool that allows
for flexible model building and efficient computation. By constructing the graph incrementally
during the execution of the forward pass, PyTorch is able to dynamically adjust to the input size,
control flow, and variable-length sequences, leading to more efficient use of memory and computa-
tional resources. The autograd system enables automatic differentiation, applying the chain
rule of calculus to compute gradients with respect to all model parameters. This flexibility is a key
reason why PyTorch has gained popularity for deep learning research and production, as it com-
bines high performance with flexibility and transparency, allowing researchers and engineers
to experiment with dynamic architectures and complex control flows without sacrificing efficiency.

14.3 JAX

Literature Review: Li et. al. (2024) [313] introduced JAX-based differentiable density func-
tional theory (DFT), enabling end-to-end differentiability in materials science simulations. This
paper extends machine learning theory into quantum chemistry by leveraging JAX’s automatic dif-
ferentiation and parallelization capabilities for efficient optimization of density functional models.
Bieberich and Li (2024) [314] explored quantum machine learning (QML) using JAX and Diffrax
to solve neural differential equations efficiently. They developed a new theoretical model for quan-
tum neural ODEs and discussed how JAX facilitates efficient GPU-based quantum simulations.
Dagréou et. al. (2024) [315] analyzed the efficiency of Hessian-vector product (HVP) computation
in JAX and PyTorch for deep learning. They established a mathematical foundation for computing
second-order derivatives in deep learning and optimization, showcasing JAX’s superior automatic
differentiation. Lohoff and Neftci (2025) [316] developed a deep reinforcement learning (DRL)
model that optimizes JAX’s autograd engine for scientific computing. They demonstrated how
reinforcement learning improves computational efficiency in JAX through a theoretical framework
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that eliminates redundant computations in deep learning. Legrand et. al. (2024) [317] introduced
a JAX and Rust-based deep learning library for predictive coding networks (PCNs). They explored
theoretical extensions of neural networks beyond traditional backpropagation, providing a formal-
ized framework for hierarchical generative models. Alzás and Radev (2024) [318] used JAX to create
differentiable models for nuclear reactions, demonstrating its power in high-energy physics simu-
lations. They established a new differentiable framework for theoretical physics, utilizing JAX’s
gradient-based optimization to improve nuclear physics modeling. Edenhofer et. al. (2024) [319]
developed a Gaussian Process and Variational Inference framework in JAX, extending traditional
Bayesian methods. They bridged statistical physics and deep learning, formulating a theoretical
link between Gaussian processes and deep neural networks using JAX. Chan et. al. (2024) [320]
proposed a JAX-based quantum machine learning framework for long-tailed X-ray classification.
They introduced a novel quantum transfer learning technique within JAX, demonstrating its ad-
vantages over classical deep learning models in medical imaging. Ye et. al. (2025) [321] used JAX
to model electron transfer kinetics, bridging deep learning and density functional theory (DFT).
They developed a new theoretical framework for modeling charge transfer reactions, leveraging
JAX’s high-performance computation for quantum chemistry applications. Khan et. al. (2024)
[322] extended NODEs using JAX’s efficient autodiff capabilities for high-dimensional dynamical
systems. They established a rigorous mathematical framework for extending NODEs to stochastic
and chaotic systems, leveraging JAX’s high-speed parallelization.

JAX is an advanced numerical computing framework designed to optimize high-performance scien-
tific computing tasks with particular emphasis on automatic differentiation, hardware acceleration,
and just-in-time (JIT) compilation. These capabilities are essential for applications in machine
learning, optimization, physical simulations, and computational science, where large-scale, high-
dimensional computations must be executed with both speed and efficiency. At its core, JAX
integrates a deep mathematical structure based on advanced concepts in linear algebra, optimiza-
tion theory, tensor calculus, and numerical differentiation, providing the foundation for scalable
computations across multi-core CPUs, GPUs, and TPUs. The framework leverages the power of
reverse-mode differentiation and JIT compilation to significantly reduce computation time while
ensuring correctness and accuracy. The following rigorous exploration will dissect these operations
mathematically and conceptually, explaining their inner workings and theoretical implications.

JAX’s automatic differentiation is central to its ability to compute gradients, Jacobians, Hes-
sians, and other derivatives efficiently. For many applications, the function of interest involves
computing gradients with respect to model parameters in optimization and machine learning tasks.
Automatic differentiation allows for the efficient computation of these gradients using the reverse-
mode differentiation technique. Let us consider a function f : Rn → Rm, and suppose we wish to
compute the gradient of the scalar-valued output with respect to each input variable. The gradient
of f , denoted as ∇xf , is a vector of partial derivatives:

∇xf(x) =

(
∂f1
∂x1

,
∂f1
∂x2

, . . . ,
∂f1
∂xn

, . . . ,
∂fm
∂xn

)
, (1084)

where f = (f1, f2, . . . , fm) represents a vector of m scalar outputs, and x = (x1, x2, . . . , xn) repre-
sents the input vector. Reverse-mode differentiation computes this gradient by applying the chain
rule in reverse order. If f is composed of several intermediate functions, say f = g ◦ h, where
g : Rm → Rp and h : Rn → Rm, the gradient of f with respect to x is computed recursively by
applying the chain rule:

∇xf(x) =

(
∂g

∂h

)
·
(
∂h

∂x1
,
∂h

∂x2
, . . . ,

∂h

∂xn

)
. (1085)

This recursive application of the chain rule ensures that each intermediate gradient computation is
propagated backward through the function’s layers, reducing the number of required passes com-
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pared to forward-mode differentiation. This technique becomes particularly beneficial for functions
where the number of outputs m is much smaller than the number of inputs n, as it minimizes the
computational complexity. In the context of JAX, automatic differentiation is utilized through func-
tions like jax.grad, which can be applied to scalar-valued functions to return their gradients with
respect to vector-valued inputs. To compute higher-order derivatives, such as the Hessian matrix,
JAX allows for the computation of second- and higher-order derivatives using similar principles.
The Hessian matrix H of a scalar function f(x) is given by the matrix of second derivatives:

H =

(
∂2f

∂xi∂xj

)
, (1086)

which is computed by applying the chain rule once again. The second-order derivatives can be
computed efficiently by differentiating the gradient once more, and this process can be extended
to higher-order derivatives by continuing the recursive application of the chain rule. A central
concept in JAX’s approach to high-performance computing is JIT (just-in-time) compilation,
which provides substantial performance gains by compiling Python functions into optimized ma-
chine code tailored to the underlying hardware architecture. JIT compilation in JAX is built on the
foundation of the XLA (Accelerated Linear Algebra) compiler. XLA optimizes the execution
of tensor operations by fusing multiple operations into a single kernel, thereby reducing the overhead
associated with launching individual computation kernels. This technique is particularly effective
for matrix multiplications, convolutions, and other tensor operations commonly found in machine
learning tasks. For example, consider a simple sequence of operations f = Op1(Op2(. . . (Opn(x)))),
where Opi represents different mathematical operations applied to the input tensor x. Without
optimization, each operation would typically be executed separately, introducing significant over-
head. JAX’s JIT compiler, however, recognizes this sequence and applies a fusion transformation,
resulting in a single composite operation:

Optimized(f(x)) = Fused Op(x), (1087)

where Fused Op represents a highly optimized version of the original sequence of operations. This
optimization minimizes the number of kernel launches and reduces memory access overhead, which
in turn accelerates the computation. The JIT compiler analyzes the computational graph of the
function and identifies opportunities to combine operations into a more efficient form, ultimately
speeding up the computation on hardware accelerators such as GPUs or TPUs.

The vectorization capability provided by JAX through the jax.vmap operator is another essen-
tial optimization for high-performance computing. This feature automatically vectorizes functions
across batches of data, allowing the same operation to be applied in parallel across multiple data
points. Mathematically, for a function f : Rn → Rm and a batch of inputs X ∈ RB×n, the vectorized
function can be expressed as:

Y = vmap(f)(X), (1088)

where B is the batch size and Y is the matrix in RB×m, containing the results of applying f to
each row of X. The mathematical operation applied by JAX is the same as applying f to each
individual row Xi, but with the benefit that the entire batch is processed in parallel, exploiting
the available hardware resources efficiently. The ability to parallelize computations across
multiple devices is one of JAX’s strongest features, and it is enabled through the jax.pmap

operator. This operator allows for the parallel execution of functions across different devices, such
as multiple GPUs or TPUs. Suppose we have a function f : Rn → Rm and a batch of inputs
X = (X1,X2, . . . ,Xp), distributed across p devices. The parallelized execution of the function can
be written as:

Y = pmap(f)(X), (1089)

where each device independently computes its portion of the computation f(Xi), and the results
are gathered into the final output Y. This capability is essential for large-scale distributed training
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of machine learning models, where the model’s parameters and data must be distributed across
multiple devices to ensure efficient training. The parallelization effectively reduces computation
time, as each device operates on a distinct subset of the data and model parameters. GPU/TPU
acceleration is another crucial aspect of JAX’s performance, and it is facilitated by libraries like
cuBLAS for GPUs, which are specifically designed to optimize matrix operations. The primary
operation used in many numerical computing tasks is matrix multiplication, and JAX optimizes
this by leveraging hardware-accelerated implementations of these operations. Consider the matrix
multiplication of two matrices A and B, where A ∈ Rn×m and B ∈ Rm×p, resulting in a matrix
C ∈ Rn×p:

C = A×B. (1090)

Using cuBLAS or a similar library, JAX can execute this operation on a GPU, utilizing the massive
parallel processing power of the hardware to perform the multiplication efficiently. This operation
can be further optimized by considering the specific memory hierarchies of GPUs, where large
matrix multiplications are broken down into smaller tiles that fit into the GPU’s high-speed mem-
ory. This technique minimizes memory bandwidth constraints, accelerating the computation. In
addition to these core operations, JAX allows for the definition of custom gradients using the
jax.custom jvp decorator, which enables users to specify the Jacobian-vector products (JVPs)
manually for more efficient gradient computation. This feature is especially useful in machine
learning applications, where certain operations might have custom gradients that cannot be com-
puted automatically. For instance, in a non-trivial activation function such as the softmax, the
custom gradient function might be provided explicitly for efficiency:

∂softmax(x)

∂x
= diag(softmax(x))− softmax(x) · softmax(x)T . (1091)

Thus, JAX allows for both flexibility and performance, enabling scientific computing applications
that require both efficiency and the ability to define complex, custom derivatives.

By providing advanced capabilities such as automatic differentiation, JIT compilation, vector-
ization, parallelization, hardware acceleration, and custom gradients, JAX is equipped to handle a
wide range of high-performance computing tasks, making it an invaluable tool for solving complex
scientific and engineering problems. The framework not only ensures the correctness of numerical
methods but also leverages the power of modern hardware to achieve performance that is crucial
for large-scale simulations, machine learning, and optimization tasks.

15 Appendix

15.1 Linear Algebra Essentials

15.1.1 Matrices and Vector Spaces

Definition of a Matrix: A matrix A is a rectangular array of numbers (or elements from a field
F), arranged in rows and columns:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ∈ Fm×n (1092)

where aij denotes the entry of A at the i-th row and j-th column. A square matrix is one where
m = n. A matrix is diagonal if all off-diagonal entries are zero. For matrices A ∈ Fm×n and
B ∈ Fm×n the following are the matrix operations:
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• Addition: Defined entrywise:
(A+B)ij = Aij +Bij (1093)

• Scalar Multiplication: For α ∈ F,

(αA)ij = α · Aij (1094)

• Matrix Multiplication: If A ∈ Fm×p and B ∈ Fp×n, then the product C = AB is given by:

Cij =

p∑
k=1

AikBkj (1095)

This is only defined when the number of columns of A equals the number of rows of B.

• Transpose: The transpose of A, denoted AT , satisfies:

(AT )ij = Aji (1096)

• Determinant: If A ∈ Fn×n, then its determinant is given recursively by:

det(A) =
n∑

j=1

(−1)1+ja1j det(A1j) (1097)

where A1j is the (n − 1) × (n − 1) submatrix obtained by removing the first row and j-th
column.

• Inverse: A square matrix A is invertible if there exists A−1 such that:

AA−1 = A−1A = I (1098)

where I is the identity matrix.

15.1.2 Vector Spaces and Linear Transformations

Vector Spaces A vector space over a field F is a set V with two operations:

• Vector Addition: v + w for v,w ∈ V

• Scalar Multiplication: αv for α ∈ F and v ∈ V

satisfying the 8 vector space axioms (associativity, commutativity, existence of identity, etc.).
A set {v1,v2, . . . ,vn} is a basis if:

• It is linearly independent:

n∑
i=1

αivi = 0⇒ αi = 0,∀i (1099)

• It spans V , meaning every v ∈ V can be written as:

v =
n∑

i=1

βivi (1100)

The dimension of V , denoted dim(V ), is the number of basis vectors. Linear Transformations:
A function T : V → W is linear if:

T (αv + βw) = αT (v) + βT (w) (1101)

The matrix representation of T is the matrix A such that:

T (x) = Ax (1102)
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15.1.3 Eigenvalues and Eigenvectors

Definition: For a square matrix A ∈ Fn×n, an eigenvalue λ and eigenvector v ̸= 0 satisfy:

Av = λv (1103)

Characteristic Equation: The eigenvalues are found by solving:

det(A− λI) = 0 (1104)

which gives an n-th degree polynomial in λ. The set of all solutions v to (A− λI)v = 0 is the
eigenspace associated with λ.

15.1.4 Singular Value Decomposition (SVD)

Definition: For any A ∈ Fm×n, the Singular Value Decomposition (SVD) states:

A = UΣV T (1105)

where U ∈ Fm×m is orthogonal (UTU = I), V ∈ Fn×n is orthogonal (V TV = I), Σ is an m× n
diagonal matrix:

Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr

 (1106)

where σi are the singular values, given by:

σi =
√
λi (1107)

where λi are the eigenvalues of ATA.

15.2 Probability and Statistics

15.2.1 Probability Distributions

A probability distribution is a mathematical function that provides the probabilities of occur-
rence of different possible outcomes in an experiment. A random variable X can take values from
a sample space S, and the probability distribution describes how the probabilities are distributed
over these possible outcomes.

Discrete Probability Distributions: For a discrete random variable X, which takes values
from a countable set, the probability mass function (PMF) is defined as:

P (X = xi) = p(xi), ∀xi ∈ S (1108)

The PMF satisfies the following properties:

• 0 ≤ p(xi) ≤ 1 for each xi ∈ S.

• The sum of probabilities across all possible outcomes is 1:∑
xi∈S

p(xi) = 1 (1109)
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An example of a discrete probability distribution is the binomial distribution, which describes
the number of successes in a fixed number of independent Bernoulli trials. The PMF for the
binomial distribution is:

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n (1110)

Where n is the number of trials, p is the probability of success on each trial, and k is the number
of successes.

Continuous Probability Distributions: For a continuous random variable X, which takes
values from a continuous set (e.g., the real line), the probability density function (PDF) is used
instead of the PMF. The PDF f(x) is defined such that for any interval [a, b], the probability that
X lies in this interval is:

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx (1111)

The PDF must satisfy:

• f(x) ≥ 0 for all x.

• The total probability over the entire range of X is 1:∫ ∞

−∞
f(x) dx = 1 (1112)

An example of a continuous probability distribution is the normal distribution, which is given
by the PDF:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R (1113)

Where µ is the mean and σ2 is the variance of the distribution.

15.2.2 Bayes’ Theorem

Bayes’ theorem describes the probability of an event, based on prior knowledge of conditions that
might be related to the event. It is a fundamental result in the field of probability theory and
statistics.

Let A and B be two events. Then, Bayes’ theorem gives the conditional probability of A given B:

P (A|B) =
P (B|A)P (A)

P (B)
(1114)

where P (A|B) is the posterior probability of A given B, P (B|A) is the likelihood, the probability
of observing B given A, P (A) is the prior probability of A, P (B) is the marginal likelihood of B,
computed as:

P (B) =
∑
i

P (B|Ai)P (Ai) (1115)

In the continuous case, Bayes’ theorem is written as:

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)∫
P (B|A′)P (A′) dA′ (1116)

This allows one to update beliefs about a hypothesis A based on observed evidence B. Let us
consider a diagnostic test for a disease. Let A be the event that a person has the disease and B
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be the event that the test is positive. We are interested in the probability that a person has the
disease given that the test is positive, i.e., P (A|B). By Bayes’ theorem, we have:

P (A|B) =
P (B|A)P (A)

P (B)
(1117)

where P (B|A) is the probability of a positive test result given that the person has the disease
(sensitivity), P (A) is the prior probability of having the disease, P (B) is the total probability of a
positive test result.

15.2.3 Statistical Measures

Statistical measures summarize the properties of data or a probability distribution. Some key sta-
tistical measures are the mean, variance, standard deviation, and skewness.

A statistical measure is a function M : S → R that assigns a real-valued quantity to an el-
ement in a statistical space S, where S can represent a dataset, a probability distribution, or a
stochastic process. Mathematically, a statistical measure must satisfy certain properties such as
measurability, invariance under transformation, and convergence consistency in order to
be well-defined. Statistical measures can be broadly classified into:

1. Measures of Central Tendency (e.g., mean, median, mode)

2. Measures of Dispersion (e.g., variance, standard deviation, interquartile range)

3. Measures of Shape (e.g., skewness, kurtosis)

4. Measures of Association (e.g., covariance, correlation)

5. Information-Theoretic Measures (e.g., entropy, mutual information)

Each of these measures provides different insights into the characteristics of a dataset or a prob-
ability distribution. There are several Measures of Central Tendency. Given a probability space
(Ω,F , P ) and a random variable X : Ω→ R, the expectation (or mean) is defined as:

E[X] =

∫
Ω

X(ω)dP (ω) (1118)

If X is a discrete random variable with probability mass function p(x), then:

E[X] =
∑
x∈R

xp(x) (1119)

If X is a continuous random variable with probability density function f(x), then:

E[X] =

∫ ∞

−∞
xf(x)dx (1120)

The median m of a probability distribution is defined as:

P (X ≤ m) ≥ 1

2
, P (X ≥ m) ≥ 1

2
(1121)

In terms of the cumulative distribution function F (x), the median m satisfies:

F (m) =
1

2
(1122)
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The mode is defined as the point xm that maximizes the probability density function:

xm = arg max
x

f(x) (1123)

The variance σ2 of a random variable X is given by:

Var(X) = E[(X − E[X])2] (1124)

Expanding this expression:
Var(X) = E[X2]− (E[X])2 (1125)

The standard deviation σ is defined as the square root of the variance:

σ =
√

Var(X) (1126)

If Q1 and Q3 denote the first and third quartiles of a dataset (where Q1 is the 25th percentile and
Q3 is the 75th percentile), then the interquartile range is:

IQR = Q3 −Q1 (1127)

The skewness of a random variable X is defined as:

γ1 =
E[(X − E[X])3]

σ3
(1128)

It quantifies the asymmetry of the probability distribution. The kurtosis is given by:

γ2 =
E[(X − E[X])4]

σ4
(1129)

A normal distribution has γ2 = 3, and deviations from this indicate whether a distribution has
heavy or light tails. There are several Measures of Association. The Covariance is defined as
follows: Given two random variables X and Y , their covariance is:

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] (1130)

Expanding:
Cov(X, Y ) = E[XY ]− E[X]E[Y ] (1131)

The Pearson Correlation Coefficient defined as:

ρ(X, Y ) =
Cov(X, Y )

σXσY
(1132)

where σX and σY are the standard deviations of X and Y , respectively. The Information-Theoretic
Measure is Entropy which is defined as the entropy of a discrete probability distribution p(x) is
given by:

H(X) = −
∑
x

p(x) log p(x) (1133)

For continuous distributions with density f(x), the differential entropy is:

h(X) = −
∫ ∞

−∞
f(x) log f(x) dx (1134)

Given two random variables X and Y , their mutual information is:

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (1135)

which measures how much knowing X reduces uncertainty about Y . Statistical Measures satisfy
Linearity and Invariance i.e.
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• Expectation is linear:
E[aX + bY ] = aE[X] + bE[Y ] (1136)

• Variance is translation invariant but scales quadratically:

Var(aX + b) = a2Var(X) (1137)

For the Convergence and Asymptotic Behavior, The law of large numbers ensures that empirical
means converge to the expected value, while the central limit theorem states that sums of i.i.d.
random variables converge in distribution to a normal distribution.

The mean or expected value of a random variable X, denoted by E[X], represents the aver-
age value of X. For a discrete random variable:

E[X] =
∑
xi∈S

xip(xi) (1138)

For a continuous random variable, the expected value is given by:

E[X] =

∫ ∞

−∞
xf(x) dx (1139)

The variance of a random variable X, denoted by Var(X), measures the spread or dispersion of
the distribution. For a discrete random variable:

Var(X) = E[X2]− (E[X])2 (1140)

For a continuous random variable:

Var(X) =

∫ ∞

−∞
x2f(x) dx−

(∫ ∞

−∞
xf(x) dx

)2

(1141)

The standard deviation is the square root of the variance and provides a measure of the spread
of the distribution in the same units as the random variable:

SD(X) =
√

Var(X) (1142)

The skewness of a random variable X quantifies the asymmetry of the probability distribution.
It is defined as:

Skew(X) =
E[(X − E[X])3]

(Var(X))3/2
(1143)

A positive skew indicates that the distribution has a long tail on the right, while a negative skew
indicates a long tail on the left. The kurtosis of a random variable X measures the ”tailedness”
of the distribution, i.e., how much of the probability mass is concentrated in the tails. It is defined
as:

Kurt(X) =
E[(X − E[X])4]

(Var(X))2
(1144)

A distribution with high kurtosis has heavy tails, and one with low kurtosis has light tails compared
to a normal distribution.
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15.3 Optimization Techniques

15.3.1 Gradient Descent (GD)

Gradient Descent is an iterative optimization algorithm used to minimize a differentiable function.
The goal is to find the point where the function achieves its minimum value. Mathematically, it
can be formulated as follows. Given a differentiable objective function f : Rn → R, the gradient
descent update rule is:

xk+1 = xk − η∇f(xk) (1145)

where:

• xk ∈ Rn is the current point in the n-dimensional space (iteration index k),

• ∇f(xk) is the gradient of the objective function at xk,

• η is the learning rate (step size).

To analyze the convergence of gradient descent, we assume f is convex and differentiable with
a Lipschitz continuous gradient. That is, there exists a constant L > 0 such that:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rn. (1146)

This property ensures the gradient of f does not change too rapidly, which allows us to bound the
convergence rate. The following is an upper bound on the decrease in the function value at each
iteration:

f(xk+1)− f(x∗) ≤ (1− ηL)(f(xk)− f(x∗)), (1147)

where x∗ is the global minimum. Thus, we have the following convergence rate:

f(xk)− f(x∗) ≤ (1− ηL)k(f(x0)− f(x∗)). (1148)

For this to converge, we require ηL < 1. Hence, the step size η must be chosen carefully to ensure
convergence.

15.3.2 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent is a variant of gradient descent that approximates the gradient of the
objective function using a randomly chosen subset (mini-batch) of the data at each iteration. This
can significantly reduce the computational cost when the dataset is large.

Let the objective function be the sum of individual functions fi(x) corresponding to each data
point:

f(x) =
1

m

m∑
i=1

fi(x), (1149)

wherem is the number of data points. In Stochastic Gradient Descent, the update rule becomes:

xk+1 = xk − η∇fik(xk), (1150)

where ik is a randomly chosen index at the k-th iteration, and∇fik(x) is the gradient of the function
fik(x) corresponding to that randomly selected data point. The stochastic gradient is given by:

∇fik(xk) = ∇fi(xk). (1151)

Given that the gradient is stochastic, the convergence analysis of SGD is more complex. Assuming
that each fi is convex and differentiable, and using the strong convexity assumption (i.e., there
exists a constant m > 0 such that f satisfies the inequality):

f(x)− f(y) ≥ m∥x− y∥2, ∀x,y ∈ Rn, (1152)
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SGD converges to the optimal solution at a rate of:

E[f(xk)− f(x∗)] ≤ C

k
, (1153)

where C is a constant depending on the step size η, the variance of the stochastic gradients, and
the strong convexity constant m. This slower convergence rate is due to the inherent noise in the
gradient estimates. Variance reduction techniques such as mini-batch SGD (using multiple data
points per iteration) or Momentum (accumulating past gradients) are often employed to improve
convergence speed and stability.

15.3.3 Second-Order Methods

Second-order methods make use of not just the gradient ∇f(x), but also the Hessian matrix
H(x) = ∇2f(x), which is the matrix of second-order partial derivatives of the objective function.
The update rule for second-order methods is:

xk+1 = xk − ηH−1(xk)∇f(xk), (1154)

where H−1(xk) is the inverse of the Hessian matrix.

Second-order methods typically have faster convergence rates compared to gradient descent, par-
ticularly when the function f has well-conditioned curvature. However, computing the Hessian is
computationally expensive, which limits the scalability of these methods. Newton’s method is a
widely used second-order optimization technique that uses both the gradient and the Hessian. The
update rule is given by:

xk+1 = xk − ηH−1(xk)∇f(xk). (1155)

Newton’s method converges quadratically near the optimal point under the assumption that the
objective function is twice continuously differentiable and the Hessian is positive definite. More
formally, if xk is sufficiently close to the optimal point x∗, then the error ∥xk − x∗∥ decreases
quadratically:

∥xk+1 − x∗∥ ≤ C∥xk − x∗∥2, (1156)

where C is a constant depending on the condition number of the Hessian.

Since directly computing the Hessian is expensive, quasi-Newton methods aim to approximate
the inverse Hessian at each iteration. One of the most popular quasi-Newton methods is the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method, which maintains an approximation to the
inverse Hessian, updating it at each iteration. The Summary of what we discussed above are as
follows:

• Gradient Descent (GD): An optimization algorithm that updates the parameter vector in
the direction opposite to the gradient of the objective function. Convergence is guaranteed
under convexity assumptions with an appropriately chosen step size.

• Stochastic Gradient Descent (SGD): A variant of GD that uses a random subset of
the data to estimate the gradient at each iteration. While faster and less computationally
intensive, its convergence is slower and more noisy, requiring variance reduction techniques
for efficient training.

• Second-Order Methods: These methods use the Hessian (second derivatives of the ob-
jective function) to accelerate convergence, often exhibiting quadratic convergence near the
optimum. However, the computational cost of calculating the Hessian restricts their practical
use. Quasi-Newton methods, such as BFGS, approximate the Hessian to improve efficiency.

Each of these methods has its advantages and trade-offs, with gradient-based methods being widely
used due to their simplicity and efficiency, and second-order methods providing faster convergence
but at higher computational costs.
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15.4 Matrix Calculus

15.4.1 Matrix Differentiation

Consider a matrix A of size m × n, where A = [aij]. For the purposes of differentiation, we will
focus on functions f(A) that map matrices to scalars or other matrices. We aim to compute the
derivative of f(A) with respect to A. Let f(A) be a scalar function of the matrix A. The derivative
of this scalar function with respect to A is defined as:

∂f(A)

∂A
=

[
∂f(A)

∂aij

]
(1157)

This is a matrix where the (i, j)-th entry is the partial derivative of the scalar function with respect
to the element aij. Let us take an example of Differentiating the Frobenius Norm. Consider the
Frobenius norm of a matrix A, defined as:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2ij (1158)

To compute the derivative of ∥A∥F with respect to A, we first apply the chain rule:

∂∥A∥F
∂aij

=
2aij

2∥A∥F
=

aij
∥A∥F

(1159)

Thus, the gradient of the Frobenius norm is the matrix A
∥A∥F

. The Matrix Derivatives of Common
Functions are as follows:

• Matrix trace: For a matrix A, the derivative of the trace Tr(A) with respect to A is the
identity matrix:

∂Tr(A)

∂A
= I (1160)

• Matrix product: Let A and B be matrices, and consider the product f(A) = AB. The
derivative of this product with respect to A is:

∂(AB)

∂A
= BT (1161)

• Matrix inverse: The derivative of the inverse of A with respect to A is:

∂(A−1)

∂A
= −A−1

(
∂A

∂A

)
A−1 (1162)

15.4.2 Tensor Differentiation

A tensor is a multi-dimensional array of components that transform according to certain rules
under a change of basis. For simplicity, let’s focus on second-order tensors (which are matrices in
m× n form), but the results can extend to higher-order tensors.

Let T be a tensor, represented by the array of components Ti1,i2,...,ik , where the indices i1, i2, . . . , ik
are the dimensions of the tensor. Let f(T) be a scalar-valued function that depends on the tensor
T. The derivative of this function with respect to the tensor components Ti1,...,ik is given by:

∂f(T)

∂Ti1,...,ik
= Jacobian of f(T) with respect toTi1,...,ik (1163)
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For example, consider a function of a second-order tensor, f(T), where T is a matrix. The dif-
ferentiation rule follows similar principles as matrix differentiation. The Jacobian is computed for
each tensor component in the same fashion, based on the partial derivatives with respect to the
individual tensor components.

Consider a second-order tensor T, and let’s compute the derivative of the Frobenius norm of
T:

∥T∥F =

√ ∑
i1,i2,...,ik

T 2
i1,...,ik

(1164)

Differentiating with respect to Ti1,...,ik , we get:

∂∥T∥F
∂Ti1,...,ik

=
2Ti1,...,ik
2∥T∥F

=
Ti1,...,ik
∥T∥F

(1165)

This is the gradient of the Frobenius norm, where each component Ti1,...,ik is normalized by the
Frobenius norm. For higher-order tensors, differentiation follows the same principles but extends
to multi-indexed components. If T is a third-order tensor, say Ti1,i2,i3 , the differentiation of f(T)
with respect to any component is given by:

∂f(T)

∂Ti1,i2,i3
= Jacobian of f(T) with respect to the multi-index components. (1166)

For the tensor product of two tensors T1 and T2, say of orders p and q, respectively, the product
is another tensor of order p+ q. Differentiation of the tensor product T1 ⊗T2 follows the product
rule:

∂(T1 ⊗T2)

∂T1

= T2,
∂(T1 ⊗T2)

∂T2

= T1 (1167)

This tensor product rule applies for higher-order tensors, where differentiation follows tensor con-
traction rules. The process of differentiating matrices and tensors extends the rules of differenti-
ation to multi-dimensional data structures, with careful application of chain rules, product rules,
and understanding the Jacobian of the functions. For matrices, the derivative is a matrix of partial
derivatives, while for tensors, the derivative is typically expressed as a tensor with respect to multi-
index components. In higher-order tensor differentiation, we apply these principles recursively,
accounting for multi-index notation, and respecting the tensor contraction rules that define how
the components interact.

We start with the Differentiation of Scalar-Valued Functions with Matrix Arguments. Let f :
Rm×n → R be a scalar function of a matrix X. The differential df of f is defined by:

df = lim
∥H∥→0

f(X + H)− f(X)

∥H∥
(1168)

where H is an infinitesimal perturbation. The total derivative of f is given by:

df = tr

((
∂f

∂X

)T

dX

)
. (1169)

Definition of the Matrix Gradient: The gradient DXf (or Jacobian) is the unique matrix satis-
fying:

df = tr
(
DT

XdX
)
. (1170)

This ensures that differentiation is dual to the Frobenius inner product ⟨A,B⟩ = tr(ATB), giving
a Hilbert space structure. Let’s start with the example of Quadratic Form Differentiation. Let
f(X) = tr(XTAX). Expanding in a small perturbation H:

f(X + H) = tr((X + H)TA(X + H)). (1171)
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Expanding and isolating linear terms:

df = tr(HTAX) + tr(XTAH). (1172)

Using the cyclic property of the trace:

df = tr(HT (AX + ATX)). (1173)

Thus, the derivative is:
∂f

∂X
= AX + ATX. (1174)

If A is symmetric (AT = A), this simplifies to:

∂f

∂X
= 2AX. (1175)

Regarding the Differentiation of Matrix-Valued Functions. Consider a differentiable function F :
Rm×n → Rp×q. The Fréchet derivative DXF is a fourth-order tensor satisfying:

dF = DXF : dX. (1176)

Regarding the Differentiation of the Matrix Inverse, for F(X) = X−1 we use the identity:

d(XX−1) = 0⇒ dXX−1 + XdX−1 = 0. (1177)

Solving for dX−1:
dX−1 = −X−1(dX)X−1. (1178)

Thus, the derivative is the negative bilinear operator:

DX(X−1) = −(X−1 ⊗X−1). (1179)

where ⊗ denotes the Kronecker product. For Differentiation of Tensor-Valued Functions. We need
to have a differentiable tensor function F : Rm×n×p → Ra×b×c, the Fréchet derivative shall be a
higher-order tensor DXF satisfying:

dF = DXF : dX . (1180)

Let’s do a Differentiation of Tensor Contraction. If f(X ) = X : A, where X ,A are second-order
tensors, then:

∂

∂X
(X : A) = A. (1181)

For a fourth-order tensor C, if f(X ) = C : X , then:

∂

∂X
(C : X ) = C. (1182)

Differentiation can be also done in Non-Euclidean Spaces. For a manifold M, differentiation is
defined via tangent spaces TXM, with the covariant derivative ∇X satisfying the Levi-Civita
connection:

∇XY = lim
ϵ→0

ProjTX+ϵHM(Y(X + ϵH))−Y(X)

ϵ
. (1183)

We can do differentiation using Variational Principles also. If f(X) is an energy functional, the
differentiation that follows from Gateaux derivatives is:

δf = lim
ϵ→0

f(X + ϵH)− f(X)

ϵ
. (1184)

For functionals, differentiation uses Euler-Lagrange equations:

d

dt

∫
Ω

L(X,∇X) dV = 0. (1185)
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15.5 Information Theory

Information Theory is a fundamental mathematical discipline concerned with the quantification,
transmission, storage, and processing of information. It was first rigorously formulated by Claude
Shannon in 1948 in his seminal paper A Mathematical Theory of Communication. The core idea
is to measure the amount of information contained in a random process and determine how
efficiently it can be encoded and transmitted through a noisy channel.

Formally, Information Theory is deeply intertwined with probability theory, measure the-
ory, functional analysis, and ergodic theory, and it finds applications in diverse fields such
as statistical mechanics, coding theory, artificial intelligence, and even quantum information.

15.5.1 Entropy: The Fundamental Measure of Uncertainty

Definition of Shannon Entropy: Let X be a discrete random variable taking values in a finite
alphabet X , with probability mass function (PMF) p : X → [0, 1], satisfying∑

x∈X

p(x) = 1. (1186)

The Shannon entropy H(X) is defined rigorously as the expected value of the logarithm of the
inverse probability:

H(X) = E[− log p(X)] = −
∑
x∈X

p(x) log p(x). (1187)

where the logarithm is taken in base 2 (bits) or natural base e (nats). Shannon’s entropy satisfies the
following fundamental properties, which are derived axiomatically using Khinchin’s postulates:

1. Continuity: H(X) is a continuous function of p(x).

2. Maximality: The uniform distribution p(x) = 1
n

for all x ∈ X maximizes entropy:

H(X) ≤ log n. (1188)

3. Additivity: For two independent random variables X and Y , entropy satisfies:

H(X, Y ) = H(X) +H(Y ). (1189)

4. Monotonicity: Conditioning reduces entropy:

H(X|Y ) ≤ H(X). (1190)

The Fundamental Theorem of Information Measures: Given a probability space (Ω,F ,P),
the Shannon entropy satisfies the variational principle:

H(X) = inf
Q
DKL(P∥Q), (1191)

where the infimum is taken over all probability measures Q on X and DKL(P∥Q) is the Kullback-
Leibler divergence:

DKL(P∥Q) =
∑
x

p(x) log
p(x)

q(x)
. (1192)

Thus, entropy can be interpreted as the minimum information divergence from uniformity.
Let (Ω,F , P ) be a probability space, where Ω is the sample space, F is the σ-algebra of events, P
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is the probability measure. A discrete random variable X is a measurable function X : Ω → X ,
where X is a countable set. The probability mass function (PMF) of X is given by:

pX(x) = P (X = x) (1193)

The Shannon entropy of a discrete random variable X is defined as:

H(X) = −
∑
x∈X

pX(x) log pX(x) (1194)

where 0 log 0 ≡ 0 by convention, and the logarithm is typically base 2 (bits) or base e (nats). For
two random variables X and Y the joint entropy is:

H(X, Y ) = −
∑

x∈X ,y∈Y

pX,Y (x, y) log pX,Y (x, y) (1195)

The conditional entropy of Y given X is:

H(Y |X) = −
∑

x∈X ,y∈Y

pX,Y (x, y) log pY |X(y|x) (1196)

The mutual information between X and Y is:

I(X;Y ) =
∑

x∈X ,y∈Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
(1197)

Regarding the Non-Negativity of Entropy, H(X) ≥ 0, with equality if and only if X is deter-
ministic. To prove this note that pX(x) ∈ [0, 1], we have − log pX(x) ≥ 0 for all x ∈ X . Thus:

H(X) = −
∑
x∈X

pX(x) log pX(x) ≥ 0 (1198)

Equality holds if and only if pX(x) = 1 for some x and pX(x′) = 0 for all x′ ̸= x, meaning X
is deterministic. To get an upper bound on Entropy, for a discrete random variable X with |X |
possible outcomes:

H(X) ≤ log |X | (1199)

with equality if and only if X is uniformly distributed. To prove this, using Gibbs’ inequality, for
any probability distributions pX(x) and qX(x):

−
∑
x∈X

pX(x) log pX(x) ≤ −
∑
x∈X

pX(x) log qX(x) (1200)

Let qX(x) = 1
|X | (uniform distribution). Then:

H(X) ≤ −
∑
x∈X

pX(x) log
1

|X |
= log |X | (1201)

Equality holds if and only if pX(x) = qX(x) = 1
|X | for all x, meaning X is uniformly distributed.

By chain Rule for Joint Entropy, for two random variables X and Y , the joint entropy satisfies:

H(X, Y ) = H(X) +H(Y |X). (1202)

By definition:

H(X, Y ) = −
∑

x∈X ,y∈Y

pX,Y (x, y) log pX,Y (x, y). (1203)
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Using the chain rule of probability, pX,Y (x, y) = pX(x)pY |X(y|x), we rewrite:

H(X, Y ) = −
∑
x,y

pX,Y (x, y) log[pX(x)pY |X(y|x)] (1204)

Splitting the logarithm:

H(X, Y ) = −
∑
x,y

pX,Y (x, y) log pX(x)−
∑
x,y

pX,Y (x, y) log pY |X(y|x). (1205)

The first term simplifies to H(X), and the second term simplifies to H(Y |X), giving:

H(X, Y ) = H(X) +H(Y |X). (1206)

The mutual information I(X;Y ) satisfies:

I(X;Y ) = H(X) +H(Y )−H(X, Y ). (1207)

By definition:

I(X;Y ) =
∑

x∈X ,y∈Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
. (1208)

Using the definitions of entropy and joint entropy:

I(X;Y ) = H(X) +H(Y )−H(X, Y ). (1209)

We now discuss Mutual Information and Fundamental Theorems of Dependence. The mutual
information between two random variables X and Y quantifies the reduction in uncertainty of X
given knowledge of Y :

I(X;Y ) = H(X)−H(X|Y ). (1210)

Equivalently, it is given by the relative entropy between the joint distribution p(x, y) and
the product of the marginals:

I(X;Y ) = DKL(p(x, y)∥p(x)p(y)). (1211)

For any Markov chain X → Y → Z, mutual information satisfies:

I(X;Z) ≤ I(X;Y ). (1212)

This follows directly from Jensen’s inequality and the convexity of relative entropy.

15.5.2 Source Coding Theorem: Fundamental Limits of Compression

Given a source emitting i.i.d. symbols X1, X2, · · · ∼ PX , the Shannon Source Coding Theorem
states that for any uniquely decodable code, the expected length per symbol satisfies:

L ≥ H(X). (1213)

Moreover, the Asymptotic Equipartition Property (AEP) states that for large n, the proba-
bility of a sequence X1, X2, ..., Xn satisfies:

P (X1, . . . , Xn) ≈ 2−nH(X). (1214)

The Shannon Source Coding Theorem states that:
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1. Achievability: Given a discrete memoryless source (DMS) X with entropy H(X), for any
ϵ > 0, there exists a source code that compresses sequences of length n to approximately
n(H(X) + ϵ) bits per symbol and allows for decoding with vanishing error probability as
n→∞.

2. Converse: No source code can achieve an average code length per symbol smaller than H(X)
without increasing the error probability to 1.

To prove the Shannon Source Coding Theorem, we assume that X is a discrete random variable
with probability mass function (PMF) PX(x). The entropy of X is defined as:

H(X) = −
∑
x∈X

PX(x) logPX(x). (1215)

For a sequence X1, X2, . . . , Xn drawn i.i.d. from PX , the joint entropy satisfies:

H(Xn) = nH(X). (1216)

We will use the Asymptotic Equipartition Property (AEP), which states that for large n, the

sequence Xn belongs to a typical set T (n)
ϵ with high probability. The first step is to AEP and the

Size of the Typical Set. The strong law of large numbers implies that for any ϵ > 0, the set:

T (n)
ϵ =

{
xn ∈ X n :

∣∣∣∣− 1

n
logPX(xn)−H(X)

∣∣∣∣ < ϵ

}
(1217)

has probability approaching 1 as n→∞. Furthermore, the number of typical sequences satisfies:∣∣T (n)
ϵ

∣∣ ≈ 2n(H(X)+ϵ). (1218)

Since these sequences occur with high probability, we can restrict our coding efforts to them. The
third step is to encode the Typical Sequences. If we assign a unique binary code to each sequence
in T (n)

ϵ , we need at most log |T (n)
ϵ | bits per sequence, which gives an encoding length:

L ≈ log 2n(H(X)+ϵ) = n(H(X) + ϵ). (1219)

Thus, the expected code length per symbol is at most H(X)+ϵ. The third step is to analyze
the Converse (Optimality of Entropy Rate). Consider any uniquely decodable prefix-free code with
average code length L. By Kraft’s inequality:∑

xn

2−L(xn) ≤ 1. (1220)

Taking logarithms and using Jensen’s inequality, we obtain:

E[L(Xn)] ≥ H(Xn) = nH(X). (1221)

Thus, no lossless source code can achieve a rate below H(X) bits per symbol. We have
rigorously proven both the achievability and the converse of the Shannon Source Coding Theo-
rem, showing that the fundamental limit of lossless compression is given by the entropy of the source.

To prove the Asymptotic Equipartition Property (AEP), we assume that (Ω,F , P ) is a
probability space, and let {Xi}∞i=1 be a sequence of independent and identically distributed (i.i.d.)
random variables defined on this space, taking values in a finite alphabet X. The joint distribution
of the sequence Xn = (X1, X2, . . . , Xn) is given by:

PXn(xn) =
n∏

i=1

PX(xi) (1222)
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where PX is the probability mass function (PMF) of Xi. The entropy of X, denoted H(X), is
defined as:

H(X) = −
∑
x∈X

PX(x) logPX(x) (1223)

where the logarithm is taken base 2, and H(X) quantifies the expected information content of X.
For a given ϵ > 0 and sequence length n, the typical set Aϵ(n) is defined as:

Aϵ(n) =

{
xn ∈ Xn :

∣∣∣∣− 1

n
logPXn(xn)−H(X)

∣∣∣∣ < ϵ

}
. (1224)

This set consists of sequences xn whose empirical entropy − 1
n

logPXn(xn) is close to the true entropy
H(X). The AEP states that, as n→∞, the probability of the typical set approaches 1:

lim
n→∞

PXn(Aϵ(n)) = 1. (1225)

This is a direct consequence of the weak law of large numbers (WLLN) applied to the random
variable − logPX(Xi), which has finite mean H(X) and finite variance (by the finiteness of X).
The cardinality of the typical set satisfies:

(1− ϵ)2n(H(X)−ϵ) ≤ |Aϵ(n)| ≤ 2n(H(X)+ϵ) (1226)

This follows from the definition of the typical set and the fact that PXn(xn) ≈ 2−nH(X) for xn ∈
Aϵ(n). By Equipartition Property, we can say that for all xn ∈ Aϵ(n), the probability of xn satisfies:

2−n(H(X)+ϵ) ≤ PXn(xn) ≤ 2−n(H(X)−ϵ). (1227)

This implies that all sequences in the typical set are approximately equiprobable. The AEP is a
consequence of the weak law of large numbers (WLLN) and the Chernoff bound. Here, we provide
a rigorous proof. Define the random variable:

Yi = − logPX(Xi). (1228)

Since {Xi} are i.i.d., {Yi} are also i.i.d., with mean E[Yi] = H(X) and variance σ2 = Var(Yi). By
the Weak Law of Large Numbers, we can write:

1

n

n∑
i=1

Yi →p H(X) as n→∞. (1229)

This convergence in probability implies:

lim
n→∞

P

(∣∣∣∣− 1

n
logPXn(Xn)−H(X)

∣∣∣∣ < ϵ

)
= 1. (1230)

To quantify the rate of convergence, we use the Chernoff bound. For any ϵ > 0, there exists δ > 0
such that:

P

(∣∣∣∣− 1

n
logPXn(Xn)−H(X)

∣∣∣∣ ≥ ϵ

)
≤ 2e−nδ. (1231)

This exponential decay ensures that the probability of non-typical sequences vanishes rapidly as
n → ∞. The AEP can be interpreted in the language of measure theory. The typical set Aϵ(n)
is a high-probability subset of Xn with respect to the product measure PXn . The AEP asserts
that, for large n, the measure PXn is concentrated on Aϵ(n), and the uniform distribution on Aϵ(n)
approximates PXn in the sense of entropy. For a stationary and ergodic process {Xi}, the AEP
holds with the entropy rate H replacing H(X):

H = lim
n→∞

1

n
H(Xn). (1232)
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The typical set is defined analogously, and the probability concentration result holds under the
ergodic theorem. For continuous random variables, the differential entropy h(X) replaces H(X),
and the typical set is defined in terms of probability density functions:

Aϵ(n) =

{
xn ∈ Rn :

∣∣∣∣− 1

n
log fXn(xn)− h(X)

∣∣∣∣ < ϵ

}
, (1233)

where fXn is the joint probability density function. For Markov chains and other non-i.i.d. pro-
cesses, the AEP holds under appropriate mixing conditions, with the entropy rate adjusted to
account for dependencies. The AEP underpins Shannon’s source coding theorem, which states
that the optimal compression rate for a source is given by its entropy rate.

15.5.3 Noisy Channel Coding Theorem: Fundamental Limits of Communication

Let X be the input and Y the output of a discrete memoryless channel (DMC) with transition
probability p(y|x). The capacity of the channel is given by:

C = max
p(x)

I(X;Y ). (1234)

Shannon’s Noisy Channel Coding Theorem asserts that for any transmission rate R:

• If R ≤ C, there exists a code that allows error-free transmission.

• If R > C, error probability approaches 1.

For a discrete memoryless channel (DMC) with channel capacity C, there exists a coding scheme
such that for any rate R < C and any ϵ > 0, there is a block code of length n and rate R with
a decoding error probability Pe ≤ ϵ. Conversely, for any rate R > C, reliable communication is
impossible. To prove this, we define (X, Y, PY |X) as the DMC, where X is the input alphabet,
Y is the output alphabet, PY |X(y|x) is the conditional probability distribution characterizing the
channel. The channel is memoryless, meaning:

PY n|Xn(y|x) =
n∏

i=1

PY |X(yi|xi) (1235)

The channel capacity C is defined as:

C = max
PX

I(X;Y ), (1236)

where I(X;Y ) is the mutual information between X and Y , and the maximization is over all input
distributions PX .

Fix a rate R < C and a small ϵ > 0. By Random Coding Argument, Consider a block code
of length n with M = 2nR codewords. Each codeword xm = (xm1, xm2, . . . , xmn) is generated inde-
pendently and identically according to the input distribution PX that achieves capacity. Encoding
means to transmit message m, send codeword xm and Decoding means that upon receiving y, the
decoder uses joint typicality decoding. Decode y to m̂ if (xm̂, y) are jointly typical and no other
codeword is jointly typical with y. If no such m̂ exists or multiple exist, declare an error. Regarding
the Joint Typicality, the set of jointly typical sequences A

(n)
ϵ is defined as:

A(n)
ϵ =

{
(x, y) ∈ Xn × Y n :

∣∣∣∣− 1

n
logPXn,Y n(x, y)−H(X, Y )

∣∣∣∣ < ϵ

}
(1237)

where H(X, Y ) is the joint entropy of X and Y . By the Joint Asymptotic Equipartition Property
(AEP), for sufficiently large n:

PXn,Y n(A(n)
ϵ ) ≥ 1− ϵ. (1238)

Doing the Error Probability Analysis, the error probability Pe is decomposed into two events:
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• E1: (xm, y) /∈ A(n)
ϵ .

• E2: Some other codeword xm′ (with m′ ̸= m) satisfies (xm′ , y) ∈ A(n)
ϵ .

Bounding P (E1), By the Joint AEP:

P (E1) = P
(
(xm, y) /∈ A(n)

ϵ

)
≤ ϵ. (1239)

Bounding P (E2), for a fixed incorrect codeword xm′ , the probability that (xm′ , y) ∈ A(n)
ϵ is approx-

imately 2−nI(X;Y ). Since there are M − 1 ≈ 2nR incorrect codewords, the union bound gives:

P (E2) ≤ (M − 1) · 2−nI(X;Y ) ≤ 2nR · 2−nI(X;Y ) = 2−n(I(X;Y )−R). (1240)

Since R < C = I(X;Y ), P (E2) → 0 exponentially as n → ∞. Combining the bounds to get the
total Error Probability:

Pe ≤ P (E1) + P (E2) ≤ ϵ+ 2−n(I(X;Y )−R). (1241)

For sufficiently large n, Pe ≤ 2ϵ. The converse part shows that reliable communication is impossible
for R > C. The key steps are:

• Use Fano’s inequality to relate the error probability Pe to the conditional entropy H(M |M̂).

• Apply the data processing inequality to bound the mutual information I(M ; M̂).

• Show that if R > C, the error probability Pe cannot vanish.

Taking Measure-Theoretic Considerations, the proof assumes finite alphabets X and Y . For contin-
uous alphabets, the same ideas apply, but integrals replace sums, and differential entropy replaces
discrete entropy. The existence of the capacity-achieving input distribution PX is guaranteed by the
continuity and compactness of the mutual information functional. Regarding Asymptotic Analysis,
The error probability Pe decays exponentially with n for R < C, as shown by the term 2−n(I(X;Y )−R).
This exponential decay is a consequence of the law of large numbers and the Chernoff bound. For
any R < C and ϵ > 0, there exists a code of rate R with error probability Pe ≤ ϵ. Conversely,
for R > C, reliable communication is impossible. This completes the rigorous proof of the Noisy
Channel Coding Theorem.

15.5.4 Rate-Distortion Theory: Lossy Data Compression

For a source X reconstructed as X̂, the rate-distortion function determines the minimum achiev-
able rate R(D) for a given distortion D:

R(D) = min
p(x̂|x):E[d(X,X̂)]≤D

I(X; X̂). (1242)

Let X be a random variable representing the source data, with probability distribution pX(x)
defined over a finite alphabet X . The compressed representation of X is denoted by X̂, which
takes values in a finite alphabet X̂ . The distortion between X and X̂ is quantified by a distortion
measure d : X ×X̂ → R≥0, which is assumed to be non-negative and bounded. The Rate-Distortion
Function R(D) is defined as:

R(D) = inf
pX̂|X

{
I(X; X̂) : E[d(X, X̂)] ≤ D

}
(1243)

where pX̂|X is the conditional distribution of X̂ given X, I(X; X̂) is the mutual information be-

tween X and X̂, E[d(X, X̂)] is the expected distortion. The infimum is taken over all conditional
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distributions pX̂|X that satisfy the distortion constraint E[d(X, X̂)] ≤ D. The mutual information

I(X; X̂) is defined as:

I(X; X̂) =
∑
x∈X

∑
x̂∈X̂

pX(x)pX̂|X(x̂|x) log
pX̂|X(x̂|x)

pX̂(x̂)
(1244)

where pX̂(x̂) =
∑

x∈X pX(x)pX̂|X(x̂|x) is the marginal distribution of X̂. The expected distortion
is given by:

E[d(X, X̂)] =
∑
x∈X

∑
x̂∈X̂

pX(x)pX̂|X(x̂|x)d(x, x̂) (1245)

The problem of finding R(D) is a constrained optimization problem:

Minimize I(X; X̂) subject to E[d(X, X̂)] ≤ D (1246)

This is a convex optimization problem because:

• The mutual information I(X; X̂) is a convex function of pX̂|X ,

• The distortion constraint E[d(X, X̂)] ≤ D is a linear (and thus convex) constraint.

We now give the Proof of the Rate-Distortion Function. To prove the convexity of R(D), con-
sider two distortion levels D1 and D2, and let p1 and p2 be the corresponding optimal conditional
distributions achieving R(D1) and R(D2), respectively. For any λ ∈ [0, 1], define:

Dλ = λD1 + (1− λ)D2 (1247)

The conditional distribution pλ = λp1 + (1 − λ)p2 achieves an expected distortion of Dλ. By the
convexity of mutual information:

I(X; X̂) ≤ λI(X; X̂1) + (1− λ)I(X; X̂2) (1248)

Thus:
R(Dλ) ≤ λR(D1) + (1− λ)R(D2) (1249)

proving the convexity of R(D). Regarding the Monotonicity of R(D), The Rate-Distortion Function
R(D) is non-increasing in D. Formally, if D1 ≤ D2, then:

R(D1) ≥ R(D2) (1250)

This follows because the set of conditional distributions pX̂|X satisfying E[d(X, X̂)] ≤ D2 includes

all distributions satisfying E[d(X, X̂)] ≤ D1.

The achievability of R(D) is proven using the random coding argument. For a given D, gener-
ate a codebook of 2nR codewords, each drawn independently according to the marginal distribution
pX̂(x̂). For each source sequence xn, find the codeword x̂n that minimizes the distortion d(xn, x̂n).
Using the law of large numbers and the typicality of sequences, it can be shown that the expected
distortion approaches D as the block length n→∞, provided R ≥ R(D). The converse is proven
using the data processing inequality and the properties of mutual information. Suppose there exists
a code with rate R < R(D) and distortion E[d(X, X̂)] ≤ D. Then:

R ≥ I(X; X̂) ≥ R(D) (1251)

which is a contradiction. Thus, R(D) is the fundamental limit. The optimization problem can be
reformulated using the Lagrangian:

L(pX̂|X , λ) = I(X; X̂) + λ
(
E[d(X, X̂)]−D

)
(1252)

where λ ≥ 0 is the Lagrange multiplier. The optimal solution satisfies the Karush-Kuhn-Tucker
(KKT) conditions:
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1. Stationarity:
∇pX̂|X

L = 0. (1253)

2. Primal Feasibility:
E[d(X, X̂)] ≤ D. (1254)

3. Dual Feasibility:
λ ≥ 0. (1255)

4. Complementary Slackness:

λ
(
E[d(X, X̂)]−D

)
= 0. (1256)

The Blahut-Arimoto algorithm is an iterative method for numerically computing R(D). It al-
ternates between updating the conditional distribution pX̂|X and the Lagrange multiplier λ to

converge to the optimal solution. For a Gaussian source X ∼ N(0, σ2) and squared-error distortion
d(x, x̂) = (x− x̂)2, the Rate-Distortion Function is:

R(D) =

{
1
2

log2

(
σ2

D

)
, 0 ≤ D ≤ σ2,

0, D > σ2.
(1257)

This result is derived using the properties of Gaussian distributions and mutual information, and
it illustrates the trade-off between rate and distortion. The Rate-Distortion Function R(D) is a
cornerstone of information theory, rigorously characterizing the fundamental limits of lossy data
compression. This deep theoretical framework underpins modern data compression techniques and
has broad applications in communication, signal processing, and machine learning.

15.5.5 Applications of Information Theory

There are several applications of Information Theory:

Error-Correcting Codes: Reed-Solomon, Turbo, and LDPC codes achieve rates near capac-
ity. The channel capacity C is the supremum of all achievable rates R for which there exists a
coding scheme with a vanishing probability of error Pe → 0 as the block length n → ∞. For a
discrete memoryless channel (DMC) with transition probabilities P (y|x), the capacity is given by:

C = sup
PX

I(X;Y ) (1258)

where I(X;Y ) is the mutual information between the input X and output Y , and the supremum
is taken over all input distributions PX . For the additive white Gaussian noise (AWGN) channel
with power constraint P and noise variance σ2, the capacity is:

C =
1

2
log2

(
1 +

P

σ2

)
[bits per channel use]. (1259)

The converse of Shannon’s theorem establishes that no coding scheme can achieve R > C with
Pe → 0. Let’s now discuss the Fundamental Limits and Large Deviation Theory of Error-Correcting
Codes. An error-correcting code C of block length n and rate R = k/n maps k information bits to
n coded bits. The error exponent E(R) characterizes the exponential decay of Pe with n for rates
R < C:

Pe ∼ e−nE(R). (1260)

The Gallager exponent provides a lower bound on E(R):

E(R) = max
0≤ρ≤1

[E0(ρ)− ρR] , (1261)
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where E0(ρ) is the Gallager function:

E0(ρ) = − log2

∑
y

(∑
x

PX(x)P (y|x)
1

1+ρ

)1+ρ
 . (1262)

For the AWGN channel, E0(ρ) can be expressed in terms of the signal-to-noise ratio (SNR). Let’s
discuss the Algebraic Geometry and Finite Fields of Reed-Solomon Codes. Reed-Solomon codes are
evaluation codes defined over finite fields Fq, where q = 2m. They are constructed by evaluating
polynomials of degree k − 1 at distinct points α1, α2, . . . , αn ∈ Fq. For encoding, The message
polynomial m(x) ∈ Fq[x] of degree k − 1 is encoded into a codeword:

c = (m(α1),m(α2), . . . ,m(αn)). (1263)

For Decoding, The Berlekamp-Welch algorithm or Guruswami-Sudan algorithm is used to correct
up to t = ⌊(n− k)/2⌋ errors. The latter achieves list decoding, allowing correction of up to n− n

k

errors. The Weil conjectures and Riemann-Roch theorem provide deep insights into the algebraic
structure of Reed-Solomon codes and their generalizations, such as algebraic geometry codes.

Regarding Turbo Codes: Iterative Decoding and Statistical Mechanics. Turbo codes are con-
structed using two recursive systematic convolutional (RSC) encoders separated by an interleaver.
The iterative decoding process can be analyzed using tools from statistical mechanics.

1. Factor Graph Representation: The decoding process is represented as message passing
on a factor graph, where the nodes correspond to variables and constraints. The Bethe free
energy provides a variational characterization of the decoding problem.

2. EXIT Charts: The extrinsic information transfer (EXIT) chart is a tool to analyze the
convergence of iterative decoding. The area theorem relates the area under the EXIT curve
to the gap to capacity.

The performance of Turbo codes is characterized by the waterfall region and the error floor, which
can be analyzed using large deviation theory and random matrix theory. LDPC codes are defined by
a sparse parity-check matrix H ∈ Fm×n

2 , where each row represents a parity-check constraint. The
Tanner graph of the code is a bipartite graph with variable nodes (corresponding to codeword bits)
and check nodes (corresponding to parity constraints). Regarding the Message-Passing Decoding,
The sum-product algorithm (SPA) or min-sum algorithm (MSA) is used for iterative decoding. The
messages passed between nodes are log-likelihood ratios (LLRs). Regarding the Density Evolution,
This is a theoretical tool to analyze the asymptotic performance of LDPC codes. It tracks the
probability density function (PDF) of the LLRs as a function of the iteration number. The threshold
of the code is the maximum noise level for which Pe → 0 as n → ∞. The degree distributions of
the variable and check nodes, denoted by λ(x) and ρ(x), respectively, are optimized to maximize
the threshold. The optimization problem can be formulated as:

max
λ,ρ

Threshold(λ, ρ) subject to

∫ 1

0

λ(x)dx =

∫ 1

0

ρ(x)dx = 1. (1264)

The near-capacity performance of Turbo and LDPC codes is a consequence of their ability to ex-
ploit the channel’s soft information and their iterative decoding algorithms. The turbo principle
states that the exchange of extrinsic information between decoders improves the reliability of the
estimates.

Machine Learning: KL-divergence and mutual information are used in variational inference.
We begin by placing the problem in a measure-theoretic framework. Let (Ω,F , P ) be a probability
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space, where Ω is the sample space, F is a σ-algebra, and P is a probability measure. The observed
variables x and latent variables z are random variables defined on this space, with

x : Ω→ X, z : Ω→ Z, (1265)

where X and Z are measurable spaces. The joint distribution p(x, z) is a probability measure on
X × Z, and the posterior p(z | x) is a conditional probability measure. Variational inference seeks
to approximate p(z | x) using a variational measure q(z;ϕ), where ϕ parameterizes the variational
family Q. The Kullback-Leibler (KL) divergence between two probability measures Q and P on
(Z,G) is defined as:

DKL(Q ∥ P ) =

∫
Z

log

(
dQ

dP

)
dQ, (1266)

where dQ
dP

is the Radon-Nikodym derivative of Q with respect to P . The KL divergence is finite
only if Q is absolutely continuous with respect to P (denoted Q≪ P ), and it satisfies:

DKL(Q ∥ P ) ≥ 0, (1267)

DKL(Q ∥ P ) = 0 if and only if Q = P almost everywhere. (1268)

In variational inference (VI), Q = q(z;ϕ) and P = p(z | x), and we minimize DKL(q(z;ϕ) ∥ p(z | x)).
Variational Inference can be viewed as an optimization problem in a function space. Let Q be a
family of probability measures on Z, and define the functional:

F [q] = DKL(q(z;ϕ) ∥ p(z | x)) (1269)

The goal is to find:
q∗ = arg min

q∈Q
F [q] (1270)

This is a constrained optimization problem, where q must satisfy:∫
Z

q(z;ϕ) dz = 1, q(z;ϕ) ≥ 0. (1271)

The Evidence Lower Bound (ELBO) is derived using measure-theoretic expectations. Starting from
the log-marginal likelihood:

log p(x) = log

∫
Z

p(x, z) dz (1272)

we introduce q(z;ϕ) and apply Jensen’s inequality:

log p(x) ≥
∫
Z

q(z;ϕ) log
p(x, z)

q(z;ϕ)
dz ≡ ELBO(ϕ) (1273)

The ELBO can be expressed as:

ELBO(ϕ) = Eq(z;ϕ)[log p(x, z)] +H[q(z;ϕ)] (1274)

where
H[q(z;ϕ)] = −Eq(z;ϕ)[log q(z;ϕ)] (1275)

is the entropy of q(z;ϕ). The mutual information between x and z is defined as:

I(x; z) = DKL(p(x, z) ∥ p(x)⊗ p(z)), (1276)

where p(x)⊗p(z) is the product measure of the marginals. In VI, the variational mutual information
is:

Iq(x; z) = Ep(x) [DKL(q(z | x) ∥ q(z))] (1277)
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where

q(z) =

∫
X

q(z | x)p(x) dx (1278)

is the aggregated posterior. Using measure-theoretic expectations, the ELBO can be decomposed
as:

ELBO(ϕ) = Ep(x)

[
Eq(z|x)[log p(x | z)]

]
− Iq(x; z)−DKL(q(z) ∥ p(z)). (1279)

Quantum Information: von Neumann entropy generalizes Shannon entropy for quantum states.
In quantum mechanics, the state of a quantum system is described by a density operator ρ, which
is a positive semi-definite, Hermitian operator acting on a Hilbert space H, with unit trace:

ρ ≥ 0, ρ = ρ†, Tr(ρ) = 1. (1280)

For a pure state |ψ⟩ ∈ H, the density operator is given by:

ρ = |ψ⟩ ⟨ψ| . (1281)

For a mixed state, which is a statistical ensemble of pure states {|ψi⟩} with probabilities {pi}, the
density operator is:

ρ =
∑
i

pi |ψi⟩ ⟨ψi| . (1282)

The spectral theorem guarantees that any density operator ρ can be diagonalized in terms of its
eigenvalues {λi} and eigenstates {|ϕi⟩}:

ρ =
∑
i

λi |ϕi⟩ ⟨ϕi| , (1283)

where λi ≥ 0,
∑

i λi = 1, and {|ϕi⟩} forms an orthonormal basis for H. We first give the definition
and functional calculus of Von Neumann Entropy. The von Neumann entropy S(ρ) of a quantum
state ρ is defined as:

S(ρ) = −Tr(ρ log ρ). (1284)

Since ρ is a positive semi-definite operator, the logarithm of ρ is defined via its spectral decompo-
sition. If

ρ =
∑
i

λi |ϕi⟩ ⟨ϕi| , (1285)

then:
log ρ =

∑
i

log λi |ϕi⟩ ⟨ϕi| . (1286)

Here, log λi is well-defined for λi > 0. By convention,

0 log 0 = 0, (1287)

which is consistent with the limit lim
x→0+

x log x = 0. The trace operation is linear and invariant

under cyclic permutations. Using the spectral decomposition of ρ, we have:

S(ρ) = −Tr

(∑
i

λi |ϕi⟩ ⟨ϕi| ·
∑
j

log λj |ϕj⟩ ⟨ϕj|

)
. (1288)

Simplifying this expression using the orthonormality of {|ϕi⟩}, we obtain:

S(ρ) = −
∑
i

λi log λi. (1289)
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This is the quantum analog of the Shannon entropy, where the eigenvalues {λi} of ρ play the role
of classical probabilities. There are many Mathematical Properties of Von Neumann Entropy. The
first of them is Non-negativity:

S(ρ) ≥ 0, (1290)

with equality if and only if ρ is a pure state (i.e., ρ = |ψ⟩ ⟨ψ| for some |ψ⟩). For a d-dimensional
Hilbert space H, the von Neumann entropy is maximized by the maximally mixed state ρ = I

d
,

where I is the identity operator on H. The maximum entropy is:

S

(
I

d

)
= log d. (1291)

The von Neumann entropy is concave in ρ. For any set of density operators {ρi} and probabilities
{pi}, we have:

S

(∑
i

piρi

)
≥
∑
i

piS(ρi). (1292)

This reflects the fact that mixing quantum states increases uncertainty. For a composite system
described by a product state ρAB = ρA ⊗ ρB, the entropy is additive:

S(ρAB) = S(ρA) + S(ρB). (1293)

Physics: Maximum entropy methods are foundational in statistical mechanics. The maximum
entropy principle is a variational principle that selects the probability distribution {pi} over mi-
crostates i of a system by maximizing the Shannon entropy functional S[p], subject to a set of
constraints that encode known macroscopic information about the system. Regarding the Shannon
Entropy Functional, for a discrete probability distribution {pi}, the Shannon entropy is defined as:

S[p] = −kB
∑
i∈M

pi ln pi (1294)

where M is the set of all microstates of the system, kB is the Boltzmann constant, which ensures
dimensional consistency with thermodynamic entropy, pi is the probability of the system being in
microstate i, satisfying pi ≥ 0 and

∑
i pi = 1. For a continuous probability distribution p(x) over

a state space X, the entropy is defined as:

S[p] = −kB
∫
X

p(x) ln p(x) dx (1295)

where p(x) is a probability density function (PDF) satisfying p(x) ≥ 0 and
∫
X
p(x) dx = 1. In this

problem, Constraints and Macroscopic Observables, The system is subject to a set of m macroscopic
constraints, which are expressed as expectation values of observables {Ak}mk=1. These constraints
take the form:

⟨Ak⟩ =
∑
i∈M

piAk(i) = ak, k = 1, 2, . . . ,m (1296)

where Ak(i) is the value of the observable Ak in microstate i, and ak is the measured or expected
value of Ak. The normalization constraint

∑
i pi = 1 is always included. We have to now setup

the Variational Formulation and Lagrange Multipliers. The constrained optimization problem is
formulated using the method of Lagrange multipliers. We define the Lagrangian functional:

L[p, {λk}] = S[p]− λ0

(∑
i

pi − 1

)
−

m∑
k=1

λk

(∑
i

piAk(i)− ak

)
(1297)

where λ0 is the Lagrange multiplier for the normalization constraint, λk are the Lagrange multipliers
for the macroscopic constraints. Regarding the Functional Derivative and Stationarity Condition,
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To find the extremum of L, we take the functional derivative of L with respect to pi and set it to
zero:

δL

δpi
= −kB(ln pi + 1)− λ0 −

m∑
k=1

λkAk(i) = 0 (1298)

Solving for pi:

ln pi = −1 + λ0
kB

−
m∑
k=1

λk
kB
Ak(i) (1299)

Exponentiating both sides:

pi = exp

(
−1 + λ0

kB
−

m∑
k=1

λk
kB
Ak(i)

)
(1300)

Let Z = exp
(

1+λ0

kB

)
, which acts as a normalization constant (partition function). Then:

pi =
1

Z
exp

(
−

m∑
k=1

λk
kB
Ak(i)

)
(1301)

Regarding the Identification of Lagrange Multipliers, The Lagrange multipliers {λk} are determined
by enforcing the constraints. For example: If A1(i) = Ei (energy of microstate i), then λ1 = β =
1

kBT
, where T is the temperature and If

A2(i) = Ni (1302)

(particle number in microstate i), then
λ2 = −βµ, (1303)

where µ is the chemical potential. The resulting probability distribution is:

pi =
1

Z
exp(−βEi + βµNi), (1304)

which is the grand canonical distribution. The entropy functional S[p] is strictly concave in p, and
the constraints are linear in p. By the properties of convex optimization:

• The solution to the constrained optimization problem exists and is unique.

• The maximum entropy distribution is the unique global maximizer of S[p] subject to the
constraints.

The maximum entropy principle is deeply connected to thermodynamics through the following
relationships. The partition function Z is given by:

Z =
∑
i

exp(−βEi + βµNi). (1305)

The free energy F is related to Z by:

F = −kBT lnZ. (1306)

The entropy S and expected energy ⟨E⟩ are:

S = kB(lnZ + β⟨E⟩) (1307)

⟨E⟩ = −∂ lnZ

∂β
(1308)
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The maximum entropy principle naturally leads to the identification of thermodynamic potentials,
such as the Helmholtz free energy F , Gibbs free energy G, and grand potential Φ. The maximum
entropy distribution can be derived from large deviation theory, which describes the exponential
decay of probabilities of rare events. The Boltzmann distribution emerges as the most probable
macrostate in the thermodynamic limit. The space of probability distributions equipped with
the Fisher information metric forms a Riemannian manifold. The maximum entropy principle
corresponds to finding the distribution closest to the uniform distribution (maximum ignorance)
in this geometric framework. For non-equilibrium systems, the maximum entropy principle can
be extended using relative entropy (Kullback-Leibler divergence) or dynamical constraints, such as
fixed currents or fluxes. The maximum entropy principle is rigorously justified by:

• Sanov’s Theorem: A result in large deviation theory that characterizes the probability of
observing an empirical distribution deviating from the true distribution.

• Gibbs’ Inequality: The Shannon entropy is maximized by the uniform distribution when
no constraints are imposed.

• Convex Duality: The Lagrange multipliers {λk} are dual variables that encode the sensi-
tivity of the entropy to changes in the constraints.

There are many applications of the maximum entropy principle in statistical mechanics. The
maximum entropy principle is used to derive:

• The Boltzmann distribution for the canonical ensemble.

• The Fermi-Dirac and Bose-Einstein distributions for quantum systems.

• The Gibbs distribution for systems with multiple conserved quantities.

While the maximum entropy principle is powerful, it has limitations:

• It assumes knowledge of the correct constraints.

• It may not apply to systems with long-range correlations or non-Markovian dynamics.

• Extensions to non-equilibrium systems remain an active area of research.

In summary, the maximum entropy methods in statistical mechanics are a rigorous and foundational
framework for inferring probability distributions based on limited information. They are deeply
rooted in information theory, convex optimization, and statistical physics, and they provide a
profound connection between microscopic dynamics and macroscopic thermodynamics.

15.5.6 Conclusion: Information Theory as a Universal Mathematical Principle

Information Theory provides a rigorous mathematical framework for encoding, transmission,
and processing of information. Its deep connections to probability, optimization, and functional
analysis make it central to digital communication, data science, and beyond.
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[37] Sachs, S., van Erven, T., Hodgkinson, L., Khanna, R., and Şimşekli, U. (2023, July). Gener-
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(2018). PAC-Bayes bounds for stable algorithms with instance-dependent priors. Advances in
Neural Information Processing Systems, 31.

[101] Lindemann, L., Zhao, Y., Yu, X., Pappas, G. J., and Deshmukh, J. V. (2024). Formal
verification and control with conformal prediction. arXiv preprint arXiv:2409.00536.

[102] Jin, G., Wu, S., Liu, J., Huang, T., and Mu, R. (2025). Enhancing Robust Fairness via
Confusional Spectral Regularization. arXiv preprint arXiv:2501.13273.

[103] Ye, F., Xiao, J., Ma, W., Jin, S., and Yang, Y. (2025). Detecting small clusters in the
stochastic block model. Statistical Papers, 66(2), 37.

[104] Bhattacharjee, A., and Bharadwaj, P. (2025). Coherent Spectral Feature Extraction Using
Symmetric Autoencoders. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing.

[105] Wu, Q., Hu, B., Liu, C. et al. (2025). Velocity Analysis Using High-resolution Hyperbolic
Radon Transform with Lq1 − Lq2 Regularization. Pure Appl. Geophys.

[106] Ortega, I., Hannigan, J. W., Baier, B. C., McKain, K., and Smale, D. (2025). Advancing CH
4 and N 2 O retrieval strategies for NDACC/IRWG high-resolution direct-sun FTIR Observa-
tions. EGUsphere, 2025, 1-32.

[107] Kazmi, S. H. A., Hassan, R., Qamar, F., Nisar, K., and Al-Betar, M. A. (2025). Federated
Conditional Variational Auto Encoders for Cyber Threat Intelligence: Tackling Non-IID Data
in SDN Environments. IEEE Access.

[108] Zhao, Y., Bi, Z., Zhu, P., Yuan, A., and Li, X. (2025). Deep Spectral Clustering with Projected
Adaptive Feature Selection. IEEE Transactions on Geoscience and Remote Sensing.

[109] Saranya, S., and Menaka, R. (2025). A Quantum-Based Machine Learning Approach for
Autism Detection using Common Spatial Patterns of EEG Signals. IEEE Access.

255



[110] Dhalbisoi, S., Mohapatra, A., and Rout, A. (2024, March). Design of Cell-Free Massive
MIMO for Beyond 5G Systems with MMSE and RZF Processing. In International Conference
on Machine Learning, IoT and Big Data (pp. 263-273). Singapore: Springer Nature Singapore.

[111] Wei, C., Li, Z., Hu, T., Zhao, M., Sun, Z., Jia, K., ... and Jiang, S. (2025). Model-based
convolution neural network for 3D Near-infrared spectral tomography. IEEE Transactions on
Medical Imaging.

[112] Goodfellow, I. (2016). Deep learning (Vol. 196). MIT press.

[113] Haykin, S. (2009). Neural networks and learning machines, 3/E. Pearson Education India.

[114] Schmidhuber, J. (2015). Deep learning in neural networks: An overview.

[115] Bishop, C. M., and Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol.
4, No. 4, p. 738). New York: springer.

[116] Poggio, T., and Smale, S. (2003). The mathematics of learning: Dealing with data. Notices
of the AMS, 50(5), 537-544.

[117] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

[118] Tishby, N., and Zaslavsky, N. (2015, April). Deep learning and the information bottleneck
principle. In 2015 ieee information theory workshop (itw) (pp. 1-5). IEEE.

[119] Sorrenson, P. (2025). Free-Form Flows: Generative Models for Scientific Applications (Doc-
toral dissertation).

[120] Liu, W., and Shi, X. (2025). An Enhanced Neural Network Forecasting System for the July
Precipitation over the Middle-Lower Reaches of the Yangtze River.

[121] Das, P., Mondal, D., Islam, M. A., Al Mohotadi, M. A., and Roy, P. C. (2025). Analyti-
cal Finite-Integral-Transform and Gradient-Enhanced Machine Learning Approach for Ther-
moelastic Analysis of FGM Spherical Structures with Arbitrary Properties. Theoretical and
Applied Mechanics Letters, 100576.

[122] Zhang, R. (2025). Physics-informed Parallel Neural Networks for the Identification of Con-
tinuous Structural Systems.

[123] Ali, S., and Hussain, A. (2025). A neuro-intelligent heuristic approach for performance pre-
diction of triangular fuzzy flow system. Proceedings of the Institution of Mechanical Engineers,
Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 23977914241310569.

[124] Li, S. (2025). Scalable, generalizable, and offline methods for imperfect-information extensive-
form games.

[125] Hu, T., Jin, B., and Wang, F. (2025). An Iterative Deep Ritz Method for Monotone Elliptic
Problems. Journal of Computational Physics, 113791.

[126] Chen, P., Zhang, A., Zhang, S., Dong, T., Zeng, X., Chen, S., ... and Zhou, Q. (2025).
Maritime near-miss prediction framework and model interpretation analysis method based on
Transformer neural network model with multi-task classification variables. Reliability Engi-
neering and System Safety, 110845.

[127] Sun, G., Liu, Z., Gan, L., Su, H., Li, T., Zhao, W., and Sun, B. (2025). SpikeNAS-Bench:
Benchmarking NAS Algorithms for Spiking Neural Network Architecture. IEEE Transactions
on Artificial Intelligence.

256



[128] Zhang, Z., Wang, X., Shen, J., Zhang, M., Yang, S., Zhao, W., ... and Wang, J. (2025).
Unfixed Bias Iterator: A New Iterative Format. IEEE Access.

[129] Rosa, G. J. (2010). The Elements of Statistical Learning: Data Mining, Inference, and Pre-
diction by HASTIE, T., TIBSHIRANI, R., and FRIEDMAN, J.

[130] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

[131] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1), 1929-1958.

[132] Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2), 301-320.

[133] Vapnik, V. (2013). The nature of statistical learning theory. Springer science and business
media.

[134] Ng, A. Y. (2004, July). Feature selection, L 1 vs. L 2 regularization, and rotational invariance.
In Proceedings of the twenty-first international conference on Machine learning (p. 78).

[135] Li, T. (2025). Optimization of Clinical Trial Strategies for Anti-HER2 Drugs Based on
Bayesian Optimization and Deep Learning.

[136] Yasuda, M., and Sekimoto, K. (2024). Gaussian-discrete restricted Boltzmann machine with
sparse-regularized hidden layer. Behaviormetrika, 1-19.

[137] Xiaodong Luo, William C. Cruz, Xin-Lei Zhang, Heng Xiao, (2023), Hyper-parameter op-
timization for improving the performance of localization in an iterative ensemble smoother,
Geoenergy Science and Engineering, Volume 231, Part B, 212404

[138] Alrayes, F.S., Maray, M., Alshuhail, A. et al. (2025) Privacy-preserving approach for IoT
networks using statistical learning with optimization algorithm on high-dimensional big data
environment. Sci Rep 15, 3338. https://doi.org/10.1038/s41598-025-87454-1

[139] Cho, H., Kim, Y., Lee, E., Choi, D., Lee, Y., and Rhee, W. (2020). Basic enhancement
strategies when using Bayesian optimization for hyperparameter tuning of deep neural net-
works. IEEE access, 8, 52588-52608.

[140] IBRAHIM, M. M. W. (2025). Optimizing Tuberculosis Treatment Predictions: A Compara-
tive Study of XGBoost with Hyperparameter in Penang, Malaysia. Sains Malaysiana, 54(1),
3741-3752.

[141] Abdel-salam, M., Elhoseny, M. and El-hasnony, I.M. Intelligent and Secure Evolved Frame-
work for Vaccine Supply Chain Management Using Machine Learning and Blockchain. SN
COMPUT. SCI. 6, 121 (2025). https://doi.org/10.1007/s42979-024-03609-3

[142] Vali, M. H. (2025). Vector quantization in deep neural networks for speech and image pro-
cessing.

[143] Vincent, A.M., Jidesh, P. An improved hyperparameter optimization framework
for AutoML systems using evolutionary algorithms. Sci Rep 13, 4737 (2023).
https://doi.org/10.1038/s41598-023-32027-3

[144] Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Ali, F., and Choi, S. M. (2025). Improving flood-
prone areas mapping using geospatial artificial intelligence (GeoAI): A non-parametric algo-
rithm enhanced by math-based metaheuristic algorithms. Journal of Environmental Manage-
ment, 375, 124238.

257



[145] Kiran, M., and Ozyildirim, M. (2022). Hyperparameter tuning for deep reinforcement learning
applications. arXiv preprint arXiv:2201.11182.

[146] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25.

[147] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 84-90.

[148] Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

[149] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-
778).

[150] Cohen, T., and Welling, M. (2016, June). Group equivariant convolutional networks. In In-
ternational conference on machine learning (pp. 2990-2999). PMLR.

[151] Zeiler, M. D., and Fergus, R. (2014). Visualizing and understanding convolutional networks.
In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part I 13 (pp. 818-833). Springer International Publishing.

[152] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... and Guo, B. (2021). Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision (pp. 10012-10022).

[153] Lin, M. (2013). Network in network. arXiv preprint arXiv:1312.4400.

[154] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back-propagating errors. nature, 323(6088), 533-536.
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