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Target detection in Gaussian or compound-Gaussian clutter

emerges as a particularly pertinent issue for a radar sys-

tem [1, 2]. When a radar system employs pulsed Doppler

processing to identify potential targets amidst such clutter,

the target components often undergo fluctuations, which

subsequently allows them to be embedded within the co-

variance matrix of the data under examination. In a recent

study [3], the authors have devised innovative detectors for

targets within compound-Gaussian clutter. These detectors

leverage the eigenvalues of the covariance matrix, demon-

strating superior detection performance compared to exist-

ing methods.

However, the detectors presented in [3] exhibit two no-

table limitations. Firstly, they are created without the

capability to suppress clutter, making them vulnerable to

intense clutter. Secondly, these detectors are tailored for

point targets, whereas modern radar systems, with wide

bandwidth, often encounter targets spanning multiple range

bins, necessitating a different approach. To address these

issues, we introduce eigenvalue-based detectors specifically

designed for detecting distributed targets amidst compound-

Gaussian clutter. These detectors incorporate a clutter sup-

pression mechanism, enabling them to enhance detection

performance. The effectiveness of our proposed detectors

has been validated using both simulated and real-world data.

Problem formulation. For a distributed target, if present,

occupying K range cells, the test data gathered by a radar

system over a coherent processing interval (CPI) can be rep-

resented by N × 1 column vectors zl, l = 1, . . . ,K, with N

being the number of pulses in a CPI. zl typically contains

clutter cl and noise nl. The covariance matrix of the clutter

and noise is unknown. Estimation of this covariance matrix

necessitates the use of training data, which are commonly

acquired adjacent to the test data. We assume that the

secondary data zl s, l = K +1, . . . ,K +L, with L being the

number of secondary data, share the same covariance matrix

structure with the test data. Under hypothesis H0, all the

data only contain noise and clutter. Conversely, under hy-

pothesis H1, the test data also encompass signal component.

Consequently, the detection problem can be formulated as
H0 : zl = cl + nl, l = 1, . . . ,K + L

H1 :

{
zl = sl + cl + nl, l = 1, . . . ,K

zl = cl + nl, l = K + 1, . . . ,K + L

(1)

where the signal has the form sl = βlp, l =

1, . . . ,K, βl is the unknown target amplitude, p =[
1, e−j2πfd , . . . , e−j2πfd(N−1)

]T
denotes the signal steering

vector, and fd is the normalized target Doppler frequency.

The clutter cl is modeled as a spherically invariant random

vector (SIRV), described as cl =
√
τlηl, l = 1, . . . ,K + L,

where cl is expressed as the product of the square root of the

slowly varying texture τl and the quickly varying speckle ηl.

Here, τl is a nonnegative real random variable, represent-

ing the local power of the clutter in the lth range cell. The

texture τl is considered to be unknown and deterministic

since the statistics of the texture are difficult to obtain in

practice. The speckle ηl is characterized as an independent,

zero-mean, complex circular Gaussian random vector with

an N ×N covariance matrix R .

Detector design. To design effective detectors, we

need the sample covariance matrix (SCM), given as R̂ =
1
L

∑K+L
l=K+1 zlz

H
l . Then we whiten the data as z̃l =

R̂− 1
2 zl, resulting in the whitened test data (l = 1, . . . ,K)

and whitened training data (l = K + 1, . . . ,K + L). The

data whitening process has the function of clutter suppres-

sion and hence enhances detection performance.

Note that if we whiten the data with the actual covari-

ance matrix R, resulting in the whitened data zl = R− 1
2 zl,

then the covariance matrix of zl can be written as

Rzl = E
[
zlz

H
l

]
=


r0,l · · · r∗N−1,r

... · · ·
...

rN−1,r · · · r0,r

 , (2)

where rm,l is the correlation coefficient, expressed as

rm,l = E
[
z̄q,lz̄

∗
q+m,l

]
, 0 ⩽ m ⩽ N − 1, 0 ⩽ q ⩽ N −m− 1.

(3)
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In (3), z̄m,l is the mth element of zl. Moreover, the

data in the lth range cell zl can be represented by zl =[
z0,l, . . . , zN−1,l

]T
, l = 1, . . . ,K + L.

The matrix Rz̄l in (2) is unknown in practice. It is as-

sumed that the data received by the radar are wide-sense

stationary (WSS). It follows that Rz̄l has a Toeplitz Hermi-

tian positive-definite (HPD) structure. Hence, to estimate

Rz̄l , we use the whitened data in all the range cells. The

ergodicity of the stationary Gaussian process permits us to

estimate the correlation coefficient rm,l by averaging the

whitened data, namely,

r̂m,l =
1

N

N−1−m∑
q=0

z̃q,lz̃
∗
q+m,l, 0 ⩽ m ⩽ N−1, l = 1, . . . ,K+L,

(4)

where z̃q,l is the qth element of z̃l. Moreover, the estimated

whitened covariance matrix is denoted as R̂z̃l
.

Eigenvalues play a pivotal role in extracting information

about potential targets from the test data. The maximum

eigenvalue of the test data, signifies the most significant in-

formation pertaining to the potential target [4]. Adopting

the maximum, minimum, harmonic mean (HM), arithmetic

mean (AM), and geometric mean (GM) of eigenvalues of

an HPD matrix, we propose the following eigenvalue-based

detector for distributed targets (EDDT)

tEDDT =
1
K

∑K
l=1 λ̃max,l

1
L

∑K+L
l=K+1

[
1
N

∑N
n=1 λ̃

a
n,l

]1/aΛ (5)

where λ̃max,l = max{eig(R̂z̃l
)}, l = 1, · · · ,K, λ̃n,l is the

nth eigenvalue of R̂z̃l
, l = 1, · · · ,K + L, Λ is the detection

threshold, and a is a tunable parameter. We can adjust the

power parameter a to obtain different kinds of EDDT. As

a = −1, 1, 0,−∞,∞, the EDDT in (5) can be recast as

tEDDT =



1
K

∑K
l=1 λ̃max,l

1
L

∑K+L
l=K+1 [N/

∑N
n=1 (1/λ̃n,l)]

, a = −1

1
K

∑K
l=1 λ̃max,l

1
LN

∑K+L
l=K+1

∑N
n=1 λ̃n,l

, a = 1

1
K

∑K
l=1 λ̃max,l

1
L

∑K+L
l=K+1 (

∏N
n=1 λ̃n,l)

1/N , a = 0

1
K

∑K
l=1 λ̃max,l

1
L

∑K+L
l=K+1

λ̃min,l

, a = −∞
1
K

∑K
l=1 λ̃max,l

1
L

∑K+L
l=K+1

λ̃max,l

, a = ∞

(6)

where λ̃min,l = min {eig(R̂ẑl
)}. For convenience, the pro-

posed EDDT in (5) or (6) with a = −1, 1, 0,−∞,∞ is re-

ferred to as maximum eigenvalue to harmonic mean detector

(MHM-D), maximum eigenvalue to arithmetic mean detec-

tor (MAM-D), maximum eigenvalue to geometric mean de-

tector (MGM-D), maximum eigenvalue to minimum eigen-

value detector (MME-D), and maximum eigenvalue to max-

imum eigenvalue detector (MEM-D), respectively.

Experiments. To evaluate the detection performance of

the detectors, we compare the probabilities of detection

(PDs) of the proposed detector with distributed target ver-

sion of the MGM detector in [3], which is shown to have the

best detection performance therein, referred to as the MGM

detector with no whitening (MGM-D-nW) for convenience.

Precisely, the MGM-D-nW can be obtain from the MGM-

D in (8) in [3] when the numerator λmax,cut is replaced

by 1
K

∑K
l=1 λmax,cut,l, with λmax,cut,l being the maximum

eigenvalue of the estimated covariance matrix for the lth

test data, l = 1, ...,K. For the simulation results, the co-

variance matrix of the speckle component has the structure

of R = R0 + p0IN , where R0 represents the clutter co-

variance matrix, p0 represents the thermal noise power, and

the (b, n)th element of R0 is R0(b, n) = σ2
cρ

|b−n|, where

b, n = 1, ..., N and ρ = 0.9. We set probability of false alarm

(PFA) as 10−3. The texture component of the compound-

Gaussian clutter follows an inverse gamma distribution, with

a shape parameter of ν = 0.9 and a scale parameter of

µ = 1.3. For the real data, the dataset TFA17 014.03.mat is

used [5]. The results in Figure 1 show that the new detector

MHM-D has the highest PD, and when the PD is 0.8, the

performance improvement of the MHM-D in terms of out-

put signal-to-clutter ratio (SCR) exceeds 5dB compared to

the MGM-D-nW.
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Figure 1 PDs of the detectors under different SCRs. (a) Sim-

ulated data; (b) Real data

Conclusions. The EDDT first implement a whitening op-

eration to the test data to reduce the impact of the clutter.

Then, tt performs eigenvalue decomposition to the whitened

data to effectively utilized the energy of potential target em-

bedded in the clutter. Finally, it uses these eigenvalues to

form effective detectors. Numerical results with simulated

and real data showed that the proposed detectors outper-

form the existing ones.
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1 More information

In this appendix, the evaluation of the detection performance of the detectors proposed in this letter
under more parameter settings is presented to reflect the effectiveness of the proposed methods in a more
comprehensive manner.

Figure A1 shows the variations of the PFAs of the detectors proposed in this letter and the MGM-D-nW
proposed in [3] under different clutter correlation characteristics (i.e., one-lag correlation coefficients). It
can be seen from the figure that the PFAs of the proposed detectors in this letter do not change with the
variations of the clutter correlation characteristics, while for the MGM-D-nW, its PFA increases as the
clutter correlation parameters increase. The reason is that the detectors proposed in this letter contain
a data whitening process, which realizes clutter suppression and thus enables the detectors to have the
constant false alarm rate (CFAR) characteristic.

The detection performance of adaptive detectors with clutter suppression capabilities is affected by the
output signal-to-clutter ratio (SCR) [1]. The detectors proposed in this letter also belongs to the category
of adaptive detectors and has clutter suppression capabilities. The essence of the superior detection
performance of the proposed detectors for highly correlated clutter is that the proposed detectors can
improve the output SCR. This factor is confirmed in Figure A2, which shows the input and output SCRs
under different one-lag correlation coefficients. The input and output SCRs are defined as

SCRin =
1

N

K∑
l=1

|βl|2pHp

tr(R)
(1)

and

SCRout=
1

N

K∑
l=1

|βl|2pHR−1p (2)

respectively. The results in Figure A2 show that the output SCR is significantly higher than the input
SCR, especially when the clutter correlation characteristics are relatively strong. In other words, the
proposed detectors can suppress the clutter quite effectively for highly correlated clutter, thus improving
the detection performance.

Figure A3 presents the PDs of the detectors proposed in this letter and the detector MGM-D-nW
in [3] under different PFAs. This type of figure is usually called the receiver operating characteristic
(ROC) curve. It can be seen from the figure that the PDs of the detectors proposed in this letter are
obviously higher than that of the MGM-D-nW. This is because the proposed detectors have the function
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of clutter suppression, which realizes the improvement of the target detection performance in the clutter
environment.
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Figure A1 The PFAs of the detectors under different clutter correlation characteristics. N = 8, K = 4, L = 16, ν = 0.9, µ = 1.3,

and fd = 0.05.
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Figure A2 The input and output SCRs. N = 8, K = 4, βk = 2, k = 1, ..., K, and fd = 0.05.
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Figure A3 The ROC curves of the detectors. N = 8, K = 4, ρ = 0.9, L = 16, ν = 0.9, µ = 1.3, SCRout = 12dB, and fd = 0.05.
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