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Abstract—Achieving precise performance in aerospace
robotics, particularly when handling unknown payloads in
uncertain environments, remains a significant challenge.
Traditional model-based control methods are often impractical
due to the dynamic nature of aerospace operations. Adaptive
control has emerged as a viable alternative, offering the
ability to compensate for modeling errors and disturbances.
However, conventional adaptive schemes rely on high-gain
learning rates to ensure rapid adaptation, which can induce
high-frequency oscillations and instability, compromising
system safety and precision. To address these limitations,
we propose a novel adaptive control framework tailored
for nonlinear aerospace robotics applications. Our approach
refines the adaptive update law to suppress destabilizing
high-frequency components while preserving robust error
dynamics. This ensures stable performance even at high-gain
learning rates, enabling precise and secure manipulation of
dynamic objects in space.Numerical simulations in a zero-gravity
environment validate the effectiveness of our method in robot
manipulation tasks. Results demonstrate superior performance
over conventional approaches, achieving enhanced stability
and precision. Our findings contribute to the advancement of
adaptive control theory and provide a reliable solution for
high-performance aerospace robotics, paving the way for safer
and more efficient space missions.

Index Terms—adaptive control, space robotics, robotics ma-
nipulation, deep neural network

I. INTRODUCTION

Adaptive control theory has become a cornerstone in var-
ious engineering fields [1], including aerospace, enabling
high-efficiency system behavior without relying on precise
dynamical models [2]–[5]. However, a significant challenge
arises in deep space robotics applications [6], where high-gain
adaptation is essential for rapid response and good tracking.
Despite its necessity for fast error convergence, high-gain com-
ponents can inadvertently introduce high-frequency oscillatory
dynamics into the system, jeopardizing stability [7]–[10]. This

issue poses a critical barrier to achieving reliable and stable
performance in deep space robotics.

Fig. 1. One space service module using robotics to grasp one satellite to
finish the transportation task in space environment1.

In the realm of aerospace robotics, the demand for adap-
tive control is particularly acute. These systems must meet
rigorous precision standards while grappling with substantial
uncertainties and abrupt dynamic changes. This is obvious
in missions involving robot manipulators moving unknown
payloads in zero-gravity environments, where minor structural
disturbances or swift shifts in dynamic parameters can trigger
system failures [11]. To address these challenges, high-gain
adaptive controllers are often employed to eliminate tracking
errors and fulfill stringent specifications swiftly. However,
these controllers introduce a trade-off: higher gain learning
rates can destabilize oscillations and degraded control re-
sponses, threatening the overall system’s stability and perfor-
mance [12].

The research in [13] marks a significant breakthrough
by addressing the intricate challenge of maintaining strong
adaptation while ensuring system stability. This perspective
has profound implications for strategic military planning and

1Picutre from European Space Agency

https://www.esa.int/ESA_Multimedia/Images/2019/07/In-Orbit_Servicing_Rendezvous_and_synchronisation


Fig. 2. Diagram of the space service module installed a robot arm grasping
and transporting an object in space.

enhances the business community’s capability to navigate
rapidly changing markets. To balance this trade-off, innovative
adaptive control designs are essential, capable of manag-
ing both high-frequency perturbations [14] and maintaining
transient and steady-state stability, particularly in the harsh
operating environments of aerospace systems [15]–[17].

Sophisticated control models have been meticulously devel-
oped for precise tracking of underactuated systems, especially
in highly dynamic conditions. These models often rely on
advanced backstepping and Lyapunov-based stability meth-
ods, further refined to optimize tracking performance [18].
For instance, globally uniformly ultimately bounded (GUUB)
control systems, leveraging nonlinear coordinate transforma-
tions [19] and dynamic oscillators, exhibit robust performance
against parametric uncertainties. However, these models re-
quire enhancements for application in unstructured environ-
ments, such as spacecraft.

High-level adaptive methods utilizing deep neural networks
have been proposed to further mitigate constraints from para-
metric and structural uncertainties, leveraging the universal
capabilities of NNs. These methods use NNs universal approx-
imation feature for more robust, adaptive real-time behaviour.
Deep neural network (DNN) adaptive controllers harness their
universal approximation capabilities to enhance robustness and
adaptive real-time behavior. These controllers are particularly
valuable in aerospace applications requiring precise trajectory
monitoring and payload management, such as robot arms
manipulating unknown objects in microgravity [20]. They
represent a significant advancement in adaptive control, im-
proving reliability and accuracy in critical aerospace safety
domains.

The primary contributions are outlined as follows:

• This work introduces adaptive controllers leveraging
Deep Neural Network architectures, offering universal
approximation capabilities for real-time adjustments and
enhanced trajectory tracking of robotic arms in micro-

gravity environments.
• This paper’s proposed method tackles the unique chal-

lenges of transporting unknown payloads in zero-gravity,
significantly enhancing precision and reliability for criti-
cal aerospace robotic operations.

II. RELATED WORKS

Over the past three decades, sun-tracking mechanisms have
undergone significant advancements, evolving from basic me-
chanical systems to intelligent designs. Initially, sun trackers
relied on analog sensors and straightforward feedback loops
to align solar panels with the sun’s direction. However, these
rudimentary systems suffered from limited flexibility and
adaptability, often failing to maintain optimal alignment in
diverse environmental conditions. With the advent of photo-
voltaics, the need for more efficient tracking capabilities to
capture maximum energy became apparent, spurring research
into faster and more dynamic tracking methods.

Computer vision and deep learning have transformed solar
tracking. Advanced image processing algorithms and neural
networks are now utilized to accurately determine the solar
position. These sophisticated techniques can correctly identify
the sun’s path even under partial obstructions and varying
conditions. Cutting-edge research has demonstrated that con-
volutional neural networks (CNNs) [21] and recurrent neural
networks (RNNs) can successfully predict solar movements,
making the tracking process more robust and efficient. Fur-
thermore, integrating machine learning models with weather
forecasting tools enhances the reliability of solar trackers.

High-degree-of-freedom (DoF) robotics are now pivotal in
enabling advanced solar tracking systems. These robots pos-
sess complex kinematics and exceptional mobility, allowing
for millisecond adjustments to solar panel orientations. Pre-
vious research explored the integration of High-DoF robotics
with smart control algorithms to dynamically and adaptively
respond to the sun’s movement. Recently, focus has shifted to
multi-jointed robotic arms and self-balancing drones equipped
with solar panels, offering enhanced tracking performance and
lower power consumption. The dexterity and agility of these
High-DoF systems enable precise alignment with the sun, even
in confined spaces and rapidly changing environments [14].

Addressing the inherent challenges of outdoor sun tracking,
such as varying weather conditions and intermittent glare,
remains a significant hurdle in modern science. Previous
research has explored various methods to mitigate issues like
cloud cover, bird noise, and lens blockages, ranging from
adaptive filtering to real-time anomaly detection. However,
many of these solutions lack comprehensiveness in addressing
the diverse challenges posed by complex outdoor environ-
ments. Recently, deep learning algorithms have incorporated
objectness regularisation and contextual attention, enabling the
system to more accurately identify relevant features of the
sun and filter out irrelevant noise. Additionally, powerful data
augmentation and domain adaptation algorithms have signif-
icantly improved the performance of sun tracking systems in
diverse and unpredictable meteorological conditions. Together,



these innovations represent a paradigm shift towards stronger,
smarter solar tracking technology, capable of capturing as
much energy as possible in a wide range of harsh outdoor
environments.

III. METHODOLOGY

A. Dynamics of Robot Arm in Spacecraft

First, we use the Denavit–Hartenberg (D-H) convention
for coordinate representation, the homogeneous transformation
matrix T i−1

i , which describes the relative pose between two
successive frames, can be denoted as

T i−1
i =


cos (θi) − sin (θi) cos (αi) sin (θi) sin (αi) ai cos (θi)
sinθi cos (θi) cos (αi) − cos (θi) sin (αi) ai sin (θi)
0 sin (αi) cos (αi) di
0 0 0 1

 (1)

where θi represents the i-th joint angle, while i−1Ri denotes
the rotational matrix describing the orientation of the i-th
frame with respect to the (i−1)-th frame. Additionally, i−1Pi

refers to the position vector of the origin of the i-th frame,
expressed in the coordinate system of the (i− 1)-th frame.

The movement of the robot arm in microgravity space is
guided by sophisticated equations that account for the various
forces and moments acting on the manipulator. With these
formulas in place, engineers can accurately predict and control
the dynamics of the arm as it carries out tasks like delivering
payloads. By applying adaptive control techniques, they can
effectively navigate the uncertainties and challenges inherent
in this unique environment. This precise analysis and versatile
approach ensure that the robot arm operates smoothly and
efficiently in the mission-critical tasks it undertakes in space
as

w = M (θ) θ̈ + C
(
θ̇,θ

)
+ J⊤

[
fe
τe

]
(2)

Where M is the matrix of mass and inertia of the robot arm.
The first word of the dynamic equation consists of inertial
effects from joint accelerations. The second term, C, by
contrast, takes the Coriolis and centrifugal forces generated by
the movement of the joints. The third word, G, is the gravity
on the arm. In addition, fe and τe are the contact forces and
torques to the manipulator from external environments, while
τ are the joint actuation torques of the robot arm to the service
module in space. All of these factors are responsible for the
complex kinematics of the robotic arm that can be used to
develop adaptive control mechanisms for fine-tuning unknown
payloads in space.

B. Adaptive Controller Design

Here we can mitigate the high-frequency oscillations com-
monly encountered in standard adaptive control frameworks
employing high-gain feedback, let Ûξ(k) ∈ Rs×m, t ≥ 0,
denote the low-pass filtered estimate of Û(k), t ≥ 0, governed
by the dynamics:

˙̃Uξ(k) = Υξ

[
Û(k)− Ũξ(k)

]
Ûξ(0) = Û0, t ≥ 0

(3)

where Γξ ∈ Rs×s denote a positive-definite filter gain
matrix. Given that Ûξ(k), t ≥ 0, serves as the filtered weight
estimate of Û(k), t ≥ 0, the filter gain matrix Γξ is chosen
such that λmax(Γξ) ≤ γf,max, where γf,max > 0 is a user-
defined parameter.

For the specific case where m = s = 1, Û(k) ∈ R, t ≥ 0,
and Γξ = γf,max, the above equation simplifies to:

Ûξ(s) =

N∑
i=1

1

ws+ 1
Ûi(s) (4)

where s is the Laplace variable and τ = γ−1
f,max is the filter

time. Therefore, choosing a large enough time constant τ is
like using a low-pass filter, so γf,max must be very small
enough to reduce the high-frequency part of Û(k), t ≥ 0.

This is not possible if we want a feedback controller to
follow a time-dependent constraint such as equation (3) (tra-
ditional Lyapunov). We model this logarithmic barrier function
after Predictive Path Control (PPC) ideas as

zs =
1

N

N∑
i=1

log

(
ηs(k) + ψg

βsη1(k)− ψg

)
βs =

ηs(k)

η1(k)
,

(5)

where ln(·) denotes the natural logarithm. The barrier function
zs possesses the critical property of preventing finite escape as
the tracking error ψg approaches the boundary of the feasible
set (−η1, η1), which includes the origin. Specifically, zs →∞
as ψg → η1, and zs → −∞ as ψg → −η1. Consequently, zs
can ensure that the time-varying constraint on ψg given in
equation (6) is not violated.

Also notice that the feasible set contains the origin, and the
barrier function zs obeys zs = 0 if and only if ψg = 0. That
would suggest that asymptotic convergence of the tracking
error ψg to the origin is coincidental to the equilibrium stability
of zs. But even zs is not a valid Lyapunov function candidate,
because it doesn’t possess positive definiteness. To counter
this, we create a quadratic version of the barrier function to
have a globally nonnegative Lyapunov-like function as

Vs = e⊤Pe+ tr Ũ⊤Γ−1Ũ , (6)

where the P ∈ R3×3 and Γ ∈ R3×3 are the gain matrices
which we assume we initiate before the simulation. Then,
we can derivate of the Lyapunov function along the system
dynamics (4) to get

V̇s ≤− e⊤(k)Re(k)− 2σ tr Ũ⊤(k)Ũ(k)− 2σ tr Ũ⊤(k) · Ũ(k)

=− e⊤(k)Re(k).
,

(7)
Based on the derivative of the Lyapunov function, we can see
that the system is stable.

For the Deep nerual network, we can define the net function
as

f(x, ẋ, θ, θ̇) = Υ⊤σc = Υ⊤σ (x̄) + ε, (8)



Algorithm 1 Inverse-Dynamics DNN-Based Controller Train-
ing for a Robotic Manipulator

1: Input: α, β, δtol, κmax

2: while New joint measurements (χ, φ, ψ) are available do
3: Estimate torque ντ+1 using the inverse-dynamics

DNN: ντ+1 = ΩTΨ(χτ+1, φτ+1, ψτ+1)
4: Compute actual torque ϑτ+1 from sensor feedback (or

forward dynamics).
5: Evaluate the prediction error ρτ+1 = ∥ντ+1 − ϑτ+1∥.
6: if ρτ+1 ≥ δtol then
7: Update dataset D: D ← D ∪
{(χτ+1, φτ+1, ψτ+1, ϑτ+1)}

8: if |D| > κmax then
9: Remove oldest entry from D based on a rele-

vance criterion (e.g., largest singular value contribution).
10: end if
11: end if
12: if |D| ≥ µ then
13: Sample mini-batch Dµ ⊆ D.
14: Perform a training update on Ω using gradient-

based optimization:
Ω← Ω− α∇ΩL(Dµ)

15: Optionally, update the feature representation Ψ(·)
using a secondary learning rate β

for a feature extraction layer within the DNN.
16: Compute desired end-effector pose, use inverse

kinematics (IK) to update reference χ⋆
τ+1.

17: Incorporate IK updates into training if needed (e.g.,
refine Ψ to better encode χ⋆

τ+1).
18: end if
19: end while

where x̃ ∈ D, |ε| ≤ εd, ∥Υ∥d ≤ Υ, ∥σ (x̃c)∥ ≤ γd.
1 Algorithm: Training algorithm for deep learning inverse-

dynamics controller for robot manipulators. For every iter-
ation, the algorithm takes new joint data (angles, speeds,
accelerations) and computes joint torques using a deep neural
network (DNN) [22]. The expected torques are then compared
to actual measurements [23] and the error is calculated.
If the error goes over some arbitrary value, then the new
point is registered to a growing dataset [24]. Once a lot
of representative data is taken into consideration, the DNN
parameters and feature representation are revised by way of
mini-batch training process. This constant iteration helps the
model constantly improve its torque estimates, rebalancing
with changes in the robot’s motion, and getting better. Inverse
kinematics can also be factored in to change reference joint
targets, allowing the algorithm to account for multi-stage end-
effector paths. This technology fusing data-driven learning and
traditional robotics theory makes it an effective and flexible
inverse-dynamics controller [25].

IV. SIMULATION RESULTS

The study conducted on the implementation of a deep adap-
tive control strategy in a space service module with a robot

arm in zero gravity yielded noticeable results, as evidenced by
Figures 3, 4, and 6. These figures clearly depict the exceptional
performance of both controllers during the transportation task,
showcasing their ability to maintain position and orientation
tracking errors within set performance bounds. Particularly in
Figure 3, it is evident that the position and orientation tracking
errors remain minimal in comparison to the optimal direction,
emphasizing the robustness of the control measures employed.
Furthermore, the trajectory is closely followed by both con-
trollers throughout the transportation process, exemplifying the
effectiveness of the deep adaptive control strategy in ensuring
precise and accurate movements in a challenging zero-gravity
environment.

The data presented in Figure 4 demonstrates the effective-
ness of the controllers in maintaining stable velocity profiles
at both linear and angular levels. The controllers successfully
eliminate sudden fluctuations and oscillations, resulting in
clean and precise motion profiles. Specifically, the linear
velocity remains constant and closely follows the intended
motion profile. Additionally, the angular velocity exhibits
excellent tracking capability with minimal discrepancies, even
in dynamic and unpredictable scenarios. This exemplifies the
deep adaptive control approach’s capacity to promptly adapt
to changes in environmental and system conditions, ensuring
smooth and efficient motion control in real-time.

The simulation depicted in Fig.6 showcases the evolution
of the Lyapunov function, highlighting the robustness of
the closed-loop system. As the Lyapunov function steadily
decreases, it eventually reaches zero when nearing equilib-
rium. This progressive convergence serves as evidence of the
stability guarantees offered by the proposed control system,
even in the presence of significant modeling uncertainties and
external disturbances. Furthermore, it reaffirms that the deep
adaptive algorithm effectively achieves and maintains stability
while adhering to the requirements of transient and steady-
state performance.

The simulation results demonstrate the effectiveness of
the deep adaptive algorithm in efficiently managing dynamic
scenarios and maintaining precise position and orientation
accuracy in transportation tasks. This algorithm proves su-
perior in ensuring smooth velocity profiles, stable system
performance, and overall reliability throughout the process.
Its flexibility and power in addressing challenging situations
highlight its potential for enhancing transportation operations
and optimizing performance in various scenarios.

V. CONCLUSION

Our approach ensures precise trajectory tracking for un-
commanded surface ships by addressing uncertainty modeling
and time-dependent external noise. By employing logarithmic
methods, we offer efficient control solutions without high
AIGC rates or instability risks. The control algorithm pre-
sented in this study incorporates functions, disturbance ob-
servers, and Lyapunov synthesis to effectively manage tracking
error within predefined dynamic bounds. This unique approach
ensures that the controller architecture can mitigate singularity
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Fig. 6. Lyapunov function during the simulation process.

risks, ultimately enhancing the system’s overall robustness. By
utilizing neural network estimators, uncertain vessel motion
is accurately predicted, while unknown external disturbances
are effectively controlled through disturbance observers. The
adaptive neural control model, coupled with uncertainty and
disturbance compensations, successfully generates bounding
signals within the closed loop. This results in steady-state and
transient tracking with high reliability, particularly in high dy-
namic environments such as aerospace robotics’ intricate space
servicing operations. Ultimately, this innovative methodology
showcases significant potential in enhancing control systems’
performance in challenging real-world scenarios.
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