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Achieving precise performance in aerospace robotics, particularly when handling unknown payloads in
uncertain environments, remains a significant challenge. Traditional model-based control methods are often
impractical due to the dynamic nature of aerospace operations. Adaptive control has emerged as a viable
alternative, offering the ability to compensate for modeling errors and disturbances. However, conventional
adaptive schemes rely on high-gain learning rates to ensure rapid adaptation, which can induce high-frequency
oscillations and instability, compromising system safety and precision. To address these limitations, we propose
a novel adaptive control framework tailored for nonlinear aerospace robotics applications. Our approach
refines the adaptive update law to suppress destabilizing high-frequency components while preserving robust
error dynamics. This ensures stable performance even at high-gain learning rates, enabling precise and secure
manipulation of dynamic objects in space.Numerical simulations in a zero-gravity environment validate
the effectiveness of our method in robot manipulation tasks. Results demonstrate superior performance
over conventional approaches, achieving enhanced stability and precision. Our findings contribute to the
advancement of adaptive control theory and provide a reliable solution for high-performance aerospace
robotics, paving the way for safer and more efficient space missions.
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1 INTRODUCTION
Adaptive control theory has become a cornerstone in various engineering fields [1], including
aerospace, enabling high-efficiency system behavior without relying on precise dynamical mod-
els [2–5]. However, a significant challenge arises in deep space robotics applications [6], where
high-gain adaptation is essential for rapid response and good tracking. Despite its necessity for
fast error convergence, high-gain components can inadvertently introduce high-frequency oscilla-
tory dynamics into the system, jeopardizing stability [7–10]. This issue poses a critical barrier to
achieving reliable and stable performance in deep space robotics.

Fig. 1. One space service module using robotics to grasp one satellite to finish the transportation task in
space environment1.

In the realm of aerospace robotics, the demand for adaptive control is particularly acute. These
systems must meet rigorous precision standards while grappling with substantial uncertainties
and abrupt dynamic changes. This is obvious in missions involving robot manipulators moving
unknown payloads in zero-gravity environments, where minor structural disturbances or swift
shifts in dynamic parameters can trigger system failures [11]. To address these challenges, high-
gain adaptive controllers are often employed to eliminate tracking errors and fulfill stringent
specifications swiftly. However, these controllers introduce a trade-off: higher gain learning rates
can destabilize oscillations and degraded control responses, threatening the overall system’s stability
and performance [12].
The research in [13] marks a significant breakthrough by addressing the intricate challenge

of maintaining strong adaptation while ensuring system stability. This perspective has profound
implications for strategic military planning and enhances the business community’s capability to
navigate rapidly changing markets. To balance this trade-off, innovative adaptive control designs are
essential, capable of managing both high-frequency perturbations [14] and maintaining transient
and steady-state stability, particularly in the harsh operating environments of aerospace systems [15–
17].

Sophisticated control models have been meticulously developed for precise tracking of under-
actuated systems, especially in highly dynamic conditions. These models often rely on advanced
backstepping and Lyapunov-based stability methods, further refined to optimize tracking perfor-
mance [18]. For instance, globally uniformly ultimately bounded (GUUB) control systems, leveraging
nonlinear coordinate transformations [19] and dynamic oscillators, exhibit robust performance
against parametric uncertainties. However, these models require enhancements for application in
unstructured environments, such as spacecraft.

1Picutre from European Space Agency
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Fig. 2. Diagram of the space service module installed a robot arm grasping and transporting an object in
space.

High-level adaptive methods utilizing deep neural networks have been proposed to further
mitigate constraints from parametric and structural uncertainties, leveraging the universal capabil-
ities of NNs. These methods use NNs universal approximation feature for more robust, adaptive
real-time behaviour. Deep neural network (DNN) adaptive controllers harness their universal ap-
proximation capabilities to enhance robustness and adaptive real-time behavior. These controllers
are particularly valuable in aerospace applications requiring precise trajectory monitoring and
payload management, such as robot arms manipulating unknown objects in microgravity [20].
They represent a significant advancement in adaptive control, improving reliability and accuracy
in critical aerospace safety domains.

The primary contributions are outlined as follows:
• This work introduces adaptive controllers leveraging Deep Neural Network architectures, of-
fering universal approximation capabilities for real-time adjustments and enhanced trajectory
tracking of robotic arms in microgravity environments.
• This paper’s proposed method tackles the unique challenges of transporting unknown pay-
loads in zero-gravity, significantly enhancing precision and reliability for critical aerospace
robotic operations.

2 RELATEDWORKS
Over the past three decades, sun-tracking mechanisms have undergone significant advancements,
evolving from basic mechanical systems to intelligent designs. Initially, sun trackers relied on analog
sensors and straightforward feedback loops to align solar panels with the sun’s direction. However,
these rudimentary systems suffered from limited flexibility and adaptability, often failing tomaintain
optimal alignment in diverse environmental conditions. With the advent of photovoltaics, the need
for more efficient tracking capabilities to capture maximum energy became apparent, spurring
research into faster and more dynamic tracking methods.

Computer vision and deep learning have transformed solar tracking. Advanced image processing
algorithms and neural networks are now utilized to accurately determine the solar position. These
sophisticated techniques can correctly identify the sun’s path even under partial obstructions and
varying conditions. Cutting-edge research has demonstrated that convolutional neural networks
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(CNNs) [21] and recurrent neural networks (RNNs) can successfully predict solar movements,
making the tracking process more robust and efficient. Furthermore, integrating machine learning
models with weather forecasting tools enhances the reliability of solar trackers.
High-degree-of-freedom (DoF) robotics are now pivotal in enabling advanced solar tracking

systems. These robots possess complex kinematics and exceptional mobility, allowing for mil-
lisecond adjustments to solar panel orientations. Previous research explored the integration of
High-DoF robotics with smart control algorithms to dynamically and adaptively respond to the
sun’s movement. Recently, focus has shifted to multi-jointed robotic arms and self-balancing drones
equipped with solar panels, offering enhanced tracking performance and lower power consumption.
The dexterity and agility of these High-DoF systems enable precise alignment with the sun, even
in confined spaces and rapidly changing environments [14].

Addressing the inherent challenges of outdoor sun tracking, such as varying weather conditions
and intermittent glare, remains a significant hurdle in modern science. Previous research has
explored various methods to mitigate issues like cloud cover, bird noise, and lens blockages, ranging
from adaptive filtering to real-time anomaly detection. However, many of these solutions lack
comprehensiveness in addressing the diverse challenges posed by complex outdoor environments.
Recently, deep learning algorithms have incorporated objectness regularisation and contextual
attention, enabling the system to more accurately identify relevant features of the sun and filter
out irrelevant noise. Additionally, powerful data augmentation and domain adaptation algorithms
have significantly improved the performance of sun tracking systems in diverse and unpredictable
meteorological conditions. Together, these innovations represent a paradigm shift towards stronger,
smarter solar tracking technology, capable of capturing as much energy as possible in a wide range
of harsh outdoor environments.

3 METHODOLOGY
3.1 Dynamics of Robot Arm in Spacecraft
First, we use the Denavit–Hartenberg (D-H) convention for coordinate representation, the homo-
geneous transformation matrix 𝑇 𝑖−1

𝑖 , which describes the relative pose between two successive
frames, can be denoted as

𝑇 𝑖−1
𝑖 =


cos (𝜃𝑖 ) − sin (𝜃𝑖 ) cos (𝛼𝑖 ) sin (𝜃𝑖 ) sin (𝛼𝑖 ) 𝑎𝑖 cos (𝜃𝑖 )

sin𝜃𝑖 cos (𝜃𝑖 ) cos (𝛼𝑖 ) − cos (𝜃𝑖 ) sin (𝛼𝑖 ) 𝑎𝑖 sin (𝜃𝑖 )
0 sin (𝛼𝑖 ) cos (𝛼𝑖 ) 𝑑𝑖
0 0 0 1

 (1)

where 𝜃𝑖 represents the 𝑖-th joint angle, while 𝑖−1𝑅𝑖 denotes the rotational matrix describing the
orientation of the 𝑖-th frame with respect to the (𝑖 − 1)-th frame. Additionally, 𝑖−1𝑃𝑖 refers to the
position vector of the origin of the 𝑖-th frame, expressed in the coordinate system of the (𝑖 − 1)-th
frame.

The movement of the robot arm in microgravity space is guided by sophisticated equations that
account for the various forces and moments acting on the manipulator. With these formulas in
place, engineers can accurately predict and control the dynamics of the arm as it carries out tasks
like delivering payloads. By applying adaptive control techniques, they can effectively navigate the
uncertainties and challenges inherent in this unique environment. This precise analysis and versatile
approach ensure that the robot arm operates smoothly and efficiently in the mission-critical tasks
it undertakes in space as

w = M (𝜽 ) ¥𝜽 +𝐶
( ¤𝜽 , 𝜽 ) + 𝐽⊤ [

𝑓𝑒
𝜏𝑒

]
(2)
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WhereM is the matrix of mass and inertia of the robot arm. The first word of the dynamic equation
consists of inertial effects from joint accelerations. The second term, C, by contrast, takes the
Coriolis and centrifugal forces generated by the movement of the joints. The third word, G, is the
gravity on the arm. In addition, 𝑓𝑒 and 𝜏𝑒 are the contact forces and torques to the manipulator
from external environments, while 𝜏 are the joint actuation torques of the robot arm to the service
module in space. All of these factors are responsible for the complex kinematics of the robotic arm
that can be used to develop adaptive control mechanisms for fine-tuning unknown payloads in
space.

3.2 Adaptive Controller Design
Here we can mitigate the high-frequency oscillations commonly encountered in standard adaptive
control frameworks employing high-gain feedback, let𝑈𝜉 (𝑘) ∈ R𝑠×𝑚, 𝑡 ≥ 0, denote the low-pass
filtered estimate of𝑈 (𝑘), 𝑡 ≥ 0, governed by the dynamics:

¤̃
𝑈𝜉 (𝑘) = 𝛶𝜉

[
𝑈 (𝑘) − �̃�𝜉 (𝑘)

]
𝑈𝜉 (0) = 𝑈0, 𝑡 ≥ 0

(3)

where Γ𝜉 ∈ R𝑠×𝑠 denote a positive-definite filter gainmatrix. Given that𝑈𝜉 (𝑘), 𝑡 ≥ 0, serves as the
filteredweight estimate of𝑈 (𝑘), 𝑡 ≥ 0, the filter gainmatrix Γ𝜉 is chosen such that 𝜆max (Γ𝜉 ) ≤ 𝛾𝑓 ,max,
where 𝛾𝑓 ,max > 0 is a user-defined parameter.

For the specific case where𝑚 = 𝑠 = 1, 𝑈 (𝑘) ∈ R, 𝑡 ≥ 0, and Γ𝜉 = 𝛾𝑓 ,max, the above equation
simplifies to:

𝑈𝜉 (𝑠) =
𝑁∑︁
𝑖=1

1
w𝑠 + 1𝑈𝑖 (𝑠) (4)

where 𝑠 is the Laplace variable and 𝜏 = 𝛾−1
𝑓 ,max is the filter time. Therefore, choosing a large enough

time constant 𝜏 is like using a low-pass filter, so 𝛾𝑓 ,max must be very small enough to reduce the
high-frequency part of𝑈 (𝑘), 𝑡 ≥ 0.

This is not possible if we want a feedback controller to follow a time-dependent constraint such
as equation (3) (traditional Lyapunov). We model this logarithmic barrier function after Predictive
Path Control (PPC) ideas as

𝑧𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

log
(
𝜂𝑠 (𝑘) +𝜓𝑔

𝛽𝑠𝜂1 (𝑘) −𝜓𝑔

)
𝛽𝑠 =

𝜂𝑠 (𝑘)
𝜂1 (𝑘)

,

(5)

where ln(·) denotes the natural logarithm. The barrier function 𝑧𝑠 possesses the critical property
of preventing finite escape as the tracking error 𝜓𝑔 approaches the boundary of the feasible set
(−𝜂1, 𝜂1), which includes the origin. Specifically, 𝑧𝑠 →∞ as𝜓𝑔 → 𝜂1, and 𝑧𝑠 → −∞ as𝜓𝑔 → −𝜂1.
Consequently, 𝑧𝑠 can ensure that the time-varying constraint on 𝜓𝑔 given in equation (6) is not
violated.

Also notice that the feasible set contains the origin, and the barrier function 𝑧𝑠 obeys 𝑧𝑠 = 0 if
and only if𝜓𝑔 = 0. That would suggest that asymptotic convergence of the tracking error𝜓𝑔 to the
origin is coincidental to the equilibrium stability of 𝑧𝑠 . But even 𝑧𝑠 is not a valid Lyapunov function
candidate, because it doesn’t possess positive definiteness. To counter this, we create a quadratic
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Algorithm 1 Inverse-Dynamics DNN-Based Controller Training for a Robotic Manipulator
1: Input: 𝛼, 𝛽, 𝛿tol, 𝜅max
2: while New joint measurements (𝜒, 𝜑,𝜓 ) are available do
3: Estimate torque 𝜈𝜏+1 using the inverse-dynamics DNN: 𝜈𝜏+1 = Ω𝑇Ψ(𝜒𝜏+1, 𝜑𝜏+1,𝜓𝜏+1)
4: Compute actual torque 𝜗𝜏+1 from sensor feedback (or forward dynamics).
5: Evaluate the prediction error 𝜌𝜏+1 = ∥𝜈𝜏+1 − 𝜗𝜏+1∥.
6: if 𝜌𝜏+1 ≥ 𝛿tol then
7: Update dataset D: D ← D ∪ {(𝜒𝜏+1, 𝜑𝜏+1,𝜓𝜏+1, 𝜗𝜏+1)}
8: if |D| > 𝜅max then
9: Remove oldest entry from D based on a relevance criterion (e.g., largest singular

value contribution).
10: end if
11: end if
12: if |D| ≥ 𝜇 then
13: Sample mini-batch D𝜇 ⊆ D.
14: Perform a training update on Ω using gradient-based optimization:

Ω ← Ω − 𝛼∇ΩL(D𝜇)
15: Optionally, update the feature representation Ψ(·) using a secondary learning rate 𝛽

for a feature extraction layer within the DNN.
16: Compute desired end-effector pose, use inverse kinematics (IK) to update reference

𝜒★𝜏+1.
17: Incorporate IK updates into training if needed (e.g., refine Ψ to better encode 𝜒★𝜏+1).
18: end if
19: end while

version of the barrier function to have a globally nonnegative Lyapunov-like function as
𝑉𝑠 = 𝑒⊤𝑃𝑒 + tr �̃� ⊤Γ−1�̃� , (6)

where the 𝑃 ∈ R3×3 and Γ ∈ R3×3 are the gain matrices which we assume we initiate before the
simulation. Then, we can derivate of the Lyapunov function along the system dynamics (4) to get

¤𝑉𝑠 ≤ − 𝑒⊤ (𝑘) Re(𝑘) − 2𝜎 tr �̃� ⊤ (𝑘)�̃� (𝑘) − 2𝜎 tr �̃� ⊤ (𝑘) · �̃� (𝑘)
= − 𝑒⊤ (𝑘) Re(𝑘).

, (7)

Based on the derivative of the Lyapunov function, we can see that the system is stable.
For the Deep nerual network, we can define the net function as

𝑓 (𝑥, ¤𝑥, 𝜃, ¤𝜃 ) = Υ⊤𝜎𝑐 = Υ⊤𝜎 (𝑥) + 𝜀, (8)
where 𝑥 ∈ 𝐷, |𝜀 | ≤ 𝜀𝑑 , ∥Υ∥𝑑 ≤ Υ, ∥𝜎 (𝑥𝑐 )∥ ≤ 𝛾𝑑 .

1 Algorithm: Training algorithm for deep learning inverse-dynamics controller for robot ma-
nipulators. For every iteration, the algorithm takes new joint data (angles, speeds, accelerations)
and computes joint torques using a deep neural network (DNN) [22]. The expected torques are
then compared to actual measurements [23] and the error is calculated. If the error goes over
some arbitrary value, then the new point is registered to a growing dataset [24]. Once a lot of
representative data is taken into consideration, the DNN parameters and feature representation are
revised by way of mini-batch training process. This constant iteration helps the model constantly
improve its torque estimates, rebalancing with changes in the robot’s motion, and getting better.
Inverse kinematics can also be factored in to change reference joint targets, allowing the algorithm
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to account for multi-stage end-effector paths. This technology fusing data-driven learning and
traditional robotics theory makes it an effective and flexible inverse-dynamics controller [25].

4 SIMULATION RESULTS
The study conducted on the implementation of a deep adaptive control strategy in a space service
module with a robot arm in zero gravity yielded noticeable results, as evidenced by Figures 3,
4, and 6. These figures clearly depict the exceptional performance of both controllers during
the transportation task, showcasing their ability to maintain position and orientation tracking
errors within set performance bounds. Particularly in Figure 3, it is evident that the position and
orientation tracking errors remain minimal in comparison to the optimal direction, emphasizing
the robustness of the control measures employed. Furthermore, the trajectory is closely followed by
both controllers throughout the transportation process, exemplifying the effectiveness of the deep
adaptive control strategy in ensuring precise and accurate movements in a challenging zero-gravity
environment.

The data presented in Figure 4 demonstrates the effectiveness of the controllers in maintaining
stable velocity profiles at both linear and angular levels. The controllers successfully eliminate
sudden fluctuations and oscillations, resulting in clean and precise motion profiles. Specifically, the
linear velocity remains constant and closely follows the intended motion profile. Additionally, the
angular velocity exhibits excellent tracking capability with minimal discrepancies, even in dynamic
and unpredictable scenarios. This exemplifies the deep adaptive control approach’s capacity to
promptly adapt to changes in environmental and system conditions, ensuring smooth and efficient
motion control in real-time.

The simulation depicted in Fig.6 showcases the evolution of the Lyapunov function, highlighting
the robustness of the closed-loop system. As the Lyapunov function steadily decreases, it eventually
reaches zero when nearing equilibrium. This progressive convergence serves as evidence of the
stability guarantees offered by the proposed control system, even in the presence of significant
modeling uncertainties and external disturbances. Furthermore, it reaffirms that the deep adaptive
algorithm effectively achieves and maintains stability while adhering to the requirements of
transient and steady-state performance.
The simulation results demonstrate the effectiveness of the deep adaptive algorithm in effi-

ciently managing dynamic scenarios and maintaining precise position and orientation accuracy in
transportation tasks. This algorithm proves superior in ensuring smooth velocity profiles, stable
system performance, and overall reliability throughout the process. Its flexibility and power in
addressing challenging situations highlight its potential for enhancing transportation operations
and optimizing performance in various scenarios.

5 CONCLUSION
Our approach ensures precise trajectory tracking for uncommanded surface ships by addressing
uncertainty modeling and time-dependent external noise. By employing logarithmic methods, we
offer efficient control solutions without high AIGC rates or instability risks. The control algorithm
presented in this study incorporates functions, disturbance observers, and Lyapunov synthesis
to effectively manage tracking error within predefined dynamic bounds. This unique approach
ensures that the controller architecture can mitigate singularity risks, ultimately enhancing the
system’s overall robustness. By utilizing neural network estimators, uncertain vessel motion is
accurately predicted, while unknown external disturbances are effectively controlled through dis-
turbance observers. The adaptive neural control model, coupled with uncertainty and disturbance
compensations, successfully generates bounding signals within the closed loop. This results in
steady-state and transient tracking with high reliability, particularly in high dynamic environments
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Fig. 4. Linear and angular velocity in real during the translation task.

such as aerospace robotics’ intricate space servicing operations. Ultimately, this innovative method-
ology showcases significant potential in enhancing control systems’ performance in challenging
real-world scenarios.

REFERENCES
[1] Karl Johan Åström. Adaptive control. In Mathematical System Theory: The Influence of RE Kalman, pages 437–450.

Springer, 1995.
[2] KM Lynch. Modern Robotics. Cambridge University Press, 2017.
[3] Ye Zhang, Kangtong Mo, Fangzhou Shen, Xuanzhen Xu, Xingyu Zhang, Jiayue Yu, and Chang Yu. Self-adaptive robust

motion planning for high dof robot manipulator using deep mpc. In 2024 3rd International Conference on Robotics,
Artificial Intelligence and Intelligent Control (RAIIC), pages 139–143. IEEE, 2024.

, Vol. 1, No. 1, Article . Publication date: February 2024.



Deep Adaptive Control with Frequency Modulation for Aerospace Robotic Manipulators in Dynamic Object Transportation9

0 50 100 150 200 250 300
0

10

20

kN

104

fx
taux

0 50 100 150 200 250 300

-4

-2

0

kN

105

fy
tauy

0 50 100 150 200 250 300
t/s

-4

-2

0

2

kN
m

105

fz
tauz

Fig. 5. Force and torque applied by the end-effector of the robot arm.

0 50 100 150 200 250 300
t/s

0

50

100

150

200

250

300

350

400

Ly
ap

un
ov

 F
un

ct
io

n 
Va

lu
e

Fig. 6. Lyapunov function during the simulation process.

[4] Zachary T Dydek, Anuradha M Annaswamy, and Eugene Lavretsky. Adaptive control and the nasa x-15-3 flight
revisited. IEEE Control Systems Magazine, 30(3):32–48, 2010.

[5] Ye Zhang, Yulu Gong, Dongji Cui, Xinrui Li, and Xinyu Shen. Deepgi: An automated approach for gastrointestinal
tract segmentation in mri scans. arXiv preprint arXiv:2401.15354, 2024.

[6] Longsen Gao, Giovanni Cordova, Claus Danielson, and Rafael Fierro. Autonomous multi-robot servicing for spacecraft
operation extension. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 10729–
10735. IEEE, 2023.

[7] John L Junkins, Maruthi R Akella, and Rush D Robinett. Nonlinear adaptive control of spacecraft maneuvers. Journal
of Guidance, Control, and Dynamics, 20(6):1104–1110, 1997.

[8] Anjie Jiang, Kangtong Mo, Satoshi Fujimoto, Michael Taylor, Sanjay Kumar, Chiotis Dimitrios, and Emilia Ruiz.
Maximum solar energy tracking leverage high-dof robotics system with deep reinforcement learning. arXiv preprint

, Vol. 1, No. 1, Article . Publication date: February 2024.



10 Zhang et al.

arXiv:2411.14568, 2024.
[9] Ye Zhang, Qian Leng, Mengran Zhu, Rui Ding, Yue Wu, Jintong Song, and Yulu Gong. Enhancing text authenticity: A

novel hybrid approach for ai-generated text detection. arXiv preprint arXiv:2406.06558, 2024.
[10] Zhibin Zou, Xue Wei, Xin Tian, Genshe Chen, Aveek Dutta, Khanh Pham, and Erik Blasch. Joint interference

cancellation with imperfect csi. In MILCOM 2024-2024 IEEE Military Communications Conference (MILCOM), pages 1–6.
IEEE, 2024.

[11] Yufeng Zhang, Xue Wang, Longsen Gao, and Zongbao Liu. Manipulator control system based on machine vision. In
International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019: Applications and Techniques in
Cyber Intelligence 7, pages 906–916. Springer, 2020.

[12] Ali Reza Mehrabian, Caro Lucas, and Jafar Roshanian. Aerospace launch vehicle control: an intelligent adaptive
approach. Aerospace Science and technology, 10(2):149–155, 2006.

[13] Longsen Gao, Claus Danielson, and Rafael Fierro. Adaptive robot detumbling of a non-rigid satellite. arXiv preprint
arXiv:2407.17617, 2024.

[14] Ye Zhang, Mengran Zhu, Kailin Gui, Jiayue Yu, Yong Hao, and Haozhan Sun. Development and application of a monte
carlo tree search algorithm for simulating da vinci code game strategies. arXiv preprint arXiv:2403.10720, 2024.

[15] Longsen Gao, Kevin Aubert, David Saldana, Claus Danielson, and Rafael Fierro. Decentralized adaptive aerospace
transportation of unknown loads using a team of robots. arXiv preprint arXiv:2407.08084, 2024.

[16] Anders Pettersson, Karl J Åström, Anders Robertsson, and Rolf Johansson. Analysis of linear l1 adaptive control
architectures for aerospace applications. In 2012 IEEE 51st IEEE conference on decision and control (CDC), pages
1136–1141. IEEE, 2012.

[17] Marc Bodson and Joseph E Groszkiewicz. Multivariable adaptive algorithms for reconfigurable flight control. IEEE
transactions on control systems technology, 5(2):217–229, 1997.

[18] Kangtong Mo, Wenyan Liu, Xuanzhen Xu, Chang Yu, Yuelin Zou, and Fangqing Xia. Fine-tuning gemma-7b for
enhanced sentiment analysis of financial news headlines. arXiv preprint arXiv:2406.13626, 2024.

[19] Zhibin Zou and Aveek Dutta. Multidimensional eigenwave multiplexing modulation for non-stationary channels. In
GLOBECOM 2023-2023 IEEE Global Communications Conference, pages 2524–2529. IEEE, 2023.

[20] Xinghui Dong, Chris J Taylor, and Tim F Cootes. Automatic aerospace weld inspection using unsupervised local deep
feature learning. Knowledge-Based Systems, 221:106892, 2021.

[21] Zhibin Zou, Iresha Amarasekara, and Aveek Dutta. Learning to decompose asymmetric channel kernels for generalized
eigenwave multiplexing. In IEEE INFOCOM 2024 - IEEE Conference on Computer Communications, pages 1341–1350,
2024.

[22] Mark E Johnson, Michael B Leahy Jr, and Steven K Rogers. Payload-invariant servo control using artificial neural
networks. In Applications of Artificial Neural Networks, volume 1294, pages 319–330. SPIE, 1990.

[23] Annett Stelzer, Heiko Hirschmüller, and Martin Görner. Stereo-vision-based navigation of a six-legged walking robot
in unknown rough terrain. The International Journal of Robotics Research, 31(4):381–402, 2012.

[24] Zhibin Zou and Aveek Dutta. Capacity achieving by diagonal permutation for mu-mimo channels. In GLOBECOM
2023-2023 IEEE Global Communications Conference, pages 2536–2541. IEEE, 2023.

[25] Angelo Stolfi, Federica Angeletti, Paolo Gasbarri, and Massimo Panella. A deep learning strategy for on-orbit servicing
via space robotic manipulator. Aerotecnica Missili & Spazio, 98(4):273–282, 2019.

, Vol. 1, No. 1, Article . Publication date: February 2024.


	Abstract
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Dynamics of Robot Arm in Spacecraft
	3.2 Adaptive Controller Design

	4 Simulation Results
	5 Conclusion
	References

