
A Lightweight SMTP Server for High-Performance
Email Processing with AMQP Integration

Nikhil Raj
Independent Researcher, Bengaluru, Karnataka, India

ORCID: 0009-0008-3435-5674
Email: nikhil@nekonik.com

Abstract—This paper introduces the Lightweight SMTP Server
(LSMTP), a minimalistic SMTP server designed for mod-
ern distributed systems that require high scalability and ef-
ficiency. LSMTP is optimized to handle the essential SMTP
commands—HELO/EHLO, MAIL FROM, RCPT TO, DATA, and
QUIT—while excluding advanced features like encryption, spam
filtering, and email storage. This streamlined approach makes
LSMTP ideal for use cases where basic email reception and for-
warding are needed, such as in microservices architectures. The
server is implemented using the Rust programming language and
the Tokio asynchronous runtime, ensuring optimal performance
and minimal resource consumption. Integrated seamlessly with
AMQP (Advanced Message Queuing Protocol), LSMTP forwards
incoming emails to message brokers like RabbitMQ for further
processing, such as analytics or archiving. The results of our
performance benchmarks highlight LSMTP’s superior efficiency
compared to traditional mail servers, making it a highly suitable
solution for lightweight, high-performance email processing in
distributed environments.

I. INTRODUCTION

The Simple Mail Transfer Protocol (SMTP) is defined
in RFC 5321 [1] and serves as the foundation for email
communication, providing the framework for the exchange
of messages across networks. Over decades, traditional mail
servers like Postfix [2] and others have been developed to
support comprehensive email handling capabilities, including
advanced routing, filtering, and storage mechanisms. However,
these systems often come with significant complexity that
requires meticulous configuration, maintenance, and resource
allocation.

In the era of micro-services and distributed architectures,
this complexity becomes a bottleneck. Modern applications de-
mand streamlined workflows, high scalability, and modularity.
Traditional SMTP servers were not designed to integrate seam-
lessly into these architectures or forward emails to modern
processing pipelines, such as message brokers. Additionally,
their all-encompassing design can lead to over provisioning
and inefficiency for use cases that require only a subset of
email processing features.

To address these challenges, this paper introduces
Lightweight SMTP Server (LSMTP), a minimalistic SMTP
server optimized for receiving emails and forwarding them to
an AMQP (Advanced Message Queuing Protocol) [3] broker
for further processing [4]. By focusing on essential func-
tionality, LSMTP implements only core SMTP commands:
HELO/EHLO, MAIL FROM, RCPT TO, DATA, and QUIT.

By omitting advanced features to provide a lightweight, high-
performance alternative that is simple to deploy and manage.

The server leverages the Rust programming language and
the Tokio asynchronous runtime to achieve exceptional perfor-
mance and reliability. Rust’s focus on safety and concurrency,
combined with Tokio’s efficient event-driven model, ensures
that the server can handle a high volume of connections with
minimal resource usage. This design makes it an ideal choice
for microservices environments where modularity, scalability,
and fault tolerance are paramount.

A. Scope and Limitations

This paper focuses solely on creating a minimalistic SMTP
server to receive and forward emails to an AMQP broker. It
is designed to be lightweight, efficient, and easy to integrate
into modern distributed systems. It does not aim to replace
full-featured mail servers but rather to provide a specialized
solution for specific use cases. The server has several limita-
tions, including:

• TLS Encryption: Secure email transmission is outside
the scope of this work.

• Spam Filtering: Mechanisms for identifying or handling
spam are not implemented.

• Email Storage: The system does not store emails; all
messages are forwarded to RabbitMQ or any AMQP-
compatible broker for further processing.

• Advanced Command Support: Only basic SMTP com-
mands are implemented, making it unsuitable for sce-
narios requiring extended features like authentication or
batching.

These limitations are deliberate and aligning with the goal
of achieving simplicity, modularity, and high performance for
specific use cases. The intent is to provide a foundation for
further customization and integration rather than a comprehen-
sive mail server solution.

B. Motivation and Use Cases

Practical use cases for LSMTP include email archiving,
lightweight notification systems, and email content forwarding
for further processing, such as analytics or spam detection. By
integrating with RabbitMQ or any AMQP-compatible message
broker, LSMTP enables seamless downstream processing and
enhances the overall flexibility of email workflows.

The contributions of this paper include the following.

https://orcid.org/0009-0008-3435-5674


1) Design and Implementation: A lightweight SMTP
server optimized for modern architectures.

2) Integration with AMQP: Enabling email forwarding
for further processing.

3) Performance Analysis: Demonstrating the efficiency
and scalability of the server.

The rest of the paper is organized as follows: Section II
provides background on SMTP, AMQP, and the technologies
used in the implementation. Section III reviews related work
and highlights the gaps in traditional SMTP solutions. Sec-
tion IV details the proposed system design, focusing on ar-
chitecture and integration with RabbitMQ. Section V presents
the implementation details and performance results. Section VI
concludes the paper with insights and future directions.

The source code for this project is available on GitHub [4].

II. BACKGROUND ON SMTP, AMQP, AND RUST WITH
TOKIO

This section discusses the fundamental concepts behind
Simple Mail Transfer Protocol (SMTP) and Asynchronous
Messaging Queues (AMQP), as well as a review of relevant
literature and existing solutions. Various SMTP servers and
frameworks are explored, highlighting their limitations in
modern, distributed applications.

A. SMTP (Simple Mail Transfer Protocol)

Simple Mail Transfer Protocol (SMTP) is the foundational
protocol used for email communication over the internet [1]. It
governs how email messages are composed, transmitted, and
delivered across networks. This protocol operates in a client-
server architecture, where the sending system functions as the
SMTP client, and the receiving system acts as the SMTP server
[1].

The communication between the client and server is struc-
tured around a series of commands and responses. Each
command initiates a specific step in the email transfer process,
while the server’s responses provide feedback on the success
or failure of each operation. This interaction ensures reliable
synchronization and error handling during email transmission
[1].

1) SMTP Workflow: The SMTP session is depicted in Fig-
ure 1, which illustrates the typical workflow for transmitting an
email through a series of bidirectional exchanges. This process
involves several stages:

1) Establishing a Connection: The client establishes a
connection with the SMTP server, typically over TCP
port 25. The server responds with a greeting message
indicating its readiness to proceed.

2) Introducing the Client (HELO/EHLO): The client
introduces itself to the server using the HELO or EHLO
command, followed by its domain name. The server
acknowledges this handshake with a success message.

3) Sender Identification (MAIL FROM): The client
specifies the sender’s email address using the MAIL
FROM command. The server confirms receipt of this
information.

4) Recipient Identification (RCPT TO): The client iden-
tifies one or more recipients using the RCPT TO com-
mand. The server validates the recipients and confirms
each one individually.

5) Transmitting the Email Content (DATA): The client
sends the email content, including headers (e.g. From,
To, Date, Subject) and the message body. The DATA
command signals the server that the content transfer is
beginning, and the transmission ends when the client
sends a single dot (.) on a new line.

6) Closing the Connection (QUIT): After successfully
transferring the message, the client terminates the ses-
sion with the QUIT command. The server confirms the
closure.

Fig. 1. Illustration of a typical SMTP session workflow, showing the exchange
of commands and responses between client and server.

2) Importance and Limitations of SMTP: SMTP provides
a reliable mechanism for email transfer, but was designed for
simpler, text-based communication in the early days of the
internet. Although it effectively handles the transport layer,
modern use cases often require additional features such as en-
cryption, authentication, and multimedia handling. Extensions
like STARTTLS for secure connections and MIME for rich
content have been introduced to address these limitations.

3) Relevance to This Paper: This paper focuses on a
minimalistic implementation of the SMTP protocol. Unlike

https://github.com/Neko-Nik/LSMTP


traditional implementations that support a wide range of fea-
tures and extensions, this work streamlines the process to sup-
port only essential commands (HELO/EHLO, MAIL FROM,
RCPT TO, DATA, and QUIT). By reducing complexity, this
implementation targets specific use cases, such as archiving
emails or forwarding them to be processed further via AMQP
brokers.

B. AMQP (Advanced Message Queuing Protocol)

AMQP (Advanced Message Queuing Protocol) is a com-
munication protocol designed for message-oriented middle-
ware. It enables reliable, asynchronous messaging between
distributed applications, facilitating decoupling between pro-
ducers and consumers. This decoupling enhances system
scalability, reliability, and flexibility, especially in large-scale
distributed systems. By providing a standardized wire-level
protocol, AMQP ensures that messages can be reliably trans-
mitted across heterogeneous platforms and technologies.

The protocol supports multiple messaging patterns, includ-
ing point-to-point, publish-subscribe, and request-response.
This flexibility allows AMQP to handle a variety of commu-
nication models depending on system requirements. It also
provides features like message persistence, delivery acknowl-
edgment, and routing, ensuring reliable delivery even in the
presence of network failures or system crashes.

AMQP brokers, such as RabbitMQ, Apache ActiveMQ, and
Apache Qpid, play a central role in message delivery. These
brokers handle the routing and storage of messages, ensuring
that they are delivered reliably to consumers. They support
advanced features such as message queuing, filtering, and
routing, making them ideal for high-performance, scalable, and
fault-tolerant systems.

1) Core Features of AMQP: AMQP provides several key
features that are essential for modern messaging systems:

• Reliability and Persistence: AMQP brokers ensure that
messages are stored reliably in queues until consumed,
even during system crashes or network issues. This fea-
ture guarantees that messages are not lost.

• Asynchronous Communication: Producers can send
messages without waiting for an immediate response
from consumers, enabling efficient, non-blocking com-
munication.

• Message Routing: AMQP brokers route messages to
appropriate queues based on predefined routing rules.
This enables the system to direct messages to specific
consumers based on content or other criteria.

• Acknowledgments: Consumers acknowledge receipt of
messages after processing them, allowing the broker to
track message delivery and avoid message loss.

• Scalability: AMQP brokers allow horizontal scaling by
distributing messages between multiple queues and con-
sumers, handling large volumes of messages with high
throughput.

2) AMQP Brokers: Several popular AMQP brokers are
available, each with distinct strengths and features. Notable
examples include RabbitMQ, Apache ActiveMQ, and Apache

Qpid. Among these, RabbitMQ stands out due to its extensive
feature set, reliability, and performance. It is widely used in
microservice architectures and large-scale applications where
high availability and fault tolerance are critical.

RabbitMQ is known for its ease of use, robust community
support, and scalability. It provides a wide range of messaging
patterns, including direct, fan-out, and topic exchanges, which
enable flexible message routing. RabbitMQ’s rich feature
set makes it a preferred choice for systems requiring high-
performance, reliable messaging.

3) AMQP Workflow: The typical message flow in an
AMQP-based system involves several steps:

1) Producer Sends a Message: A producer application
sends a message to an exchange within the AMQP
broker.

2) Exchange Routes the Message: The exchange pro-
cesses the incoming message and routes it to one or
more queues based on routing rules.

3) Consumer Subscribes to the Queue: A consumer sub-
scribes to a queue and retrieves messages for processing.

4) Message Processing: The consumer processes the mes-
sage and sends an acknowledgment back to the broker
to confirm successful processing.

5) Message Acknowledgment: The consumer acknowl-
edges the message, signaling to the broker that the
message has been handled and can be removed from
the queue.

6) Persistence and Delivery Guarantees: The broker
ensures that the message is stored reliably in the queue
and delivers it to the consumer even in the case of system
failures.

4) Relevance to This Paper: In this paper, the integra-
tion of an SMTP server with an AMQP broker, specifically
RabbitMQ, allows for efficient forwarding of received emails
to downstream services for processing. By utilizing AMQP’s
messaging capabilities, the system can be seamlessly inte-
grated with other services, such as email archiving systems,
analytics engines, or notification services.

The use of AMQP in this context offers several advan-
tages: it provides a scalable architecture, allows asynchronous
processing, and decouples the email reception process from
subsequent processing stages. By forwarding email content to
an AMQP broker, the system can easily integrate with a range
of microservices, each responsible for handling specific tasks
such as spam filtering, archiving, or analytics. This enhances
the flexibility and modularity of the email processing work-
flow, making it suitable for modern cloud-native architectures.

C. Rust Programming Language and Tokio Runtime

Rust is a systems programming language that focuses on
performance, safety, and concurrency. [5] It is designed to
overcome the limitations of C and C++ while providing
memory safety guarantees without a garbage collector. Rust
achieves this through its ownership system, which ensures that
memory is managed efficiently, preventing common bugs such



as null pointer dereferencing, data races, and buffer overflows.
[5]

Rust’s key features include:
• Memory safety without garbage collection: The own-

ership system ensures that memory is automatically freed
when no longer in use, preventing memory leaks and
dangling references. [5]

• Concurrency and parallelism: Rust’s model of owner-
ship and borrowing allows for safe concurrency, where
multiple threads can run simultaneously without causing
data races. [5]

• Performance: Rust’s performance is on par with C and
C++, making it ideal for applications where low-level
control and speed are critical. [5]

• Rich ecosystem and tooling: The Rust ecosystem, in-
cluding Cargo (the package manager) and Rust’s pow-
erful compiler, enables developers to efficiently manage
dependencies, run tests, and build applications. [5]

Rust is particularly suitable for building high-performance
network services and systems that require safe memory man-
agement and efficient concurrency handling, which makes
it a compelling choice for our lightweight SMTP server
implementation. [5]

1) Tokio Runtime: Tokio is an asynchronous runtime for
Rust, designed to handle I/O-bound operations efficiently. [6]
Provides a foundation for building reliable and scalable net-
work applications. Tokio’s key features include asynchronous
I/O, concurrency support, and lightweight task scheduling,
making it an ideal choice for server applications that need
to handle a large number of concurrent connections. [6]

Tokio is built around the ‘async‘/‘await‘ syntax in Rust,
which allows developers to write asynchronous code that
looks and behaves like synchronous code, making it easier
to read and maintain. [5], [6] The Tokio runtime manages
the execution of asynchronous tasks, ensuring that they are
scheduled and executed efficiently across available threads. [6]

Key features of Tokio:
• Asynchronous I/O: Tokio uses non-blocking I/O, al-

lowing it to handle multiple tasks concurrently without
blocking the thread. [6]

• Lightweight concurrency: Tokio’s task model allows
applications to scale efficiently without the overhead of
creating and managing many threads. [6]

• Integration with other libraries: Tokio integrates seam-
lessly with Rust libraries for networking, file I/O, and
database access, providing a complete toolset for building
asynchronous applications. [6]

• Ecosystem support: With libraries such as ‘tokio-
tungstenite‘ for WebSockets and ‘tokio-smtp‘ for SMTP,
Tokio offers an extensive ecosystem that simplifies net-
work programming in Rust. [5], [6]

In the context of this project, Tokio enables the efficient
handling of multiple simultaneous SMTP connections. [6] The
asynchronous nature of Tokio ensures that the server can
handle many connections concurrently without blocking the

main thread, making it a perfect fit for the lightweight SMTP
server that is required for high performance and scalability.

III. RELATED WORK

SMTP servers have been a foundational component of email
communication for many years. The traditional SMTP server
solutions, such as Postfix [2] and others, are widely used
for email handling but come with significant complexity and
resource consumption. These full-featured servers are often
overkill for lightweight applications that require only basic
email forwarding and handling capabilities.

Several lightweight SMTP server implementations have
emerged as alternatives to the heavyweight solutions, such
as ‘msmtp‘ and ‘Nullmailer‘. These servers are designed for
simplicity and ease of configuration, focusing on sending
emails with minimal resource usage. However, they do not
support advanced features like message queuing or integration
with message brokers for further processing, making them
unsuitable for modern, scalable email systems.

The integration of email systems with message brokers like
RabbitMQ has been explored in the context of microservices
and email processing. AMQP-based brokers enable email
data to be decoupled and forwarded to other systems for
further processing, archiving, or database storage. However,
while RabbitMQ has been widely adopted in microservice
architectures, there is limited research on lightweight SMTP
servers that directly forward email content to RabbitMQ for
processing.

IV. PROPOSED SYSTEM DESIGN

The proposed system design consists of two main com-
ponents: the Lightweight SMTP Server (LSMTP) and the
RabbitMQ [7] message broker. LSMTP is responsible for
receiving emails via the SMTP protocol and forwarding them
to RabbitMQ for further processing. RabbitMQ acts as the
central message broker, routing email messages to downstream
services based on predefined rules.

A. LSMTP Architecture

The architecture of the Lightweight SMTP Server (LSMTP)
is designed to be minimalistic and efficient, focusing on core
SMTP functionality. The server is implemented in Rust using
the Tokio asynchronous runtime to handle concurrent connec-
tions and optimize resource utilization. The key components
of the LSMTP architecture are as follows:

• TCP Listener: LSMTP listens for incoming SMTP
connections on port 25, the standard SMTP port. It
establishes a TCP listener using Tokio’s asynchronous
I/O capabilities to handle multiple concurrent connections
efficiently.

• SMTP Handler: Upon accepting a new connection,
LSMTP spawns a new asynchronous task to handle the
SMTP session. The handler processes SMTP commands
(HELO, MAIL FROM, RCPT TO, DATA, QUIT) and
forwards the email content to RabbitMQ.



Fig. 2. System Architecture: SMTP Server receiving emails and forwarding
them to RabbitMQ.

• Email Forwarding: The SMTP handler extracts the
email content received over the DATA command and
forwards it to RabbitMQ for further processing. The email
headers and body are encapsulated in an AMQP message
and sent to a predefined exchange.

• Error Handling: LSMTP includes robust error handling
mechanisms to manage connection failures, protocol vi-
olations, and other exceptional conditions. It gracefully
closes connections and logs errors for debugging and
monitoring.

The LSMTP architecture is designed to be modular and
extensible, allowing easy integration with other services and
protocols. By focusing on core SMTP functionality and lever-
aging Rust’s safety features, LSMTP provides a reliable and
efficient solution for email reception and forwarding.

B. Integration with RabbitMQ

The integration of LSMTP with RabbitMQ enables seam-
less email forwarding and processing within a microservices
architecture. RabbitMQ acts as the central message broker,
receiving email messages from LSMTP and routing them to
downstream services based on predefined rules. The integra-
tion workflow is as follows:

1) Email Reception: LSMTP receives an email message
from an SMTP client and extracts the email content. [1]

2) AMQP Message Creation: LSMTP encapsulates the
email content in an AMQP message, including headers
and body.

3) Message Routing: LSMTP publishes the AMQP mes-
sage to a predefined exchange in RabbitMQ. [3], [7]

4) Consumer Subscription: Downstream services sub-
scribe to the RabbitMQ exchange to receive email
messages for processing.

5) Message Processing: Consumers process email mes-
sages according to predefined rules, such as archiving,
filtering, or forwarding.

Integration with RabbitMQ enhances the flexibility and
scalability of the email processing workflow. By leveraging
RabbitMQ’s advanced messaging features, LSMTP enables
seamless communication between email reception and down-
stream processing services, making it suitable for modern
distributed systems.

C. System Assumptions

The proposed system design makes the following assump-
tions:

• Network Connectivity: The system assumes stable net-
work connectivity between LSMTP and RabbitMQ for
message forwarding.

• AMQP Configuration: RabbitMQ is pre-configured with
the necessary exchanges, queues, and bindings to route
email messages to downstream services.

• Email Content Parsing: LSMTP assumes that the email
content received over SMTP is well-formed and adheres
to standard email formatting rules.

• Concurrent Connections: LSMTP is designed to handle
multiple concurrent SMTP connections efficiently using
Tokio’s asynchronous runtime.

These assumptions guide the design and implementation of
the system, ensuring that it meets the requirements of modern
email processing workflows.

The proposed server operates as a lightweight layer between
email senders and RabbitMQ. Figure 2 illustrates the architec-
ture of the system.

V. IMPLEMENTATION RESULTS

The implementation of the Lightweight SMTP Server
(LSMTP) in Rust using the Tokio asynchronous runtime
demonstrates high performance and efficiency in handling
email reception and forwarding. The server successfully pro-
cesses incoming SMTP connections, extracts email content,
and forwards it to RabbitMQ for further processing. The key
results of the implementation are as follows.

A. Performance Benchmarks

• Connection Handling: LSMTP efficiently handles mul-
tiple concurrent SMTP connections, demonstrating low
latency and high throughput.

• Resource Utilization: The server optimizes resource
consumption, utilizing minimal CPU and memory for
email processing.

• Error Handling: LSMTP gracefully manages connection
errors, protocol violations, and other exceptional condi-
tions, ensuring robustness and reliability.



Performance benchmarks highlight the efficiency and scal-
ability of LSMTP in processing email messages and forward-
ing them to RabbitMQ for further processing. The server’s
lightweight design and asynchronous architecture make it
well-suited for modern microservice architectures requiring
high throughput and low latency.

Table I presents a comparison of different configurations,
showing how throughput and latency vary based on concur-
rency and client count. The results demonstrate that increasing
concurrency significantly improves throughput, although it
may also impact average latency.

TABLE I
PERFORMANCE COMPARISON OF LSMTP RELAY SERVER

Clients Concurrency Total
Emails

Throughput
(emails/sec)

Latency(s)

100 10 14,074 505 2.03
200 20 23,276 1,880 2.08
300 30 54,350 4,385 2.03
400 4 15,445 918 1.76
400 10 44,178 1,740 2.19
800 5 20,513 1,697 2.14

Note: All tests were conducted on a small 2 vCPU, 4GB
RAM server running a fresh Debian installation with default,
non-optimized settings. The client and server experienced an
approximate network latency of 315ms.

VI. CONCLUSION

This paper introduces a lightweight SMTP server optimized
for high-performance email handling in scenarios where sim-
plicity and resource efficiency are key. By focusing on a
minimal subset of the SMTP protocol and integrating with
an AMQP broker, the system provides a scalable solution for
microservices, email archiving, and forwarding use cases. Its
design results in significant improvements in performance and
resource usage compared to traditional SMTP solutions like
Postfix. [1], [2]

However, this simplicity comes with trade-offs. The server
omits advanced features such as TLS encryption, authentica-
tion, and spam filtering, making it unsuitable for environments
where security is critical. Furthermore, the lack of built-in
failover mechanisms presents limitations for highly critical
applications.

Future work will focus on addressing these limitations by
implementing security features (e.g., TLS), introducing traffic
management tools (e.g., throttling), and supporting additional
message brokers beyond AMQP. These enhancements aim to
broaden the applicability of the lightweight SMTP server for
more complex use cases.

The implementation of the Lightweight SMTP Server
(LSMTP) is available on GitHub as an open-source project,
enabling further development and contributions from the com-
munity. [4]

VII. ACKNOWLEDGMENT

I would like to thank my peers and mentors who provided
valuable feedback during the development of this project.

Special thanks to the developers of the Rust programming
language, Tokio, and RabbitMQ, whose tools made this project
possible.

REFERENCES

[1] J. Klensin, “Simple mail transfer protocol,” https://tools.ietf.org/html/
rfc5321, 2008, rFC 5321, October 2008, Accessed: 2025-01-15.

[2] P. Team, “Postfix: The mail transfer agent,” http://www.postfix.org/, 2025,
accessed: 2025-01-15.

[3] OASIS, “Amqp: Advanced message queuing protocol,” https://www.
amqp.org/, 2025, accessed: 2025-01-15.

[4] Nikhil, “Lightweight smtp server for high-performance mail processing
with amqp integration,” https://github.com/Neko-Nik/LSMTP, 2025, ac-
cessed: 2025-02-12.

[5] R. P. Language, “The rust programming language,” https://www.rust-lang.
org/, 2025, accessed: 2025-01-15.

[6] T. Team, “Tokio: A rust asynchronous runtime,” https://tokio.rs/, 2020,
accessed: 2025-01-15.

[7] P. M. Graff, “Rabbitmq: A message broker,” https://www.rabbitmq.com/,
2018, accessed: 2025-01-15.

https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5321
http://www.postfix.org/
https://www.amqp.org/
https://www.amqp.org/
https://github.com/Neko-Nik/LSMTP
https://www.rust-lang.org/
https://www.rust-lang.org/
https://tokio.rs/
https://www.rabbitmq.com/

	Introduction
	Scope and Limitations
	Motivation and Use Cases

	Background on SMTP, AMQP, and Rust with Tokio
	SMTP (Simple Mail Transfer Protocol)
	SMTP Workflow
	Importance and Limitations of SMTP
	Relevance to This Paper

	AMQP (Advanced Message Queuing Protocol)
	Core Features of AMQP
	AMQP Brokers
	AMQP Workflow
	Relevance to This Paper

	Rust Programming Language and Tokio Runtime
	Tokio Runtime


	Related Work
	Proposed System Design
	LSMTP Architecture
	Integration with RabbitMQ
	System Assumptions

	Implementation Results
	Performance Benchmarks

	Conclusion
	Acknowledgment
	References

