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Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing industrial op-

erations by enhancing efficiency, ensuring regulatory compliance, and promoting sustain-

ability. This paper presents the development of a Smart Autonomous Bilge Management

System (SABIMS) for ships, focusing on ML integration through its AI-Driven Decision-

Making Module (AIDDM) in conjunction with the highly automated SABIMS Logic

Operations Module (SLOM). A synthetic dataset, carefully designed to reflect realistic

maritime operational conditions, was utilized to train and evaluate Multi-Class Logistic

Regression (MCLR) and Decision Tree (DT) models. The results demonstrated that DT

outperformed MCLR across key performance metrics, including precision, recall, F1 score,

accuracy, and fit, while maintaining good class balance. By addressing the challenges of

bilge water management through predictive and autonomous decision-making, this pa-

per outlines a practical roadmap for achieving enhanced MARPOL compliance. The

findings highlight the critical role of synthetic data and robust ML models in advancing

sustainable and efficient shipboard systems.
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1. Introduction

The maritime industry faces increasing scrutiny to comply with international environ-

mental regulations, particularly those outlined by the International Convention for the

Prevention of Pollution from Ships (MARPOL), a global treaty aimed at preventing pol-

lution from ships through stringent discharge standards and operational requirements.

Despite stringent regulations and penalties for violations, enforcing compliance remains

challenging, especially on the high seas[1].Additionally, some shipping companies are mo-

tivated by financial gains to circumvent rules, even after repeated convictions, hefty fines,

and reputational damages[2].

While advancements in Oily Water Systems (OWS) and Oil Alarm Monitors (OAM) have

been made, and the International Maritime Organization (IMO) has implemented regu-

latory changes, illegal discharges persist. Current OAM devices primarily use automated

deterministic controls, which perform well within set parameters but struggle to adapt

to changing operational conditions and complex regulatory requirements [3].

Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing industries

by automating processes, enhancing efficiency, and ensuring regulatory compliance. In

the maritime sector, these technologies improve fuel efficiency, reduce maintenance costs,

optimize voyage planning, and enhance safety and pollution prevention. For example, AI-

powered systems are used to predict optimal sailing routes by analyzing weather patterns

and ocean currents, reducing fuel consumption and emissions. Additionally, AI-based

collision avoidance systems and fully autonomous ships demonstrate the transformative

potential of AI/ML-driven innovations [4, 5].

Section 2 of this paper explores the motivations behind illegal bilge water discharges,

highlighting economic and operational factors that drive non-compliance with MARPOL

Annex I regulations. It presents findings from Port State Control (PSC) reports, show-

ing how deficiencies in compliance persist despite regulatory oversight. Additionally, it

discusses the lack of AI/ML applications in bilge water management, contrasting it with

AI-driven advancements in water level prediction and environmental monitoring.

Section 3 reviews current bilge water management technologies, including intelligent Oily

Water Separator (OWS) systems, and highlights their limitations due to deterministic

logic and static threshold-based automation. These existing systems lack the ability to
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adapt dynamically to operational variations, making them susceptible to non-compliance

and inefficiencies in bilge water discharge management.

To address these challenges, this section introduces the Smart Autonomous Bilge Man-

agement System (SABIMS)—a transformative AI-driven solution designed to enhance

regulatory compliance, operational efficiency, and environmental sustainability. SABIMS

integrates the deterministic framework of the SABIMS Logic Operations Module (SLOM)

with the predictive and adaptive capabilities of the AI-Driven Decision-Making Module

(AIDDM), enabling a transition from rule-based automation to a fully autonomous bilge

water management system.

Section 4 discusses the methodology of generation of a synthetic dataset, designed to

emulate real-world shipboard conditions, enabling meaningful ML training. It outlines the

selection of MCLR as the baseline model, following literature recommendations, and its

limitations due to class imbalance and feature dependency. The section further explains

the decision to implement Decision Trees, which do not require feature independence and

are better suited to handling non-linear relationships in bilge water discharge prediction.

Section 5 evaluates the performance of MCLR and Decision Trees on the synthetic dataset.

MCLR struggled with class imbalance despite class weighting and SMOTE, failing to gen-

eralize effectively. In contrast, Decision Trees significantly outperformed MCLR, achiev-

ing higher accuracy, minimal overfitting, and better class-wise balance, though challenges

remained in minority class detection. The findings highlight the need for ensemble learn-

ing or balancing techniques as future enhancements.

By addressing the challenges of regulatory compliance and environmental sustainabil-

ity, this paper presents a practical roadmap for implementing SABIMS, emphasizing a

phased integration strategy. The results demonstrate how AI/ML can revolutionize bilge

water management, enabling predictive and autonomous decision-making while setting a

benchmark for broader AI adoption in shipboard systems. The study further underscores

the transformative potential of AI-driven automation in maritime operations, paving the

way for future research on enhanced learning models, real-world validation, and full-scale

deployment of autonomous bilge management systems.
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2. Regulatory Compliance: Motivations Behind Illegal Discharges

2.1. Port State Control Compliance Reports

Port State Control (PSC) involves the inspection of foreign ships in ports to verify com-

pliance with international maritime regulations, ensuring ship safety, crew well-being,

and marine environmental protection. Recently published information and reports from

various entities and various PSC authorities were reviewed to understand compliance

with respect to Annex I.

Authorities are adopting a stricter stance on MARPOL violations, with shipowners, op-

erators, and crew facing severe penalties, including hefty fines and imprisonment for

deliberate infractions. The most frequently reported malpractice remains the use of a

’magic pipe,’ often accompanied by falsified Oil Record Book (ORB) entries, allowing

authorities—particularly in the U.S.—to prosecute shipowners even for violations com-

mitted beyond their jurisdiction. Instances of falsified crew statements, concealed bypass

equipment, and record manipulation contribute significantly to regulatory actions and

financial penalties[1].

A longitudinal study by Mantoju (2021)

[6] analyzed PSC reports from various

Memoranda of Understanding (MOUs)

between 2009 and 2019, revealing that

MARPOL Annex I deficiencies accounted

for approximately 42% of total reported

MARPOL deficiencies, indicating persis-

tent compliance gaps. Figure 1 presents

the distribution of deficiencies across

various MOUs.

Figure 1: MARPOL Annex-wise PSC
Deficiencies from 2009−2019.
Source: Mantoju (2021) [6]

Multiple PSC reports further highlight recurring deficiencies related to Oily Water Sep-

arators (OWS), improper ORB entries, and unauthorized discharges. The Tokyo MOU

PSC observed an increase in MARPOL Annex I-related deficiencies and detentions due

to poor OWS maintenance and fraudulent ORB documentation [7]. Similarly, the Paris

MOU 45th Amendment (2023) placed greater emphasis on oil pollution prevention sys-
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tems, focusing on proper maintenance, operational checks, and enforcement actions against

non-compliant vessels [8]. The Bahamas Maritime Authority PSC Report (2023) identi-

fied additional issues, including crew unfamiliarity with OWS operations, unauthorized

modifications, and incomplete ORB records [9].

In contrast, the USCG PSC Annual Report 2023 recorded a 50% reduction in MARPOL

Annex I-related deficiencies compared to 2022. However, persistent violations included

unauthorized piping modifications, ineffective maintenance practices, and poorly main-

tained OWS units, underscoring the need for stricter compliance measures and enhanced

oversight [10].

Despite longstanding guidance from Maritime International Secretariat Services, which

stresses zero tolerance for MARPOL violations through regular OWSmaintenance, tamper-

proof devices, audits, crew training, and ORB accuracy [11], deficiencies remain prevalent.

The systemic and operational failures highlighted across multiple reports suggest that

mere inspections are insufficient. A more sustainable compliance strategy, emphasizing

crew training, rigorous equipment maintenance, and fostering a culture of accountability,

is essential for long-term regulatory adherence.

2.2. Illegal Discharges: Motivation and Incentives

Illegal discharges continue to be a challenge in the maritime industry, driven largely by

economic and operational pressures. As highlighted in our earlier study[3], cost-related

incentives, operational inefficiencies, and inadequate facilities play a pivotal role in moti-

vating ship operators to bypass MARPOL Annex I requirements. For example, data from

OECD report[2] highlighted how non-compliance offered substantial cost advantages for

operators, especially in regions with weak enforcement and limited reception facilities.In

addition, the high costs associated with maintenance of related equipment,compliant dis-

posal of oily bilge water and crew training further incentivize these practices.

The economic incentives documented in 2003 remain relevant today, with operators con-

tinuing to prioritize cost savings over environmental compliance, particularly in regions

with limited monitoring capabilities.Table 1 shows monetary incentives for illegal dis-

charges.
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Table 1: Economic Incentives of Non-Compliance[2]

Factor Compliance Practice
Non-Compliance

Advantage
Savings in 2003 (USD)

Waste Management Costs
Proper disposal at port

reception facilities
Avoidance of disposal costs $50,000–$400,000 annually

Maintenance Costs
Regular maintenance of
bilge water systems

Skipping maintenance
saves expenses

$3,000–$5,000 annually

Equipment and Training
Regular crew training and

equipment upgrades
Avoidance of investment in

training
$10,000–$100,000

(one-time)

Equipment Replacement
Timely replacement of
damaged or outdated

equipment

Delaying replacement saves
costs

$10,000 per set (one-time)

3. Existing Systems and Proposed Innovations

3.1. Existing Smart Systems

Modern intelligent Oily Water Separator (OWS) systems, such as CBM-LINK (RWO-

VEOLIA) and BlueBox SA (Alfa Laval), incorporate GPS integration, tamper-proof

logging, predictive maintenance, and Alarm Monitoring System (AMS) integration for

enhanced control and compliance [12, 13]. However, they rely on static thresholds and

deterministic logic, making them unable to adapt to dynamic maritime conditions. De-

spite in-built safeguards, they remain vulnerable to bypass due to the absence of AI-driven

proactive anomaly detection.

A prior study by the authors [3] identified these limitations, particularly the lack of

AI/ML integration for predictive analytics and real-time decision-making. To address

these gaps, the Smart Autonomous Bilge Management System (SABIMS) is proposed,

leveraging AI to optimize operations, enhance compliance, and minimize human inter-

vention.

3.2. SABIMS: Advancing Beyond Automation

Overcoming the limitations of current ”intelligent” OWS systems requires moving be-

yond fixed, rule-based operations to adaptive, real-time decision-making. The Smart

Autonomous Bilge Management System (SABIMS) bridges this gap by integrating AI

and machine learning, enabling risk prediction, dynamic adjustments, and reduced hu-

man intervention. This approach enhances bilge water management in evolving maritime
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conditions.

SABIMS is an advanced autonomous framework integrating real-time monitoring, auto-

mated decision-making, and regulatory compliance for operational efficiency and environ-

mental safety. To enhance modularity, it comprises two key modules: the highly auto-

mated SABIMS Logic Operations Module (SLOM) and the AI-Driven Decision Module

(AIDDM) for intelligent control.

3.2.1 SLOM: SABIMS Logic Operations Module

The Logic Operations flow diagram of SLOM is given in Figure 2

3.2.1.1 Core Functional Components Following is a brief description of the core

components of SLOM:

• Sensors and Monitoring Devices: Bilge Well Sensors (BWA, BWFP, BWFS),

Tank Level Sensors (BTL, STL, APTL), Trim and List Monitors (TM, LM), Oil Alarm

Monitor (OAM), Geo-Fencing GPS Monitor (GPSM), En-Route Monitor (ERM)

• Pumps and Valves: Engine Room Bilge Pump (ERBP), Fire & G.S. Pump (FGSP),

Bilge & G.S. Pump (BGSP), Oily Water Separator (OWS), Valves- Key valves include

BWASV (aft bilge well suction), BTSV (bilge tank suction), and FGSPODV (FGSP

overboard discharge)

• Alerts and Notifications: Real-Time Alerts indicate abnormal conditions, suction

failures, or critical overflow scenarios while Emergency Notifications Trigger actions

when all bilge wells and tanks reach critical levels.

For more description of SABIMS components refer to Appendix A.

3.2.1.2 Operational Logic Flow

• Monitoring and Initial Calculations: Monitors Elapsed time (t1-t0 > 0), Bilge

well level changes (BWAL1 - BWAL0 > 0), calculates corrected volumes (BWAV)

using trim (TM) and list monitors (LM).

• Decision Nodes and Conditions: Rate of Rise (ROR) is categorized as 0,1,2,3 and

>3, depicting Normal, slightly abnormal, Abnormal, Alarming and Emergency con-
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Figure 2: SABIMS Logic Diagram
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ditions respectively. High level thresholds (BWAHL,BTHL) start pumps and trigger

alarms. Low Level threshold(BWALL, BTLL) stops pumps.

• Pump Operation: The Engine Room Bilge Pump (ERBP) activates at the threshold,

retries suction up to 10 times, and stops with fail-safes. If ERBP fails, the Fire &

G.S. Pump (FGSP) and Bilge & G.S. Pump (BGSP) activate sequentially, with retry

mechanisms handling suction loss (up to 5 retries), and bilge water is redirected to

alternate tanks in emergencies.

• Oily Water Separator (OWS) Operations: OWS activates when oil content ≤ 15

PPM (OAM), the ship is > 12 NM from shore (GPSM), and status is EN-ROUTE

(ERM); system directs bilge water to OWS for separation, flushes sensors on abnormal

readings, and shuts down with alerts if oil >15 PPM.

• Emergency and Overflow Management: Redirects excess bilge water to sludge

(STL) or aft peak tanks (APTL) and activates emergency bilge suction valves (EBSV)

for bilge well overflows; triggers alerts when tanks are full and verifies shore reception

availability before action.

• System safety Mechanism: Pumps retry suction for a preset time (ERBP: 10 re-

tries, FGSP/BGSP: 5 retries) before triggering ”Suction Lost” alerts; redirects bilge

water to alternative tanks during failures and, while in port, discharges to shore re-

ception if the bilge tank is full.

3.2.1.3 Advantages

• Enhanced Environmental Compliance

• Enhanced Operational Efficiency

• Safety and Redundancy

• Proactive Alerts and Fallbacks

The SABIMS Logic Operations Module (SLOM) automates bilge water management

through advanced monitoring, decision-making, and fallback mechanisms, ensuring com-

pliance and reliability. Integrating the AI-Driven Decision Module (AIDDM) enhances

SLOM’s autonomy, enabling proactive decision-making, adaptive self-learning, and en-

hanced compliance in dynamic operational conditions.
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3.2.2 Artificial Intelligence Driven Decision Module (AIDDM)

The AI-Driven Decision Module (AIDDM) is the transformative core of the Smart Au-

tonomous Bilge Management System (SABIMS), transforming it from rule-based au-

tomation to full autonomy. By integrating machine learning (ML), real-time data, and

feedback loops, AIDDM enables dynamic adaptability, predictive capabilities, and oper-

ational autonomy.

3.2.2.1 Dynamic Decision-Making AIDDM adapts SABIMS to operational condi-

tions by analyzing live sensor inputs like bilge levels, tank capacities, pump statuses, and

environmental data. It predicts issues, ensures regulatory compliance, and dynamically

adjusts pump thresholds and discharge schedules to optimize performance while contin-

uously retraining with synthetic and historical data. Figure 3 shows the operational flow

process of SABIMS including AIDDM training using synthetic/historical data, while the

live operational data is utilized for its continuous retraining and improvement.
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Figure 3: SABIMS Training and Operations
Source: Dutt et al.[3]

3.2.2.2 Prediction and Pattern Recognition AIDDM employs ML models to pre-

dict system behavior and recognize patterns in real-time and historical data:
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• Predictive Maintenance: Anticipates failures in pumps, OWS, and other compo-

nents using historical trends and anomaly detection, Enables proactive interventions,

reducing downtime and emergency repairs.

• Anomaly Detection: Flags irregular patterns, such as spikes in oil content or unex-

pected inflows, and triggers corrective actions.

• Operational Optimization: Recommends resource-efficient pumping schedules, dis-

charge timings, and operational adjustments to enhance system efficiency.

3.2.2.3 Autonomous Adjustments AIDDM autonomously refines SABIMS oper-

ations, enhancing adaptability and efficiency:

• Threshold Calibration: Adjusts bilge tank and well high/low-level thresholds based

on dynamic conditions, such as rolling and pitching intensities.

• Pump Optimization: Balances suction rates and activation intervals to manage

bilge water effectively and minimize equipment wear.

• OWS Tuning: Monitors OWS performance, triggering sensor calibration and clean-

ing cycles as needed to maintain separation efficiency.

3.2.2.4 Learning Capabilities AIDDM’s self-learning features enable continuous

improvement through feedback integration:

• Model Refinement: Updates predictive models using operational data, identifying

new patterns and improving accuracy.

• Adaptive Feedback: Incorporates crew inputs and recurring scenarios into decision-

making algorithms for enhanced autonomy.

• Feedback Loop: Real-time operational data enriches the historical database, en-

abling regular retraining and more precise predictions.

3.2.2.5 Key Benefits of AIDDM

• Enhanced Compliance

• Improved Efficiency

• Enhanced Operational Safety

• Scalability
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• Cost Savings

The successful implementation of AIDDM within SABIMS depends on a robust training

process for the ML models. Leveraging historical and synthetic data is critical to en-

sure AIDDM can accurately analyze real-time conditions, predict outcomes, and make

autonomous decisions. As the system learns and improves over time, it transforms bilge

water management into a self-sustaining, fully autonomous process, meeting both oper-

ational and regulatory challenges.

4. Methodology

This section details the approach adopted for developing a Smart Autonomous Bilge

Management System. It encompasses the creation of synthetic datasets and the applica-

tion of machine learning algorithms, presenting the processes and techniques employed

to ensure effective implementation and evaluation of the proposed system.

4.1. Scope of Study

This research focuses on a subset of SABIMS, specifically predicting pump operations

(ERBP, FGSP, BGSP) based on bilge water inflow, water levels, and rate of rise (ROR).

While complete autonomy requires extensive synthetic data, simulation, and broader

integration (e.g., ship’s list, trim, OWS operations), these aspects are beyond scope

of the study. The study provides a proof-of-concept for AI-driven bilge management,

establishing a scalable foundation for future advancements in maritime environmental

compliance.

4.2. Synthetic Data Generation

4.2.1 Introduction and Importance in Maritime Context

The implementation of Machine Learning (ML) for SABIMS requires diverse datasets,

but real-time ship data is scarce due to limited sensors and lack of time-series records.

Synthetic data provides a vital solution, bridging the gap between unavailable real-world

datasets and the need for operationally relevant data. Widely used in healthcare, environ-

mental monitoring, and maritime research, it addresses data scarcity, privacy concerns,

and operational constraints [14, 15]. High-quality synthetic datasets are crucial for train-
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ing AI/ML models while ensuring operational and statistical integrity.

4.2.2 Parameter Selection and Realism

The synthetic data generation process began by defining three critical input features and

one output variable relevant to bilge water management:

4.2.2.1 Input Features

• Bilge water inflow rate (xr) (cc/min)

• Bilge well level (y) (cc)

• Bilge tank level (btl) (cc)

These input features represent key operational variables that influence bilge water man-

agement, aligning with real-world conditions and shipboard scenarios.

4.2.2.2 Output Variable

The output variable, pump status (pp), is categorized into four distinct classes based on

operational scenarios. The meaning of each class is summarized in Table2.

Table 2: Meaning of Output Classes in Pump Status (pp)

Class (pp) Description Pump Status

Class 0
No pump running All Pumps Off

Class 1
Engine Room Bilge Pump (ERBP) running ERBP Run

Class 2
ERBP running but unable to lower water level;

FGSP also starts (ERBP + FGSP)
(ERBP + FGSP) Run

Class 3
ERBP + FGSP running; higher water inflow; water

reaches 15 cm above tank top (MSWP starts)
(ERBP + FGSP + MSWP)

Run

The parameters and class definitions were tailored using capacity plans and the Gen-

eral Arrangement of a 53,000 DWT Handymax bulk carrier, along with Class rules and

MARPOL regulations. This ensures that the dataset is operationally valid and aligned

with real-world maritime conditions. The importance of domain-specific parameteriza-

tion, as emphasized by Flores-Alsina et al. (2014) [16], was integral in creating realistic

and reliable synthetic data.
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4.2.3 Rate of Rise (ROR) Classification and Data Variability

4.2.3.1 Introduction to Rate of Rise (ROR)

The Rate of Rise (ROR), defined as bilge water inflow over time, is crucial for monitoring

bilge well and tank levels. For the case ship, ROR classification considers operational

scenarios, pump capacities, bilge well volume, and a 218.3 m² tank top area, ensuring

synthetic data reflects real constraints and flooding scenarios. It enables modeling of

normal, abnormal, and emergency conditions, essential for training robust ML models.

4.2.3.2 Factors Influencing ROR Classification: ROR is determined by pump

capacities (ERBP: 5 m³/hr, FGSP/BGSP: 200 m³/hr, MSWP: 640 m³/hr), bilge well

volume (2 m³), tank top area (218.3 m², flooding threshold 32,745 liters), and emergency

timing (3,275 L/min over 10 min). This classification follows Pezoulas et al. (2024) [?

], who emphasize realistic scenario modeling in synthetic datasets to enhance ML model

robustness and generalizability.

4.2.3.3 ROR Classification

ROR classifications are based on the case ship’s operational constraints, reflecting pump

capacities and flooding thresholds are given in Table 3

Table 3: Rate-of-Rise (ROR) Classification with Pump Activation Scenarios

ROR
Scale

Category
Max ROR

(Liters/Day)
Pump(s) Required Triggering Condition

— Normal 0–600 ERBP Routine operations

1 Normal 1,200 ERBP Routine operations

2
Slightly

Abnormal
2,400 ERBP Slight increase in inflow

3 Abnormal 12,000 ERBP High-level alarm triggered

4
Highly

Abnormal
120,000 ERBP + FGSP/BGSP Overflow of bilge well

5 Critical 6,000,000 ERBP + FGSP/BGSP
Continuous inflow exceeds

pump capacity

6
Extreme

Emergency
6,000,000 ERBP +FGSP/BGSP + MSWP

Water reaches 15 cm above
tank top (32,745 liters)
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4.2.3.4 Sub-Range Division for Data Generation

To ensure diverse and realistic synthetic data, ROR ranges were divided into sub-ranges

with controlled increments as shown in Table4

Table 4: ROR Sub-Range Division for Data Generation

ROR Class
Range

(Liters/Day)

Sub-Range
Increment

(Liters/Day)

Number of
Sub-Ranges

Data Points per
Sub-Range

Low 0–1,200 100 12 200

Moderate 1,201–12,000 500 22 200

High 12,001–120,000 5,000 22 200

Very High 120,001–600,000 25,000 19 200

Critical 600,001–6,000,000 500,000 11 200

Extreme Emergency 6,000,001–6,000,000 500,000 11 200

The structured variability approach aligns with techniques discussed by Seongbin An

et al. (2023)[17], ensuring operationally diverse yet statistically balanced datasets for

robust ML model training.

4.2.3.5 Insights on ROR and Synthetic Data Design:

Pump activation follows a hierarchy where ERBP manages routine inflows, FGSP/BGSP

handles overflow, and MSWP activates in extreme emergencies (>15 cm flooding). Con-

trolled variability ensures finer resolution in normal ROR levels while maintaining realistic

representation of rare emergencies. This approach aligns with best practices in synthetic

data generation, balancing variability and realism (McDuff et al., 2021) and incorporating

statistical validation techniques like Kullback-Leibler divergence (Goncalves et al., 2020).

4.2.3.6 Time-Series Structuring for Realism

Synthetic data was structured in 30-second intervals, capturing gradual variations for

normal operations and sudden spikes for rare events like pipe bursts. While temporally

structured, time values were excluded as input features to ensure compatibility with static

ML models like MCLR and DT, aligning with Choi et al. (2021) on balancing realism

and model applicability.
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4.2.3.7 Data Generation and Validation: Data points were generated using the

RANDBETWEEN function in Microsoft Excel, a resource-efficient method aligning with

Appenzeller et al. (2022)[18]. Validation involved ORB data comparison, expert reviews,

and statistical analysis to ensure realism, following best practices from Goncalves et al.

(2020) [19] and Rudenko et al. (2023) [20] on aligning synthetic data with domain-specific

realities.

4.2.3.8 Train-Test Splitting for Balanced Representation: The dataset was

manually split into 80% training and 20% testing to ensure balanced representation across

all ROR sub-classes, mitigating distribution imbalances common in automated methods.

Singh et al. (2024) [15] emphasize that such balance is crucial for unbiased and reliable

ML model evaluation.

4.2.4 Advantages of Synthetic Data Generation

• Privacy Protection [18, 21]

• Addressing Data Scarcity [20, 22]

• Cost and Time Efficiency [16, 23]

• Controlled Variability [15, 24]

• Flexibility and Customization [22, 25]

• Improved Model Training and Robustness [14, 26]

• Bias Mitigation [15, 24]

• Enables Scenario Simulations [16, 27]

• Enhanced Accessibility [18, 28]

• Enables Testing of Rare or Extreme Conditions [20, 23]

• Scalability [14, 25]

4.2.5 Summary

This methodology offers a practical, domain-specific approach to synthetic data genera-

tion for SABIMS. By integrating structured variability and expert validation, it ensures

reliable ML training while addressing data scarcity and diversity in specialized applica-

tions.
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4.3. Data Pre-processing and Validation

To ensure the synthetic dataset was suitable for ML training in bilge water management,

key pre-processing and validation steps were applied.

• Feature Selection was based on statistical methods (ANOVA, p-value analysis) and

domain expertise to ensure relevance.

• Outlier Management was handled at the data generation stage, eliminating post-

processing corrections.

• Class Balance was maintained by ensuring higher densities in normal conditions and

progressively sparser data in abnormal and emergency scenarios. Class 0, representing

super normal conditions, has the highest frequency, followed by Class 1 and Class 2,

which represent higher bilge inflow rates. Class 3, an emergency condition where bilge

water exceeds 15 cm above the tank top, has the lowest frequency, ensuring a realistic

dataset distribution (Table 5).

Table 5: Class Distribution in the Synthetic Dataset

Class Training Samples Testing Samples Test/Train Ratio

Class 0 18,654 4,675 0.457

Class 1 11,291 2,828 0.277

Class 2 8,093 2,035 0.198

Class 3 2,756 702 0.068

• Scaling and Regularization were applied for feature standardization and to mitigate

overfitting.

• Statistical Validation used feature importance analysis and ANOVA to confirm

meaningful contributions across ML models like MCLR and Decision Trees.

• Iterative Validation was carried out, incorporating feature refinement based on

model feedback, adjusting distributions to represent real-world scenarios, and ensuring

rare events (Class 3) were adequately represented. Class 3 occurrences, extremely rare

in actual ship operations, were enhanced to 6-7% for effective model learning. The

dataset was optimized to 50k samples for computational feasibility, balancing realism

and practical constraints. Overlapping data ranges and scarcity in feature space were

systematically addressed to maintain diversity and prevent artifacts that could impair

ML training.
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4.4. Algorithm Selection: ML Models Overview and Rationale

4.4.1 Key Considerations in ML Algorithm Selection

Selecting an appropriate ML model is crucial for reliable classification. The choice is

guided by dataset characteristics, interpretability, computational efficiency, and handling

of class imbalance.

• Dataset Characteristics: A structured, multi-class classification problem with three

numeric features and four output classes.

• Interpretability: Decision Trees offer transparency, while ANNs lack explainability,

making them less suitable.

• Scalability: The dataset ( 50k samples) requires efficient models like MCLR and DT

over computationally intensive SVMs and ANNs.

• Class Imbalance: Decision Trees inherently handle imbalance, whereas MCLR re-

quires balancing techniques.

4.4.2 Overview of Machine Learning Models for Multi-Class Classification

Potential models include:

• Ensemble Methods: Robust but require extensive tuning [29].

• SVMs: Effective but computationally expensive [30].

• KNN, Näıve Bayes: Simple but inefficient for large datasets [29].

• ANNs: High flexibility but lacks interpretability and requires large datasets [29].

This study initially focuses onMCLR and DT as baseline models. Their performance

will guide future exploration of advanced methods.

4.4.3 Suitability of Multinomial Logistic Regression (MCLR)

• Advantages: Probabilistic classification, efficient training, interpretability, and com-

patibility with numeric datasets [29–32].

• Limitations: Assumes linearity, requires class balancing, and is sensitive to multi-

collinearity and feature scaling [33–35].

• Rationale: Chosen for computational efficiency, interpretability, and as a baseline for
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probabilistic classification.

4.4.4 Suitability of Decision Trees (DT)

• Advantages: Captures non-linear patterns, ranks feature importance, robust to class

imbalance, and requires no feature scaling [29, 30].

• Limitations: Risk of overfitting, computational complexity for deep trees, sensitivity

to data variations, and weaker performance than ensembles [29].

• Rationale: Chosen for its complementary approach to MCLR and ability to capture

non-linearity while serving as a benchmark for ensemble methods.

Decision Trees and MCLR establish a foundation for evaluating classification trends.

Future work will explore ensembles like Random Forest and Gradient Boosting to assess

performance gains.

4.5. Theoretical Foundations

4.5.1 Detailed Overview of Multinomial Logistic Regression (MCLR)

4.5.1.1 Introduction to Logistic Regression

Logistic regression is a supervised learning algorithm commonly used for binary classifica-

tion problems. It models the relationship between input features (x) and the probability

of a binary outcome (y ∈ {0, 1}) [? ].

The sigmoid function forms the mathematical basis of logistic regression:

Sigmoid(z) =
1

1 + e−z

where z = β0 + β1x1 + β2x2 + · · ·+ βnxn.
Logistic regression uses a decision boundary (threshold), typically 0.5, for classifica-

tion. As shown in Figure 4, if the sigmoid output is greater than or equal to 0.5, the

prediction is y = 1; otherwise, y = 0 [29, 36]. The threshold allows the model to distin-

guish between classes effectively and aligns with the probabilistic nature of the sigmoid

function.

4.5.1.2 Extension to Multiclass Problems

• MCLR extends binary logistic regression to handle multiclass classification tasks. It
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Figure 4: Sigmoid Function (Threshold: 0.5).

predicts one of C possible classes (y ∈ {1, 2, . . . , C}) using the softmax function.

A common approach to solving the multiclass problem is the One-vs-Rest (OvR)

strategy, where separate binary classifiers are trained for each class against all other

classes, allowing for efficient multiclass classification [29, 34, 37–39].

P (y = c | x) = eβ
⊤
c x∑C

j=1 e
β⊤
j x

, c = 1, 2, . . . , C

• The predicted class is the one with the highest probability:

ŷ = argmaxc P (y = c | x)

• MCLR optimizes the cross-entropy loss function to estimate coefficients [33]:

L = −
N∑
i=1

C∑
c=1

yic logP (y = c | xi)

4.5.2 Detailed Overview of Decision Trees (DT)

4.5.2.1 Introduction to Decision Trees

Decision Trees are supervised learning models for classification and regression, recursively

splitting data based on feature thresholds to form a hierarchical structure [29]. The al-

gorithm selects features that maximize information gain or minimize impurity (e.g., Gini

Index, Entropy, or Mean Squared Error). Splitting continues until a stopping criterion

(e.g., maximum depth, minimum samples per split) is met. This approach enables De-
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cision Trees to model complex decision boundaries, capture non-linear relationships, and

provide interpretable decision-making.

4.5.2.2 Structure: A Decision Tree consists of a Root Node (entire dataset), In-

ternal Nodes (feature-based splits), and Leaf Nodes (predicted class labels or output

values).

4.5.2.3 Splitting Criteria

• Decision Trees split data using measures such as:

– Gini Impurity [? ]:

G = 1−
C∑
i=1

p2i

– Entropy [? ]:

H = −
C∑
i=1

pi log2(pi)

– Information Gain (IG) [? ]:

IG = H(parent)−
∑
j

Nj

N
H(childj)

4.6. Training Methodology

4.6.1 Multinomial Logistic Regression (MCLR)

4.6.1.1 Feature Standardization: To ensure consistent scaling, features were stan-

dardized using the StandardScaler function:

scaler = StandardScaler ()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

4.6.1.2 Handling Class Imbalance: Class imbalance was addressed using the Syn-

thetic Minority Oversampling Technique (SMOTE):

smote = SMOTE(sampling_strategy ={1:14000 ,2:10000} , random_state =0)

X_train_resampled ,y_train_resampled = smote.fit_resample(X_train_scaled

, y_train)
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4.6.1.3 Class Weights: Class weights were assigned to adjust for class imbalance:

class_weight_dict = {0: 1.0, 1: 2.5, 2: 3.0, 3: 1.5}

4.6.1.4 Regularization: Regularization was incorporated to prevent overfitting by

tuning the penalty term:

model = LogisticRegression(penalty=’l2’, class_weight=class_weight_dict

, solver=’liblinear ’, max_iter =200)

4.6.1.5 Hyperparameter Tuning and Cross-Validation: Optimal hyperparam-

eters were determined using cross-validation with RandomizedSearchCV:

search = RandomizedSearchCV(model , param_grid , cv=5)

search.fit(X_train_resampled , y_train_resampled)

4.6.1.6 Dataset Usage: The training and testing datasets were used as separate

files, ensuring no data leakage. The dataset was loaded as follows:

train_data = pd.read_csv(’train_data.csv ’)

test_data = pd.read_csv(’test_data.csv ’)

4.6.2 Decision Trees (DT)

4.6.2.1 Model Initialization: The Decision Tree model was initialized with impu-

rity metrics and depth constraints:

model = DecisionTreeClassifier(criterion=’gini ’, max_depth =10,

min_samples_split =10, min_samples_leaf =2, random_state =0)

4.6.2.2 Hyperparameter Tuning and Cross-Validation: Hyperparameters such

as impurity criteria, tree depth, and minimum sample requirements were optimized using

cross-validation:

param_grid = {’criterion ’:[’gini ’,’entropy ’],’max_depth ’:[2,5,10],

’min_samples_split ’:[2,5,10],’ min_samples_leaf ’:[1 ,2 ,4]}

cv = StratifiedKFold(n_splits=5, shuffle=True , random_state =0)

search = GridSearchCV(model , param_grid , cv=cv).fit(X_train , y_train)

4.6.2.3 Handling Class Imbalance: Class imbalance was addressed inherently by

the Decision Tree’s splitting strategy, which optimizes class separation. Additionally,

weight balancing was considered to enhance fairness:
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model = DecisionTreeClassifier(class_weight=’balanced ’,criterion=’gini

’, max_depth =10, min_samples_split =10, min_samples_leaf =2,

random_state =0)

4.6.2.4 Dataset Usage: The training and testing datasets were used as separate

files, ensuring no data leakage. The dataset was loaded as follows:

train_data = pd.read_csv(’train_data.csv ’)

test_data = pd.read_csv(’test_data.csv ’)

4.6.2.5 Best Model Selection: The best model was selected based on cross-validation

performance:

best_model = search.best_estimator_

5. Results and Discussion

5.1. Evaluation Metrics

5.1.1 Confusion Matrix

The confusion matrix provides an overview of the model’s predictions compared to the

actual labels, detailing true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN). It serves as the foundation for calculating other evaluation metrics.

Table 6: Confusion Matrix Overview

Actual \Predicted Predicted Positive Predicted Negative Explanation

Actual Positive True Positive (TP) False Negative (FN)
Correct or missed
positives detected

Actual Negative False Positive (FP) True Negative (TN)
Correct or false

negatives detected

5.1.2 Derived Metrics

Metrics derived from the confusion matrix include precision, recall, F1-score, and accu-

racy. These metrics are defined in the Table7

5.1.3 Classification Reports

The classification report provides detailed performance metrics for each class, including

precision, recall, F1-score, Macro Averaged F1-Score, weighted F1-Score, Overall accu-

racy and support. Some of the additional metrics used in the classification report are

described here:
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Table 7: Description of Performance Metrics

Metric Description

Precision =
TP

TP + FP

Precision should be ideally 1 (high) for a good
classifier. Precision can become 1 when FP is zero.

As FP increases, the Precision value decreases.

Recall =
TP

TP + FN

Recall should be ideally 1 (high) for a good classifier.

Recall can become 1 when FN is zero. As FN

increases, recall value decreases.

Accuracy =
TP + TN

TP + TN + FP + FN

Accuracy represents the number of correctly

classified data instances over the total number of
data instances.

F1-Score = 2×
Precision× Recall

Precision + Recall

F1 Score becomes 1 when both Precision and Recall

are high. F1 Score is the Harmonic Mean of Precision
and Recall and is a better measure than Accuracy.

5.1.3.1 Support: The total number of actual instances present in the dataset for

each class.

5.1.3.2 Macro Averaged F1-Score: It is the unweighted average of the F1 scores

across all classes. It treats each class equally, regardless of how many instances exist for

that class.It can be misleading when class imbalance exists.

5.1.3.3 Weighted F1-Score: It is the average F1-score across all classes, but it

assigns weights based on the number of actual instances (support) in each class. It

accounts for class imbalance by adjusting weights according to the support of each class.

5.1.4 Train-Test Accuracy: Assessing Model Fit and Generalization

Model fit analysis examines the difference between training and testing accuracy to evalu-

ate the model’s generalization ability. A smaller difference indicates better generalization,

while a large gap suggests poor generalization. A model that performs exceptionally well

on training data (high training accuracy) but poorly on test data suffers from poor gener-

alization. In general, cross-validation helps improve generalization by optimizing model

fitting.
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5.2. Model Performance Evaluation

5.2.1 MCLR Model Training and Testing Results

Figure 5 illustrates the performance of the MCLR model on the train and test datasets.

Figure 5(a) and Figure 5(b) show the confusion matrices for train and test datasets,

respectively.

5.2.1.1 Train Metrics by Class (Figure 5(c)):

• Class 0: Precision = 0.84, Recall = 0.83, F1-Score = 0.84 – Model performed

consistently well.

• Class 1: Precision = 0.65, Recall = 0.73, F1-Score = 0.69 – Moderate performance;

recall higher than precision.

• Class 2: Precision = 0.77, Recall = 0.80, F1-Score = 0.78 – Model performed

reasonably well with slight imbalance.

• Class 3: Precision = 0.35, Recall = 0.48, F1-Score = 0.41 – Poor performance due

to significant misclassification.

Inference: Model trained well for Classes 0 and 2 but struggled with Class 3 and moder-

ately with Class 1. Despite scaling, regularization, and hyperparameter tuning, training

performance was suboptimal for some classes.

5.2.1.2 Test Metrics by Class (Figure 5(d)):

• Class 0: Precision= 0.77, Recall= 0.94, F1-Score= 0.84 – Good performance but

recall significantly higher than precision, indicating the number of FPs are high.

• Class 1: Precision= 0.05, Recall= 0.10, F1-Score= 0.07 – Extremely poor perfor-

mance, indicating model failure for this class.

• Class 2: Precision= 0.15, Recall= 0.13, F1-Score= 0.14 – Extremely poor perfor-

mance, indicating model failure for this class.

• Class 3: Precision= 0.28, Recall= 1.00, F1-Score= 0.43 – While TPs are all high,

FNs are zero, but at the same time FPs are very high.

Inference: Model performed well for Class 0 but failed for Classes 1, 2, and 3, with

severe under-performance and imbalances in predictions.
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(a) Train Confusion Matrix (b) Test Confusion Matrix

(c) Train Metrics by Class (d) Test Metrics by Class

(e) Macro F1 and Overall Accuracy

Figure 5: Class-Wise & Overall Performance Evaluation for MCLR

5.2.1.3 Overall Metrics (Figure 5(e)):

• Train Data: Overall Acc.= 0.80, Macro F1-Score= 0.70, Weighted F1-Score= 0.76.

• Test Data: Overall Acc.= 0.54, Macro F1-Score= 0.38, Weighted F1-Score= 0.47.

Inference: Overall metrics indicate that the model performed above average on training

data, the test data results were poor, indicating overfitting and inability to generalize

effectively.
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5.2.1.4 Insights and Way Forward: The MCLR model demonstrates severe per-

formance inconsistencies across different classes. While it performs reasonably well for

Class 0 and Class 3, it fails catastrophically for Class 1 and Class 2, as evident from

the various metrics. Given these limitations, an improved approach was attempted by

adjusting class weights and applying SMOTE to mitigate class imbalance and enhance

model generalization.

5.2.2 MCLR with Weight adjustments and SMOTE

In alignment with standard practices from the reviewed literature, class weighting and

SMOTE (Synthetic Minority Oversampling Technique) were applied to the MCLR model

to address class imbalance.

5.2.2.1 Model Performance: Modified MCLRmodel performance results are shown

in Figure6. Applied methods failed to improve performance and instead worsened gener-

alization. The model completely failed to predict Class 1 in the test data and performed

poorly for Class 3. This degradation may have been caused by the inherent class im-

balance (Table 5) and dataset complexities, which amplified noise and further degraded

results.

5.2.2.2 Probable Reasons of MCLR failure: The combined challenges of class im-

balance and feature interdependence rendered MCLR unsuitable for this dataset. Despite

applying all recommended techniques, including scaling, regularization, hyperparameter

tuning, cross-validation, weight adjustments, and SMOTE, the model failed to generalize

effectively and performed inconsistently for minority classes (Class 3 being the smallest,

Class 2 slightly larger, and even Class 1 performing poorly despite having more samples).

This underscores the limitations of MCLR for datasets with overlapping features and

severe imbalances.

5.2.2.3 Way Forward: Given these limitations, it became evident that alternative

modeling approaches, such as tree-based methods, might better address the dataset’s in-

herent challenges. Decision Tree models, in particular, offer the flexibility to handle class

imbalance and feature inter-dependencies, making them a logical next step for evaluation.
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(a) Train Confusion Matrix (b) Test Confusion Matrix

(c) Train Metrics by Class (d) Test Metrics by Class

(e) Macro F1 and Overall Accuracy

Figure 6: Class-Wise & Overall Performance evaluation for MCLR with weights &
SMOTE

5.2.3 Decision Tree Performance Evaluation

The performance of the Decision Tree (DT) model on the train and test datasets is

presented in Figure 7. The confusion matrices for the train and test datasets are shown

in Figures 7(a) and 7(b), respectively.

5.2.3.1 Train Metrics by Class (Figure 7(c)):
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• Class 0: Precision= 0.92, Recall= 0.91, F1-Score= 0.92 – Model performed consis-

tently well on this class.

• Class 1: Precision= 0.80, Recall= 0.84, F1-Score= 0.82 – Moderate performance with

a good balance between precision and recall.

• Class 2: Precision= 0.85, Recall= 0.84, F1-Score= 0.85 – Model handled this class

effectively, better than Class 1.

• Class 3: Precision= 0.76, Recall= 0.66, F1-Score= 0.71 – Performance declined due

to lower recall. Lower precision shows that number of FPs were high, while lower

recalls show that FNs were even higher. The performance was average with a room

for improvement

Inference: The model performed well for Classes 0 and 2, moderately for Class 1, and

faced challenges with Class 3 due to lower recall.

5.2.3.2 Test Metrics by Class (Figure 7(d)):

• Class 0: Precision= 0.88, Recall= 0.85, F1-Score= 0.84 – Good performance with

slight decline compared to training.

• Class 1: Precision= 0.71, Recall= 0.78, F1-Score= 0.77 – Moderate performance with

balanced metrics.

• Class 2: Precision= 0.75, Recall= 0.64, F1-Score= 0.69 – Reduced performance due

to lower recall.

• Class 3: Precision= 0.73, Recall= 0.69, F1-Score= 0.66 – Reduced performance due

to lower recall.

Inference: While the model performed well for Class 0 and moderately for Class 1,

performance dropped moderately for Classes 2 and 3, indicating some challenges in gen-

eralization of these classes.

5.2.3.3 Overall Metrics (Figure 7(e)):

• Train Data: Overall Acc.= 0.86, Macro F1-Score= 0.82, Weighted F1-Score= 0.86.

• Test Data: Overall Acc.= 0.81, Macro F1-Score= 0.78, Weighted F1-Score= 0.81

5.2.3.4 Key Takeaways:
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(a) Train Confusion Matrix (b) Test Confusion Matrix

(c) Train Metrics by Class (d) Test Metrics by Class

(e) Macro F1 and Overall Accuracy

Figure 7: Class-Wise & Overall Performance evaluation for Decision Tree

• Minimal Overfitting: The small difference between training accuracy (0.86) and

test accuracy (0.81) reflects an excellent fit. The model generalizes well to unseen

data, with the difference (0.05) indicating minimal overfitting.

• Good Performance Across Metrics: The model performs consistently across over-

all metrics, including accuracy, macro-averaged F1-scores, and weighted F1-scores, for

both training and test datasets. This highlights its robustness and reliability.

• Accuracy in Context: Accuracy should not be evaluated in isolation, especially in
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imbalanced datasets. In this case, the Decision Tree demonstrates robust performance

across all three overall metrics, making it a dependable model.

• Struggles with Minority Classes: Despite overall robustness, the model struggles

with minority class detection due to the inherent dataset imbalance. This indicates

potential areas for improvement, such as applying rebalancing techniques or exploring

ensemble methods.

6. Conclusion

This study presents the development and evaluation of the Smart Autonomous Bilge

Management System , an AI/ML-integrated solution designed to enhance regulatory

compliance, operational efficiency, and environmental sustainability in maritime bilge

water management. While ML has been explored in maritime domains, its applica-

tion to bilge management remains largely unexplored. By leveraging synthetic data and

ML models, this research demonstrates the feasibility and effectiveness of autonomous

decision-making in shipboard systems.

A major challenge in implementing ML to bilge water management was the lack of real-

world training data, which was addressed by generating a synthetic dataset emulating

realistic shipboard conditions for a case vessel. A phased approach, guided by literature,

used MCLR as a baseline before transitioning to Decision Trees, which better handle

class imbalance and feature dependence.

Our findings highlight the superiority of the Decision Tree (DT) model over Multi-Class

Logistic Regression (MCLR) in accurately classifying bilge water management scenarios,

emphasizing the importance of non-linear classification techniques in complex maritime

operations. While MCLR struggled with class imbalance and failed to generalize effec-

tively, even after weight adjustments and SMOTE, Decision Trees significantly outper-

formed MCLR, demonstrating better generalization, improved accuracy, and robustness.

However, minority class detection remained a challenge, suggesting that balancing tech-

niques or ensemble learning methods could further improve model performance.
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The integration of the AI-Driven Decision-Making Module (AIDDM) with the SABIMS

Logic Operations Module (SLOM) enables a transition from rule-based automation to

fully autonomous predictive control, significantly reducing human intervention while en-

suring MARPOL compliance. Beyond the immediate implications for bilge water man-

agement, this study underscores the transformative potential of AI/ML in advancing

smart maritime systems. The synthetic dataset methodology adopted herein not only

addresses the critical issue of data scarcity but also sets a precedent for future research

in applying AI-driven solutions to regulatory and safety-critical maritime challenges.

7. Scope for Further Research

While the results validate the feasibility of ML-based bilge management system, several

areas remain open for further research and development:

• Full-Scale Implementation of SABIMS: This study focused on a partial subset of

SABIMS functionalities. Future research should extend ML integration to a fully

autonomous system with real-time shipboard data collection.

• Exploring Advanced ML Models: Ensemble methods (e.g., Random Forest, XGBoost)

or Deep Learning approaches could enhance classification accuracy, particularly for

minority classes.

• Operational Validation with Real-World Data: While synthetic data enabled model

development, future research should validate the models using actual shipboard data

to assess real-world performance.

Future research should explore real-world deployment of AI-driven shipboard systems,

reinforcing the shift towards intelligent, self-regulating maritime operations in an era of

increasing digitalization and automation

References

[1] Standard Club. MARPOL fines for oil pollution and operational best practice. 2020.

[2] Organisation for Economic Co-operation and Development (OECD). Cost Savings Stem-

ming from Non-Compliance with International Environmental Regulations in the Maritime

Sector, 2003. Available at: https://rosap.ntl.bts.gov/view/dot/34106/dot_34106_

DS1.pdf.

33

https://rosap.ntl.bts.gov/view/dot/34106/dot_34106_DS1.pdf
https://rosap.ntl.bts.gov/view/dot/34106/dot_34106_DS1.pdf


[3] Shishir Dutt and Sanjeet Kanungo. Need for smart autonomous bilge management system:

A review. Preprint on engrXiv, 2025.

[4] T. Statheros, G. Howells, and K. M. Maier. Autonomous ship collision avoidance navigation

concepts, technologies and techniques. Journal of Navigation, 61(1):129–142, 2008.

[5] Dragos Simion, Florin Postolache, Bogdan Fleacă, and Elena Fleacă. Ai-driven predictive
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Appendix A
SABIMS Component Description

S.NO. COMPONENT DESCRIPTION NAME USED IN DIAGRAMS ABBREVIATION ACTUAL LOCATION ON SHIP

1 E/R Bilge well level sensor aft BILGE WELL (A) BWA E/R Aft

2 E/R Bilge well level sensor forward port BILGE WELL (FP) BWFP E/R forward port

3 E/R Bilge well level sensor forward starboard BILGE WELL (FS) BWFS E/R forward starboard

4 M/E flywheel pit level sensor M/E FLYWHEEL PIT MEFP E/R Aft

5 E/R Tank top flood level sensor aft TANK TOP LEVEL (A) TTLA E/R Tank top aft

6 E/R Tank top flood level sensor forward port TANK TOP LEVEL  (FP) TTFP E/R Tank top forward port

7 E/R Tank top flood level sensor forward starboard TANK TOP LEVEL  (FS) TTFS E/R Tank top forward starboard

8 Bilge Tank Level Sensor BILGE TANK LEVEL BTL Bilge Tank

9 Sludge Tank Level Sensor SLUDGE TANK LEVEL STL Sludge Tank

10 Aft Peak Tank Level Sensor AFT PEAK TANK LEVEL APTL Aft Peak Tank

11 E/R Bilge Pump E/R BILGE PUMP RUN STATUS ERBP E/R Aft Port

12 Fire & Bilge Pump FIRE & G.S. PUMP  RUN STATUS FGSP E/R Forward port

13 Bilge & Ballast Pump BILGE & G.S. PUMP  RUN STATUS BGSP E/R Forward starboard

14 Main S.W. Pump MAIN S.W. PUMP  RUN STATUS MSWP E/R Forward starboard

15 Oily Water Separator OILY WATER SEPARATOR STATUS OWS E/R Aft Port

16 15 Ppm Oil Alarm Monitor 15 PPM OIL ALARM MONITOR STATUS OAM E/R Aft Port

17 3-Way Changeover Valve-OWS Overboard discharge 3-WAY CHANGEOVER VALVE POSITION STATUS COV E/R Aft Port

18 Oily Water Outflow Flow meter OILY WATER OUTFLOW MONITOR FM E/R Aft Port 

19 E/R Bilge Pump E/R BILGE PUMP AUTO/MANUAL STATUS ERBPAM @ ECR Console

20 Fire & Bilge Pump FIRE & G.S. PUMP  AUTO/MANUAL STATUS FGSPAM @ ECR Console

21 Bilge & Ballast Pump BILGE & G.S. PUMP  AUTO/MANUAL STATUS BGSPAM @ ECR Console

22 Main S.W. Pump MAIN S.W. PUMP  AUTO/MANUAL STATUS MSWPAM @ ECR Console

23 Oily Water Separator OWS AUTO/MANUAL STATUS OWSAM @ ECR Console

24 Programmable Geo-Fencing GPS monitor GEO-FENCE MONITOR GPSM Bridge ECDIS console

25 Main Engine Sub-Telegraph for ship condition EN-ROUTE MONITOR ERM Bridge and ECR console

26 List angle measurement LIST MONITOR LM Navigation Bridge/ECR

27 Trim value measurement TRIM MONITOR TM Navigation Bridge/ECR

28 E/R Bilge pump suction valve ---- ERBPSV @ E/R bilge pump

29 E/R Bilge pump priming valve ---- ERBPPV @ E/R bilge pump

30 Oily Water Separator inlet valve ---- OWSV @ OWS

31 Fire & G.S. Pump Direct Suction Valve (from BWFP) ---- FGSPDSV @BWFP

32 Fire & G.S. Pump Direct Suction Valve ---- FGSPBSV @FGSP

33 Fire & G.S. Pump priming Valve ---- FGSPPV @FGSP

34 Fire & G.S. Pump overboard discharge Valve ---- FGSPODV @ Ship's side

35 Fire & G.S. Pump ballast line discharge Valve ---- FGSPBV @FGSP

36 Bilge & G.S. Pump Direct Suction Valve (from BWFS) ---- BGSPDSV @BWFS

37 Bilge & G.S. Pump Direct Suction Valve ---- BGSPBSV @BGSP

38 Bilge & G.S. Pump priming Valve ---- BGSPPV @BGSP

39 Bilge & G.S. Pump overboard discharge Valve ---- BGSPODV @ Ship's side

40 Bilge & G.S. Pump ballast line discharge Valve ---- BGSPBV @BGSP

41 Main Sea Water pump suction valve ---- MSWPSV @ MSWP

42 Emergency Bilge Suction Valve ---- EBSV @ MSWP

43 Main Sea Water pump discharge valve ---- MSWPDV @ MSWP

44 Bilge Well Aft suction valve ---- BWASV @BWA

45 Main Engine Flywheel Pit suction valve ---- MEFPSV @ M/E Aft end, below flywheel

46 Bilge Well Forward Port suction valve ---- BWFPSV @BWFP

47 Bilge Well Forward Starboard suction valve ---- BWFSSV @BWFS

48 Aft Peak Tank suction valve ---- APTSV @Aft Peak Tank

49 Bilge Tank suction valve ---- BTSV @Bilge Tank

50 Bilge Tank filling valve ---- BTFV @Bilge Tank

51 Sludge tank filling valve from E/R bilge pump ---- STFV @Sludge Tank

52 E/R bilge pump discharge pressure ---- ERBPDP @ ERBP

53 Fire & G.S. pump discharge pressure ---- FGSPDP @ FGSP

54 Bilge & G.S. pump discharge pressure ---- BGSDP @ BGSD

55 Main sea Water pump discharge pressure ---- MSWPDP @ MSWP

PUMP DISCHARGE PRESSURE SENSORS

LEVEL SENSORS - INSIDE BILGE WELLS

LEVEL SENSORS - ON E/R TANK TOP

LEVEL SENSORS - INSIDE GIVEN TANKS

PUMP RUNNING STATUS

OWS & ANCILLARY EQUIPMENT STATUS

PUMPS AUTO/MANUAL MONITORING

OTHER COMPLIANCE MONITORING SENSORS

VALVES
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