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ABSTRACT 
 

Curved panels are widely used in different structures from fuselage of planes to curved bridge girders. An 

accurate understanding of buckling and postbuckling behavior of curved panels under different loadings is 

essential for efficient structural design. The shear buckling and postbuckling behavior of laterally 

pressured thin curved panels under gradually increasing in – plane shear forces is investigated. The 

magnitude of the lateral forces, the radius of curvature and the aspect ratio of panels are considered in the 

parametric studies. A classic theoretical formulation of curved panels buckling load is reexamined and 

compared to experimental results. The results showed that inward pressure eliminates the snap – through 

phenomenon and the softening stage in the response of shallow curved panels. However, the buckling 

characteristics are not significantly affected in the moderately curved panels under small pressures. In 

addition, the magnitude of inward pressures that would affect the shear buckling and postbuckling 

behavior of panels depends on their radius of curvature. The ultimate shear capacity of a highly curved 

panel is considerably reduced due to the increasing presence of inward pressures. The failure mode of 
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highly curved panels are associated with the occurrence of unstable buckling; and as a result, the released 

strain energy prevents ence ofthe occurr  hardening stages.



 

 

1. INTRODUCTION 
 
 

Curved panels are widely utilized as load–bearing elements in various naval, 

aerospace and civil engineering structures. Examples of such structures are web plates of 

curved I – girders, wings and fuselage of planes, ships and boats, missiles, water storage tanks 

and pressure vessels. These elements are of great interest, where light weight and high in–

plane load–bearing capacity is required. In addition to the aforementioned properties, the 

reserved postbuckling strength of these elements opens extra possibilities for the engineering 

design. This paper aims to investigate the buckling and postbuckling behavior of curved 

panels under the combined action of in–plane shear force and lateral normal pressure, 

commonly found in the above mentioned structures.  

There have been some previous researches on the stability of curved panels under pure 

in–plane shear forces as discussed by Amani et al. [1]. The early works on the theoretical 

aspects were conducted by Donnell [2]. In a majority of the theoretical treatments of the 

buckling of cylindrical shells, three simultaneous partial differential equations were used to 

express the relationship between the components of the shell’s median–surface axial, 

circumferential and radial displacements [3]. Leggett proposed a new set of equations to 

predict the critical shear stress of a long, slightly bowed sheet [4]. The panels were assumed 

to be sufficiently long, allowing the short edge boundary conditions to be neglected. The 

problem with the Donnell's equation is that it only includes the out– of – plane displacements, 

whereas the boundary conditions on the radial and circumferential boundaries cannot be 

imposed directly.  

Batdorf proposed a method to find the critical shear stress of curved panels by the use 

of the Donnell’s equation [5]. The method presumes that the radial and circumferential 

boundaries are simply supported. Some curves were computed for the panels under pure shear 

loading and the results were compared to those obtained by Leggett. Domb presented a 



 

nonlinear modeling technique to predict the buckling of simply supported curved panels under 

the combined action of shear and compression loads [6]. A set of interaction buckling curves 

was generated to include the effects of initial imperfections on the combined buckling 

characteristics.  

In general, the buckling and postbuckling behavior of an ideal curved panel under pure 

in–plane shear force can be divided into the following stages: 

a. Linear growth of the in–plane shear force up to the critical shear load, 

b. Snap reduction of the shear force immediately after buckling, 

c. Further growth of the shear force after reaching a local minimum limit, 

d. Reaching the maximum load – bearing capacity, 

e. Reduction of the shear force due to the material’s softening. 

The effect of normal lateral pressure on the buckling behavior of curved panels was 

further considered during the World War II. The researchers at the National Advisory 

Committee for Aeronautics (NACA) found that on an airplane in level flight, the upper 

surface of the wing is subjected to an outward–acting pressure due to the difference in the 

internal and external pressures [7]. The effect of normal pressure on the stability of thin – 

walled circular cylinders under torsion was investigated experimentally and theoretically by 

Rafel and Sandlin [8]. They found that the critical shear stress was appreciably raised by the 

outward pressure. A semi–empirical interaction formula was derived to predict the critical 

shear stress. The results of the formula were in good accordance with the experimental results. 

However, the postbuckling behavior of panels was not considered in that study. 

Hopkins and Brown theoretically investigated the stability of long and bowed curved 

panels under the combined action of normal pressure and shear forces [9]. Their results were 

in good accordance with the NACA’s experimental results. They also considered the 

influence of boundary conditions on the critical shear stress of the panels and concluded that 

the difference between the buckling stress of simply supported and clamped edges decreases 



 

rapidly with the curvature and pressure, thus making the indeterminacy of practical edge 

conditions less important. 

Aghajari et al. numerically and experimentally investigated the buckling and 

postbuckling behavior of thin – walled cylindrical steel shells with varying thickness 

subjected to uniform external pressure [10]. The results showed that when there is a low 

variation in the wall thickness, the buckling mode expands over the whole length of the panel; 

while when there is a high variation in the wall thickness, only the thinner parts are involved. 

Golzan and Showkati conducted experimental and FE studies to investigate the elastic and 

plastic responses and asymmetric imperfection sensitivity of truncated conical shells and 

shallow conical caps under the action of external uniform pressure [11]. Chen et al. described 

a new method of determining the critical buckling resistance of cylindrical shells with stepped 

walls exposed to uniform external pressure, and demonstrated the manner in which the 

method can be used to assess the buckling behavior in a wide range pattern of the wall 

thickness changes [12]. 

The buckling and postbuckling behavior of structural elements often involves material 

and geometric nonlinearities. In slender elements, the load–displacement path shows a limit 

point, where the curve becomes horizontal or vertical, followed by a snap – through or snap – 

back. General static analysis procedures like the standard load – control and displacement – 

control methods encounter problems in snap – through and snap – back points, respectively. 

The Riks method [13, 14] or the dynamic approaches should be applied to deal with such 

problems. Kobayashi et al. [15] used a validated static stabilizing method to simulate the 

successive path – jumping in the deep postbuckling behavioral region of the cylindrical shells 

under axial compression.  

In this paper, the Donnell’s equation of equilibrium for curved panels under combined 

action of normal pressure and shear force was solved by use of the Mathematica software. 

The calculated critical shear stress coefficients were compared against the NACA’s 



 

experimental results. Next, the shear buckling and postbuckling behavior of the perfect curved 

panels with various curvatures subjected to pure shear forces were investigated via four 

nonlinear FE analysis methods (i.e., the general static, the arc length, the dynamic explicit, 

and the dynamic implicit). Results of these analyses were then compared and their advantages 

and shortcomings were discussed. Subsequently, a set of parametric studies on the laterally 

pressured curved panels with various curvatures and aspect ratios under gradually increasing 

in–plane shear was conducted. Both inward and outward pressures were included in these 

investigations, and the results are presented and discussed. 

2. CRITICAL SHEAR STRESS OF PRESSURED CURVED PANELS  
 
 

In this section, the modified form of the Donnell’s equation of equilibrium was solved 

for curved panels subjected to uniform lateral outward pressure and uniform shear stress 

along their four edges and compared against the NACA’s experimental results [7]. The 

Donnell’s equation is a partial differential equation for the radial displacement of panel 

median surface (!), which takes into account the effects of the axial ("), and circumferential 

(#) displacements. Here, a modified form of the Donnell’s equation (Eq. (2)), which was 

proposed by Batdorf is solved by means of the Galerkin Method [5]. This form of the 

Donnell’s equation is equivalent to its initial form, but has certain advantages in physical 

interpretations and in ease of solution for different boundary conditions. In the solution of the 

Donnell’s equation, $% represents the critical shear stress coefficient, and & is a measure of  

panel curvature given by: 

& =
()

*+
,1 − /) 

                                                                                   (1) 

 
 

in which * is the radius of curvature, + is the panel’s thickness, and / is the Poisson’s ratio. 

Accordingly, the modified form of the Donnell’s equation for pressured panels under shear 

forces is: 
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where 9 represents the applied lateral pressure. Eq. (2) should be solved to find the critical 

shear stress coefficient ($%) as below: 

$% = <%
()+
7):

                                                                                    (3) 

where <% is the critical shear stress, and : is the flexural stiffness of the panel.  

According to the Galerkin’s method, Eq. (2) is solved by expanding the unknown 

function of ! in terms of a suitable set of functions, each satisfying the simply supported 

boundary conditions. Curved panels either have long straight sides (= = > ( ≥ 1.0⁄ ), or long 

circumferential sides (= ≤ 1) (see Fig. 1). The radial displacement (!) for simply supported 

curved panels with axial sides longer than circumferential sides is written in the form of Eq. 

(4). 
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where L and K are the number of buckling half–waves in the axial and circumferential 

directions respectively. According to the Galerkin’s method, the coefficients of >DE should be 

chosen to satisfy the following equation: 
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By substituting Eq. (4) into (5), a set of homogeneous linear algebraic equations is obtained as 

follows: 
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(L) − Ĺ))(K) − Ḱ))
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By assigning different values for L and K, two sets of equations, which are associated with 

the symmetric and anti – symmetric buckling modes, are established. Critical shear stress of 

panels with particular aspect ratios (=) and curvature parameters (&) is found via minimizing 

the value of $% for which the two sets of equations have a non–vanishing solution.  

The above mentioned solution procedure was implemented by use of the Mathematica 

software [16]. The comparison between this solution and available NACA’s experimental 

results is given in Fig. 2. A very good agreement between the theoretical estimates and 

experimental results for $% was observed for both panels under the whole range of applied 

pressure forces. Though theoretical equations given in this section seem to provide a very 

reasonable estimate of shear buckling load of curved panels, they do not give any information 

regarding their postbuckling capacity, which is the subject of next section.     

3. NONLINEAR POSTBUCKLING ANALYSIS METHODOLOGY 
 
 

Finite elements has proven to be a robust tool for analysis of wide range of 

engineering problems including buckling and postbuckling of plates and shells and is 

considered in this study for nonlinear investigation of postbuckling behavior of shear curved 

panels [17-24]. Details of implemented finite element model is discussed in this section. 

Nonlinear FE analyses were carried out using ABAQUS 6.9 package. A 6– degree of 

freedom, 4–node quadrilateral doubly curved general–purpose shell element (S4R) was used 

for modeling, which is appropriate for both thin and thick shells. 33.33×33.33 mm mesh size 

was chosen per recommendations of another past study [25]. 

The panels were assumed to be made of an elastic–perfectly plastic structural steel 

with Young’s modulus of 200 GPa and Poisson’s ratio of 0.3. The thickness of panels was 

kept constant and equal to 3 mm. The material’s plastic behavior was defined by the von 

Mises yield criteria and the associated flow rules. The yield stress of the steel is presumed as 

327.6 MPa according to the ASTM A36. The out–of– plane displacement of the edge nodes 

were restrained to simulate simply supported boundary conditions. Also, the translational 



 

degrees of freedom at one corner node of the panels were restricted to prevent any solid 

displacements. 

The implemented nonlinear analyses were divided into two successive steps. In the 

first step, the normal acting inward or outward pressure was exerted to the surface of the 

panel, and analyses were conducted by the use of a general load–control static method. In the 

second step, in–plane shear forces were applied to the edges of pressured panel; and shear 

buckling and postbuckling responses was monitored. Low frequency dynamic effects were 

removed using viscous damping[26, 27].   

The buckling and postbuckling responses of curved panels frequently involve 

structural instabilities where the load–displacement path shows a negative stiffness and panels 

releases strain energy to remain in equilibrium. In such cases, the response of a structural 

element involves limit–points (maximum and/or minimum loads) rather than bifurcation 

points, showing both snap–through and snap–back characteristics. Standard static load-control 

and displacement-control methods are not able to track such behavior and other nonlinear 

schemes must be used which will be discussed subsequently.     

3.1. FE analysis method 
 

Various dynamic and static approaches are available for nonlinear analysis of unstable 

structures [28]. A standard static solution procedure involves load or displacement increments 

coupled with full or modified Newton – Raphson iterations. When applying such techniques, 

severe difficulties can be encountered in the vicinity of limit points, where the load–

displacement response becomes horizontal (or vertical). Thus, any attempt to find the true, 

complete response of a structure with such behavior, including shear curved panel, via 

standard methods would either fail, or miss some portion of the response and other numerical 

methods such as Arc-length must be used. 

The Arc – length (Riks) method is intended to enable the solution algorithms to pass 

the limit points. This method works when the applied loading is proportional; i.e., where the 



 

load magnitude is defined by a single scalar parameter. The main essence of the Arc–length 

method is that the load magnitudes become additional unknowns in the formulations. This 

approach gives solution regardless of whether the response is stable or unstable [29].  

Taking inertia effects into account, dynamic approaches are also applicable to find the 

load–displacement response of structural elements with unstable response. Although dynamic 

procedures do not fail in the vicinity of limit points, the true load–displacement response of 

panels during unstable phases cannot be traced. The conventional FE dynamic procedures can 

be divided into two main types, namely explicit and implicit; both are used and compared 

here. The conventional implicit technique adopts a predictor/corrector procedure very similar 

to the nonlinear static approach. Explicit procedures involve no real equation solving, but 

there are tight restrictions on the size of the time steps. Despite the unconditionally stable 

implicit method, the explicit procedure is conditionally stable. The stability limit for an 

explicit operator is that the maximum time increment must be less than the critical value of 

the smallest transition time for a dilatational wave to cross any element in the mesh. 

Applicability of the explicit method is limited to the analysis of short transient problems. If 

this method is used for quasi – static problems, the inertia effects must be small enough to be 

neglected [30]. 

In order to compare the mentioned available analytical methodologies, the shear 

buckling and postbuckling responses of two curved panels were studied via the four 

aforementioned methods. All panels have a equal dimension of 1000LL	 × 1000LL	 ×

3LL, with different curvature parameters of & = 5	 and 50. 

Applied shear force divided by the yield shear force (^ _̂⁄ ) against the out–of– plane 

displacement divided by the wall thickness (! +⁄ ) and the circumferential displacement 

divided by the panel’s side dimension (# >)⁄  are presented in Fig. 3. The corresponding nodes 

for which the displacements are measured are respectively denoted by (9) and (5) in Fig. 1. As 

it can be seen, the load–displacement responses obtained from different analysis methods, are 



 

exactly similar prior to the buckling load (point A). During the unstable phase of the 

postbuckling response (from point A to B), the static–general and the dynamic procedures are 

not capable of tracing the true responses, and snap straight to point B. On the other hand, the 

Riks method completely demonstrates the snap–through behavior (from point A to B.) It is 

also observed that after passing point B, the postbuckling equilibrium paths merge and 

produce almost similar ultimate load capacities (point C). Amongst the above methods, only 

the Riks method demonstrated the load reductions and softening stages. Thus, it was 

concluded that only the Riks method enables the true tracing of the complete load–

displacement response from the initial linear elastic stage to the ultimate nonlinear strain 

hardening and softening stages and was used for the rest of this study. 

3.2. Validation of FEM procedure 
 

In order to validate the nonlinear FE analysis procedure, a set of analyses was 

performed to compare the FE results to the theoretical estimations and the available 

experimental data. The theoretical results were calculated using the Donnell’s equation of 

equilibrium as described in section 2. A set of tests was carried out by NACA to evaluate the 

effect of normal pressures on the critical shear and compressive stresses of curved sheets [7, 

8]. The experimental data in this section are extracted from those tests. The dimensions of the 

panels are given in Table 1. Specimens were made of aluminum ST-24 alloy with the 

Young’s modulus of 68.95 GPa, Poisson’s ratio of 0.3, and yield stress of 372.32 MPa. 

The panels were loaded and analyzed in two subsequent steps similar to the actual 

tests. In the first step, outward pressures were applied to the surface of the panel and a 

nonlinear general static analysis was carried out. Subsequently, in the second step, shear 

forces were uniformly applied to the edges and a nonlinear Riks analysis was conducted.  

The results are presented in Figs. 4 and 5. Fig. 4 shows the load-displacement 

response of three studied panels under various lateral pressure loads which was used to 

estimate their buckling shear stress. These values are compared to those predicted by Donnell 



 

equation and also NACA test results in Fig. 5. As it can be seen in Fig. 5, for panel S1, which 

has the greatest curvature parameter among three (& = 108),  both Donnell equation and FE 

analysis predicted the test results very well up to lateral pressure of 20$a>, however Donnell 

equation underpredicts the buckling stress under greater lateral pressure forces. For panel S2 

and S3, which have smaller curvature parameters, FE analysis and test results are in a very 

good agreement while Donnell Equation again underpredicted the buckling load for most 

samples. Considering the good agreement between FE method and NACA test results for 

various curvatures and lateral pressure forces, postbuckling behavior of curved panels was 

investigated using FE method and results are discussed in the next section. 

4. RESULTS AND DISCUSSION  
 
 

The influence of the lateral pressures on the shear buckling and postbuckling behavior 

of curved panels is discussed in this section. Four curved panels with various curvature 

parameters of & = 5, 15, 50	and 150, aspect dimensions of 1000LL × 1000	LL and wall 

thickness of 3 mm were considered. The influence of both uniform and hydrostatic outward 

and inward pressures ranging from 1 kPa to 10 kPa was studied. For panels subjected 

hydrostatic pressure, the loads were linearly distributed from zero to a maximum specified 

magnitude. Lateral pressures and in–plane shear loads were applied in two subsequent stages; 

and in each stage, a full nonlinear FE analysis was performed. 

4.1. Inward pressures 
 

The shear buckling and postbuckling behavior of curved panels in the presence of the 

inward lateral pressures is presented in Figs. 6 to 12. According to Figs. 6 and 7, the panels 

which had very low (& = 5) and low (& = 15) curvatures did not exhibit any buckling 

bifurcation points due to the presence of the inward pressures. As a result, the subsequent 

post–critical load reductions disappeared and panels became more stable at the buckling load 

levels. Therefore, a further growth of the shear force was observed beyond the theoretical load 



 

levels. In addition, there was no considerable reduction in the ultimate load–bearing 

capacities. The initial deflections, which are induced by the inward pressure, disturb the 

membrane action of the panels; thus, no strain energy was conserved before the buckling and 

the snap–through point was eliminated from the response. 

In Fig. 8 the load–displacement response of the moderately curved panel (& = 50) is 

given. It is observed that for small inward pressures (1 kPa), the panel behaved similar to the 

case of pure shear; exhibiting snap–through unstable buckling, with a considerable reduction 

in the buckling load. In contrast, when the inward pressure was increased to 5 kPa or more, 

the behavior of the moderately curved panel became stable similar to the low curved panels. 

Fig. 9 shows the out–of–plane deflection contours of the two panels under pure shear loads 

and a combination of shear and 5kPa inward pressure. Accordingly, the buckling mode shape 

was changed from two half–waves in the case of the pure shear to one half–wave in the 

presence of inward pressure. 

Fig. 10 depicts the load–deflection response of the highly curved panel (& = 150). In this 

case, unlike the less curved panels, the ultimate load was considerably reduced due to the 

increasing presence of inward pressures. The failure mode was associated with the occurrence 

of unstable buckling; and the large amount of the released strain energy most likely prevented 

the hardening effects. Fig. 11 compares the buckling mode shapes of the panel in three 

mentioned loading conditions. As it can be seen, the buckling mode shape of the pressured 

panels was similar to the case of pure shear. 

Fig. 12 compares the load–deflection response of panels subjected to a combination of in–

plane shear forces and different magnitudes of inward hydrostatic pressures. It is observed 

that there was no bifurcation point in the slightly curved panels (& = 5, 15); whereas, in 

panels with greater curvature parameter (& = 50, 150), the bifurcation points and the 

subsequent snap–through and hardening stages were distinctly apparent. 



 

In order to investigate the influence of the aspect ratio on the stability behavior of curved 

panels, the results of twelve FE analyses under the two different loading conditions (pure 

shear loads vs. combined shear and hydrostatic inward pressures) are compared in Figs. 13-

15. It is observed that the ultimate capacity was considerably decreased with the aspect ratio 

regardless of the curvature parameter. However, the unstable buckling was clearly evident in 

all the panels with & = 50, 150. 

4.2. Outward pressures 
 

The results for panels subjected to outward lateral pressures are given in Figs. 16 to 

23. According to Figs. 16 and 17, there was no distinct buckling point in the response of 

panels with very low (& = 5) and low (& = 15) curvature. On the other hand, the outward 

normal pressure significantly increased buckling load of panels with greater curvature 

parameter (& = 50) (see Fig. 18). This increase could be attributed to the interaction of the 

shear induced compressive membrane stresses and the pressure induced tensile membrane 

stresses. The snap–through phenomenon was not generally observed in panels under 

hydrostatic outward pressures. But, the snap–back phenomenon was observed in panels under 

uniform outward pressures. It is also realized that the ultimate loads of panels under the effect 

of uniformly distributed outward pressure were significantly increased. The difference 

between the buckling behavior of panels under the effect of uniform and hydrostatic pressures 

is due to the difference between the first and the second shear buckling eigenmodes as 

depicted in Fig. 19. In addition, Fig. 20 depicts the buckling mode shapes of panels under the 

effect of various load combinations. According to Figs. 19 and 20, the first buckling 

eigenmode was observed in panels under pure shear loads and panels under the combined 

action of in–plane shear loads and hydrostatic pressures. However, the second buckling 

eigenmode was observed in panels under the combined action of in – plane shear loads and 

uniform pressures. 



 

Fig. 21 illustrates the load – displacement curves of panels with the curvature 

parameter of & = 150. It is observed that the outward normal pressure did not significantly 

increase critical loads. The von Mises stress contours and the buckling mode shapes of panels 

under pure shear loads and combined shear and hydrostatic outward pressures are compared 

in Fig. 22. As depicted, three buckling half – waves were observed and tension fields were 

clearly formed in both cases followed by the material softening stage. In Fig. 23, the 

comparison between the load – deflection response of panels having different curvatures 

under combined action of hydrostatic outward pressures and in – plane shear forces is 

presented. It is observed that the initial stiffness of panels were similar up to the buckling load 

limit. 

The effects of the aspect ratio on the panels’ buckling and postbuckling behavior 

under the action of outward pressures are depicted in Figs. 24 to 26. It is observed that in 

panels with & = 15 and the aspect ratios of 1 and 1.5, the ultimate loads were increased due 

to the presence of the hydrostatic pressures. This increase could be due to the pressure 

induced tensile stresses counteracting the shear induced compressive stresses. However, in the 

panels with higher aspect ratios, the ultimate capacity was decreased. Similar results for the 

panels with & = 50 show that in panels with the aspect ratios 1, 1.5 and 2, the critical shear 

stress was significantly increased by the outward pressures. In the panel with the aspect ratio 

of 2.5, the bifurcation point was not distinctive and the ultimate load was slightly increased 

under the influence of hydrostatic pressure. It is concluded that the hydrostatic outward 

pressures prevented the panels with the aspect ratio of 2.5 from buckling. Fig. 26 presents the 

results for panels with the curvature parameter of & = 150. It is also evident that the ultimate 

capacity was increased due to the influence of the hydrostatic outward pressures, regardless of 

the panel aspect ratio. However, the panel with the aspect ratio of 2 showed the maximum 

increase in the ultimate capacity. 



 

Finally, the differences between the effects of inward and outward lateral hydrostatic 

pressures on the shear buckling behavior of curved panels are depicted in Fig. 27. The 

variation of the applied shear loads against the corner circumferential displacement of square 

panels having the curvature parameters of & = 5, 15, 50, 150 are presented in Fig. 27. It is 

observed that, in general, outward pressures increased the shear load capacity of the curved 

panels; while inward pressures decreased their capacity. Such effects were negligible in 

shallow curved panels; whereas in highly curved panels, the effects were considerable. In the 

panel with & = 50, the outward pressures considerably increased the elastic buckling 

capacity, while the inward pressures removed the buckling phenomenon. In the highly curved 

panels (& = 150), outward pressures slightly increased the buckling capacity, but inward 

pressures significantly decreased them. 

5. Conclusions 
 

The shear buckling and postbuckling behavior of thin curved steel panels subjected to 

gradually increasing in–plane shear forces in the presence of inward and outward normal 

pressures were investigated. The main concluding remarks based on the considered cases in 

this study are as follows: 

• Amongst the various available nonlinear FE analysis methods, the Arc length Riks 

method can more realistically trace the complete load–displacement response of 

curved panels. Both the stable and unstable buckling phenomena, as well as all strain 

hardening and softening phases, are well predicted by the use of Riks method. 

• Small amounts of inward pressures eliminate the snap–through shear buckling and the 

post unstable buckling softening stages in shallow curved panels. The shear capacity 

continued to increase after the theoretical critical loads. In moderately curved panels, 

however, small amounts of pressures did not alter their buckling behavior. 

• The magnitude of inward pressures required to influence the shear buckling and 

postbuckling behavior of curved panels, depends on their curvature. Panels with 



 

greater curvature parameter require higher pressures. The buckling mode shapes of 

curved panels are also considerably affected by the amount of pressures. 

• The ultimate shear capacity of highly curved panels is considerably reduced by the 

increasing presence of inward pressures. The failure modes of such panels are 

associated with the occurrence of unstable buckling, and the amount of the released 

strain energy prevents hardening effects. 

• Increasing the aspect ratio of curved panels, considerably decreases their ultimate 

shear capacity. This is regardless of the radius of curvature, although signs of unstable 

buckling are clearly evident in moderate to highly curved panels. 

• In general, outward pressures increase, and inward pressures decrease the shear 

buckling capacity of curved panels; the magnitude of such changes increase with the 

curvature parameter. Inward pressures can remove the bifurcation points, and make 

panels behave like imperfect flat panels. Outward pressures make the buckling 

phenomenon to be more stable. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Nomenclature 

>, (    length and width of the curved panel, respectively (mm) 

>DE    coefficients in deflection function 

=     aspect ratio of the panel (=>/() 

:     flexural stiffness of the curved panel per unit length (= def

H)(H4gh)
) 

$%    critical shear stress coefficient (= <%
Ohe
ihj

) 

L, K    number of buckling half – waves in the axial and circumferential directions,        

respectively 

/     Poisson's ratio 

9     applied lateral pressure (kPa) 

*     radius of curvature of the curved panel 

+     thickness of the curved panel (mm) 

", #, !  displacement of points on median surface of the curved panel in axial (6),            

circumferential	(8) and radial (k) directions, respectively 

^      applied shear load 



 

_̂     shear yield load 

6, 8, k     axial, circumferential and radial coordinates, respectively; shown in Fig. 1  

Z      curvature parameter of the panel (= Oh

le
√1 − /)) 

  



 

 

  
General view In-plane shear forces 

  
Outward uniform pressure Inward uniform pressure 

  
Outward hydrostatic pressure Outward hydrostatic pressure 

 
Fig. 1 General view and loading conditions  
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Fig. 2 Elastic shear buckling coefficient versus outward normal pressures for two typical panels 
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Fig. 3 Load – displacement curves for square panels with various curvatures 

 
 
 
 



 

   

(a) S1 (b) S2 (c) S3 
 

Fig .4 Middle node displacements versus applied shear force 

 
 
 

 
 
 
 



 

   
(a) S1 (b) S2 (c) S3 

 
Fig. 5 Critical shear stress versus normal pressure stress 

 
 
 
 

 
 
 



 

  
 (a) Radial displacement - Middle node  (b) Circumferential displacement - Corner node  

 
Fig. 6 Load-displacement curves for panels with Z=5 and a/b=1 – Inward pressures 

 
 
 
 

 
 



 

  
(a) Radial displacement - Middle node (b) Circumferential displacement - Corner node 

 
Fig. 7 Load-displacement curves for panels with Z=15 and a/b=1 – Inward pressures 

 
 

 
 
 
 
 

 



 

  
(a) Radial displacement - Middle node (b) Circumferential displacement - Corner node 

 
Fig. 8 Load-displacement curves for panels with Z=50 and a/b=1 – Inward pressures 

 
 
 
 

 
 
 



 

  

(a) Pure shear (b) Combined shear and 5 kPa inward 
 normal pressure 

 
Fig. 9 Buckling mode shapes for panels with Z=50 

 
 

 



 

  
 

(a) Radial displacement - Middle node (node 9) 
 

(b) Circumferential displacement - Corner node (node 5) 
 

Fig. 10 Load-displacement curves for panels with Z=150 and a/b=1 – Inward pressures 

 
 
 

 
 
 

   



 

(a) Pure shear (b) Combined shear and 10 kPa uniform  
inward normal pressure 

(c) Combined shear and hydrostatic 
 inward normal pressure 

 
Fig. 11 Buckling mode shape for panels with Z=150 

 
 

 

 
 

Fig. 12 Comparison of load-displacement curves for different panels under inward pressures 



 

 
 

 
 

Fig. 13 Shear-circumferential displacement curves for panels with Z=15 – Inward pressures 

 
 



 

 
 

Fig. 14 Shear-circumferential displacement curves for panels with Z=50 – Inward pressures 

 
 



 

 
 

Fig. 15 Shear-circumferential displacement curves for panels with Z=150 – Inward pressures 

 
 



 

  
(a) Radial displacement - Middle node (node 9) (b) Circumferential displacement - Corner node (node 5) 

 
Fig. 16 Load-displacement curves for panels with Z=5 and a/b=1 – Outward pressures 

 
 



 

 
 

(a) Radial displacement - Middle node (node 9) (b) Circumferential displacement - Corner node (node 5) 
 

Fig. 17 Load-displacement curves for panels with Z=15 and a/b=1 - Outward pressures  

 
 



 

  
(a) Radial displacement - Middle node (b) Circumferential displacement - Corner node 

 
Fig. 18 Load/displacement curves for panels with Z=50 and a/b=1 - Outward pressures 

 
 



 

  
(a) 1st eigenmode b) 2nd eigenmode 

 
Fig. 19 Eigenmodes of panels with Z=50 under pure shear 

 
 

 
 
 
 
 
 



 

  
(a) Pure shear (b) Combined shear and 1 kPa uniform  

outward normal pressure 

  
(c) Combined shear and 10 kPa uniform 

 outward normal pressure 
(d) Combined shear and hydrostatic  

outward normal pressure 
 

Fig. 20 Buckling mode shapes of panels with Z=50 

 
 



 

  
 

(a) Radial displacement - Middle node 
 

(b) Circumferential displacement - Corner node 
 

Fig. 21 Load/displacement curves for panels with Z=150 and a/b=1 - Outward pressures 

 
 

 



 

  
(a) Radial displacements - Pure shear (b) Mises stress contour - Pure shear  

  
(c) Radial displacements - combined shear 

 and hydrostatic pressure  
(d) Mises stress contour - combined shear 

 and hydrostatic pressure   
 

Fig. 22 Buckling mode shapes of panel with Z=150 

 
 

 
 

 



 

 
 

Fig. 23 Comparison of shear – circumferential displacement curves for different panels - Outward pressures 

 
 



 

 
 

Fig. 24 Shear – circumferential displacement curves for panels with Z=15 - Outward pressure 

 
 



 

 
 

Fig. 25 Shear – circumferential displacement curves for panels with Z=50 - Outward pressure 

 
 



 

 
 

Fig. 26 Shear – circumferential displacement curves for panels with Z=150 - Outward pressure 

 



 

 

  

  
 

Fig. 27 Comparison of effects of inward/outward hydrostatic pressures on the shear buckling behavior of various curvature square curved panels 
 

 
 

 
 



 

 
 
 

Table 1 Test Panel Dimensions 
 

Specimen a=b r t r/t Z 
S1  44.8”(1138mm)  700 108 
S2 18”(457mm) 64.0”(1626mm) 0.064”(1.62mm) 1000 75 
S3  76.9”(1953mm)  1200 63 
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