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Multilevel Assessment of Mental Stress using SVM with ECOC: An EEG 

Approach 
  
Fares Al-Shargie 

 

Abstract. Mental stress has been identified as one of the major contributing factors that leads to various 

diseases such as heart attack, depression and stroke. To avoid this, stress quantification is important for 

clinical intervention and disease prevention. This study aims to investigate the feasibility of exploiting 

Electroencephalography (EEG) signals to discriminate between different stress levels. We propose a new 

assessment protocol whereby the stress level is represented by the complexity of mental arithmetic (MA) 

task for example, at three levels of difficulty, and the stressors are time pressure and negative feedback. 

Using 18-male subjects, the experimental results showed that there were significant differences in EEG 

response between the control and stress conditions at different levels of MA task with p-values < 0.001. 

Furthermore, we found a significant reduction in alpha rhythm power from one stress level to another level, 

p-values <0.05. In comparison, results from self-reporting questionnaire NASA-TLX approach showed no 

significant differences between stress levels. In addition, we developed a discriminant analysis method 

based on multiclass support vector machine (SVM) with error-correcting output code (ECOC). Different 

stress levels were detected with an average classification accuracy of 94.79%. The Lateral Index (LI) results 

further showed dominant right prefrontal cortex (PFC) to mental stress (reduced alpha rhythm). The study 

demonstrated the feasibility of using EEG in classifying multilevel mental stress, and reported alpha rhythm 

power at right prefrontal cortex as a suitable index. 

Keywords: Stress, Neuroimaging modalities, EEG, SVM+ECOC. 
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1 Introduction 

Mental stress is one of the major health problems in modern society, and can be defined as the body reaction 

to subjected psychosocial, physical, and biological stimuli [76]. Stress involves the activation of 

hypothalamus-pituitary-adrenocortical (HPA) axis and sympathetic nervous system (SNS). The activation 

of HPA axis stimulates adrenal cortex to release glucocorticoids (cortisol), which plays an important role 

in the regulation of various physiological processes such as blood pressure, glucose levels, and carbohydrate 

metabolism [72,63].  Chronic malfunction in SNS results in a variety of physical, immunological, and 

emotional health problems including anxiety, depression and post-traumatic stress disorder (PTSD), heart 

attack, stroke, and immunological disorders [61,15,80,13]. Stress also affects the brain structure and 

functions. Several studies have reported that exposing to excessive stress could cause shrinkage of 

hippocampus [60,3,48,28]. To prevent these, stress detection especially at its early stage is important for 

clinical intervention and disease prevention.  

  Questionnaire-based self-reporting is the most commonly used method to measure an individual’s level 

of mental stress [59]. However, self-reporting is a subjective method [57]. An objective method would be 

through measuring salivary cortisol and alpha amylase level [89]. Salivary cortisol is used as a bio-marker 

for stress studies [38]. Several studies reported that salivary cortisol significantly increased after the onset 

of physiological stress [53]. However, the cortisol has a slow response and its level is affected by circadian 

rhythm [33], i.e. the concentration level of cortisol in the early morning is higher than that in the afternoon. 

Salivary α-amylase has also recently used as a bio-marker of sympathetic nervous system response to stress 

[30,22]. Significant increase in salivary α-amylase was found during stressful tasks such as, playing video 

games [79], before and after examination [6,7,73], Trier Social Stress Test (TSST) [64,29], speech and 

counting task [32], and mental arithmetic task [65]. It however may vary with one’s physical activity [54], 

where the concentration of salivary α-amylase is significantly higher during exercise than in a neutral-

control period.  

  Stress can also be assessed directly from the cortical response. Non-invasive neuroimaging modalities 

such as functional magnetic resonance imaging (fMRI), Positron emission topography (PET), 

Magnetoencephalography (MEG), Electroencephalography (EEG) and functional near infrared 

spectroscopy (fNIRS) are available to study brain functions and conditions of animal and human, including 

mental stress [36,62,34,83]. Measurements are often taken from the prefrontal cortex (PFC) [86,66,70,20], 

which is the brain region responsible in regulating thoughts, actions and emotions. The PFC has been 

identified as the most sensitive to the detrimental effects of stress exposure [3,39], and displayed behavioral 

and somatic responses to stress [85,43,88,68]. In this study, we quantify mental stress by measuring 

electrical brainwaves (EEG) at the PFC. The EEG is selected because it offers several advantages such as 

non-invasive data acquisition, ease to use, low cost set-up and its high temporal resolution at millisecond 

scale [5]. EEG signals are categorized by frequency bands: Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-13 

Hz) and Beta (14-30 Hz). Each frequency band may be used as an index for brain states.   

Few studies have used EEG to study mental stress previously. The brain region under study depends on 

the type of stimuli/tasks (visual, working memory or audio). Hill and Castro found high beta rhythm activity 

in the sensory motor area during stressful healing task [40]. Seo and Lee found similar high beta wave in 

the frontal and occipital lobe when negative images were presented to induce stress [77]. Another set of 

studies found significant increase of beta waves in the temporal lobe to odor irritation and traffic noise 

[14,69,84]. Thompson and Alonso separately found an increase of beta waves associated with a decrease 

of alpha waves in the anterior cingulate and frontal anterior cortex [82,2]. Gärtner et al found that frontal 

theta decreased with stressful mental arithmetic task [27]. Harmony et.al reported high delta waves, on the 

other hand, while solving difficult mental arithmetic task [35]. To detect mental stress, pattern recognition 

approaches are often adopted [58]. Table 1 summarized some of the most commonly used expert systems 

in classifying EEG signals individually or in combination with other physiological signals in stress related 

studies. Thus far, the systems are limited to detect the presence of stress only. We believe clinical 
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intervention/therapy to stress disorders should be carried out at the early stage; hence we are interested to 

classify stress into multi-level.   

 In this work, we investigate the feasibility of using EEG signals to classify mental stress into three 

levels. We propose an experimental protocol to induce three levels of stress on participants while solving 

an established mental arithmetic task with three levels of difficulty. Each level of the task difficulty 

corresponds to a level of stress.  In addition, time pressure and negative feedback of peer performance are 

used as stressors in this study. We propose wavelet transform to extract features that are highly correlated 

with mental stress, and multiclass support vector machine with error correction code (ECOC) to classify 

the stress into three levels.  The quantification of stress at multiple levels based on EEG signals is achieved 

for the first time.  
 

2 Materials and Methods  

2.1 Participants  

Eighteen healthy male right-handed adults with an age ranges from 20-24 years old with the same level of 

education participated in this study. All participants were medically fit, non-smoker, and non-users of drugs 

that have any effect on the sympathetic nervous system. They were informed to avoid physical activity, 

food, caffeine, chewing gum, alcoholic consumption and soft drinks at least 2 hrs prior to the experiment 

[4]. Additionally, the experiment was conducted between 4.00 and 5.30 p.m to minimize the influences of 

circadian rhythm. Written informed consent from each participant was obtained and ethical approval in 

accordance with the declaration of Helsinki was granted by local ethics committee at University Teknologi 

PETRONAS. The participants were asked to minimize head movements and to remain calm during the 

entire experiment. 

 

2.2 Stress induction procedure  

Mental arithmetic task with three levels of difficulty was developed in this study [17]. Each level of the 

arithmetic task corresponds to one level of stress. The task at level one involves 3-one digit integer (ranging 

from 0 to 9) and uses the operands of + and/or – (example 2-3+9).  At level two, the task involves 3 integers 

(ranging from 0 to 99) with at least 2 two-digit integers and uses the operands of +, –, and × (example 58-

17×3).  At level three, the task involves 4 integer numbers (ranging from 0 to 99) and the operands include 

+, –, × and ÷ (example 99/3-76+51). The answer for each question is displayed on a computer monitor 

among the sequence of ‘0’ to ‘9’ as demonstrated by Fig. 1(A). Participant selects the right answer by single 

left-click of the mouse.  

Two stressors were deployed in this study, i.e. time pressure and negative feedback about peer 

performance. For time pressure, participants were trained at each level of task difficulty and the average 

time taken for each individual in answering the questions was recorded. This recorded time was then 

reduced by 10% and used as time pressure on the participants. In actual fact, the participants were expected 

to score less than 50% when the time given to answer each question was reduced by 10%. On the other 

hand, negative feedback of answering the questions (“correct”, “incorrect” or “timeout”) and performance 

indicators (one for the participant’s performance and another one for the averaged peer performance fixed 

at 90% accuracy) were displayed on the computer monitor to further induce stress in experiment 

participants.  

The experiment protocol was performed in four steps. First, brief introduction was given to all 

participants to be familiar with the proposed tasks. Second, participants were trained for five minutes at 
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each level of difficulty in the mental arithmetic (MA) task and time taken to answer each question was 

recorded.  
Table 1. Previous studies related to EEG arousal and physiological signals classification. 

Author /Year  Physiological 

signals Used  

Stressor  Number 

of 

Subjects  

Expert 

system 

employed 

Classification Accuracy   

Ishino (2003) 

[47] 

 

EEG Video and 

puzzle games 

1 NN  54.5%, 67.7%, 59% and 

62.9% for happy, calm, 

sad and relax. 

Ryu (2005) 

[74] 

 

EEG and ECG Arithmetic task    10 Multiple 

regression 

analysis 

  N/A only to study brain 

response.  

Chanel (2006) 

[12] 

EEG, ST, BP 

and respiration  

Video and 

image  

4   Bayes and 

FDA  

 

55% for low and high 

arousal. 

Chanel (2007) 

[10] 

ST, BP,  

respiration and 

EEG  

Recall event 1    LDA, SVM 76% and 73% using EEG 

and peripheral signals. 

Lin (2008) [56] 

 

EEG Driving 

Simulator  

6 K-NN and 

NBC 

71% to 77% between 

stress and rest.    

Chanel (2009) 

[11] 

 

EEG, ST, BP, 

HRV and 

respiration  

 

Recall memory 11   LDA, 

SVM, and 

RVM  

 

63% using EEG and 70% 

using fusion of features  

  

Hosseini (2010) 

[44] 

 

ST,HRV and 

EEG 

Pictures 

induction 

calm-neutral 

and negative-

excited  

15   SVM and 

Elman 

network 

84.1% for two categories, 

calm and stress using 

psychological signals and 

82.7% using EEG signals.  

Saidatul  

(2011) [75] 

 

EEG Mental   

arithmetic task 

5   NN 91.17% using Burg 

Method, 88.36% using 

Welch Method and 

85.55% using Yule 

Walker for stress and 

relax. 

Rahnuma 

(2011) [71] 

 

EEG Negative 

videos and 

images   

4   MLP  71.69 %, 60.74%, 71.84% 

and 65.94% for happy, 

calm, sad and relax.  

Khosrowabadi 

(2011) [51] 

 

EEG Before and 

after  

examination 

26   K-NN, 

SVM 

90% for stress and relax. 

Sharma (2013) 

[78] 

 

EEG, 

ECG,ST,BP, 

eye gaze and  

pupil diameter 

signals 

Video: stress 

and non-

stressed film 

25   GA+SVM, 

GA+ANN  

95% using all 

physiological signals and 

91% using EEG signals 

alone. 

Jun (2016) 

[49] 

EEG Arithmetic task 

and stroop    

10 SVM 96% arithmetic from rest, 

88% stroop from rest and 

75% combination of 

arithmetic and stroop task. 

 

EEG Electroencephalography, ECG electrocardiogram, ST skin temperature, BP blood pressure, HRV hear rate 

variability, NN neural network, LDA linear discriminate analysis, RVM relevance vector machine, K-NN k-Nearest 

Neighbor, MLP multilayer perceptron, NBC naive bayes classification, GA genetic algorithm. FDA fischer's linear 

discriminant analysis.  
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Third (i.e. control phase), the participants had their EEG signals recorded for total duration of 15 minutes 

while solving arithmetic problems at three levels of difficulty without any time limit per question. After 

each of the EEG recording, a questionnaire was filled by the participants self-reporting about task loading 

according to NASA-TLX rating scale [37]. Fourth (i.e. stress phase), similar as in the control phase, the 

EEG was recorded for 15 minutes under stress conditions (time limit and negative feedback) and again 

participants completed another questionnaire about task loading. In order to avoid any habituation or 

expectation effects, the order of the task conditions was balanced in which half of the participants began 

with the control task while the other half of the participants began with the stress task.  

The entire experiment duration for each participant was about an hour, consisting of four blocks. Fig.1 

gives an overview of the experimental protocol and the block design. Each block consists of 40 s of mental 

arithmetic task and 30 s of rest. The rest duration of 30 s was chosen to avoid the occurrence of habituation 

and to give sufficient time to determine brain areas activated during the MA task. During the 40 s task, 

several arithmetic questions are posted depends on how fast the response of the participant in answering. 

During the 30 s rest the computer screen displays with a white cross with black background and participants 

are instructed to look at the fixation cross as a visual cue for trial onset. In this experiment, we controlled 

the EEG recording by sending a marker via channels 23-24 of EEG BrainMaster as ‘1’ to mark the start of 

the MA task and ‘0’ to mark the end of the task for each block. During the experiment, all participants were 

instructed to answer the questions as fast and accurate as they could and not to guess the answer. The 

average accuracies of answering the questions at each level of the task were reported and used for 

subsequent performance evaluation.    

 
Fig 1. Experimental protocol of mental stress study. A) Levels of mental arithmetic task difficulty. Six measurements 

were performed in this experiment; three for control condition and three for the stress condition. B) Block design at 

control condition. C) Block design at stress condition. In each record (control and stress), there were four blocks. In 

each block, mental arithmetic was allocated for 40 s followed by 30 s rest. The vertical red dash-line marks the start 

of the task and vertical green dash-line marks the end of the task in each level. The sequence of the three levels was 

randomized to avoid any bias in results. 
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2.3 EEG measurement  

We measured EEG signals from the prefrontal cortex (PFC) using Discovery 24E system (BrainMaster 

Technologies Inc, Bedford, OH). The system was equipped with seven active electrodes namely as FP1, 

FP2, F7, F3, Fz, F4, and F8 and one reference electrode (A1) attached to the earlobes as shown in Fig.2. 

All electrodes were placed on the PFC surface scalp based on the international 10-20 system of electrode 

placement. The sampling frequency for EEG was set to 256 Hz and the impedance was minimized (kept 

below 5kΩ in this study to avoid the noise effects due to sudden change in temperature and humidity 

occurred during data recording [25,50]) using small amount of gel directly to the scalp. 

 

 
Fig 2. EEG Electrode placement and experiment setup. 

2.4 EEG analysis  

EEG data were preprocessed offline using the plug in EEGLAB 2013a toolbox [18]. Imported EEG data 

were bandpass filtered between 0.5 Hz and 30 Hz using 3rd order Butterworth filter. Independent component 

analysis (ICA) was applied to remove eye blink artefacts. The channels were decomposed into a number of 

independent components (by default the number of components is equal to the number of recorded 

channels). The component corresponding to eye blink artifacts was removed. The signals were further 

analyzed using wavelet transform (WT) [52]. WT is a suitable method for multi-resolution time-frequency 

analysis. WT decomposed EEG signals into set of functions to obtain their approximation and the 

corresponding coefficients at different levels. Features can then be extracted from them. The wavelet 

transform is formed by shifting and scaling function, as follows:   

                  
,

1
( )a b

t b
t

aa
 

 
  

                                                  

 (1) 

 

where a, b ϵ R and a > 0. The variables a, b and R are scaling factor, shifting factor and wavelet space, 

respectively. The wavelet family of Dubechies-8 (db8) was used in this work to decompose EEG signals 

into five frequency bands (delta, theta, alpha, beta and gamma). Table 2 gives a summary of the wavelet 

decomposition levels and their corresponding frequency bands.  
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Table 2.EEG frequency bands and wavelet decomposition levels. 

Decomposition 

level 

Frequency 

bandwidth  

Frequency band 

DL1 64 Hz -128 Hz Noisy signal  

DL2 32 Hz -64 Hz Noisy Gamma  

DL3 16 Hz -32 Hz Beta 

DL4 8 Hz -16 Hz Alpha 

DL5 4 Hz -8 Hz Theta 

AL5 0-4 Hz  Delta 

 

From the wavelet coefficients, we extracted the mean absolute values of the wavelet coefficients in each 

sub-band and the average power and energy from the activation period only. The activation period was 

defined from the onset of the task to the end of the task in each block. Then we averaged the four active 

blocks into a single block of 40 s. In this work, a window of 1 s moving-time interval was used to calculate 

the features of EEG signals. The power spectral density values were calculated using Eq.2. 

                  

1
21

| ( ) |
k N

n k

P x n
N

 



 
                                                

 (3) 

where x(n) represents the segmented EEG signal and N is the length of the EEG clean signal. The energy 

of EEG frequency bands was defined as 

                  
21

| ( ) |E x n
N





 
                                                

 (3) 

 

Based on our previous study [1], we found that EEG alpha band signals were highly correlated with mental 

stress states. Therefore we limit the analysis to EEG alpha rhythm power in this study. There is a total of 

840 features for each subject in each condition of the recording phase: control and stress, where we have 

40 power values, 40 mean values and 40 energy values multiply by 7 EEG measuring electrodes. Each 

feature is normalized to the range [-1, 1] before feeding into the classifier using Eq.4. 

                  
min( )

2 1
max( ) min( )

norm

x x
Feature

x x


  


                                               

 (4) 

where x is the entire feature set, min(x) is the minimum value in the feature set and max(x) is the maximum 

value in the feature set respectively. Dominant features were then selected based on their significant 

response to mental stress. Independent samples t-test was used to find the significantly discriminant 

electrodes and features. Based on that, only the power values were considered as features in this study.   

2.5 Lateral index at stress    

In order to identify the dominant PFC region to mental stress, lateral index at stress (LIS) was calculated 

from alpha rhythm in all the subjects within two left and two right scalp quadrants (i.e. anterior inferior and 

anterior superior) as shown in Fig. 3 [46]. The anterior inferior quadrants contained medial prefrontal cortex 

(mPFC) and ventrolateral PFC; FP1, FP2, F7 and F8 sites. The left and right anterior inferior contained 

ventrolateral F7 and F8 sites respectively. Meanwhile, the anterior superior quadrants contained the dorsal 

F3, Fz and F4 sites, in which F3 and F4 located on the left and right anterior superior dorsolateral PFC 

respectively [16,81]. The LIS values were calculated according to Eq.5. The right and left variables 

represent the power values calculated from the contralateral electrodes, F3, F4, FP1, FP2, and  F7, F8. The 

LIS index provides values in the range of -1 to +1. A near-zero value of LIS indicates bilateral dominance 

that depends on statistical analysis. Negative value indicates high level of stress on the right PFC than left 

PFC.  One-tailed t-test was performed to determine the right or left dominance of PFC hemisphere.  
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Right Left

LIS
Right Left





                                                

 (5) 

 

 
Fig 3. EEG sensors location based on 10-20 system of electrode placement.  

  

2.6 Support vector machine with ECOC  

Support Vector Machine (SVM) is a supervised machine learning technique widely used for classification, 

regression and density estimation [87].  The technique transforms the data into a higher-dimension space 

using kernel function and classifies them with a hyper-plane. SVM was selected for its ability to model 

linear as well as more complex decision boundaries. The decision boundary hyperplane in SVM is estimated 

based on its training dataset by maximizing the distance between the hyperplane to the nearest data point.  

The SVM is usually used in binary classification, i.e. problems with two classes. For three classes such 

as this (L1, L2 and L3 levels of stress), three SVM classifiers are needed. One SVM classifies L1 from the 

other two (L2 and L3), a second SVM classifies L2 from L1 and L3, and a third SVM classifies L3 from 

L1 and L2. In this work, SVM is extended to multiclass classifier by fusing SVM decisions using error-

correcting output code (ECOC) [19]. Three bit codes are used, (1, -1, -1), (-1, 1, -1) and (-1, -1, 1) to 

represent each class/level, i.e. L1, L2 and L3 respectively. If all three SVMs classify correctly, then the 

multiclass-classifier-target code is met and ECOC reports no error. However, if at least one of the classifiers 

misclassifies, then the class with its code closest in hamming distance to the computed output code will be 

assigned as the answer. The SVM classifiers and ECOC algorithm were implemented using MATLAB 

software (Mathworks, Natick, MA).  

The performance metrics of the classifier are classification accuracy, sensitivity, specificity, positive 

predictive value (PPV) and negative predictive value (NPV) described in [24]. The classification accuracy 
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is defined as the ability of the classifier to correctly identify positive and negative results and can be 

evaluated using Eq.6. 

                  100
TP TN

Accuracy
P N


 


                                                

 (6) 

 

 

where true positive (TP) are data points correctly labeled as stress at the corresponding level and true 

negative (TN) are data points correctly labeled as not stress at the corresponding level. The sensitivity 

measures the classifier ability to correctly identify positive result and calculated using Eq.7.  

                  100
TP

Sensitivity
TP FN

 


                                                

 (7) 

 

where, false negative (FN) refers to data points incorrectly labelled as stress at the corresponding level. 

Specificity gives a measure of the classifier ability to identify negative results defined Eq.8. 

                  100
TN

Specificity
TN FP

 


                                                

 (8) 

where, true negative (TN) are data points correctly labels as not stress at the corresponding level, false 

positive (FP) refers to data points incorrectly labelled as not stress at the corresponding level. The positive 

and negative prediction values calculated using Eq.9 and Eq.10 respectively.  

                  100
TP

PPV
TP FP

 


                                                

 (9) 

 

                  100
TN

NPV
TN FN

 


                                                

 (10) 

 

2.7 Statistical analysis  

Statistical analysis on subjective scores of NASA-TLX and wavelet coefficient features for all the subjects 

and conditions were performed using two-sample t test. Prior to t-test, we confirmed if our data follow a 

Gaussian distribution. The two-sample t test was carried out with three different parameters, namely 

condition, the control level and the stress level. Firstly, we used two-sample t test to calculate the differences 

between each paired of the task difficulty (control vs stress). Secondly, we calculated the differences 

between different stress levels. For example, stress L1 versus others (i.e. L2 and L3), and so on. The 

differences were considered statistically significant if p < 0.05.  

3 Result and Analysis  

3.1  Performance score and NASA-TLX score  

First, we look at the results of completing the MA tasks based on accuracy as we progress with level of 

difficulty, under control and stress condition. Fig. 4(a) shows clear reduction in performance (accuracy) 

with increasing the level of task difficulty/stress. We also found significant difference between control and 

stress condition, supporting the effectiveness of our stressors (time pressure and negative feedbacks). In 

this work, we adopted the standard NASA-TLX questionnaire [37] approach for comparison purpose. The 

NASA-TLX helps estimate mental stress by considering six established factors: mental demand, physical 

demand, temporal demand, performance, effort and frustration. Each factor has a score ranged from 1 to 20 
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with total score of 120. These scores were then normalized into the range of ‘0’ to ‘1’. Higher scores than 

0.80 corresponding to high level of stress. In this case, the NASA-TLX results show significant differences 

between the control and stress condition in the first two levels of MA task difficulty but not the third level, 

as shown in Fig.4 (b). At L3, the participants responded to NASA-TLX questionnaires similarly under both 

control and stress conditions.  

 
Fig 4. Performance accuracy in answering the questions correctly under the three level of arithmetic tasks in control 

and stress condition. The L1-represents level one of mental arithmetic task, L2- represents level two of mental 

arithmetic task and L3- represents level three of arithmetic task. The sign ‘*’ indicates that, the significant was 

measured with p<0.05, ‘***’ indicates that p<0.001 and ‘****’ indicates that p<0.0001. 

 

3.2  EEG   

The mean spectral densities of EEG alpha rhythm for the three task difficulty levels under control and stress 

conditions are shown in Fig.5. From the figure, it is obvious that there is a significant difference between 

the control and stress conditions at all three task difficulty levels. The mean EEG alpha rhythm power is 

significantly reduced with increasing the task difficulty under both control and stress conditions. The 

obtained result is correlated well with the performance accuracy score reported in Section 3.1.  

3.3  Statistical analysis  

Our statistical analysis further reveals significant differences between mental arithmetic tasks under control 

and under stress conditions. Table 3 shows the t-values and the p-values calculated between control and 

stress conditions for all the three assessment methods, namely performance score (accuracy), NASA-TLX 

and EEG measurements. It also shows the t-values and the p-values calculated between stress levels for the 

three assessment methods. Performance score and EEG measurements showed significant differences 

between control and stress and between the control and the stress levels (from one level to another). On the 

other hand, NASA-TLX gives no significant differences between control L3 and stress L3, and between 

levels when under stress condition. We may thus conclude that stress assessment using subjective method 

(NASA-TLX) is not a suitable method as compared with cortical measurements using EEG in detecting 

different mental stress levels. 
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Fig 5. Mean Alpha rhythm power calculated from wavelet coefficients (DL4) in two mental states; control; blue colour 

and stress; red colour. The L1-represents level one of mental arithmetic task, L2- represents level two of mental 

arithmetic task and L3- represents level three of mental arithmetic task. The sign ‘***’ indicates that, the significant 

was measured with p<0.001 and ‘****’ indicates that p<0.0001. 
 

 

 
 

 

 
Table 3.Statistical analysis of subjective and objective measurements with two different parameters. 

Parameter 1: 

Condition 

Performance Score NASA-TLX EEG 

(control vs 

stress) 

t-value p-value t-value p-value t-value p-value 

L1 6.632 <0.001 5.841 <0.001 8.410 <0.0001 

L2 5.871 <0.001 4.210 0.001 7.712 <0.0001 

L3 5.541 <0.001 0.912 0.231 4.745 <0.0011 

Parameter 2: 

Control level 

      

L1 vs L2 2.731 0.014 2.821 0.010 2.714 0.014 

L2 vs L3 2.798 0.024 3.321 0.009 3.126 0.010 

L1 vs L3 3.101 0.013 4.621 0.001 3.131 0.011 

Parameter 3: 

Stress level 

      

L1 vs L2 2.831 0.013 Not significant 2.732 0.021 

L2 vs L3 2.914 0.021 Not significant 2.460 0.034 

L1 vs L3 3.112 0.011 Not significant 2.901 0.012 
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3.4  Lateral Index at Stress (LIS)  

The result corresponding to LIS asymmetry based on EEG alpha rhythm is summarized in Table 4. The 

values were calculated according to Eq 5. The LIS showed that right PFC was highly involved during 

mental stress in all the three levels of mental stress across all the subjects. The statistical analysis showed 

that LIS were significant at level one and level two of mental stress as compared to baseline, (p <0.05) and 

no significant difference was observed at level three. Note that the baseline of asymmetry was assumed to 

be equal, i.e. LIS = 0.  

 
Table 4. Prefrontal EEG LIS for three levels of mental stress. 

Asymmetry  Control level one  Control level two  Control level three  

FP2-FP1 -0.09 ± 0.16 -0.01 ± 0.16  -0.10 ± 0.01 

F4-F3 -0.08 ± 0.15 -0.09 ± 0.16 -0.12 ± 0.04 

F8-F7 -0.10 ± 0.16 -0.10 ± 0.15 -0.11 ± 0.03 

Right-Left  -0.09 ± 0.16 -0.09 ± 0.14 -0.13 ± 0.03 

Asymmetry  Stress level one  Stress level two  Stress level three  

FP2-FP1 -0.210 ± 0.03 -0.022 ± 0.12  -0.001 ± 0.07 

F4-F3 -0.349 ± 0.01 -0.130 ± 0.03 -0.001 ± 0.04 

F8-F7 -0.228 ± 0.02 -0.132 ± 0.03 -0.001 ± 0.06 

Right-Left  -0.310 ± 0.02 -0.253 ± 0.06 -0.003 ± 0.07 

 

3.5  SVM+ECOC  

The average classification accuracy of mental stress levels by SVM with ECOC is summarized in Table 5. 

The table provides the performance metrics (accuracy, sensitivity, specificity, area under ROC curve, 

positive predictiv value, and negative predictive value) of the classifier under the three levels of mental 

stress. The results show that the accuracy drops from 97.61 to 95.37, and to 91.4 with increasing level of 

stress. The average classification accuracy across the three levels of stress is therefore 94.79%. ROC plot 

provides a view of the sensitivity and specificity of the classifier, revealing level one of mental stress with 

the highest accuracy as shown in Fig 6.  
 

Table 5. Statistical parameters of the classifiers, SVM+ECOC. 

  Multilevel 

SVM+ECOC  

 

Statistial 

Parametrs (%) 

Level one Level two Level three 

Accuracy 97.61 95.37 91.40 

Sensitivity 97.60 96.20 92.06 

Specificity 97.60 94.40 90.70 

Area under 

ROC  

99.60 98.80 97.03 

PPV 97.60 94.50 90.86 

NPV 97.60 96.20 91.95 
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Fig 6. ROC curves of multiclass SVM with ECOC. The red circles at the upper left corner represent the cut-off 

points.   

 

4 Discussion  

In our previous study [1], we used EEG signals to detect mental stress from a resting (control) state. In this 

work, our aim is to investigate the feasibility of using EEG signals to quantify the levels of mental stress 

on the PFC. We proposed a new assessment protocol for the purpose, and its corresponding discriminant 

analysis method. Using multiclass support vector machine (SVM) with error-correcting output code 

(ECOC), we successfully classified the stress into three levels. Additionally, the study discussed the 

relationship between stress tasks, performance ability and commonly used subjective and objective 

assessment methods. We found that the performance score (accuracy) significantly reduced with increasing 

task difficulty under control and under stress conditions. The result is consistent with previous studies 

reporting performance decrease with high workload and job stress [42,23,21]. It is also consistent with 

fMRI studies which reported that performance effectiveness reduced with increasing task difficulty [31,45].  

Subjective assessment using NASA-TLX demonstrated significant differences at the first two levels of 

task difficulty but not the third level under control condition, and was not distinguishable between all levels 

under stress condition. Especially at level three, participants evaluated their mental states similarly in both 

conditions (control and stress). Therefore, NASA-TLX is not a suitable measure for stress levels as there is 

little correlation between NASA-TLX scores and performance scores. In contrast, objective assessment 

using EEG demonstrated significant differences between the task difficulty levels under stress condition. 

In this work, significant decrease in alpha rhythm power was obtained at all three levels of mental stress, 

when compared to control condition. The study also found that alpha rhythm power was significantly 

reduced from one level to the next higher level. The EEG results are correlated well with the performance 

scores, unlike the NASA-TLX approach. The EEG results obtained in our study are consistent with previous 

workload studies. Previous studies showed that alpha rhythm power decreased with increasing level of 

workload [26,9,8,41].  Another study conducted on mothers of children with mental retardation (considered 
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high stress) reported significant reduce in alpha rhythm under stress [67].  Our study forms the first attempt 

to distinguish different stress levels using EEG technique.  

The results from lateral index demonstrated the dominance of right PFC at all the three levels of mental 

stress with most significant at level one of mental stress. With increasing the level of stress, the value of 

LIS became significantly reduced. This suggests that high level of stress may impair the whole PFC 

activities. This result of LIS is consistent with previous studies [55,2]. The proposed multiclass support 

vector machine (SVM) with error-correcting output code (ECOC) also showed good performance in 

classifying mental stress levels. To the best of our knowledge, this is the first study using wavelet features 

of EEG signals with multiclass SVM and ECOC to classify mental stress levels. The classification 

performance metrics (accuracy, sensitivity, specificity, area under ROC curve, positive predictiv value and 

negative predictive value) showed promising results. 

Admittedly, there are few limitations of our study needed to be addressed in future studies. Firstly, we 

only recruited male subjects to rule out possible effects of the hormonal cycle in our stress induction 

procedure. Future research will investigate whether our result (right dominant PFC to stress) can be 

generalized to both gender. Secondly, the number of electrodes used is of limited (7-EEG electrodes). More 

EEG-electrodes will be considered in future to better localize mental stress on the PFC subregion.  

 

Conclusion  

In this study, we have demonstrated for the first time that EEG signals can be used to reliably discriminate 

between mental stress levels. The study reported significant differences between the three levels of mental 

stress, as measured by two-sample t-test with mean p-values of 0.021, 0.034, and 0.012 for level one to 

level two, level two to level three and level one to level three, respectively. The proposed multiclass 

classifier SVM with ECOC showed its potential in classifying stress levels with an average accuracy of 

94.79%. Furthermore, the study revealed the dominance of the right prefrontal cortex to mental stress as 

supported by the results of lateral index at stress. The questionnaire approach NASA-TLX on the other 

hand showed no significant differences between stress levels. The proposed multilevel assessment may 

therefore form an important first step towards early detection of mental stress disorders. 
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