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Abstract— Fusion of Functional Near infrared Spectroscopy 

(fNIRS) and Electroencephalograph (EEG) is a novel approach. 

This study aims in improving the detection rate of mental stress 

using the complementary nature of fNIRS and EEG 

neuroimaging modality. Simultaneous measurements of fNIRS 

and EEG signals were conducted on 12 subjects while solving 

arithmetic problems under two different conditions (control and 

stress). The stress in this work was based on arithmetic task 

difficulty, time pressure and negative feedback of individual 

performance. The study demonstrated significant reduction in 

the concentration of oxygenated hemoglobin (p=0.0032) and 

alpha rhythm power (p=0.0213) on the PFC under stress 

condition. Specifically, the right PFC and dorsolateral PFC were 

highly sensitive to mental stress. Using support vector machine 

(SVM), the mean detection rate of mental stress was calculated as 

91%, 95% and 98% using fNIRS, EEG and fusion of fNIRS and 

EEG signals respectively. 
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I.  INTRODUCTION  

Functional Near-infrared Spectroscopy (fNIRS) is a non-

invasive brain imaging technology based on hemodynamic 

responses to cortical activation. fNIRS measures blood flow 

through hemoglobin concentrations and tissue oxygenation in 

the brain[1].  It sends near-infrared light into the head using 

two wavelengths of 695nm and 850nm. By measuring the 

light sent at two wavelengths, the change in oxygenated 

2O Hb  and deoxygenated HHb hemoglobin concentrations 

can be estimated using modified Beer-Lambert law[2]. fNIRS 

has several advantages compared to other neuroimaging 

modalities. Compared to functional magnetic resonance 

imaging (fMRI), fNIRS has good temporal resolution, 

portable, inexpensive and less motion artefacts[3]. 

Furthermore, fNIRS has a good spatial resolution compared to 

EEG.  

In recent years, fNIRS has attracted considerable attention as a 

non-invasive neuroimaging technique for the assessment of 

hemodynamic alterations in the brain[4]. Various cognitive 

tasks were performed to understand the relationship between 

the hemodynamic response of the prefrontal cortex and 

different events. Mental rotation[5], word generation[6], 

listening to music[7], and arithmetic task[8] have shown to 

create a hemodynamic response in the prefrontal cortex (PFC). 

The change in concentration of the 
2O Hb  and 

HHb hemoglobin has been used in previous studies to 

classify the brain activation from that of rest state.  Study in[7] 

used a piece of music as stimuli to discriminate between the 

brain activation and baseline resulted in an average 

classification accuracy of 70%. Another studies[9, 10]used 

music and arithmetic tasks to investigate the consistency of 

single-trial classification over multiple sessions resulted in 

accuracy of 62.7% and 71.2% in classifying music and 

arithmetic tasks respectively.  A comparative study on the 

classification of three mental tasks was firstly conducted 

by[11].   The study reported an averaged classification 

accuracy of 71% for mental arithmetic, 70% for word 

generation and 62% for mental rotation. 

However, the hemodynamic activation is an intrinsically slow 

response.  To overcome this limitation, combining multiple 

neuroimaging modalities with complementing strength is the 

main objective. Electroencephalogram (EEG) has an excellent 

temporal resolution enabling it to measure cognitive changes 

within millisecond scale. EEG is one of the most common 

sources of information used to study brain function and 

condition and can be recorded non-invasively using surface 

electrodes on the scalp. 

Combination of fNIRS and EEG has recently introduced. Few 

studies have used EEG and fNIRS to study the correlation 

between cortical activation and the hemodynamic response in 

human subjects[12, 13].  These studies found a positive 

correlation in occipital cortex between alpha activity and 

concentration changes of HHb  hemoglobin. Another studies 

combined EEG and fNIRS signals to characterize the 

hemodynamic response to epileptic discharges as measured by 

EEG[14].  

Simultaneous measurement of EEG and fNIRS has been 

proposed for improving the performance of brain computer 

interface systems (BCI)[15]. Fazly et al. reported that, the 

performance of a sensory motor rhythm (SMR) based BCI 

significantly improved by simultaneous measurement of EEG 

and fNIRS [16]. In this work we examined the possibility of 

combining the hemodynamic responses to mental stress with 

their physiological counterparts in a multimodal fusion 

technique. We aim to improve the detection rate of mental 

stress using the complementary nature of fNIRS and EEG 

neuroimaging modalities.  

 

II. METHODOLOGY 

A. Subjects    

Twelve healthy male right-handed adults participated in the 

simultaneous EEG and fNIRS measurements. All participants 

were informed prior to the experiment and gave written 

consent, in accordance with the declaration of Helsinki and 



ethical approval granted by local ethical committee. None of 

these participants had a history of psychiatric, neurological 

illness or psychotropic drug use. The participants were asked 

to minimize their head movements and to keep calm as much 

as possible during the experiment. 

B. Experiment setup  

To measure the hemodynamic response we used an OT-R40 

(Hitachi Medical, Japan) Optical Topography system. Brain 

activities recorded from the PFC cortex using integrated cap of 

BrainMaster (7-Electrodes) and fNIRS (27 channels) as shown 

in figure 1. The sampling rate for EEG recording was set to 

256 Hz and 10 Hz for fNIRS.   The impedance of EEG was 

minimized using small amount of gel directly to the scalp.   

 

 

Figure 1.The setup of multi-modal fNIRS-EEG experiment for subject 

performing arithmetic task. 

 

The mental stress experiment was designed based on Montreal 

Imaging Stress Task (MIST)[17]. The task involved three 

single-digit integers (ranging from 0 to 9) and the operands 

limited to ‘+’ and ‘–’ (example 4-2+2). The experiment was 

conducted in four phases. First, brief introduction was given to 

the participants. Second, all participants were trained for five 

minutes to estimate the average time taken to answer each 

question. Third (i.e. the control phase), the participants had 

their simultaneous EEG and fNIRS data record for total of five 

minutes. During the control phase, all participants were 

instructed to answer the questions as fast as they can. Fourth,  

(i.e. stress phase), the averaged time recorded during the 

training phase was reduced by 10% as time limit set for 

answering questions in the stress phase to induce stress on the 

participants. Furthermore, the individual negative feedback of 

answering the questions was displayed on the computer 

monitor to further induce more stress on the participants.  The 

designed experiment consists of four blocks as shown in figure 

2. In each block, mental arithmetic task posed for 40 seconds 

followed by 30 seconds rest.  

In this experiment, we developed the control technique using 

MATLAB to send a marker via parallel port of channels 23-24 

of EEG brainMaster as ‘1’ to mark the start of the task and ‘0’ 

for the end of the task for each block. The same marker was 

sent through serial port to mark the task in fNIRS system as 

‘F9’ for starting the task and ‘F7’ to mark the end of the task 

in each of the experimental block designed. The overall time 

taken for the entire experiment was less than 18 minutes.  

C. Measurement Locations 

We investigated the EEG at seven electrode locations namely 

a: FP1, F3, F7, Fz, FP2, F4 and F8 with one reference 

electrode A1 attached to the earlobe. These locations were 

based on the 10-20 international system of electrode 

placement. A total of 27 locations over the frontal lobe were 

initially examined with fNIRS to determine the extent to 

which 
2O Hb  concentration in the PFC was influenced by the 

mathematical task. Seven of these locations were subsequently 

formed the basis of the fusion in this study.  

 

 

Figure 2. Experimental protocol and task designed sequences. 

 

D. fNIRS data analysis 

The data collected by fNIRS passed through several pre-

processing steps to filter the high frequency components and 

remove the motion artefacts using the plug-in analysis 

software Platform for Optical Topography Analysis Tool 

(developed by Hitachi, Japan; run on MATLAB). The signals 

were bandpass filtered from 0.0125 to 0.8 Hz using 4th order 

Butterworth filter. In baseline correction, we defined a period 

from 5s prior to task condition to the end of the period of rest 

condition as the analysis experiment. Then we applied linear 

regression by least mean square method during the 5s period 

and the last 1s period to determine the linear trend of the 

baseline unrelated to the arithmetic task[18]. After correcting 

the baseline by removing the trend, we averaged the baseline 

corrected data to all the analysis blocks[19].   

From the analysis blocks, we extracted the average of the 

change on oxygenated hemoglobin 
2O Hb using the following 

equation:  
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Where 
2O Hb  represents the segmented oxygenated 

hemoglobin signal and N is the length of the signal.  

 

E. EEG Analysis  

The raw data from EEG was bandpass filtered between 1 Hz 

and 30 Hz using 3rd order Butterworth filter. The artefacts 

were removed using independent components analysis 

technique (ICA) available in EEGLAB. Then we used wavelet 

transform to decompose the signal into four frequency bands 

namely; Delta (0-4Hz), Theta (4-8Hz),  alpha (8-16Hz), and 

Beta (16-32Hz) in the same manner of our previous study 

[20]. 

In this study, only alpha frequency band was considered for 

features extraction. We selected alpha rhythm due to its 

significant responses to mental stress. From the wavelet 

coefficients we extracted the average power of alpha 

frequency band using the following equation:  
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where x(n) represent the segmented EEG signal and N is the 

length of the signal.  

F. Fusion of fNIRS and EEG signals  

The fusion of both modality was performed based on 

concatenating the features of both modality into a single 

feature vector.  In this study, seven fNIRS channels were 

fused with seven EEG electrodes. The selection of channels 

was based on close proximity to EEG electrodes following the 

10-20 system. For example, the features of channel 26 were 

fused with that of FP1, features of channel 24 were fused with 

that of FP2, features of channel 23 were fused with that of F8, 

features of channel 27 were fused with that of F, features of 

channel 1 were fused with that of F4, features of channel 3 

were fused with that of Fz and features of channel 5 were 

fused with that of F3. All features were concatenated to form a 

single feature vector which later go for classification.  In short, 

the fusion here was based on spatial location of Electrodes 

placement. 

G. Classification  

Signal classification was performed on the fNIRS and EEG 

signals following the processing steps described previously. 

We aim to classify the activity into one of two classes; ‘stress’ 

and ‘control’. The classification was done in two phases 

(individually and after fusion). First, fNIRS and EEG modality 

classified separately. Second, the simultaneous bi-modal 

(fNIRS-EEG) was classified after fusing their features and 

their performance was compared to individual modality. In 

this work, we used support vector machine (SVM) classifier 

and calculated the classification accuracy via leave-one-out 

cross-validation. In particular, for a number of trials (N), N-1 

trials were used for training and the remaining 1 trial used for 

testing.  

III. RESULT AND DISCUSSION  

A. fNIRS 

 

With regard to blood flow in the PFC, the level of oxygenated 

haemoglobin dramatically increased during a control task 

(compared to baseline) and significantly reduced during a 

stress task (compared to control condition) in all the subjects. 

Figure 3 and figure 4 show the topographical map of 

oxygenated haemoglobin concentration during the control task 

and stress task respectively for averaged of 12 subjects. From 

figure 4, the reduction of oxygenated haemoglobin 

concentration was much localized to the right PFC and 

dorsolateral PFC. This indicated that, the right PFC and 

dorsolateral PFC are the most sensitive brain region to the 

detrimental effects of mental stress. The study concluded that, 

with increasing time pressure (i.e. stress condition), the blood 

flow in the prefrontal area and the information processing 

abilities significantly decreased. 

 

Figure 3. Topographical map of oxygenated hemoglobin concentration under 

control condition for average of 12 subjects. Red colour indicates high 

concentration levels of oxygenated haemoglobin and blue colour indicated 

less level of oxygenated haemoglobin concentration. 

 

Figure 4. Topographical map of oxygenated hemoglobin concentration under 

stress condition for average of 12 subjects. Red color indicates high 

concentration level of oxygenated hemoglobin and blue color indicated less 

oxygenated hemoglobin concentration.  

Using two sample t test, the significant differences between 

the control task and stress task was measured with average p-

value of 0.0032.  

B. EEG 

EEG results demonstrated significant decreased in alpha 

rhythm power under stress task in all the recorded electrodes 

positions. The decreased in EEG alpha rhythm power reflect 

the increase of stress level on the PFC. Figure 5 shows the 

mean alpha power distribution across all the recorded 

electrodes under the control and stress task for average of 12 

subjects. Using two sample t test, the statistical analysis 



demonstrated significant reduction in alpha rhythm power 

under stress task with mean p-value of 0.0213.  

 

Figure 5. Normalized alpha rhythm power in all the recorded electrodes 

position (PFC area) for average of 12 subjects. Blue colour indicated the 

average alpha power under control task and red colour indicated the average 

alpha power under stress task.  

The classification accuracy obtained from fNIRS signals was 

measured as 91% and the classification accuracy obtained 

from EEG signals was measured as 95% as shown in figure 6. 

However, the results of the classification of both modalities 

reported significant improvement in the detection rate of 

mental stress as compared to single modality. Under fusion of 

both modalities, the study reported 98% classification 

accuracy indicating that fNIRS and EEG modality 

complement each other in obtaining features that highly 

correlated with mental stress. This improvement is in line with 

our previous stress studies [21-32].  

 

Figure 6. Boxplot of the classification accuracy obtained using individual and 

combined modalities. 

 

IV. CONCLUSION   

This study investigated the effectiveness of simultaneous 

measure of EEG and fNIRS in studying the effects of mental 

stress to PFC area. The results showed that, the oxygenated 

haemoglobin concentration and the alpha rhythm power 

significant reduced under stress condition. Furthermore, the 

study reported that, combination of both modalities improve 

the performance of mental stress detection rate by +3%. We 

concluded that, the fusion technique revealed the 

complementary nature of both modalities in detecting features 

that highly correlated to mental stress. 
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