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Abstract

It is known that the capacity region of a two user physically degraded discrete memoryless (DM) broadcast

channel (BC) is not enlarged by feedback. An identical result holds true for a physically degraded Gaussian BC,

established later using a variant of the Entropy Power Inequality (EPI). In this paper, we extend the latter result

to a physically degraded Gaussian Vector BC (PD-GVBC). However, the extension is not EPI based, but employs a

recent result on the factorization of concave envelopes. While the existing concave envelope factorization results do

not hold in the presence of feedback, we show that factorizing the corresponding directed information quantities

suffice to attain the feedback capacity region of a PD-GVBC. Our work demonstrates that factorizing concave

envelopes of directed information can handle situations involving feedback. We further show that the capacity

region of a discrete memoryless reversely physically degraded BC is not enlarged by feedback.

I. INTRODUCTION

The capacity region of a physically degraded (PD) discrete memoryless (DM) broadcast channel (BC) is

not enlarged by the presence of perfect feedback from both the receivers, a result which was established by

El Gamal [1]. The same conclusion was arrived at for PD Gaussian BCs with feedback by El Gamal [2]. The

latter proof involved a variant of the Entropy Power Inequality (EPI), in order to incorporate the presence of

feedback.

Evaluating the capacity regions or bounds to it in the additive Gaussian settings many-a-times involve

the computation of extremal auxiliaries, for example, the broadcast channel [3]. The standard technique for

proving the optimality of Gaussian auxiliaries in additive Gaussian noise settings is the EPI, or its variants.
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The application of EPI may not always be directly viable, and can be cumbersome, see [4]. Recently, Geng

and Nair [5] proposed a technique for proving the optimality of Gaussian auxiliaries and used it to establish

the capacity region of a two receiver Gaussian vector BC (GVBC) with both private and common messages.

Their proof technique serves as a new tool for proving converses in Gaussian settings, instead of applying the

traditional EPI.

In this paper, we extend the result in [2] for PD Gaussian BCs to the vector BC case. This is done by extending

the technique of concave envelopes [5]. However this extension is not very straightforward. In particular, [5]

requires the factorization of concave envelopes of multiletter mutual information terms. We show that this may

not hold in the presence of feedback. Our major contribution is a reformulation of the concave envelopes in

terms of directed information instead of mutual information. Interestingly, this factorization helps in concluding

that the capacity region of a PD-GVBC is not enlarged by feedback. The novelty of the paper also lies in

bringing out the fact that factorizing concave envelopes of directed information can handle situations involving

feedback, where concave envelopes of mutual information are not factorizable.

We also show that feedback does not enlarge the capacity region of a reversely physically degraded DM

broadcast channel (RPDBC), a result of independent interest. The paper is organized as follows. We introduce

the system model in Section II. In Section III, we review the notion of concave envelopes in Geng and Nair’s

context [5] and the notion of directed information. Section IV describes the feedback capacity region of a

PD-GVBC. Section V deals with the feedback capacity region of a RPDBC. Finally Section VI concludes the

paper.

II. SYSTEM MODEL

Consider the broadcast model in Fig 1. Here, M1 and M2 are two independent messages to the respective

receivers. Mi is uniformly distributed over [1 : 2nRi ], i=1, 2. The BC q(y, z|x) is physically degraded i.e.

q(y, z|x) = p1(y|x)p2(z|y). More specifically, Y = X + N and Z = Y + Ñ, where N and Ñ are independent

of each other, and of X. There is perfect feedback from both receivers to the encoder.

We will assume without loss of generality that all the random vectors are zero mean. Here N ∼ N (0,K)

and Ñ ∼ N (0, K̃). The input is subject to a covariance matrix constraint E
[
XXT

]
4K

′ . A (2nR1 , 2nR2 , n, λn)

code for the channel is defined to be a pair of encoder mappings, Xi = fi(M1,M2,Y
i−1,Zi−1), i=1, 2 and
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Fig. 1. Gaussian PD Vector BC with feedback

two decoder mappings di : Rn → [1 : 2nRi ], i = 1, 2. The probability of error λn is given by

P
(n)
e,1 =

1

2nR1

∑
m1

P [(d1(Y
n)6=m1|m1 sent)] (1)

P
(n)
e,2 =

1

2nR2

∑
m2

P [(d2(Z
n) 6=m2|m2 sent)] (2)

λn = max (Pe,1, Pe,2). (3)

A rate pair (R1, R2) is said to be achievable if there exists a sequence of (2nR1 , 2nR2 , n, λn) codes with λn → 0

as n→∞. The capacity region CfbV BC is defined to be the closure of the set of achievable (R1, R2) pairs.

El Gamal [1] showed that the capacity region of a physically degraded DM broadcast channel is not enlarged

by feedback. Thus the capacity is given by superposition coding:

Theorem 1. [1] The capacity region of a DM physically degraded BC q(y, z|x) with perfect feedback from

both decoders is the set of (R1, R2) pairs such that

R1 ≤ I(X;Y |U) (4)

R2 ≤ I(U ;Z), (5)

for some p(u, x), where U is an auxiliary random variable with U → X → Y → Z, and |U|≤min (|X |, |Y|, |Z|)+
1.
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El Gamal [2] further showed that even in the scalar Gaussian case, feedback does not improve the capacity

region if the channel is physically degraded. This result required an adaptation of the EPI.

As seen in Theorem 1, the capacity regions or bounds thereof are often represented in terms of auxiliary

random variables. The evaluation of these regions reduce to optimization problems over the joint distribution

of input and auxiliary random variables. In Gaussian problems, proving the optimality of Gaussian auxiliaries

generally involves an application of the EPI, or its variants [3]. The application of EPI can be cumbersome in

some cases. For instance, the converse for the Gaussian Multiple Input Multiple Output (MIMO) BC problem

required the introduction of the notion of an enhanced channel [4] in order to make the application of EPI viable.

However, even the result of [4] cannot handle a vector Gaussian BC with both private and common messages.

The latter problem was recently solved by Geng and Nair [5] by the method of factorization of concave

envelopes. But the concave envelopes in [5] do not factorize in the presence of feedback. We reformulate the

factorization of concave envelopes in terms of directed information to yield the capacity region of a PD-GVBC

with feedback. Our main result is the following theorem:

Theorem 2. The capacity region CfbV BC of a PD-GVBC with perfect feedback from both the receivers to the

transmitter is the union of the set of (R1, R2) pairs such that

R1 ≤
1

2
log

(
|B1 + K|
|K|

)
(6)

R2 ≤
1

2
log

(∣∣B2 + B1 + K + K̃
∣∣∣∣B1 + K + K̃

∣∣
)
, (7)

for some B1,B2 < 0, with B1 + B2 4 K′
.

Note that the region mentioned above is exactly the region without feedback.

III. CONCAVE ENVELOPES AND DIRECTED INFORMATION

Let us first review the technique of concave envelopes introduced in [5]. We follow the notation used in that

work. Recall that the upper concave envelope of a function f(x) is the smallest concave function g(x) such

that g(x) ≥ f(x) throughout the domain of f(x). Equivalently, g(x) can be expressed as [5]

g(x) = sup
p(x):E[X]=x

E [f(X)] . (8)
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For a BC q(y, z|x), and λ > 1, define the following function of p(x) (the input distribution)

sqλ(X) := I(X;Y)− λI(X;Z). (9)

For (V,X) such that V → X→ (Y,Z), define

sqλ(X|V ) := I(X;Y|V )− λI(X;Z|V ). (10)

Now we denote the upper concave envelope of sqλ(X) as

Sqλ(X) := C(sqλ(X)).

Applying the definition from Equation (8), we get

C(sqλ(X)) = sup
p(v|x):

V→X→(Y,Z)

sqλ(X|V ) (11)

= sup
p(v|x):

V→X→(Y,Z)

I(X;Y|V )− λI(X;Z|V ). (12)

Define a conditional version of the concave envelope

Sqλ(X|W ) :=
∑
w

p(w)Sqλ(X|W = w). (13)

Since Sqλ(X) is concave in p(x), by Jensen’s inequality

Sqλ(X|W ) ≤ Sqλ(X). (14)

For a two-letter broadcast channel q(y1, z1|x1)×q(y2, z2|x2), define similarly a function of p(x1,x2)

sq×qλ (X1,X2) := I(X1,X2;Y1,Y2)− λI(X1,X2;Z1,Z2).

Similar definitions apply for the quantities sq×qλ (X1,X2|V ), Sq×qλ (X1,X2) and Sq×qλ (X1,X2|W ).

The key technique of [5] was to show that the concave envelope defined over the joint distribution p(x1,x2)

of a product broadcast channel q(y1, z1|x1)×q(y2, z2|x2) satisfies the following subadditivity property:

Sq×qλ (X1,X2) ≤ Sqλ(X1) + Sqλ(X2). (15)

This in turn leads to the optimality of Gaussian auxiliary random variables in establishing the capacity region

of a GVBC.
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However, the subadditivity mentioned above may not hold in the presence of feedback. This can be seen by

considering an example of a single user channel from X→ Z. Consider a two letter channel p(z1|x1)×p(z2|x2).

Notice that, due to feedback, though X1 → X2 → Z2 holds, Z1 → X1 → X2 may not. Hence the term

I(X2;Z1|X1) may not be zero and consequently, the subadditivity I(X1,X2;Z1,Z2) ≤ I(X1;Z1) + I(X2;Z2)

is not guaranteed to hold. Thus the technique of [5] as such does not extend to the case with feedback.

The main contribution of the current work is the formulation of concave envelopes in terms of directed

information, which admit a convenient factorization/subadditivity property over product channels. This in turn

is used to prove the optimality of Gaussian auxiliary random variables, establishing the capacity region of a

PD-GVBC with feedback. Recall that the notion of directed information between two sequences, introduced

by Massey is [6]

I(XN → Y N) =
N∑
n=1

I(Xn;Yn|Y n−1). (16)

Note that I(XN → Y N) 6= I(Y N → XN) in general. The following lemma relates directed information and

mutual information.

Lemma 3. [6] If XN is the input and Y N is the output of a channel, then

I(XN → Y N) ≤ I(XN ;Y N) (17)

with equality if and only if the channel is memoryless and used without feedback.

IV. PD-GVBC WITH FEEDBACK

In this Section, we denote sqλ(X) by −→s qλ(X) and Sqλ(X) by
−→
S q
λ(X) to emphasize the fact that we are now

replacing mutual information by directed information. Similarly, for product channels,

−→s q×qλ (X1,X2) := I(X1,X2 → Y1,Y2)− λI(X1,X2 → Z1,Z2). (18)

Let the covariance matrix constraint on the input be E
[
XXT

]
4K

′ . Let us call the region in Theorem 2 as

IK′ . Clearly IK′ can be achieved by ignoring the feedback and using superposition coding. On the other hand,

Theorem 1 suggests that any achievable rate pair (R1, R2) ∈ OK′ , where

OK′ =
⋃

(I(V ;Z), I(X;Y|V )) . (19)
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Here the union is taken over all p(v,x) such that p(x) meets the covariance constraint K′ , and V → X →
(Y,Z). We now focus on showing that OK′ ⊆ IK′ . Since both IK′ and OK′ are closed convex sets, they can

be expressed as an intersection of supporting hyperplanes. Recall that any closed convex set S belonging to

the positive quadrant can be expressed as

S = ∩λ≥1{(R1, R2) ∈ R2
+ : R1 + λR2 ≤ Vλ}, (20)

where

Vλ = max
(R1,R2)∈S

R1 + λR2. (21)

Using the characterization in equations (20) and (21), it suffices to show that

max
(R1,R2)∈OK′

R1 + λR2 ≤ max
(R1,R2)∈IK′

R1 + λR2. (22)

From the LHS of (22)

max
(R1,R2)∈OK′

R1 + λR2

≤ sup
X:E[XXT]4K′

λI(V ;Z) + I(X;Y1|V )

= sup
X:E[XXT]4K′

λI(X;Z) + I(X;Y|V )− λI(X;Z|V )

≤ sup
X:E[XXT]4K′

λI(X;Z) + sup
V→X→(Y,Z)
E[XXT]4K

′

−→s qλ(X|V ), (23)

where the first inequality follows from the outer bound in expression (19) and the last step follows by the

definition of −→s qλ(X|V ). We can now prove Theorem 2 by establishing that

sup
X:E[XXT]4K′

λI(X;Z) + sup
V→X→(Y,Z)
E[XXT]4K

′

−→s qλ(X|V )

≤ 1

2
log

(
|B1 + K|
|K|

)
+
λ

2
log

(∣∣∣B2 + B1 + K + K̃
∣∣∣∣∣∣B1 + K + K̃

∣∣∣
)
. (24)

We now propose some factorization properties that hold for product DM channels with feedback.
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Property 4. Consider a DM channel q(y|x) and its two letter extension q(y1|x1)× q(y2|x2). Then the following

holds

I(X1,X2 → Y1,Y2) ≤ I(X1 → Y1) + I(X2 → Y2) (25)

Further, equality is attained when Y1 and Y2 are independent.

Proof.

I(X1,X2 → Y1,Y2)− I(X1;Y1)− I(X2;Y2)

= I(X1;Y1) + I(X1,X2;Y2|Y1)− I(X1;Y1)− I(X2;Y2)

= I(X1,X2;Y2|Y1)− I(X2;Y2)

= h(Y2|Y1)− h(Y2|Y1,X1,X2)− h(Y2) + h(Y2|X2)

≤ h(Y2)− h(N2|Y1,X1,X2)− h(Y2) + h(N2|X2) = 0.

The equality is attained when h(Y2|Y1) = h(Y2). �

Thus the factorization inequality holds true for a single user channel with feedback. Now we show the

factorization of concave envelopes for a two letter broadcast channel. The following lemma holds for such

product broadcast channels.

Property 5. For a two letter broadcast channel q(y1, z1|x1)×q(y2, z2|x2),

−→
S q×q
λ (X1,X2) ≤

−→
S q
λ(X1) +

−→
S q
λ(X2) (26)

Proof. For any (V,X1,X2) such that V → (X1,X2)→ (Y1,Y2,Z1,Z2), we have

−→s q×qλ (X1,X2|V )

= I(X1,X2 → Y1,Y2|V )− λI(X1,X2 → Z1,Z2|V )

= I(X1;Y1|V ) + I(X1,X2;Y2|V,Y1)− λI(X1;Z1|V )− λI(X1,X2;Z2|V,Z1)

(a)

≤ −→S q
λ(X1) + I(X1;Y2|V,Y1,X2) + I(X2;Y2|V,Y1)− λI(X1;Z2|V,Z1,X2)− λI(X2;Z2|V,Z1)

(b)
=
−→
S q
λ(X1) + I(X2;Y2|V,Y1)− λI(X2;Z2|V,Z1)

(c)

≤ −→S q
λ(X1) + I(X2;Y2|V,Z1)− λI(X2;Z2|V,Z1)
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(d)

≤ −→S q
λ(X1) +

−→
S q
λ(X2|Z1)

(e)

≤ −→S q
λ(X1) +

−→
S q
λ(X2),

where (a) and (d) follow from the definition of concave envelope, (b) follows from the Markov chain X1 →
X2 → (Y2,Z2), (c) follows from the fact that Z1 is a degraded version of Y1 and (e) follows from concavity.

Now optimizing over all distributions p(v|x1,x2) completes the proof. �

Thus we have shown that the concave envelopes in terms of directed information satisfy the factorization

inequality (25), (26). This in turn will be used to prove the optimality of Gaussian auxiliaries in achieving the

capacity region of a PD-GVBC with feedback.

We also require the following property regarding unitary transformations on a two-letter Gaussian channel.

Property 6. Consider a two letter Gaussian channel with feedback

Y1 = X1 + N1 (27)

Y2 = X2 + N2, (28)

where N1 and N2 are independent and distributed as N (0,K′
). Define

U1 =
1√
2
(X1 + X2),U2 =

1√
2
(X1 − X2) (29)

V1 =
1√
2
(Y1 + Y2),V2 =

1√
2
(Y1 − Y2) (30)

Then I(X1,X2 → Y1,Y2) = I(U1,U2 → V1,V2).

Proof. Take W1=
1√
2
(N1 + N2) and W2=

1√
2
(N1 − N2).

I(X1,X2 → Y1,Y2)− I(U1,U2 → V1,V2)

= h(Y1,Y2)− h(Y1|X1)− h(Y2|X1,X2,Y1)− h(V1,V2) + h(V1|U1) + h(V2|U1,U2,V1)

(a)
= −h(N1)− h(N2|X1,X2,Y1) + h(W1) + h(W2|U1,U2,V1)

(b)
= −h(N2) + h(W2)

(c)
= 0, (31)

where (a), (b) and (c) follow since, given X2, the uncertainty in Y2 is only due to N2 and, for Gaussian noise

channels, W1 and W2 are i.i.d. with the same distribution as N1. �
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Now define

V q
λ (K

′
) = sup

X:E[XXT]4K′

−→
S q
λ(X)

= sup
(V,X):E[XXT]4K

′

V→X→(Y,Z)

−→s qλ(X|V ). (32)

By Proposition 7 of [5], there exists a pair of random variables (V †,X†) with
∣∣V†∣∣ ≤ 1 + d(d+1)

2
and

E
[
X†X†T

]
4K′

such that (with d being the dimension of all the vectors)

V q
λ (K

′
) = sqλ(X

†|V †) = −→s qλ(X†|V †). (33)

The following lemma helps in identifying the optimal distribution that achieves V q
λ (K

′
).

Lemma 7. Let (V †,X†) ∼ p†(v, x) attain V q
λ (K

′
). Let Xv be distributed according to the conditional law

p†(X|V = v). Let (V1, V2,X1,X2) ∼ p(v1, v2, x1, x2) be such that the marginals p†(v1, x1) and p†(v2, x2) attain

V q
λ (K

′
). Define

U1|((V1, V2) = (v1, v2)) ∼
1√
2
(Xv1 + Xv2) (34)

U2|((V1, V2) = (v1, v2)) ∼
1√
2
(Xv1 − Xv2). (35)

Then U1 and U2 attain V q
λ (K

′
).

Proof. Consider the two letter broadcast channel q(y1, z1|x1)×q(y2, z2|x2). Let Ya
1 |((V1, V2) = (v1, v2)) ∼

1√
2
(Yv1 + Yv2), Ya

2 |((V1, V2) = (v1, v2)) ∼ 1√
2
(Yv1 − Yv2), Za

1 |((V1, V2) = (v1, v2)) ∼ 1√
2
(Zv1 + Zv2) and

Za
2 |((V1, V2) = (v1, v2)) ∼ 1√

2
(Zv1 − Zv2). We have

2V q
λ (K

′
)≤ max

p(v1,v2|x1,x2)

E[X1XT
1 ]4K

′
,E[X2XT

2 ]4K
′

(V1,V2)→(X1,X2)→(Y1,Y2)

−→s q×qλ (X1,X2|V1, V2)

(a)
= max

p(v1,v2|u1,u2)

E[U1UT
1 ]4K

′
,E[U2UT

2 ]4K
′

(V1,V2)→(U1,U2)→(Ya
1 ,Y

a
2 )

−→s q×qλ (U1,U2|V1, V2)

(b)
=
−→
S q×q
λ (U1,U2)

(c)

≤ −→S q
λ(U1) +

−→
S q
λ(U2)

(d)

≤ 2V q
λ (K

′
), (36)
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where (a) follows from Property 6 and

E
[
UT

1 U1
]
= E

[
UT

2 U2
]

=
∑
v1,v2

p∗(v1, v2)
1

2
(E
[
XT

v1Xv1
]
+ E

[
XT

v2Xv2
]
)4K′

, (37)

(b) follows by the definition of concave envelope, (c) follows from Property 5 and (d) follows by definition

of V q
λ (K

′
). Since the extremes match, all inequalities are equalities. In particular, (d) is an equality. Thus U1

and U2 attain V q
λ (K

′
). �

The fact in Lemma 7 allows us to identify that Gaussian auxiliaries are indeed optimal. This is stated in the

form of the following theorem.

Theorem 8. There exists X† ∼ N (0,K†), K†4K′
such that V q

λ (K
′
) = −→s qλ(X†).

Proof. From Lemma 7, Xv1 +Xv2 attains V q
λ (K

′
). Thus for any optimal distribution po, the distribution po ∗ po

works equally well. Continuing this argument, by induction, we can use the Central Limit Theorem to conclude

that Gaussian is a maximizer. Let X† ∼ N (0,K†) be the maximizer, where K†4K′
. Note that since v1 and v2

were arbitrary, all the Xv’s have the same covariance matrix, namely K†. �

We now complete the proof of Theorem 2 using Theorem 8.

A. Proof of Theorem 2

In expression (24), the first term on the LHS is maximized by X ∼ N (0,K′
). The second term is maximized

by U = X† ∼ N (0,K†), where K†4K′
by Theorem 8. Now let X = X† + X∗ = U + V, where U = X† ∼

N (0,K†) and V = X∗ ∼ N (0, (K′ − K†)) are independent. This gives X ∼ N (0,K′
) as desired. Evaluating

I(X;Z) and −→s qλ(X|V ) with these choices, it can be easily checked that (24) is indeed satisfied. Hence we

have proved the reverse inclusion OK′ ⊆ IK′ . This establishes that the capacity region of a PD-GVBC is not

enlarged by feedback. We have also proved that a superposition of Gaussian codes is optimal.

Remark 9. Although our proofs were given for the model Y = X + N and Z = Y + Ñ, it can be easily

verified that the proofs go through for a more general model Y = GX+N and Z = Y + Ñ (where G is an

invertible matrix) as well. This justifies our terminology of Gaussian Vector BC. The capacity region in this

more general case is given in the form of the following theorem:
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Theorem 10. The capacity region CfbMV BC of a MIMO PD-GBC with perfect feedback from both the receivers

to the transmitter is the union of the set of (R1, R2) pairs such that

R1 ≤
1

2
log

(∣∣GTB1G+ K
∣∣

|K|

)
(38)

R2 ≤
1

2
log

(∣∣GT (B2 + B1)G+ K + K̃
∣∣∣∣GTB1G+ K + K̃

∣∣
)
, (39)

for some B1,B2 < 0, with B1 + B2 4 K′
.

V. FEEDBACK CAPACITY OF REVERSELY PD DMBC

We now extend our results to a reversely physically degraded DM broadcast channel (RPDBC). The model

is as shown in Fig. 2. As seen in the figure, the terminology RPDBC is used to refer to a product of two

(inconsistently) degraded DM broadcast channels. El Gamal [7] derived the capacity region of a RPDBC with

both private and common messages in the absence of feedback. In general, while the effect of feedback on

a RPDBC has not been studied so far in literature, we show that feedback does not enlarge the capacity

region of a RPDBC. This enables our results from the previous sections to be adapted so as to establish the

capacity region of a Gaussian reversely PD vector BC with feedback. Here, we focus on deriving the discrete

memoryless result. The definition of a code, achievable rate and capacity region are similar to [7], except that

we take

Xji = gj(W0,W1,W2, Y
i−1
1 , Zi−1

1 , Y i−1
2 , Zi−1

2 ), j = 1, 2, (40)

for some maps g1(·) and g2(·). Let us denote the capacity region of a RPDBC with both private and common

messages with perfect noiseless feedback from all the outputs by CfbRBC .

X1

X2

p(y1|x1) p(z1|y1)Y1 Z1

Z2 Y2p(z2|x2) p(y2|z2)

Fig. 2. Reversely Physically Degraded BC
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Theorem 11.

CfbRBC =
⋃
{(R0, R1, R2)}, (41)

where

R0 ≤ min
{ 2∑
i=1

I(Ui;Yi),
2∑
i=1

I(Ui;Zi)
}

R0 +R1 ≤ I(X1;Y1) + I(U2;Y2)

R0 +R2 ≤ I(X2;Z2) + I(U1;Z1)

R0 +R1 +R2 ≤ I(X1;Y1) + I(U2;Y2) + I(X2;Z2|U2) (42)

R0 +R1 +R2 ≤ I(X2;Z2) + I(U1;Z1) + I(X1;Y1|U1),

with the union taken over all p(u1, x1)p(u2, x2) such that U1 → X1 → Y1 → Z1 and U2 → X2 → Z2 → Y2,

and |Ui| ≤ min(|Xi|, |Yi|, |Zi|), i = 1, 2.

Note that the region mentioned above is exactly the region without feedback, which was established in [7].

Proof. The achievability follows from [7] by ignoring the feedback. Since the steps in the converse proof are

similar to [7], we only highlight the differences. It turns out that employing the following auxiliaries

U1i = (W0,W2, Y
i−1
1 , Zi−1

1 , Y n
2 ) (43)

U2i = (W0,W1, Z
i−1
2 , Y i−1

2 , Zn
1 ) (44)

in the converse proof of [7] suffices to obtain the theorem. Observe that the above choice of auxiliaries ensures

both the Markov conditions U1i → X1i → Y1i → Z1i and U2i → X2i → Z2i → Y2i. These conditions are not

true for the original auxiliaries in [7].

We show the single-letterization of (42), others follow in a similar fashion. Also, we suppress the nεn terms

while applying Fano’s inequality in the expression below.

n(R0 +R1 +R2) = H(W0,W1) +H(W2|W0,W1)

≤ I(W0,W1;Y
n
1 , Y

n
2 ) + I(W2;Z

n
1 , Z

n
2 |W0,W1)

= I(W0,W1;Y
n
2 ) + I(W0,W1;Y

n
1 |Y n

2 ) + I(W2;Z
n
2 |W0,W1, Z

n
1 ) + I(W2;Z

n
1 |W0,W1)

= I(W0,W1, Z
n
1 ;Y

n
2 )− I(Zn

1 ;Y
n
2 |W0,W1) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) + I(W0,W1;Y

n
1 |Y n

2 ) + I(W2;Z
n
1 |W0,W1)
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= I(W0,W1, Z
n
1 ;Y

n
2 )− I(Zn

1 ;Y
n
2 |W0,W1) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) + I(W0,W1;Y

n
1 |Y n

2 )

+ I(W2;Z
n
1 , Y

n
2 |W0,W1)− I(W2;Y

n
2 |W0,W1, Z

n
1 )

= I(W0,W1, Z
n
1 ;Y

n
2 )− I(Zn

1 ;Y
n
2 |W0,W1) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) + I(W0,W1;Y

n
1 |Y n

2 )

+ I(W2;Z
n
1 |W0,W1, Y

n
2 ) + I(W2;Y

n
2 |W0,W1)− I(W2;Y

n
2 |W0,W1, Z

n
1 )

= I(W0,W1, Z
n
1 ;Y

n
2 )− I(Zn

1 ;Y
n
2 |W0,W1) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) + I(W0,W1;Y

n
1 |Y n

2 )

+ I(W2;Z
n
1 |W0,W1, Y

n
2 ) +H(Y n

2 |W0,W1)−H(Y n
2 |W0,W1,W2)−H(Y n

2 |W0,W1, Z
n
1 )

+H(Y n
2 |W0,W1, Z

n
1 ,W2)

= I(W0,W1, Z
n
1 ;Y

n
2 ) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) + I(W0,W1;Y

n
1 |Y n

2 ) + I(W2;Z
n
1 |W0,W1, Y

n
2 )

− I(Y n
2 ;Z

n
1 |W0,W1,W2)

≤ I(W0,W1, Z
n
1 ;Y

n
2 ) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) + I(W0,W1;Y

n
1 |Y n

2 ) + I(W2;Z
n
1 |W0,W1, Y

n
2 )

≤ I(W0,W1, Z
n
1 ;Y

n
2 ) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) + I(W0,W1;Y

n
1 |Y n

2 ) + I(W2;Y
n
1 |W0,W1, Y

n
2 )

≤ I(W0,W1, Z
n
1 ;Y

n
2 ) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) +H(Y n

1 |Y n
2 )−H(Y n

1 |W0,W1,W2, Y
n
2 )

≤ I(W0,W1, Z
n
1 ;Y

n
2 ) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) +H(Y n

1 )−H(Y n
1 |W0,W1,W2, Y

n
2 , X

n
1 )

= I(W0,W1, Z
n
1 ;Y

n
2 ) + I(W2;Z

n
2 |W0,W1, Z

n
1 ) +H(Y n

1 )−H(Y n
1 |Xn

1 )

= I(W0,W1, Z
n
1 ;Y

n
2 ) + I(Xn

1 ;Y
n
1 ) + I(W2;Z

n
2 |W0,W1, Z

n
1 )

=
n∑
i=1

{I(W0,W1, Z
n
1 ;Y2i|Y i−1

2 ) +H(Y1i|Y i−1
1 ) + I(W2;Z2i|Zi−1

2 ,W0,W1, Z
n
1 )−H(Y1i|Y i−1

1 , Xn
1 )}

≤
n∑
i=1

{I(W0,W1, Z
n
1 , Y

i−1
2 ;Y2i)−H(Y1i|X1i) +H(Y1i) + I(W2;Z2i|Zi−1

2 ,W0,W1, Z
n
1 , Y

i−1
2 )}

≤
n∑
i=1

{I(W0,W1, Z
n
1 , Y

i−1
2 , Zi−1

2 ;Y2i) + I(X1i;Y1i) + I(W2;Z2i|Zi−1
2 ,W0,W1, Z

n
1 , Y

i−1
2 )}

=
n∑
i=1

{I(U2i;Y2i) + I(W2;Z2i|U2i) + I(X1i;Y1i)}

=
n∑
i=1

{I(X1i;Y1i) + I(U2i;Y2i) +H(Z2i|U2i)−H(Z2i|W0,W1,W2, Z
n
1 , Y

i−1
2 , Zi−1

2 )}
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≤
n∑
i=1

{I(X1i;Y1i) + I(U2i;Y2i) +H(Z2i|U2i)−H(Z2i|W0,W1,W2, Z
n
1 , Y

i−1
2 , Zi−1

2 , Y i−1
1 , X2i)}

=
n∑
i=1

{I(X1i;Y1i) + I(U2i;Y2i) +H(Z2i|U2i)−H(Z2i|X2i)}

≤
n∑
i=1

{I(X1i;Y1i) + I(U2i;Y2i) +H(Z2i|U2i)−H(Z2i|X2i, U2i)}

=
n∑
i=1

{I(X1i;Y1i) + I(U2i;Y2i) + I(X2i;Z2i|U2i)} (45)

The single letterization is completed by letting n → ∞ which makes εn → 0 and noting that the region in

Theorem 11 is convex. �

VI. CONCLUSION

We proved that feedback does not enlarge the capacity region of a physically degraded Gaussian vector

BC. Our proof does not rely on the use of the EPI or any of its variants, and makes use of factorization of

concave envelopes in terms of directed information. It illustrates the utility of the technique of factorization

of concave envelopes as a tool for proving converses in Gaussian settings, where previously the application of

EPI was the main bottleneck. Our work also brings out the fact that factorizing concave envelopes of directed

information can handle situations involving feedback, where concave envelopes of mutual information are not

factorizable. We also proved that the capacity region of a reversely physically degraded DM broadcast channel

is not enlarged by feedback.
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