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Abstract—In the midst of environmental concerns, and soaring
energy costs and energy shortages, the efficiency of electrical
household water heaters (EWHs) has been identified as an area
with significant potential for savings. The benefits of applying
optimised scheduling control for EWHs has been proven by var-
ious studies, however, little has been done to measure individual
behaviour. This paper presents an alternative to the invasive and
expensive solution of using water flow meters. A hardware and
algorithmic solution is presented that uses thermal transients at
the outlet of an EWH to measure consumption patterns. The
results show that the approach is able to detect usage events with
an accuracy of 91%. Despite the challenges related to thermal
inaccuracies, event durations are estimated to within 2 minutes
accuracy 79% of the time.

I. INTRODUCTION

Electrical water heaters (EWH) are commonly used to
heat water for household consumption in developing countries
where gas is not readily available. South Africa is one such
country, and boasts 5.4 million EWHs. Similar to many de-
veloping countries, South Africa’s national electricity utility,
Eskom, is unable to meet the energy demands of the country
and must cut service provision in certain areas through load
shedding during periods of high demand, to ensure that the
generation capacity of the grid is not exceeded. Water heating
is responsible for 7% of the countrys demand, and 20% of the
residential demand [1]. However, during peak hours, it consti-
tutes between 30% and 50% [2]. Part of the energy consumed
by EWCs is to replenish heat dissipated to the environment.
This type of energy is referred to as standing losses, and could
be as much as 20% of the EWCs consumption. These standing
losses can be virtually eliminated if a timer control is applied
to only heat the water before warm water is needed [3].

Demand side management (DSM) aims to flatten utilities’
demand curve (e.g. peak shaving and valley filling) by shifting
customer energy usage and reducing losses on the load side.
This is advantageous to utilities as it allows for the deferral
of infrastructure development to increase generation capacity
by, instead, reducing the demand [4]. EWHs are well-suited
to DSM programs as they are able to store energy. However,
many of these devices are mismanaged and suffer from large
standing losses as warm water is available throughout the day,
even for extended periods where no usage occurs.

DSM control techniques and programs have been created to
more effectively manage the energy consumption of residential

EWHs. However, for these controllers or programs to be effec-
tive, an accurate water usage profile is essential to coordinate
the switching times for EWHs [5]. This is because consumer
usage patterns vary between users, seasonally, and between
regions. For example, in South Africa, it was found that warm
water consumption increased by up to 70% from summer to
winter [6] and that low-income households consumed up to
four times more warm water than high-income households [6].
If generic assumptions are made about these patterns of use,
they may be inaccurate and result in consumption being
adversely affected.

For indirect load management programs, where consumers
are responsible for the control of their devices, customer
participation is important. Users need to be able to control
and understand their energy consumption in a simple and
convenient manner. This is not currently the case with EWHs,
which are often positioned in hard to reach locations (such as
on roofs or in attics). Additionally, users don’t always know
the best means of controlling their EWH to energy savings.
For example, they may not know when to switch it on and off
to reduce energy consumption but still have warm water on
demand when needed.

An obvious way to detect warm water consumption patterns
is to use water flow meters. However, they are expensive
(around $50 per standards-approved device) and their installa-
tion is invasive and labour-intensive.

A. Contribution

This paper presents a novel and non-invasive hardware
solution and matching algorithm to support the identification
and classification of warm water usage events without the use
of invasive and expensive water metering technologies. The
approach uses temperature fluctuations apparent on the outlet
pipe of a water heater to identify the start and end times
of usage events. The approach is intended to be used as the
sensing mechanism of an optimised scheduled control scheme
for electrical water heaters, in which heating schedules are
optimised to meet usage patterns to save energy and costs.
Additionally, the algorithm is implemented as part of a smart-
phone application which provides users with proposed heating
schedules based on their usage, and presents an estimate of
the potential energy savings as a result of its implementation.

The rest of this paper is organised as follows: section II
describes related work in reducing the standing losses and
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energy usage of EWHs; section III presents the event detection
algorithm used for detecting events using outlet temperature;
section IV presents an Android mobile application that imple-
ments the event detection algorithm to optimise the control
schedule of a residential EWH; section V details the results
and accuracy of the event detection algorithm using outlet
temperature data compared to water meter data; section VI
outlines future work to be done; and section VII concludes
the paper.

II. RELATED WORK

Atikol [4] examined the static and dynamic cooling
behaviour of EWH storage tanks and possible heating
schedules to avoid peak hours. Experimental results indicated
that, if the DSM programs are carefully designed for each
household, it would be possible to use timers control to activate
the EWHs for once or twice a day to provide enough warm
water to meeting the daily demand. This was based on the
findings that, even when the warm water is kept standing in
the tank for 12 hours after an initial withdrawal of 64 litres
(i.e. three typical showers), it would still be possible to have
warm water at temperature above 40◦C in the top 15 percent
of the tank. In order for this type of DSM program to be
effective it is imperative to examine at which times users are
taking showers on typical days in order to propose an effective
schedule to meet their warm water needs.

Catherine et al. [7] presents a usage profiling system to
improve the efficiency of household EWHs. This system was
installed in ten households and made use of a flow meter to
determine the frequency and duration of warm water usage
events during a day. A day was comprised of twelve 2
hour intervals, each of which would implement one of three
different service levels (i.e. temperature set points) based on
the amount of warm water used. The three service levels were
defined as: high, which implements a temperature setting of
65◦C; medium, which keeps the water temperature at 55◦C;
and low, where the set temperature was reduced to 45◦C. This
system was found to reduce the average temperature of a EWH
by approximately 10◦C, resulting in a reduction in the standing
losses (and therefore energy usage) of the EWH while still
satisfying users’ warm water demands.

III. EVENT DETECTION

The purpose of the event detection algorithm is to identify
warm water usage events using only the outlet temperature
reported in by a temperature sensor attached to the outlet
pipe of the EWH, as shown for the EWH configuration in
Figure 1. The identified consumption patterns can then be used
to create an optimised control schedule for users. This is done
by allowing the EWH element to turn on only for a period of
time before expected usage events occur, which significantly
reduces standing losses.

When a usage event occurs, warm water is drawn from
the tank and flows through the outlet pipe, which is at
approximately room temperature and much cooler than the
water in the tank. The outlet pipe conducts the heat from
the warm water, resulting in a sudden increase in its surface
temperature. Similarly, when a usage event has ended, water
stops flowing through the outlet pipe and the remaining heat

Fig. 1. Hardware configuration of intelligent EWH.

is dissipated from the water that remains in the pipe to its
surroundings. The temperature of the water in the outlet pipe
decays as this heat is dissipated which, in turn, decreases the
surface temperature of the outlet pipe towards the ambient air
temperature. The outlet pipe temperature is measured using
the temperature sensor attached to the surface of the metallic
(usually copper) outlet pipe, and is sampled, in our system,
every minute.

Figure 2 shows the typical temperature profile at the outlet
for an isolated usage event. The event detection algorithm
determines the start and stop times of events by analysing
the slope of the outlet pipe temperature. In this example, a
start event is classified as an increase of at least 4◦C over
two minutes (two samples). After an event has started, the
detector tries to identify a subsequent stop event, which is
classified as a decrease of at least 2◦C over seven minutes
(seven samples). These values were derived empirically for
the EWH that was used during testing and are optimised
for a one minute sampling interval and a temperature sensor
with an accuracy of 1◦C. The fluctuations in temperature that
define start and stop events are dependent on the difference
between the set temperature of the EWH and the ambient
temperature of its environment, and will vary between setups.
However, it is reasonable to assume that a residential EWH
will have a set temperature higher than 50◦C to prohibit the
growth of the harmful bacteria, Legionella pneumophila [8].
It should be noted that this algorithm will not work for low
water temperatures as well as instances where the ambient
temperature exceeds the temperature of the warm water.

Fig. 2. Measured outlet temperature for isolated usage event.

As shown in Figure 2, there is an increase in temperature
of 6◦C (∆T1) between minutes 2 and 4, which meets the



criteria for a start event. However, it is clear from the figure that
the start of the usage event is at minute 3, and not minute 2,
because this is where the outlet temperature begins to increase.
The detection algorithm will compare the temperature values
at minute 2 and 3 to determine if they are equal and, if so,
shift the starting index one sample later.

Between minute 6 and 13, there is a decrease in tempera-
ture of 2◦C (∆T2), which constitutes a stop event. However,
it can be seen from Figure 2, that the stop event is situated
at minute 7. The algorithm was therefore adapted to take the
subsequent sample as the end of the event. due to the fact that
the decay of the temperature in the pipe is gradual and the
duration of events was being overestimated by the algorithm.

When events occur within a few minutes of one another
(i.e. events are not well isolated), the algorithm will not shift
the start event sample forward as described in the previous
paragraph. Figure 3 shows a scenario with two back-to-back
events. The first event at minute 6 is detected using the
temperature increase (∆T3) in a similar manner as an isolated
event and the start event is shifted forward to minute 7. For
the second event at minute 17, however, the temperature of
the outlet pipe is still significantly higher than the ambient
temperature. In this case, the start event is not shifted forward
because the increase in temperature (∆T4), as a result of the
usage event, is indeed occurring at minute 17.

Fig. 3. Measured outlet temperature for two consecutive usage events.

The duration of the events is then determined by taking the
difference, in minutes, between the start and stop times of the
event. If this duration is greater than 20 minutes, the event is
discarded as the length is too long for a typical usage event.
This value was chosen based on the length of events seen for
the 49 days of data that was analysed. The longest events that
were registered for this data were 17 minutes in length and
used up to 100 litres of warm water.

IV. MOBILE APPLICATION

This section describes a part of the Android smartphone
application first presented as a proof-of-concept in [9]. Initially,
the application only allowed users to monitor the status and
usage data of their EWHs. The functionality and user interface

have since been enhanced to allow control of the EWH and
determine a recommended heating schedule that is catered to
user consumption patterns.

Additionally, a one-node EWH model as used by [10] was
implemented on the mobile application to model and display
to users the impact on energy consumption of control changes,
and to provide recommended heating schedules. This allows
users to obtain immediate feedback on the effects of modifying
the heating schedule or set temperature of their EWH, as shown
at the bottom of the Optimise tab (left) in Figure 4 .

Fig. 4. Optimise (Left) and Control (Right) tab of smartphone application.

A. Recommended Schedule Generation

Figure 4 shows: the Optimise tab within the smartphone
application, which is responsible for generating recommended
heating schedules; and the Control tab that allows users to
control the various settings for their EWH from their mobile
device. In order to generate a recommended schedule, the user
selects a day that represents their typical usage. The outlet
temperature for this day is obtained from the server and used
by the event detection algorithm to determine when warm
water is being consumed. Users can then select the events that
are part of their daily routine, from the list of events that are
detected, to ensure that the algorithm doesn’t take into account
atypical events. The results displayed in the Optimise tab of
Figure 4 are identical to those shown in Figure 5.

The recommended schedule, based on the usage of the
selected day, is displayed to the user, as well as potential



Fig. 5. Screenshot of software developed to analyse usage patterns and to
compare water meter data with the thermal event detection algorithm.

energy savings as a result of implementing this schedule, in
comparison to the user’s existing control settings. Additionally,
the user can manually implement further changes to the
schedule or set temperature of the EWH via the Control tab,
shown in Figure 4. This tab also provides an estimate of the
increase or decrease in the energy consumption of the EWH
as a result of any changes to the settings of the EWH (e.g.
lowering the set temperature). The estimates indicating the
difference in consumption are calculated using the one-node
model for the EWH [10].

V. RESULTS

A water meter was installed on the water inlet pipe of
the EWH, as shown in Figure 1, to determine actual warm
water consumption events. The water meter outputs a pulse
for every 0.5 litres of water used, but requires a flow of more
than 2 litres per minute. The total number of pulses generated
in a sampling interval (typically a minute) is reported to an
online server. Figure 5 shows a screenshot of the software that
was developed to determine the accuracy of the event detection
algorithm.

Using the water meter data, the start of a water usage event
was classified as a non-zero value detected after at least two

zero values. The end of a water usage event was classified as
two consecutive zero values following the start of an event.
Two consecutive zeroes were chosen for water usage events
that occur sufficiently close to one another to be considered as
a single usage event.

The water usage events registered by the water meter were
compared to the events detected by the thermal system, to
determine the accuracy of the algorithm in terms of detecting
events and estimating their duration. The event detection
algorithm was tested on 49 days of outlet temperature and
water meter data sampled at a frequency of once per minute,
from a 150 litre EWH with a 3 kW element installed in a
residential household. Water usage events were classified into
three categories according to the volume of warm water used:
small events, which were less than 15 litres (10 percent of
the EWH tank volume); medium events, which between 15
and 30 litres (between 10 and 20 percent of the EWH tank
volume); and large events, which were greater than 30 litres
(more than 20 percent of the EWH tank volume). The results
of the algorithm are shown in Table I.

TABLE I. RESULTS OF EVENT DETECTION ALGORITHM

# Detected # Missed # False Positives % Accuracy
Small 48 6 Unknown 88

Medium 44 0 Unknown 100

Large 34 1 Unknown 97

Total 126 7 5 91

The results show that the algorithm was able to detect 91%
of usage events successfully. Of the 7 events that were not
detected by the algorithm, 6 of these were small usage events
where less than 2.5 litres of water was used. These events
were too small to cause a large enough increase in the outlet
temperature and, hence, were not detected by the algorithm.
The large event that was missed by the event detector was
an event that occurred 7 minutes after another large water
usage event. The temperature of the outlet had not decayed
sufficiently after the first event, which meant the increase in
outlet temperature was below the detection threshold of 4◦C.
However, the algorithm was able to correctly detect two large
usage events that occur within 10 minutes of one another.

False positives are events indicated by the algorithm where
no warm water usage was registered by the water meter. Five
such events were detected and are caused by one of two
possible scenarios: a low flow rate warm water draw that
causes hot water to flow through the outlet pipe but it below
the minimum flow rate required by the water meter (i.e. 2 litres
per minute); low volume usage events that are less than the
minimum volume of water that would cause the water meter
to generate a pulse (i.e. 0.5 litres per pulse). The algorithm
was also tested on 5 days data (separate to the 49 days with
usage events) where the tank was heated but no usage events
occurred. The outlet temperature on these days fluctuated by
over 4 ◦C due to changes in ambient temperature and no events
were detected by the algorithm as these fluctuations occurred
over the course of the day and not over a small number of
samples.

The estimation of the duration is inaccurate for very short
usage events (i.e. one minute events). This is because the
temperature decay takes much longer than the rapid increase



in temperature at the start of an event. Also, a minimum of
3 samples is required to create an event (i.e. a start event
followed directly by a stop event) so the algorithm cannot
accurately estimate the duration of the event if it is less than 2
minutes in duration. Additionally, the duration of longer events
(i.e. greater than 10 minutes) is underestimated when smaller
amounts of water are used towards the end of the event. For
example, slight adjustments to the temperature of a bath after
it has been filled.

For these longer events, smaller amounts of warm water
(typically less than 1 litre) are drawn from the EWH sev-
eral minutes after the initial usage event. These small draws
maintain the temperature of the outlet at a high level, causing
the algorithm to incorrectly estimate the duration of an event.
Sixteen such usage events were omitted from the 126 total
events detected to produce the results shown in Table II. The
results show that 79% of the 110 events considered have a
duration estimation error of less than 2 minutes. Some longer
events (between 7 - 10 minutes) had a higher estimation error
of around 3 to 4 minutes. This is due to the more rapid decrease
in the outlet temperature as a result of the warm water in the
tank being replaced with cold water from the inlet pipe (which,
in turn, travels through the outlet pipe) after a long period of
usage.

TABLE II. DURATION ESTIMATION ERROR RESULTS

0 minutes 1 minute 2 minutes 3 minutes >3 minutes
Small 18% 29% 33% 16% 4%

Medium 26% 47% 19% 3% 5%

Large 15% 19% 23% 16% 27%

Total 20% 33% 26% 11% 10%

VI. FUTURE WORK

The one-node EWH model implementation for the mobile
application currently makes use of the warm water usage
measured by the water meter to determine the amount of
energy consumed by a usage event. The purpose of the event
detection algorithm is to eliminate the need for the invasive
and costly water meter and, therefore, the next version of
the mobile application will include a drop down list for each
detected event that will allow users to specify the type of event
that was detected, to derive the volume used. Users are familiar
with their daily routine and would, therefore, be able to select
whether an event is a bath, shower or small warm usage event
(e.g. washing dishes in a sink). Additionally, the duration of
an event and the time of day at which it occurs can be used as
an initial estimate of the event type. For example, a 5 minute
event occurring between 6 and 8 in the morning is most likely
a shower.

Furthermore, the EWH model could then allocate a specific
amount of energy that is typically required by a certain type
of usage event. For example, a shower requires a warm water
flow rate of 7 litres per minute for a warm water temperature
of 65◦C. Depending on the set temperature of the EWH, the
flow rate for a specific event could be scaled up or down to
provide the required energy to produce a usage event using
the first law of thermodynamics [6]. This flow rate can then
be used by the one node model to determine the amount of
energy consumed by a usage event when providing an estimate

of the change in energy consumption of the EWH for various
schedule and set temperature settings.

VII. CONCLUSION

This paper presented a hardware and algorithmic solution
that uses thermal transients at the outlet of an EWH to measure
consumption patterns. The solution was tested using 49 days
of data which included 127 usage events and was found
to accurately detect usage events with an accuracy of 91%.
However, the event duration is within 2 minutes accurate 79%
of the time.This algorithm is only able to estimate the duration
of events and has no means of knowing or estimating the
volume of an event. The algorithm does, however, detect very
small usage events (0.5 litres was detected successfully) and
can be used to accurately determine hot water usage patterns
for use in DSM.
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