Quantifying Consciousness: Chasing the Governor Ahmad Yousef¹ ¹School of Computational Science and Engineering, McMaster University, Hamilton, Ontario, Canada *Correspondence: mohamas2@mcmaster.ca Abstract- In this article, we try to track the neuroelectric signal from its inception until it signals the human visual awareness through what we called, neurobiological wires to consciousness. We also provide a fulsome electrophysiological metric, namely, the brain awareness wishing for better quantification to the human global consciousness. Based on the literature review, this metric is expected to quantify the human global visual awareness, namely because of recent special findings in binocular rivalry phenomenon. The article also offers simple ways to build up binocular rivalry experiments. Inception & Related works Binocular rivalry, a phenomenon of visual perception in which human visual awareness alternates between different images presented to each eye, is an outstanding psychophysical approach to quantify consciousness. Importantly, both kinds of attention, automatic and voluntary, help in increasing the awareness dominance duration of the corresponding stimulus. In another word, attention controls human global consciousness. Strength (Levelt, 1965), saliency (Engle, 1956), spiral motion (Malek, 2012), higher spatial frequency (Fahle, 1982), duchenne expressions (Malek, 2018), are all having 'catchy' visually stimulating features, namely, they all trigger automatic attention; therefore they all dominate the visual awareness over 'non-catchy' ones. Voluntary attention to certain details to a certain stimulus also elongates the awareness dominance duration of the stimulus (Lake, 1978). Time (the awareness dominance duration) had been used as a metric to quantify human visual awareness by vision scientists, however, this metric should be supported by physiological metrics to help scientists to convey awareness to biological science. But what is the best physiological metric for consciousness? To answer this question, we have to understand how the human visual awareness works (for fulsome comprehension; see reference 11). Namely, it theorized that the neurological roads to the visual awareness are started by the photoreceptors and ended by the final inhibitory neurons. It also hypothesized that, in certain conditions, there might be entanglements between the emitted photons and their corresponding photoreceptors. Now, let's see a specific example and try to generalize it, namely, let's study the autistic brains. Three interesting facts about the autistic brains: 1- They have hyper-systemizing, hyper-attention to detail and sensory hypersensitivity (Baron-Cohen, *etal.* 2009). 2- They have reduced GABAergic action, (Robertson, *etal.* 2016). 3- They have longer dominance duration in binocular rivalry (BR) experiments, (Robertson, *etal.* 2013). Autistic brains also have higher spectral power of peak gamma frequency due to their slower switching rates; this is an indirect conclusion to (Fesi, *etal.* 2015) findings. The aforementioned facts may allow me to hypothesize & say the following statement: "Due to the lack of GABAergic action, early stages cortical inhibition might not occur in autistic brains in BR experiments; and therefore, the spectral power of peak gamma waves is escalated in these areas. Gamma waves might represent greater numbers of 'asynchronous' spikes trains produced by the neurological roads in the ROI. The final destination of those neurological roads are rather in further areas. Noticeably, the neurological roads to the visual awareness are assumed to converge eventually, and thus, the need of GABAergic action will be minimized. To minimize the GABAergic action, a possible scenario can be proposed for autistic brains: They might have longer neurological roads to the visual awareness for certain stimulus (perfect and fulsome detailed consciousness); synchronized with retinal inhibition; pre-retinal inhibition (possible collapses of the entangled wave functions) for the other stimulus perfect oblivion; namely, $M \approx N$ in the unconsciousness regions; see the infographic below, and reference 11 . Normal brains, however, might require greater GABAergic action due to the possible suboptimal detailed consciousness for one stimulus (inhibition before the aforementioned convergence); that might be synchronized with imperfect oblivion for the other stimulus; namely, M > N in the unconsciousness regions. Imperfect oblivion had been be viewed as subconscious brain activities in the literature." Important to mention, the aforementioned hypothesis is based on a pervious hypothesis that assumes the brain as a systemized entity contains of 'biological wires' igniting the visual consciousness. The awareness itself, however, is assumed to reside in extra physical dimensions (See reference 11). The hypothesis also estimates that inhibitory neurons are gates to the consciousness, and therefore, the human awareness is a product of too many parts of the brain; namely, physiological investigations in consciousness should have holistic considerations. Detailly speaking, longer neurological roads might eventually create greater details and fulsome consciousness; shorter ones create weaker awareness, but very short ones in retinal or subcortical regions, possibly due to very low amount of entanglements, create minimal to no awareness about the stimulus. Because highly informative awareness might be a product of fewer inhibitory neurons 'due to the convergence of the neurological roads to the inhibitory neurons'; therefore, the awareness that's produced by a fewer gates 'narrower neurological channel to consciousness' will access the awareness for longer dominance duration in binocular rivalry settings. **Brain Energy** -- A new mathematical metric for brain imaging shall be defined, namely, *Brain Energy*, which can be described as follows: Brain Energy = $$\left\{ \int_{T=0}^{T=dominace\ duration} (ERP)^2\ dt \right\}$$ (1) Where ERP refers to event related potentials, and h is the number of the channels of the EEG system, or event related magnetic field for MEG. Importantly, different kinds of brain imaging techniques has different metrics, that should be wisely used to estimate accurate Brain Energy values. Consider a high-density EEG system with 256 electrodes; each electrode will detect localized Brain Energy that can be estimated by integrating the (EPR)² over the time whereas the starting time is the onset of the awareness of a certain stimulus (t=0), until that stimulus disappear from the awareness (t=dominance duration). Advisably, the raw data should be critically analyzed and processed. Detailly speaking, since attention has decent control over consciousness, the gamma waves filter should be so wide up to 150Hz (see reference 12). Moreover, alpha waves should be removed for two reasons; it peaks when gamma waves are minimized (see reference 14), and it proportionally correlated with fast rivalry switching rate (Katyal, et al. 2019). Namely, alpha waves will strength the value of brain energy despite it's not responsible for intensifying the human visual awareness; therefore, it should be removed. Important to emphasize, longer neurological roads to consciousness might lead to weaker inhibition in the early cortical stages; namely, those roads might even decide to be bridging over these inhibitory neurons because they're not their desired destinations. #### Comprehensive Navigations in the Literature We had previously reported that voluntary blinks have the ability to stop the binocular rivalry indefinitely, see reference 16. We believe that the aforementioned stoppage is because of massive congestion in the hypothetical bi-directional tachyonic tube, see references 11, and 17; afterwards, watch the video offered in reference 18 for comprehensive understanding of the tachyonic tube. We had also noticed that voluntary hand movements is able to halt the binocular rivalry for an outstandingly long period of time, see reference 19; hypothetically because of severe congestion in the aforementioned tube (from the conscious cloud to the brain). Interestingly, the switching rate can be slow down through deep breathing as well; however, we also noticed that deep breathing could govern the binocular rivalry, see reference 20. Consequently, the primary olfactory cortex and its neighbors in the ventral pathway should have greater neural activities. Important to mention, back to May, 26th, 2015, we had offered our surety about the existence of higher neural activities in the higher areas of the ventral pathway within "slow switching rate" human subjects to corresponding author of reference 21; but instead of mentioning the reason behind our surety; we had offered rationale of "natural attention", because we thought that "inheritable" "genetic" attention can also control human consciousness. Our thoughts astonish the corresponding author, namely because "their offered stimuli" are all about color and shape; and scholarly, attention is found to activate higher regions of ventral pathway for the two aforementioned features. As expected, the aforementioned author had successfully reported that the slow switchers had greater neural signals in the higher regions of the ventral pathway such as pSTS region. Technically speaking, each of these exogenous binocular rivalry stimuli must flash its corresponding eye within overlapping frequencies of their photonic emissions "the two eyes must receive their corresponding visual information concurrently"; the analyses of the neurophysiological signals should accordingly show greater amplitude from either the conventional binocular rivalry systems, or steady state visually evoked responses (SSVER) protocol where the intermodulation frequency must be exclusively considered to satisfy our condition of simultaneous photonic emissions, see reference 21. Last but not the least, the dominance duration is found to be greater when the information are immense in binocular rivalry setting, namely, emotional faces is found to have greater dominance duration than normal faces, see reference 5 and 22; and this is clearly because the active inhibitory neurons out of the emotional faces are within the fusiform face are plus the Amygdala; unlike the normal faces which just activates the fusiform face area. Summarily, it's noted that when more brain regions are activated, especially, the prefrontal cortex, the motor cortex, the higher areas for both ventral and dorsal pathways, and even the subcortical areas such as Amygdala; the switching rate will slow down! Detailly speaking, voluntary hand movements activate the dorsolateral prefrontal cortex (decision making), in addition to the motor cortex (action); deep breathing, however, activates the primary olfactory cortex, as well as the dorsolateral prefrontal cortex, and finally however, emotional faces activates the fusiform face area and the Amygdala. We accordingly believe that the reason of the slow switching rates is higher neural activities in both cortical and subcortical regions; thus, we define a new metric to quantify the consciousness that shall respect the number of active regions in the brain; it's the brain awareness. # The Brain Awarness = $\left\{\sum_{n=0}^{N} N\right\}$ (2) Where n is the number of active brain areas; and the brain awareness shall be a rational number. By converging the recent scientific reports altogether, it's expected to see the *value of the Brain awareness* of 'the longer dominance duration' stimulus being much greater than the *normalized value of Brain Awareness* of 'the shorter dominance duration' stimulus. After several empirical validations, scientists may confidentially say; greater/weaker inhibition of brain activities due to greater/weaker GABAergic action led to shorter/longer neurological roads to the inhibitory neurons and therefore weaker/greater fulsome consciousness. Progressively, quantifying consciousness should be an important procedure in medicine, because it might help the practitioners to have estimated interventions in critical cases (reference 15). ### **Binocular Rivalry Installation** Readers can experience binocular rivalry just by moving their eyes towards the page until the two following circles seem to merge. Portable devices bring better & easier experience. Courtesy of W. Kalat, 2005. Introduction to psychology. Important to emphasize, some scholars believe that anaglyph glasses is enough for binocular rivalry experiment, we disagree with them mainly because some stimulus are so complex to be achieved with aforementioned glasses such as those offered in reference 23. We therefore would like to offer a perfect setup for binocular rivalry. To achieve the most efficient, simplest, and cheapest installation kindly follow instructions below: [1].. Purchase 9.25 diopters for prism correction base-out glasses from any optics shop. Scientifically speaking, that equals to 8.76 degrees visual angle (DVA) at distance of 24 centimeters; namely, it represents how many degrees does the stimulus subtend on the retina. [2].. Create a splitter, using cartoon sheet and glue gun to prevent the interference of light rays among the two circles. The splitter, and the stimuli should be adjustable based on the equation of the visual angle. Assume that human subjects are comfortable to view the computer screen 24 cm away, this should be the length of the splitter. Now, by substituting in the following equation, we can calculate the diameter of each circle: $8.76 \ (DVA) = \tan^{-1} \frac{x}{24}$; where x is in centimeters. For this case the diameter of each cycle would be exactly 3.7 centimeters. The aforementioned system should allow the users to experience bi-stable to multi-stable visual competition, and as a result, the users will have better comprehension of the human visual consciousness. ## But Again; Where Is Human Consciousness? This is most mysterious question! But scientists might approach the correct answer after unstoppable squeezes in every scientific discipline and after digging into the common points of these avenues; we therefore believe in the importance of our suggested theory of entanglement, the bidirectional tachyonic tube & the conscious cloud to understanding the human visual awareness and its secrets, see reference 18. But we would like also to remind the reader about research outside the binocular rivalry avenue that also can provide fulsome understanding of human visual awareness, such as conscious dreams in the absence of photons, see reference 17. The visual awareness of REM sleep' dreams may be considered as 'involuntary' visual imagery processes; however, we think that 'voluntary' visual imagery may require closer processes as well. In another word, we think that visual imagery whether it is involuntary or voluntary may require contact with the hypothetical bidirectional tachyonic tube as well as the conscious cloud, see reference 18. Necessary to remind, de'Sperati and colleagues had previously demonstrated that certain patterns of spontaneous saccadic eye movements can be used to trace the instantaneous evolution of 'voluntary' visual imagery, see reference 25; as if the retina might have been trying to orient itself to certain directions, through those patterns of eye movements, aiming for intensifying the extremely low tachyonic energy in the presence of photons. Interventions against the aforementioned patterns, they reported however, impair the awareness of the visual imagery, see reference 26. Although, voluntary visual imagery may require accessing the memory through activation of certain constellation of memory engram cells; however, the memory itself is suggested to reside outside the memory engram, namely, the engram is nothing but an access link to the memory, see reference 27. In another word, we might rephrase the aforementioned words and say that; memory might also reside in extra physical dimensions (the conscious cloud). We therefore may hypothesize the following: the neurophysiological activation of inhibitory neurons in a certain engram might emit tachyons to the conscious cloud; and then the cloud responds to the eyes with tachyonic emissions. We understand that our hypothetical conscious cloud might be inconvenient to some memory scientists, we therefore have to revisit our perspective on the brain (the container of neurological wires to consciousness). We see the intensified neuroplasticity processes are to 'widen' the accessibility between the neurological wires and the tachyonic tube, hence, faster access to the conscious cloud. We thus are not attempting to falsify the old theories in human memory, but to rectify them. #### **Essential Notifications** Scholars who have high density EEG/MEG machines and would like to collaborate are welcome to contact the author. Scholars who have low density EEG/MEG systems are advised to use compressive sensing techniques (see reference 1). Scholars who have issues with binocular rivalry setup or want to access a copy of the current codes for the brain awareness metric, with gamma waves filter are welcome to request it directly from the author. Scholars who struggle in comprehending any part of this article are also welcome to directly contact the author. Important to mention, we did not receive any acknowledgement from the corresponding author of reference 21, despite the fact that we are the originator of the concept; and therefore, in order to comply to the scientific ethics, we will mention the title of the reference but not the authors until further notice. #### Transactional References - [1] Levelt (1965). Binocular brightness averaging and contour information. - [2] Engle (1956). The role of content in binocular resolution. - [3] Malek, etal. (2012). Binocular rivalry of spiral and linear moving random dot patterns in human observers. - [4] Fahle (1982). Binocular rivalry: suppression depends on orientation and spatial frequency. Vision Research. - [5] Malek, (2018). Generalizing Duchenne to sad expressions with binocular rivalry and perception ratings. Emotion. - [6] Lack (1978). Selective attention and the control over binocular rivalry. - [7] Baron-Cohen, etal. (2009). Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philos. R. Soc. - [8] Robertson, etal. (2016). Reduced GABAergic Action in the Autistic Brain. - [9] Robertson, etal. (2013). Slower rate of binocular rivalry in autism. - [10]Fesi and Mendola, (2015). Individual peak gamma frequency predicts switch rate in perceptual rivalry. Human Brain Imaging. - [11] Yousef, 2019. "Consciousness Might Be Localized in Extra Physical Dimensions." PsyArXiv. doi:10.31234/osf.io/angc8. - [12] Ray, $\it et\,al.\,2009$. High-frequency gamma activity (80-150Hz) is increased in human cortex during selective attention. Clinical neurophysiology. - [13] Katyal, *etal.* (2019). Frequency of alpha oscillation predicts individual differences in perceptual stability during binocular rivalry. Human Brain Imag. [14] von Stein, et al., (2000). "Top-down processing mediated by interareal synchronization". PNAS Biology. - [15] Yousef, Ahmad. "Rescuing Lives: When Cardiology Interweaves with Cognitive Neuroscience." PsyArXiv, 2019. doi:10.31234/osf.io/fjmy9. - [16] Yousef, 2019. "Voluntary Blinks Stop Binocular Rivalry." PsyArXiv. doi:10.31234/osf.io/z4jrn. - [17] Yousef, 2019. "Tachyons but Not Photons Might Generate Conscious Dreams." PsyArXiv. doi:10.31234/osf.io/hvqy7. - [18] Yousef, A. 2019. "But Where Is Consciousness." YouTube. url: https://www.youtube.com/watch?v=I1G3Jx-Q1YY - [19] Yousef, 2020. "Voluntary Movements Regulate Binocular Rivalry." PsyArXiv. doi:10.31234/osf.io/qk249. - $\label{eq:condition} \begin{tabular}{l} [20] Yousef, 2020. "Deep Breathing Governs Binocular Rivalry." PsyArXiv. doi:10.31234/osf.io/zr3uk. \end{tabular}$ - [21] —, (2019). Tagged MEG measures binocular rivalry in a cortical network that predicts alternation rate. POLS One. - [22] Yousef, Ahmad. 2019. "Face Perception in Tetrastable Visual Awareness." PsyArXiv. doi:10.31234/osf.io/urg27. - [23] Yousef, Ahmad. 2019. "Motion Triggers Indefinite Stoppage Against Binocular Rivalry." PsyArXiv. doi:10.31234/osf.io/4qbrg. - [24] Rani, etal. 2018. A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications. IEEE Access. - [25] de'Sperati, (2003). Precise oculomotor correlates of visuospatial mental rotation and circular motion imagery. Cognitive Neuroscience. - [26] de'Sperati, etal., (2009). Time gaps in mental imagery introduced by competing saccadic tasks. Vision Research. - [27] Thomas Ryan, etal. (2015). "Engram cells retain memory under retrograde amnesia". Science Magazine.