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A B S T R A C  T

Water scarcity is increasingly staking a claim next to energy as a threat to the sustainability of large cities, especially in developing countries with limited resources. 
The recent crisis brought on by Cape Town’s “Day Zero” drought created the impetus to expand on existing research on water demand management to include analysis 
of school usage patterns and key determinants thereof. With the effects of apartheid still visible in society and in school infrastructure coupled with the high water 
usage rates at schools, this paper evaluates the impact of school affluence (whether it is fee-paying or not, and self-governing or not) on water usage. We find that poor 
schools use substantially more water, partially because of poor maintenance, with mean water effi-ciencies of poor schools around 50% and 80% for affluent schools. 
Bayesian models were used to further de-termine which characteristics of a school are good proxies for the higher usage to help administrators and policy makers in 
the resource constrained educational environment. In addition to the obvious detrimental impact of poor maintenance, the results also point an incriminatory finger 
at early morning-school usage, early afternoon usage, and Saturday usage.

1. Introduction

Water shortages are increasingly reported compromising the sus-
tainability of several large cities and regions worldwide. The un-
predictability and extremity of climate change have further intensified
the gravity of limited water supplies (McDonald et al., 2014; Srinivasan
et al., 2017; Wagener et al., 2010). This problem is particularly salient
in developing countries that are characterised by rapid population
growth, high rates of urbanisation, and management challenges
(Muller, 2018; Ziervogel, 2019). For example, Cape Town recently ex-
perienced its worst drought in over 100 years and was declared a dis-
aster area with the so-called “Day Zero” an imminent threat (Enqvist
and Ziervogel, 2019).

It is known that service providers and users require accurate and
timely usage of information and billing to influence prudent user be-
haviour and to effectively predict and manage demand. Despite this
need, municipalities in developing countries struggle to capture and
report on water usage, often relying on estimates of water usage for the
billing process (Booysen et al., 2019a; Booysen et al., 2019b; Parks
et al., 2019). The result is that users often receive actual billing

information two months or more after usage, resulting in undetected
leaks and broken feedback information loops. Moreover, in some cases
this is further exacerbated by four separate entities, respectively, with
responsibility for using the water, maintaining the infrastructure,
sourcing the money, and paying the bill. This paper expects to con-
tribute by addressing the issue of reliable water usage data.

There has been a substantial amount of research dedicated to urban
water demand management, which is particularly essential in devel-
oping countries as they often suffer from high rates of urbanisation. The
majority of existing research on urban water demand management have
focused on the residential sector, for example, demand forecasting
(Adamowski et al., 2012; Bougadis et al., 2005; Donkor et al., 2012;
Ghiassi et al., 2017; Ren and Li, 2016), demand modelling (Gurung
et al., 2014; Jacobs and Haarhoff, 2004), general demand management
(Kenney et al., 2008), and water usage management interventions
(Datta et al., 2015; Dernoncourt and Lee, 2016; Fielding et al., 2012).
There is limited research on the water demand in the non-residential or
educational sectors despite the fact that these sectors can be high water
consumers (Sánchez-Torija et al., 2017). Moreover, although historic
water usage data has been used in several studies to model water usage
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patterns, there are several influential factors including socio-economic,
political and climatic variables that have not been specifically taken
into consideration (Botai et al., 2017; Donkor et al., 2012; Enqvist and
Ziervogel, 2019; Muller, 2018; Scheba and Millington, 2018).

In light of Cape Town’s “Day Zero” threat, the Western Cape
Education Department (WCED) stated that schools are of primary im-
portance as the province struggled with the drought and to keep schools
from closing due to the water shortage (WCG, 2017). Since the schools
are responsible for their own water bills, albeit indirectly in some cases,
any money that is unnecessarily spent on water reduces the already
constrained resources available for education-related expenses. A study
by Ripunda and Booysen (2018) highlighted the severity of water
wastages in the province’s schools, by showing that a single primary
school used as much as 35 kL per day, the equivalent of more than 100
households (Booysen et al., 2019b). The study further demonstrated
that significant savings are possible through raising awareness and in-
fluencing water usage behaviour. A follow-on maintenance campaign
by Booysen et al. (2019a) further demonstrated that even greater sav-
ings could be achieved through “quick-and-dirty” inexpensive main-
tenance at these schools. However, with more than 1600 schools in the
province (more than 23,000 in the country), and with the limited
budgetary and managerial resources available, knowing where to focus
attention remains a challenge without reliable higher frequency me-
tering data.

Accordingly, we explored the non-residential sector of urban water
demand in a developing city context. Specifically, we identified the
general trends in water usage by schools in Cape Town, South Africa.
Given the persistent severe inequality left in the wake of apartheid, we
evaluated the influence of a school’s affluence, revenue stream, and
governance locus of control on their water usage, in order to identify
key drivers of water usage. The results are expected to empower policy
makers to focus their attention on the critical areas that drive high
usage. Moreover, the results can be used to improve sustainable water
management by reducing water usage and the related expenses.

2. Materials and methods

2.1. Case study description

2.1.1. Education system in South Africa
The South African education system prior to the country’s first de-

mocratic election in 1994 was both, unjust and biased, and the political
system was one of totalitarianism with regards to school management.
Because of this, after the end of the apartheid regime, the Education
Department established several policies aimed at transforming the
education system to be just and fair to all South Africans (Dalgleish
et al., 2007; Engelbrecht and Harding, 2008; Government_Gazette,
1996; Longueira, 2016). Considering this, the Education Department
created two main policies. The first was the SASA (South African
Schools Act), which was created to establish committees that would be
responsible for the general management of schools. The second was the
NNSSF (National Norms and Standards for School Funding), which
stipulated the governmental funding for each school according to its
socio-economic status.

The SASA of 1996 (Government_Gazette, 1996) aimed to involve
communities and relevant stakeholders in the day-to-day management
of schools. This was achieved by establishing committees that are re-
sponsible for the overall governance of schools. These committees are
referred to as School Governing Boards (SGBs) and are made up of
educators, parents and learners in the case of secondary/high schools.
Thus, the introduction of SGBs brought about shared responsibilities in
terms of school governance in South Africa, by involving communities
in their own upliftment through improved education. In the name of a
fair and just system, the SASA defined the responsibilities of SGBs based
on the socio-economic status (SES) of each school. Consequently, two
types of schools were defined; termed Section 20 (S20) and Section 21

(S21) schools. For S20 schools, those with lower SES, the government is
responsible for buying school material, paying utility bills, and per-
forming maintenance. Section 21 schools on the other hand are allo-
cated funding, from which the SGBs purchase all school materials, pays
utility bills and perform their own maintenance. Therefore, SGBs of S21
schools have added responsibility and directly control school fund ex-
penditure. Moreover, SGBs are mandated to augment state funding by
implementing either school fees, in the case of some schools, or un-
dertaking fund-raising programmes. These fund-raising programmes
include renting out the school grounds to churches and other commu-
nity groups for a fee. These fund-raising programmes indicate that the
allocated governmental funding is not sufficient to sustain general
school operations.

The National Norms and Standards for School Funding (NNSSF),
which was established in 1998, stipulates how much governmental
funding each school receives (Swartz, 2009). Governmental funding is
allocated to schools based on their quintile ranking, which divides
schools into five groups according to their socio-economic status
(Engelbrecht and Harding, 2008; Motala, 2015). Schools in quintiles
1–3 are classified as less affluent schools based on their SES. These
schools receive higher governmental funding than schools in quintiles 4
and 5 and do not charge fees. For quintile 4 and 5 schools, govern-
mental funding is significantly less and schools can charge school fees
to augment their funding. The aim of the system is to remedy the in-
equality and inequity caused by the apartheid system, by increasing
governmental funding to schools with a lower SESs in order to provide
better opportunities to previously disadvantaged learners through a
better education (Longueira, 2016). Therefore, this policy is expected to
create better opportunities for learners that were previously dis-
advantaged by the old regime.

2.1.2. Water supply and use in South African schools
Water supply within South African schools is unreliable, especially

for schools in poorer communities. Currently, South Africa has a total of
23,589 schools. From these, 452 schools were recorded as not having
water supply, while another 4773 have unreliable supply and more
than 4500 still use pit latrines (DBE, 2015).

Western Cape Education Department (WCED) water usage database
indicates that four methods are used for recording a school’s monthly
water usage reading: physical readings by the school; readings by the
municipality; automatic estimation; and re-estimation if over estima-
tion occurred. From these, the two commonly used methods are auto-
matic estimation and collection by municipality. The issue was parti-
cularly evident in the database of the WCED on schools’ water usage
data, a snapshot of which can be found in the Supplementary
Information. The majority of schools in the Western Cape had several
months with no recorded water meter readings in the database, of
which the worst case was a school that had no recorded data for 10
months in 2017.

Furthermore, several schools reported that water bills are only is-
sued every two months despite the fact that several of these are re-
sponsible for directly settling their own water bills. Consequently,
schools are unable to effectively monitor or track their water use pat-
terns. This delayed feedback also makes it difficult for schools to detect
and deal with maintenance issues, such as leaks, in a timely manner.

2.2. Data collection

Accurate water usage data is essential for building water demand
models that can generate reliable water usage estimates to be used for
planning by utilities companies (Bakker et al., 2013; Ferraro and Price,
2013; Ghiassi et al., 2008). Although past studies have utilised several
data sources, for example, municipal data, they are known for being
inaccurate and unreliable (Datta et al., 2015; Ferraro and Price, 2013).
Another data source frequently employed is smart water meters
(Fielding et al., 2012; Gurung et al., 2014; Liu et al., 2016). However,
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smart water meters have only recently been introduced in South Africa,
and not yet for schools. Therefore, there is limited or no access to high
frequency and accurate long-term water usage data.

This study employed data sets from two different sources. One was a
data set of 242 schools located in the Western Cape, obtained from the
database emanating from a water-saving campaign of approximately
350 schools during Cape Town’s drought, run as a private-public
partnership with universities, government, and almost 100 corporate
entities (www.schoolswater.co.za/) (Booysen et al., 2019a). Using a
smart water meter called a Dropula, water flow was reported in real
time to an online platform.

The second dataset was from the WCED, which had details of all the
schools within the province. Among the variables were the number of
students and educators in each school, whether the school is S20 or S21,
and fee-paying or not. These are the variables used in this study.

2.3. Data analysis

2.3.1. Data pre-processing
The data set from the Dropula device was made up of minutely

water usage data for each participating school. This data set of 242
schools was first screened based on the continuity of water usage. As
such, water usage over a continuous period of at least 720 h (30 days)
or more was considered. This reduced the data set to 163 schools, of
which the schools that had zero water usage were eliminated.
Accordingly, the final data set included 156 schools.

From this data set of 156 schools, several variables were identified
and used for the data analysis. The temporal identifiers were chosen
based on observed and anecdotal evidence of school water usage pat-
terns. Some examples are: (1) it was observed that some schools double
as church buildings on Sundays, which will affect their Sunday usage;
(2) some poorer schools seemed to have maintenance problems, which
was linked to nightly flow; (3) some schools have feeding schemes,
which will affect the lunch-time water usage; (4) some affluent schools
have sporting activities on Saturdays, which will increase Saturday
usage; (5) some schools have people living on the property or com-
munity members who do not have water supply, may use water from
the school’s supply during evening and early morning periods; (6) some
affluent schools have after school hour music and drama lessons; and
(7) some poorer schools have adult education programs in the evenings.

Table 1 captures the data types and classification. Daily usage for
each school was separated into weekday, Saturday and Sunday usage.
The weekday usage was further divided into different times of the day,
which were chosen based on school operating times and activities.
These were before school hours, during school hours, extra mural ac-
tivity hours in the afternoon, after school early evening hours and
midnight hours.

2.3.2. Selection of analytical technique
The main imperative in selecting the appropriate analytical tech-

nique was the integration of both, quantitative and qualitative variables
(see Table 1 above), which were identified to influence schools’ water
usage. In this context, Bayesian Networks (BNs) modelling has proven
to be effective in relation to a range of environmental systems/pro-
cesses modelling (Bonotto et al., 2018; Borsuk et al., 2004; Liu et al.,
2018; Maeda et al., 2017; Martín de Santa Olalla et al., 2007; Rigosi
et al., 2015; Ticehurst et al., 2007; Wijesiri et al., 2018). In fact,
Bayesian statistical methods have gained relatively little attention, al-
though they have been used for scenario-based water demand model-
ling. These methods combine the theory of probability and deductive
reasoning to manage uncertainty in data.

The BNs modelling facilitates developing interdependencies be-
tween variables using the current knowledge of the problem, and their
Markov Property (i.e. each variable depends only on its immediate
parent variables) and overcomes the curse of dimensionality when
dealing with small data sets (Scutari, 2009). A detailed discussion on
BNs modelling is provided in the Supplementary Information. Accord-
ingly, BNs modelling was employed in the current study to understand
the interdependencies between influential factors of water demand in
the schools. The modelling outcomes were then used to assess the sig-
nificance of the state of affluence of schools compared to other factors.

3. Results and discussion

3.1. General trends in water usage by schools

Table 2 summarises the data captured for different scenarios, and
summarises the number of schools in each scenario. From the 156
schools investigated, 27 are in Scenario 1, 44 in Scenario 2, 12 in
Scenario 3, and 73 in Scenario 4. In summary, this translates to 73
affluent schools and 83 less affluent schools in the dataset.

The results in Fig. 1(a) show a drastic difference in flow rate for
each school over all hours (Vt) from Scenarios 1 – 4. The medians and
means are incrementally less for each scenario, with the Scenario 4
mean, 189 L/hr, only 40% of the Scenario 1 mean at 468 L/hr. We then
investigated the source of the difference between the groups by in-
dividually evaluating the periods in Fig. 1(b)–(f).

As expected, the highest flow rate for each scenario occurs during
school hours (8:00 to 14:00), with disparate means of 709 L/hr, 536 L/
hr, 331 L/hr and 364 L/hr, respectively, for the four scenarios. There is
large variance in the flow rates of the two non-fee-paying schools, with
the fee-paying S21 scenario (Scenario 3) using similar amounts of water
as the fee-paying S21 schools (Scenario 4), but with substantially less
variance, which may be because of the small number of schools in
Scenario 2.

In the early afternoon, shown in Fig. 1(c), the usage for all scenarios
is less than during school hours, as expected. The schools in Scenario 1
still use substantially more than any of the other groups, and Scenario 2
more than Scenario 3 and Scenario 4. Interestingly, not a single school
in Scenario 1 drops below 110 L/min during this time. Except for a few
apparently wasteful schools in Scenario 3, the median and mean for

Table 1
Data types and classification.

Variable Data type Classification

Primary Secondary

Water usage Quantity
(L/hour)

Vw: Weekdays V0508: 05:00 – 08:00
V0814: 08:00 – 14:00
V1417: 14:00 – 17:00
V1722: 17:00 – 22:00
V2205: 22:00 – 05:00

Vsa: Saturdays
Vsu: Sundays
Vt: Total

St: Number of students Quantity
Edu: Number of educators Quantity
Fees: Fees charged Yes/No
S21: Self-governance Yes/No

Table 2
Summary of schools in the dataset.

Scenario Number of Schools
(%)

Description

No. Fees S21

1 No No 27 (17) Parents don’t pay, school not self-
governing

2 No Yes 44 (28) Parents don’t pay, school self-
governing

3 Yes No 12 (8) Parents pay, school not self-governing
4 Yes Yes 73 (47) Parents pay, school self-governing
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Scenario 3 and Scenario 4 are virtually on par. Since the extramural
activities occur during these hours, it is clear that the flow rates during
extramural activities is substantially less than that during school hours,
which is also the case for Scenario 4.

The early evening timeslot, Fig. 1(d), mostly exhibits the same
patterns and the midnight hours, with an interesting exception – the
mean flows during these hours are lower than the mean midnight hours
for the two middle scenarios. The medians, however, are lowest for the
midnight hours for all four scenarios. All three less affluent schools
exhibit a large difference between the median and 75th percentiles,
indicating that the “bad half” of those schools have caused this apparent

increase. In fact, for the non-fee-paying schools, the top 50% of schools
are responsible for 85.2% of the total use. This may be indicative of
either usage after 22:00 or usage before 05:00 for those schools, pos-
sibly by the surrounding poorer communities.

As expected, the lowest mean flow rate for each scenario occurs
between 17:00 and 05:00hrs, with the lowest median flows occurring
during midnight hours (22:00 to 05:00). The flow during the hours
before school, 05:00 to 08:00, mostly reflects the natural transient from
the midnight hours to the school hours, as staff and students arrive
during that time.

The midnight flow – means of 316 L/hr, 282 L/hr, 171 L/hr and

Fig. 1. Temporal distributions of water usage during specified times for Scenarios 1 –4: (a) Total – Vt; (b) School hours – V0814; (c) Afternoon – V1417; (d) Evening –
V1722; (e) Midnight hours – V2205; (f) Before school – V0508; (g) Weekdays – Vw; (h) Saturdays – Vsa; (i) Sundays – Vsu.
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73 L/hr – is expected to be zero or close to it, and unexpected flow
indicates anomalies, for example, taps left open, stuck toilets, or in-
dicates leaks. Considering that these anomalous flow rates are likely to
also be present during the day, we can perform a rough estimate of the
intentional water usage as the difference between the school-hour use
and the midnight-hour use, resulting in 393 L/hr, 254 L/hr, 160 L/hr,
and 291 L/hr for the four scenarios, which gives approximated school-
hour efficiencies, calculated by = −η V V V( )/V 0814 2205 08140814 , of 55%,
53%, 48% and 80%, respectively, demonstrating a stark difference
between the affluent and poorer schools. However, importantly, when
taking the medians, rather than means, the efficiencies are much closer,
resulting in 76%, 85%, 79%, and 86% respectively, which indicates that
the substantial inefficiencies are largely caused by a the few errant

schools, and also shows a trend of higher efficiency for self-governed
(S21) schools (Scenarios 2 and 4). These results are also visible when
considering weekday (vs. weekend) volume used as a proportion of
total use, which results in 78%, 82%, 78%, 84% for the means and 81%,
86%, 83%, and 88% for the medians, further demonstrating better ef-
ficiency for the self-governing S21 schools. The usage on weekdays is
double that of weekend days for the affluent s4 schools, but only ap-
proximately a third more for the poorer Scenario 1 schools, further
underlying that poor maintenance may be at play. The weekend dis-
tributions also belie that only the poorest schools, Scenario 1, have
substantially more flow on Saturdays than on Sundays, further poten-
tially pointing to community usage during those days.

Another perspective on inefficiencies is given by the volume used in

Fig. 2. Total water usage of schools as functions of the number of users, usage during week days, usage during weekend, and usage during days of the week. Note: all
water usages are given in L/hour.

M.J. Booysen, et al.

5



the school hours as a ratio of the total volume, calculated by
=η V V/V t0814t , which results in 38%, 37%, 37% and 48%, respectively

for the means, and 44%, 59%, 51%, and 50% for the medians, again
showing the difference between poor and affluent schools as a group,
but also the impact of a few errant schools.

Using the difference between the school hour flow rate and the
midnight flow rate, and the student numbers per school from the WCED
dataset, we calculated the effective water used per learner for a six-hour
long school day, disregarding the number of educators (and staff),
which resulted in 2.17 L/student/day, 1.00 L/student/day, 1.36 L/stu-
dent/day, and 1.79 L/student/day for the four scenarios, respectively.
Since the leaks are already taken into account in these figures, these
differences must largely be operational, with the s1 likely higher mainly
due to water-intensive feeding schemes, poor maintenance, and lack of
user awareness or behaviour; and the s4 number likely higher due to
gardening, staff kitchens, and lack of user awareness or behaviour.

These results demonstrate that lack of maintenance at poor schools
is a significant contributor to the higher usage at the poorer schools, but
also demonstrate that lack of maintenance does not explain the full
extent of the differences in usage. We therefore further analysed the
underlying drivers.

3.2. Characterising the influence of school affluence on water usage

Prior to quantitative assessment of the interdependencies between
water usage and influential factors using BNs modelling, the basic
trends between water usage and each influential factor were evaluated.
Accordingly, Fig. 2 shows the variations in total water usage of all
schools against the number of users, usage during week days, usage
during weekends, and usage during different periods of time on week
days. It is evident that the total water usage shows strong linear re-
lationships with the usage based on the day and the time of the week.

However, there is considerable variability in the relationship between
total water usage and the number of students and educators.

Fig. 3 shows the Directed Acyclic Graph (DAG) of the two evaluated
BNs models incorporating the factors that could influence water usage
in schools. These models were fitted with observed data using the
‘bnlearn’ package in the R statistical computing platform (Scutari,
2016). Table 3 shows the estimated influence exerted by each factor on
school’s water usage. Further, Table 3 provides different sets of con-
ditional regression coefficients corresponding to different scenarios of
the state of affluence of schools. Additionally, the performance of the
proposed model was assessed using leave-one-out cross validation. This
resulted a Root Mean Squared Error (RMSE) of 0.0491 and 0.0322 for
Model 1 and Model 2, respectively. The observed vs. predicted plots and
residuals plots are shown in Fig. 4, which also confirms that the model
performance was satisfactory.

3.3. Practical implications of research outcomes

The coefficients in Table 3 confirm the hypothesis alluded to in the
general assessment. Model 1′s coefficients confirm that for the more
prudent and affluent Scenario 4, the hours from 05:00 to 17:00 are the
main drivers of total usage, with the actual school hours exhibiting by
far the largest coefficient.

The coefficients for the schools in the three poorer scenarios show
that the hours before school are substantial drivers of total usage.
Considering the worst two scenarios (Scenarios 1 and 2), sizeable
contributions are evidently made by the hours from 14:00 to 22:00,
indicating that it is these that should be targeted to reduce the total

Fig. 3. Directed Acyclic Graph (DAG) of the Bayesian Networks (BNs) models of
water usage of schools with different socio-economic status: (a) Model 1; (b)
Model 2.

Table 3
Estimated conditional regression coefficients (conditional Gaussian distribu-
tion, log transformed data) for total water usage (Vt) and relative influence of
key factors for the time-of-the-day usage analysis (Model 1) and day-of-the-
week analysis (Model 2).

MODEL 1

aConditional density: Vt | S21 + Fees+ Edu+ St+V0508 + V0814 + V1417 + V1722

+ V2205

Variable Scenario

S1 S2 S3 S4

S21 No No Yes Yes
Fees No Yes No Yes

bC bC bC bC
Edu 0.028 −0.099 0.034 0.005
St 0.017 0.069 0.122 0.034
V0508 0.353 0.381 0.588 0.270
V0814 0.375 0.371 0.212 0.500
V1417 0.117 0.169 0.092 0.144
V1722 0.163 0.123 0.046 0.072
V2205 −0.002 0.010 0.004 −0.002

MODEL 2

aConditional density: Vt | S21 + Fees+Edu+St+Vsa + Vsu + Vw

Variable Scenario

S1 S2 S3 S4

S21 No No Yes Yes
Fees No Yes No Yes

bC bC bC bC
Edu 0.026 0.147 −0.036 0.035
St −0.010 −0.184 0.030 −0.040
Vsa 0.148 0.115 0.005 −0.034
Vsu 0.004 −0.003 0.004 0.042
Vw 0.855 0.911 1.017 1.006

a probability density function of Vt, given the parent variables.
b estimated conditional regression coefficient.
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usage at schools in these scenarios. The Scenario 3 schools, which
perform worse than Scenario 4, but better than the other two has the
before-school timeslot as the largest coefficient, and also sizeable con-
tributions from the number of students and the timeslot immediately
after school.

Model 2, which evaluated the days of the week, shows that the two
worst performing schools have large contributions from the Saturday
usage, in addition to the weekday contributions, which are present for
Scenarios 3 and 4. Although these results will need further investigation
and potentially site inspections, they demonstrate that the total usage at
the apparently wasteful schools are largely linked to after hour usage,
which is only partially due to constant background leaks.

4. Conclusion

We evaluated the temporal usage profiles of 156 schools in the
Western Cape in South Africa in the run-up to Cape Town’s Day Zero.
We differentiated between affluent and poor schools in general, and
specifically evaluated the impact of whether the schools were, fee-
paying, self-governed, number of students, number of educators and a
diversity of temporal differentiations. The results show a clear trend
that the poorest schools (non-fee paying, not self-governing) use

substantially more water usage regardless of the time period con-
sidered. Moreover, the most affluent schools (fee-paying, self-gov-
erning) use the least amount of water. For the two middle schools, we
noted usage in-between the two extremities. It was observed that these
high levels of usage is likely due to a few errant schools, as the median
schools are not much different than the affluent schools. Using Bayesian
Networks, it was also observed that in addition to leakages being pre-
sent, high usage in poorer schools is linked to early morning usage,
afternoon and early evening usage as well as Saturday usage. We re-
commend that schools be equipped with smart meters to allow prudent
water usage management. In the alternative, it is recommended that
poor schools, especially those that are self-governing be targeted for
maintenance and awareness campaigns.
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Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.scs.2019.101694.
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