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Highlights

 Affluence and self-governance drive water usage in the schools assessed

 Non-fee-paying schools use more than fee-paying schools

 For non-fee-paying schools, 50% of schools responsible for 85% of use

 Number of students and number of educators do not affect usage rate

 Usage in hours before and after school and Saturdays proxy heavy use
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4 Abstract: Water scarcity is increasingly staking a claim next to energy as a threat to the 

5 sustainability of large cities, especially in developing countries with limited resources. The 

6 recent crisis brought on by Cape Town’s “Day Zero” drought created the impetus to expand 

7 on existing research on water demand management to include analysis of school usage 

8 patterns and key determinants thereof. With the effects of apartheid still visible in society and 

9 in school infrastructure coupled with the high water usage rates at schools, this paper 

10 evaluates the impact of school affluence (whether it is fee-paying or not, and self-governing 

11 or not) on water usage. We find that poor schools use substantially more water, partially 

12 because of poor maintenance, with mean water efficiencies of poor schools around 50% and 

13 80% for affluent schools. Bayesian models were used to further determine which 

14 characteristics of a school are good proxies for the higher usage to help administrators and 

15 policy makers in the resource constrained educational environment. In addition to the obvious 

16 impact of maintenance, the results point an incriminatory finger at early morning-school 

17 usage, early afternoon usage, and Saturday usage. 

18 Keywords: Community affluence; Schools water usage; Sustainable water management; 

19 Water demand modelling; Water equity, Water Scarcity

20
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21 1.0 Introduction 

22 Water shortages are increasingly reported compromising the sustainability of several large 

23 cities and regions worldwide. The unpredictability and extremity of climate change have 

24 further intensified the gravity of limited water supplies (McDonald et al., 2014; Srinivasan et 

25 al., 2017; Wagener et al., 2010). This problem is particularly salient in developing countries 

26 that are characterised by rapid population growth, high rates of urbanisation, and management 

27 challenges (Muller, 2018; Ziervogel, 2019). For example, Cape Town recently experienced its 

28 worst drought in over 100 years and was declared a disaster area with the so-called “Day 

29 Zero” an imminent threat (Enqvist and Ziervogel, 2019). 

30 It is known that service providers and users require accurate and timely usage of information 

31 and billing to influence prudent user behaviour and to effectively predict and manage demand. 

32 Despite this need, municipalities in developing countries struggle to capture and report on 

33 water usage, often relying on estimates of water usage for the billing process (Booysen et al., 

34 2019a; Booysen et al., 2019b; Parks et al., 2019). The result is that users often receive actual 

35 billing information two months or more after usage, resulting in undetected leaks and broken 

36 feedback information loops. Moreover, in some cases this is further exacerbated by four 

37 separate entities, respectively, with responsibility for using the water, maintaining the 

38 infrastructure, sourcing the money, and paying the bill. This paper expects to contribute by 

39 addressing the issue of reliable water usage data.

40 There has been a substantial amount of research dedicated to urban water demand 

41 management, which is particularly essential in developing countries as they often suffer from 

42 high rates of urbanisation. The majority of existing research on urban water demand 

43 management have focused on the residential sector, for example, demand forecasting 

44 (Adamowski et al., 2012; Bougadis et al., 2005; Donkor et al., 2012; Ghiassi et al., 2017; Ren 



4

45 and Li, 2016), demand modelling (Gurung et al., 2014; Jacobs and Haarhoff, 2004), general 

46 demand management (Kenney et al., 2008), and water usage management interventions (Datta 

47 et al., 2015; Dernoncourt and Lee, 2016; Fielding et al., 2012). There is limited research on 

48 the water demand in the non-residential or educational sectors despite the fact that these 

49 sectors can be high water consumers (Sánchez-Torija et al., 2017). Moreover, although 

50 historic water usage data has been used in several studies to model water usage patterns, there 

51 are several influential factors including socio-economic, political and climatic variables that 

52 have not been specifically taken into consideration (Botai et al., 2017; Donkor et al., 2012; 

53 Enqvist and Ziervogel, 2019; Muller, 2018; Scheba and Millington, 2018).  

54 In light of Cape Town’s “Day Zero” threat, the Western Cape Education Department 

55 (WCED) stated that schools are of primary importance as the Province struggled with the 

56 drought and to keep schools from closing due to the water shortage (WCG, 2017). Since the 

57 schools are responsible for their own water bills, albeit indirectly in some cases, any money 

58 that is unnecessarily spent on water reduces the already constrained resources available for 

59 education-related expenses. A study by Ripunda and Booysen (2018) highlighted the severity 

60 of water wastages in the Province’s schools, by showing that a single primary school used as 

61 much as 35 kL per day, the equivalent of more than 100 households (Booysen et al., 2019b). 

62 The study further demonstrated that significant savings are possible through raising awareness 

63 and influencing water usage behaviour. A follow-on maintenance campaign by Booysen et al. 

64 (2019a) further demonstrated that even greater savings could be achieved through “quick-and-

65 dirty” inexpensive maintenance at these schools. However, with more than 1,600 schools in 

66 the province (more than 23,000 in the country), and with the limited budgetary and 

67 managerial resources available, knowing where to focus attention remains a challenge without 

68 reliable higher frequency metering data.  

69 Accordingly, we explored the non-residential sector of urban water demand in a developing 



5

70 city context. Specifically, we identified the general trends in water usage by schools in Cape 

71 Town, South Africa. Given the scars left by apartheid and severe inequality, we evaluated the 

72 influence of a school’s affluence, revenue stream, and governance locus of control on their 

73 water usage, and in order to identify key drivers in relation to water usage. The results are 

74 expected to empower policy makers to focus their attention on the critical areas that drive 

75 high usage. Moreover, the results can be used to improve sustainable water management by 

76 reducing water usage and the related expenses. 

77 2.0 Materials and Methods 

78 2.1 Case study description 

79 2.1.1 Education system in South Africa 

80 The South African education system prior to the country’s first democratic election in 1994 

81 was both, unjust and biased, and the political system was one of totalitarianism with regards 

82 to school management. Because of this, after the end of the apartheid regime, the Education 

83 Department established several policies aimed at transforming the education system to be just 

84 and fair to all South Africans (Dalgleish et al., 2007; Engelbrecht and Harding, 2008; 

85 Government_Gazette, 1996; Longueira, 2016). Considering this, the Education Department 

86 created two main policies. The first was the SASA (South African Schools Act), which was 

87 created to establish committees that would be responsible for the general management of 

88 schools. The second was the NNSSF (National Norms and Standards for School Funding), 

89 which stipulated the governmental funding for each school according to its socio-economic 

90 status. 

91 The SASA of 1996 (Government_Gazette, 1996) aimed to involve communities and relevant 

92 stakeholders in the day-to-day management of schools. This was achieved by establishing 
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93 committees that are responsible for the overall governance of schools. These committees are 

94 referred to as School Governing Boards (SGBs) and are made up of educators, parents and 

95 learners in the case of secondary/high schools. Thus, the introduction of SGBs brought about 

96 shared responsibilities in terms of school governance in South Africa, by involving 

97 communities in their own upliftment through improved education. In the name of a fair and 

98 just system, the SASA defined the responsibilities of SGBs based on the socio-economic 

99 status (SES) of each school. Consequently, two types of schools were defined; termed Section 

100 20 (S20) and Section 21 (S21) schools. For S20 schools, those with lower SES, the 

101 government is responsible for buying school material, paying utility bills, and performing 

102 maintenance. Section 21 schools on the other hand are allocated funding, from which the 

103 SGBs purchase all school materials, pays utility bills and perform their own maintenance. 

104 Therefore, SGBs of S21 schools have added responsibility and directly control school fund 

105 expenditure. Moreover, SGBs are mandated to augment state funding by implementing either 

106 school fees, in the case of some schools, or undertaking fund-raising programmes. These 

107 fund-raising programmes include renting out the school grounds to churches and other 

108 community groups for a fee. These fund-raising programmes indicate that the allocated 

109 governmental funding is not sufficient to sustain general school operations.

110 The National Norms and Standards for School Funding (NNSSF), which was established in 

111 1998, stipulates how much governmental funding each school receives (Swartz, 2009). 

112 Governmental funding is allocated to schools based on their quintile ranking, which divides 

113 schools into five groups according to their socio-economic status (Engelbrecht and Harding, 

114 2008; Motala, 2015).  Schools in quintiles 1 to 3 are classified as less affluent schools based 

115 on their SES. These schools receive higher governmental funding than schools in quintiles 4 

116 and 5 and do not charge fees. For quintile 4 and 5 schools, governmental funding is 

117 significantly less and schools can charge school fees to augment their funding. The aim of the 
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118 system is to remedy the inequality and inequity caused by the apartheid system, by increasing 

119 governmental funding to schools with a lower SESs in order to provide better opportunities to 

120 previously disadvantaged learners through a better education (Longueira, 2016). Therefore, 

121 this policy is expected to create better opportunities for learners that were previously 

122 disadvantaged by the old regime.

123 2.1.2 Water supply and use in South African schools

124 Water supply within South African schools is unreliable, especially for schools in poorer 

125 communities. Currently, South Africa has a total of 23,589 schools. From these, 452 schools 

126 were recorded as not having water supply, while another 4,773 have unreliable supply and 

127 more than 4,500 still use pit latrines (DBE, 2015).  

128 Western Cape Education Department (WCED) water usage database indicates that four 

129 methods are used for recording a school’s monthly water usage reading: physical readings by 

130 the school; readings by the municipality; automatic estimation; and re-estimation if over 

131 estimation occurred. From these, the two commonly used methods are automatic estimation 

132 and collection by municipality. The issue was particularly evident in the database of the 

133 WCED on schools’ water usage data, a snapshot of which can be found in the Supplementary 

134 Information. The majority of schools in the Western Cape had several months with no 

135 recorded water meter readings in the database, of which the worst case was a school that had 

136 no recorded data for 10 months in 2017.

137 Furthermore, several schools reported that water bills are only issued every two months 

138 despite the fact that several of these are responsible for directly settling their own water bills. 

139 Consequently, schools are unable to effectively monitor or track their water use patterns. This 

140 delayed feedback also makes it difficult for schools to detect and deal with maintenance 

141 issues, such as leaks, in a timely manner.
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142 2.2 Data collection 

143 Accurate water usage data is essential for building water demand models that can generate 

144 reliable water usage estimates to be used for planning by utilities companies (Bakker et al., 

145 2013; Ferraro and Price, 2013; Ghiassi et al., 2008). Although past studies have utilised 

146 several data sources, for example, municipal data, they are known for being inaccurate and 

147 unreliable (Datta et al., 2015; Ferraro and Price, 2013). Another data source frequently 

148 employed is smart water meters (Fielding et al., 2012; Gurung et al., 2014; Liu et al., 2016). 

149 However, smart water meters have only recently been introduced in South Africa, and not yet 

150 for schools. Therefore, there is limited or no access to high frequency and accurate long-term 

151 water usage data.

152 This study employed data sets from two different sources. One was a data set of 242 schools 

153 located in the Western Cape, obtained from the database emanating from a water-saving 

154 campaign of approximately 350 schools during Cape Town’s drought, run as a private-public 

155 partnership with universities, government, and almost 100 corporate entities  

156 (www.schoolswater.co.za/) (Booysen et al., 2019a). Using a smart water meter called a 

157 Dropula, water flow was reported in real time to an online platform. 

158 The second dataset was from the WCED, which had details of all the schools within the 

159 province. Among the variables were the number of students and educators in each school, 

160 whether the school is S20 or S21, and fee-paying or not. These are the variables used in this 

161 study.

162 2.3 Data analysis

163 2.3.1 Data pre-processing

164 The data set from the Dropula device was made up of minutely water usage data for each 

http://www.schoolswater.co.za/
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165 participating school. This data set of 242 schools was first screened based on the continuity of 

166 water usage. As such, water usage over a continuous period of at least 720 hours (30 days) or 

167 more was considered. This reduced the data set to 163 schools, of which the schools that had 

168 zero water usage were eliminated. Accordingly, the final data set included 156 schools.

169 From this data set of 156 schools, several variables were identified and used for the data 

170 analysis. The temporal identifiers were chosen based on observed and anecdotal evidence of 

171 school water usage patterns. Some examples are: (1) it was observed that some schools 

172 double as church buildings on Sundays, which will affect their Sunday usage; (2) some poorer 

173 schools seemed to have maintenance problems, which was linked to nightly flow; (3) some 

174 schools have feeding schemes, which will affect the lunch-time water usage; (4) some 

175 affluent schools have sporting activities on Saturdays, which will increase Saturday usage; (5) 

176 some schools have people living on the property or community members who do not have 

177 water supply, may use water from the school’s supply during evening and early morning 

178 periods; (6) some affluent schools have after school hour music and drama lessons; and (7) 

179 some poorer schools have adult education programs in the evenings. 

180 Table 1 captures the data types and classification. Daily usage for each school was separated 

181 into weekday, Saturday and Sunday usage. The weekday usage was further divided into 

182 different times of the day, which were chosen based on school operating times and activities. 

183 These were before school hours, during school hours, extra mural activity hours in the 

184 afternoon, after school early evening hours and midnight hours.

185
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186 Table 1. Data types and classification.

Classification
Variable Data type

Primary Secondary

V0508: 05:00 – 08:00

V0814: 08:00 – 14:00

V1417: 14:00 – 17:00

V1722: 17:00 – 22:00

Vw: Weekdays

V2205: 22:00 – 05:00 

Vsa: Saturdays

Vsu: Sundays

Water usage Quantity
 (L/hour)

Vt: Total

St: Number of students Quantity

Edu: Number of educators Quantity

Fees: Fees charged Yes/No

S21: Self-governance Yes/No
187

188 2.3.2 Selection of analytical technique

189 The main imperative in selecting the appropriate analytical technique was the integration of 

190 both, quantitative and qualitative variables (see Table 1 above), which were identified to 

191 influence schools’ water usage. In this context, Bayesian Networks (BNs) modelling has 

192 proven to be effective in relation to a range of environmental systems/processes modelling 

193 (Bonotto et al., 2018; Borsuk et al., 2004; Liu et al., 2018; Maeda et al., 2017; Martín de 

194 Santa Olalla et al., 2007; Rigosi et al., 2015; Ticehurst et al., 2007; Wijesiri et al., 2018). In 

195 fact, Bayesian statistical methods have gained relatively little attention, although they have 

196 been used for scenario-based water demand modelling. These methods combine the theory of 

197 probability and deductive reasoning to manage uncertainty in data.
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198 The BNs modelling facilitates developing interdependencies between variables using the 

199 current knowledge of the problem, and their Markov Property (i.e. each variable depends only 

200 on its immediate parent variables) and overcomes the curse of dimensionality when dealing 

201 with small data sets (Scutari, 2009). A detailed discussion on BNs modelling is provided in 

202 the Supplementary Information. Accordingly, BNs modelling was employed in the current 

203 study to understand the interdependencies between influential factors of water demand in the 

204 schools. The modelling outcomes were then used to assess the significance of the state of 

205 affluence of schools compared to other factors.

206 3.0 Results and Discussion 

207 3.1 General trends in water usage by schools

208 Table 2 summarises the data captured for different scenarios, and summarises the number of 

209 schools in each scenario. From the 156 schools investigated, 27 are in Scenario 1, 44 in 

210 Scenario 2, 12 in Scenario 3, and 73 in Scenario 4. In summary, this translates to 73 affluent 

211 schools and 83 less affluent schools in the dataset.

212 Table 2. Summary of schools in the dataset.

Scenario Number of 
Schools (%) Description

No. Fees S21

1 No No 27 (17) Parents don’t pay, school not self-governing

2 No Yes 44 (28) Parents don’t pay, school self-governing

3 Yes No 12 (8) Parents pay, school not self-governing

4 Yes Yes 73 (47) Parents pay, school self-governing
213

214 The results in Fig. 1(a) show a drastic difference in flow rate for each school over all hours 

215 (Vt) from Scenarios 1 – 4. The medians and means are incrementally less for each scenario, 
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216 with the Scenario 4 mean, 189 L/hr, only 40% of the Scenario 1 mean at 468 L/hr. We then 

217 investigated the source of the difference between the groups by individually evaluating the 

218 periods in Fig. 1(b) to Fig. 1(f).

219 As expected, the highest flow rate for each scenario occurs during school hours (8:00 to 

220 14:00), with disparate means of 709 L/hr, 536 L/hr, 331 L/hr and 364 L/hr, respectively, for 

221 the four scenarios. There is large variance in the flow rates of the two non-fee-paying schools, 

222 with the fee-paying S21 scenario (Scenario 3) using similar amounts of water as the fee-

223 paying S21 schools (Scenario 4), but with substantially less variance, which may be because 

224 of the small number of schools in Scenario 2.

225
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253 Fig. 1. Temporal distributions of water usage during specified times for Scenarios 1 –4: (a) 

254 Total – Vt; (b) School hours – V0814; (c) Afternoon – V1417; (d) Evening – V1722; (e) Midnight 

255 hours – V2205; (f) Before school – V0508; (g) Weekdays – Vw; (h) Saturdays – Vsa; (i) Sundays 

256 – Vsu.
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257 In the early afternoon, shown in Fig. 1(c), the usage for all scenarios is less than during school 

258 hours, as expected. The schools in Scenario 1 still use substantially more than any of the other 

259 groups, and Scenario 2 more than Scenario 3 and Scenario 4. Interestingly, not a single school 

260 in Scenario 1 drops below 110 L/min during this time. Except for a few apparently wasteful 

261 schools in Scenario 3, the median and mean for Scenario 3 and Scenario 4 are virtually on 

262 par. Since the extramural activities occur during these hours, it is clear that the flow rates 

263 during extramural activities is substantially less than that during school hours, which is also 

264 the case for Scenario 4. 

265 The early evening timeslot, Fig. 1(d), mostly exhibits the same patterns and the midnight 

266 hours, with an interesting exception – the mean flows during these hours are lower than the 

267 mean midnight hours for the two middle scenarios. The medians, however, are lowest for the 

268 midnight hours for all four scenarios. All three less affluent schools exhibit a large difference 

269 between the median and 75th percentiles, indicating that the “bad half” of those schools have 

270 caused this apparent increase. In fact, for the non-fee-paying schools, the top 50% of schools 

271 are responsible for 85.2% of the total use. This may be indicative of either usage after 22:00 

272 or usage before 05:00 for those schools, possibly by the surrounding poorer communities. 

273 As expected, the lowest mean flow rate for each scenario occurs between 17:00 and 05:00hrs, 

274 with the lowest median flows occurring during midnight hours (22:00 to 05:00). The flow 

275 during the hours before school, 05:00 to 08:00, mostly reflects the natural transient from the 

276 midnight hours to the school hours, as staff and students arrive during that time. 

277 The midnight flow – means of 316 L/hr, 282 L/hr, 171 L/hr and 73 L/hr – is expected to be 

278 zero or close to it, and  unexpected flow indicates anomalies, for example, taps left open, 

279 stuck toilets, or indicates leaks. Considering that these anomalous flow rates are likely to also 

280 be present during the day, we can perform a rough estimate of the intentional water usage as 
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281 the difference between the school-hour use and the midnight-hour use, resulting in 393 L/hr, 

282 254 L/hr, 160 L/hr, and 291 L/hr for the four scenarios, which gives approximated school-

283 hour efficiencies, calculated by  , of 55%, 53%, 48% and 80%, 𝜂𝑉0814 = (𝑉0814 ‒ 𝑉2205)/𝑉0814

284 respectively, demonstrating a stark difference between the affluent and poorer schools. 

285 However, importantly, when taking the medians, rather than means, the efficiencies are much 

286 closer, resulting in 76%, 85%, 79%, and 86% respectively, which indicates that the substantial 

287 inefficiencies are largely caused by a the few errant schools, and also shows a trend of higher 

288 efficiency for self-governed (S21) schools (Scenarios 2 and 4). These results are also visible 

289 when considering weekday (vs. weekend) volume used as a proportion of total use, which 

290 results in 78%, 82%, 78%, 84 % for the means and 81%, 86%, 83%, and 88% for the 

291 medians, further demonstrating better efficiency for the self-governing S21 schools. The 

292 usage on weekdays is double that of weekend days for the affluent s4 schools, but only 

293 approximately a third more for the poorer Scenario 1 schools, further underlying that poor 

294 maintenance may be at play. The weekend distributions also belie that only the poorest 

295 schools, Scenario 1, have substantially more flow on Saturdays than on Sundays, further 

296 potentially pointing to community usage during those days.  

297 Another perspective on inefficiencies is given by the volume used in the school hours as a 

298 ratio of the total volume, calculated by , which results in 38%, 37%, 37% and 𝜂𝑉𝑡 = 𝑉0814/𝑉𝑡

299 48%, respectively for the means, and 44%, 59%, 51%, and 50% for the medians, again 

300 showing the difference between poor and affluent schools as a group, but also the impact of a 

301 few errant schools. 

302 Using the difference between the school hour flow rate and the midnight flow rate, and the 

303 student numbers per school from the WCED dataset, we calculated the effective water used 

304 per learner for a six-hour long school day, disregarding the number of educators (and staff), 
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305 which resulted in 2.17 L/student/day, 1.00 L/student/day, 1.36 L/student/day, and 1.79 

306 L/student/day for the four scenarios, respectively. Since the leaks are already taken into 

307 account in these figures, these differences must largely be operational, with the s1 likely 

308 higher mainly due to water-intensive feeding schemes, poor maintenance, and lack of user 

309 awareness or behaviour;  and the s4 number likely higher due to gardening, staff kitchens, and 

310 lack of user awareness or behaviour.

311 These results demonstrate that lack of maintenance at poor schools is a significant contributor 

312 to the higher usage at the poorer schools, but also demonstrate that lack of maintenance does 

313 not explain the full extent of the differences in usage. We therefore further analysed the 

314 underlying drivers.

315 3.2 Characterising the influence of school affluence on water usage

316 Prior to quantitative assessment of the interdependencies between water usage and influential 

317 factors using BNs modelling, the basic trends between water usage and each influential factor 

318 were evaluated. Accordingly, Fig. 2 shows the variations in total water usage of all schools 

319 against the number of users, usage during week days, usage during weekends, and usage 

320 during different periods of time on week days. It is evident that the total water usage shows 

321 strong linear relationships with the usage based on the day and the time of the week. 

322 However, there is considerable variability in the relationship between total water usage and 

323 the number of students and educators.

324 Fig. 3 shows the Directed Acyclic Graph (DAG) of the two evaluated BNs models 

325 incorporating the factors that could influence water usage in schools. These models were 

326 fitted with observed data using the ‘bnlearn’ package in the R statistical computing platform 

327 (Scutari, 2016). Table 3 shows the estimated influence exerted by each factor on school’s 

328 water usage. Further, Table 3 provides different sets of conditional regression coefficients 
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329 corresponding to different scenarios of the state of affluence of schools. Additionally, the 

330 performance of the proposed model was assessed using leave-one-out cross validation. This 

331 resulted a Root Mean Squared Error (RMSE) of 0.0491 and 0.0322 for Model 1 and Model 2, 

332 respectively. The observed vs. predicted plots and residuals plots are shown in Fig. 4, which 

333 also confirms that the model performance was satisfactory.
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352 Fig. 2. Total water usage of schools as functions of the number of users, usage during week 
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375 Fig. 3. Directed Acyclic Graph (DAG) of the Bayesian Networks (BNs) models of water 

376 usage of schools with different socio-economic status: (a) Model 1; (b) Model 2.
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377 Table 3. Estimated conditional regression coefficients (conditional Gaussian distribution, log 

378 transformed data) for total water usage (Vt) and relative influence of key factors for the time-

379 of-the-day usage analysis (Model 1) and day-of-the-week analysis (Model 2).

MODEL 1

aConditional density: Vt | S21 + Fees + Edu + St + V0508 + V0814 + V1417 + V1722 + V2205

Scenario
Variable

S1 S2 S3 S4

S21 No No Yes Yes

Fees No Yes No Yes

 bC bC bC bC

Edu 0.028 -0.099 0.034 0.005

St 0.017 0.069 0.122 0.034

V0508 0.353 0.381 0.588 0.270

V0814 0.375 0.371 0.212 0.500

V1417 0.117 0.169 0.092 0.144

V1722 0.163 0.123 0.046 0.072

V2205 -0.002 0.010 0.004 -0.002

MODEL 2

aConditional density: Vt | S21 + Fees + Edu + St + Vsa + Vsu + Vw

Scenario
Variable

S1 S2 S3 S4

S21 No No Yes Yes

Fees No Yes No Yes

 bC bC bC bC

Edu 0.026 0.147 -0.036 0.035

St -0.010 -0.184 0.030 -0.040

Vsa 0.148 0.115 0.005 -0.034

Vsu 0.004 -0.003 0.004 0.042

Vw 0.855 0.911 1.017 1.006
a probability density function of Vt, given the parent variables

b estimated conditional regression coefficient 
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382 Fig. 4. Predictive performance of the Bayesian Network (BN) models: (a) Model 1 – observed 

383 vs predicted plot; (b) Model 1 – residuals plot; (c) Model 2 – observed vs predicted plot; (d) 

384 Model 2 – residuals plot.

385 3.3  Practical implications of research outcomes

386 The coefficients in Table 3 confirm the hypothesis alluded to in the general assessment. 

387 Model 1’s coefficients confirm that for the more prudent and affluent Scenario 4, the hours 
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388 from 05:00 to 17:00 are the main drivers of total usage, with the actual school hours 

389 exhibiting by far the largest coefficient. 

390 The coefficients for the schools in the three poorer scenarios show that the hours before 

391 school are substantial drivers of total usage. Considering the worst two scenarios (Scenarios 1 

392 and 2), sizeable contributions are evidently made by the hours from 14:00 to 22:00, indicating 

393 that it is these that should be targeted to reduce the total usage at schools in these scenarios. 

394 The Scenario 3 schools, which perform worse than Scenario 4, but better than the other two 

395 has the before-school timeslot as the largest coefficient, and also sizeable contributions from 

396 the number of students and the timeslot immediately after school. 

397 Model 2, which evaluated the days of the week, shows that the two worst performing schools 

398 have large contributions from the Saturday usage, in addition to the weekday contributions, 

399 which are present for Scenarios 3 and 4. Although these results will need further investigation 

400 and potentially site inspections, they demonstrate that the total usage at the apparently 

401 wasteful schools are largely linked to after hour usage, which is only partially due to constant 

402 background leaks. 

403 4.0 Conclusion

404 We evaluated the temporal usage profiles of 156 schools in the Western Cape in South Africa 

405 in the run-up to Cape Town’s Day Zero. We differentiated between affluent and poor schools 

406 in general, and specifically evaluated the impact of whether the schools were, fee-paying, 

407 self-governed, number of students, number of educators and a diversity of temporal 

408 differentiations. The results show a clear trend that the poorest schools (non-fee paying, not 

409 self-governing) use substantially more water usage regardless of the time period considered. 

410 Moreover, the most affluent schools (fee-paying, self-governing) use the least amount of 

411 water. For the two middle schools, we noted usage in-between the two extremities. It was 
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412 observed that these high levels of usage is likely due to a few errant schools, as the median 

413 schools are not much different than the affluent schools. Using Bayesian Networks, it was 

414 also observed that in addition to leakages being present, high usage in poorer schools is linked 

415 to early morning usage, afternoon and early evening usage as well as Saturday usage. We 

416 recommend that schools be equipped with smart meters to allow prudent water usage 

417 management. In the alternative, it is recommended that poor schools, especially those that are 

418 self-governing be targeted for maintenance and awareness campaigns.

419 Acknowledgement

420 The authors thank the Western Cape Department of Education, Shoprite Holdings, Cape Talk, 

421 and all the other academic, corporate, and other contributors listed at 

422 www.schoolswater.co.za.  First and third authors thank MTN South Africa for funding the 

423 research through grant S003061, and the Water Research Commission (South Africa) for 

424 funding the research through grant K1-7163.

425 Supplementary Information

426 A sample of the schools data set of Western Cape Education Department (WCED) and the 

427 details of BNs modelling is provided as Supplementary Information.

428 References

429 Adamowski, J., Fung Chan, H., Prasher, S. O., Ozga‐Zielinski, B., & Sliusarieva, A. (2012). 

430 Comparison of multiple linear and nonlinear regression, autoregressive integrated 

431 moving average, artificial neural network, and wavelet artificial neural network 

432 methods for urban water demand forecasting in Montreal, Canada. Water Resources 

433 Research, 48(1), W01528 (01521-01514). 



23

434 Bakker, M., Vreeburg, J., Van Schagen, K., & Rietveld, L. (2013). A fully adaptive 

435 forecasting model for short-term drinking water demand. Environmental Modelling & 

436 Software, 48, 141-151. 

437 Bonotto, D. M., Wijesiri, B., Vergotti, M., da Silveira, E. G., & Goonetilleke, A. (2018). 

438 Assessing mercury pollution in Amazon River tributaries using a Bayesian Network 

439 approach. Ecotoxicology and Environmental Safety, 166, 354-358. 

440 doi:https://doi.org/10.1016/j.ecoenv.2018.09.099

441 Booysen, M. J., Ripunda`, C., & Visser, M. (2019a). Results from a water-saving maintenance 

442 campaign at Cape Town schools in the run-up to Day Zero. Sustainable Cities and 

443 Society. doi:https://doi.org/10.31224/osf.io/45cf9

444 Booysen, M. J., Visser, M., & Burger, R. (2019b). Temporal case study of household 

445 behavioural response to Cape Town's “Day Zero” using smart meter data. Water 

446 Research, 149, 414-420. doi:https://doi.org/10.1016/j.watres.2018.11.035

447 Borsuk, M. E., Stow, C. A., & Reckhow, K. H. (2004). A Bayesian Network of 

448 Eutrophication Models for Synthesis, Prediction, and Uncertainty Analysis. Ecological 

449 Modelling, 173(2), 219-239. 

450 Botai, C. M., Botai, J. O., De Wit, J. P., Ncongwane, K. P., & Adeola, A. M. (2017). Drought 

451 Characteristics over the Western Cape Province, South Africa. 9(11), 876. 

452 Bougadis, J., Adamowski, K., & Diduch, R. (2005). Short‐term municipal water demand 

453 forecasting. Hydrological Processes: An International Journal, 19(1), 137-148. 

454 Dalgleish, T., Williams, J. M. G., Golden, A.-M. J., Perkins, N., Barrett, L. F., Barnard, P. J., 

455 Au Yeung, C., Murphy, V., Elward, R., & Tchanturia, K. (2007). Reduced specificity 

456 of autobiographical memory and depression: the role of executive control. Journal of 

457 Experimental Psychology: General, 136(1), 23. 

https://doi.org/10.1016/j.ecoenv.2018.09.099
https://doi.org/10.31224/osf.io/45cf9
https://doi.org/10.1016/j.watres.2018.11.035


24

458 Datta, S., Miranda, J. J., Zoratto, L., Calvo-González, O., Darling, M., & Lorenzana, K. 

459 (2015). A behavioral approach to water conservation: evidence from Costa Rica: The 

460 World Bank.

461 DBE. (2015). Neims Standard Reports As At 12 May 2015. Department of Basic Education, 

462 Republic of south Africa Retrieved from 

463 http://www.education.gov.za/Portals/0/Documents/Publications/NEIMS STANDARD 

464 REPORTS AS AT 12 MAY 2015.pdf?ver=2015-06-03-114948-520

465 Dernoncourt, F., & Lee, J. Y. (2016). Optimizing neural network hyperparameters with 

466 gaussian processes for dialog act classification. Paper presented at the Spoken 

467 Language Technology Workshop (SLT), 2016 IEEE.

468 Donkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2012). Urban water demand 

469 forecasting: review of methods and models. Journal of Water Resources Planning and 

470 Management, 140(2), 146-159. 

471 Engelbrecht, J., & Harding, A. (2008). The impact of the transition to outcomes-based 

472 teaching on university preparedness in mathematics in South Africa. Mathematics 

473 Education Research Journal, 20(2), 57-70. 

474 Enqvist, J. P., & Ziervogel, G. (2019). Water governance and justice in Cape Town: An 

475 overview. Wiley Interdisciplinary Reviews: Water, e1354, 1-15. 

476 doi:https://doi.org/10.1002/wat2.1354

477 Ferraro, P. J., & Price, M. K. (2013). Using nonpecuniary strategies to influence behavior: 

478 evidence from a large-scale field experiment. Review of Economics and Statistics, 

479 95(1), 64-73. 

480 Fielding, K., Spinks, A., Russell, S., Mankad, A., & Price, J. (2012). Water demand 

481 management study: baseline survey of household water use (Part B). Urban Water 

482 Security Research Alliance Technical Report(93). 

http://www.education.gov.za/Portals/0/Documents/Publications/NEIMS
https://doi.org/10.1002/wat2.1354


25

483 Ghiassi, M., Fa'al, F., & Abrishamchi, A. (2017). Large metropolitan water demand 

484 forecasting using DAN2, FTDNN, and KNN models: A case study of the city of 

485 Tehran, Iran. Urban Water Journal, 14(6), 655-659. 

486 Ghiassi, M., Zimbra, D. K., & Saidane, H. (2008). Urban water demand forecasting with a 

487 dynamic artificial neural network model. Journal of Water Resources Planning and 

488 Management, 134(2), 138-146. 

489 Government_Gazette. (1996). South African Schools Act 1996 (Vol. 377, No. 17579). Cape 

490 Town: Republic of South Africa

491 Gurung, T. R., Stewart, R. A., Sharma, A. K., & Beal, C. D. (2014). Smart meters for 

492 enhanced water supply network modelling and infrastructure planning. Resources, 

493 Conservation and Recycling, 90, 34-50. 

494 Jacobs, H., & Haarhoff, J. (2004). Application of a residential end-use model for estimating 

495 cold and hot water demand, wastewater flow and salinity. Water sa, 30(3), 305-316. 

496 Kenney, D. S., Goemans, C., Klein, R., Lowrey, J., & Reidy, K. (2008). Residential water 

497 demand management: lessons from Aurora, Colorado1. JAWRA Journal of the 

498 American Water Resources Association, 44(1), 192-207. 

499 Liu, A., Giurco, D., & Mukheibir, P. (2016). Urban water conservation through customised 

500 water and end-use information. Journal of Cleaner Production, 112, 3164-3175. 

501 Liu, A., Wijesiri, B., Hong, N., Zhu, P., Egodawatta, P., & Goonetilleke, A. (2018). 

502 Understanding re-distribution of road deposited particle-bound pollutants using a 

503 Bayesian Network (BN) approach. Journal of Hazardous Materials, 355, 56-64. 

504 doi:https://doi.org/10.1016/j.jhazmat.2018.05.012

505 Longueira, R. (2016). Exploring the functionality of the South African education quintile 

506 funding system. University of Pretoria, 

https://doi.org/10.1016/j.jhazmat.2018.05.012


26

507 Maeda, E. E., Mäntyniemi, S., Despoti, S., Musumeci, C., Vassilopoulou, V., Stergiou, K. I., 

508 Giannoulaki, M., Ligas, A., & Kuikka, S. (2017). A Bayesian model of fisheries 

509 discards with flexible structure and priors defined by experts. Ecological Modelling, 

510 366(Supplement C), 1-14. doi:https://doi.org/10.1016/j.ecolmodel.2017.10.007

511 Martín de Santa Olalla, F., Dominguez, A., Ortega, F., Artigao, A., & Fabeiro, C. (2007). 

512 Bayesian networks in planning a large aquifer in Eastern Mancha, Spain. 

513 Environmental Modelling & Software, 22(8), 1089-1100. 

514 doi:https://doi.org/10.1016/j.envsoft.2006.05.020

515 McDonald, R. I., Weber, K., Padowski, J., Flörke, M., Schneider, C., Green, P. A., Gleeson, 

516 T., Eckman, S., Lehner, B., Balk, D., Boucher, T., Grill, G., & Montgomery, M. 

517 (2014). Water on an urban planet: Urbanization and the reach of urban water 

518 infrastructure. Global Environmental Change, 27, 96-105. 

519 doi:https://doi.org/10.1016/j.gloenvcha.2014.04.022

520 Motala, S. (2015). Equity, access and quality in basic education: a review. JOURNAL OF 

521 EDUCATION(61), 159-175. 

522 Muller, M. (2018). Lessons from Cape Town’s drought. Nature, 559, 174-176. 

523 Parks, R., McLaren, M., Toumi, R., & Revett, U. (2019). Experiences and lessons in 

524 managing water from Cape Town. Retrieved from Grantham Institute, Imerial 

525 College, London: 

526 Ren, Z., & Li, S. (2016). Short-term demand forecasting for distributed water supply 

527 networks: A multi-scale approach. Paper presented at the 2016 12th World Congress 

528 on Intelligent Control and Automation (WCICA).

529 Rigosi, A., Hanson, P., Hamilton, D. P., Hipsey, M., Rusak, J. A., Bois, J., Sparber, K., 

530 Chorus, I., Watkinson, A. J., & Qin, B. (2015). Determining the probability of 

https://doi.org/10.1016/j.ecolmodel.2017.10.007
https://doi.org/10.1016/j.envsoft.2006.05.020
https://doi.org/10.1016/j.gloenvcha.2014.04.022


27

531 cyanobacterial blooms: the application of Bayesian networks in multiple lake systems. 

532 Ecological Applications, 25(1), 186-199. 

533 Ripunda, C., & Booysen, M. (2018). Understanding and affecting school water behaviour 

534 using technological interventions. Paper presented at the Water Institute of Southern 

535 Africa (WISA) 2018 Conference, South Africa.

536 Sánchez-Torija, J. G., Gómez-Rubiera, E. L., & Frutos, C. B. (2017). The incorporation of the 

537 study into water consum ption in energy audits in schools. Revista de la Construcción, 

538 16(3), 361-373. 

539 Scheba, S., & Millington, N. (2018). Crisis Temporalities: Intersections Between 

540 Infrastructure and Inequality in the Cape Town Water Crisis. International Journal of 

541 Urban & Regional Research. 

542 Scutari, M. (2009). Learning Bayesian Networks with the bnlearn R Package. arXiv preprint 

543 arXiv:0908.3817. 

544 Scutari, M. (2016). Package ‘bnlearn’: Bayesian Network Structure Learning, Parameter 

545 Learning and Inference. Retrieved from 

546 Srinivasan, V., Konar, M., & Sivapalan, M. (2017). A dynamic framework for water security. 

547 Water Security, 1, 12-20. doi:https://doi.org/10.1016/j.wasec.2017.03.001

548 Swartz, L. (2009). Financial Management of Schools: OpenStax CNX.

549 Ticehurst, J. L., Newham, L. T. H., Rissik, D., Letcher, R. A., & Jakeman, A. J. (2007). A 

550 Bayesian network approach for assessing the sustainability of coastal lakes in New 

551 South Wales, Australia. Environmental Modelling & Software, 22(8), 1129-1139. 

552 doi:https://doi.org/10.1016/j.envsoft.2006.03.003

553 Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., 

554 Kumar, P., Rao, P. S. C., Basu, N. B., & Wilson, J. S. (2010). The future of 

https://doi.org/10.1016/j.wasec.2017.03.001
https://doi.org/10.1016/j.envsoft.2006.03.003


28

555 hydrology: An evolving science for a changing world. Water Resources Research, 

556 46(5). 

557 WCG. (2017). The Cape Water Crisis – FAQs and honest answers. Retrieved from 

558 https://www.westerncape.gov.za/news/water-crisis

559 Wijesiri, B., Deilami, K., McGree, J., & Goonetilleke, A. (2018). Use of surrogate indicators 

560 for the evaluation of potential health risks due to poor urban water quality: A Bayesian 

561 Network approach. Environmental Pollution, 233, 655-661.

562 doi:https://doi.org/10.1016/j.envpol.2017.10.076

563 Ziervogel, G. (2019). Unpacking the Cape Town drought: Lessons learned. Retrieved from 

564 National Treasury, Republic of South Africa: 

565 https://www.africancentreforcities.net/wp-content/uploads/2019/02/Ziervogel-2019-

566 Lessons-from-Cape-Town-Drought_A.pdf

https://www.westerncape.gov.za/news/water-crisis
https://doi.org/10.1016/j.envpol.2017.10.076
https://www.africancentreforcities.net/wp-content/uploads/2019/02/Ziervogel-2019-Lessons-from-Cape-Town-Drought_A.pdf
https://www.africancentreforcities.net/wp-content/uploads/2019/02/Ziervogel-2019-Lessons-from-Cape-Town-Drought_A.pdf


2

A Sample of Western Cape Education Department (WCED) schools data set
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Bayesian Networks (BNs) modelling

In BNs modelling, the model structure is developed based on the current knowledge of the 

system/process being modelled. Therefore, the evidence from the literature and expert opinion 

play a key role in this regard. The BNs model structure is a Directed Acyclic Graph (DAG), 

and it is created by connecting a set of random variables which collectively define the 

system/process of interest (Fig. S1). Then, Structure Learning Algorithms are used to learn 

the model structure, and model parameters are estimated using approaches such as Maximum 

Likelihood Estimates (Ben‐Gal, 2007; Scutari, 2009; Uusitalo, 2007). 

As depicted in Fig. S1, it is assumed that a particular system/process is represented by a set of 

random variables . The BNs model structure defines a factorisation of the  𝑈 = {𝑋1,𝑋2,…,𝑋6}

global probability distribution of U (i.e. joint probability distribution) into local probability 

distributions of individual variables, based on the Markov Property of BNs (Equations 1 and 

2). The Markov Property states that a particular variable is dependant only on its immediate 

parent variables (Korb and Nicholson, 2010). 

; for discrete variables (1)𝑃(𝑋1,𝑋2,…,𝑋6) = ∏6
𝑖 = 1𝑃(𝑋𝑖|∏𝑋𝑖)

; for continuous variables (2)𝑓(𝑋1,𝑋2,…,𝑋6) = ∏6
𝑖 = 1𝑓(𝑋𝑖|∏𝑋𝑖)

For discrete variables, the model parameters are estimated in terms of conditional 

probabilities. For continuous variables, the parameters are estimated in terms of conditional 

regression coefficients. It is important to note that BNs is a flexible modelling approach, such 

that a proposed model structure can be improved by using new data and knowledge.
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Fig. S1. The graphical structure of a typical Bayesian Networks (BNs) model. Note:  

Conditional density refers to the probability density functions of the variables X1, X2 and X3 

given immediate parent variables.
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