
Proceedings of the ASME 2019 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2019
August 18-21, 2019, Anaheim, CA, USA

DETC2019-97932

COLLABORATING WITH STYLE: USING AN AGENT-BASED MODEL TO SIMULATE
COGNITIVE STYLE DIVERSITY IN PROBLEM SOLVING TEAMS

Samuel Lapp
School of Engineering Design,

Technology, and Professional Programs
The Pennsylvania State University

Email: sammlapp@gmail.com

Kathryn Jablokow
School of Engineering Design,

Technology, and Professional Programs
The Pennsylvania State University

Email: KWL3@psu.edu

Christopher McComb∗
School of Engineering Design,

Technology, and Professional Programs
The Pennsylvania State University

Email: mccomb@psu.edu

ABSTRACT
Collaborative problem solving can be successful or coun-

terproductive. The performance of collaborative teams depends
not only on team members’ abilities, but also on their cognitive
styles. Cognitive style measures differences in problem-solving
behavior: how people generate solutions, manage structure, and
interact. While teamwork and problem solving have been stud-
ied separately, their interactions are less understood. This pa-
per introduces the KAI Agent-Based Organizational Optimiza-
tion Model (KABOOM), the first model to simulate cognitive
style in collaborative problem solving. KABOOM simulates the
performance of teams of agents with heterogeneous cognitive
styles on two contextualized design problems. Results demon-
strate that, depending on the problem, certain cognitive styles
may be more effective than others. Also, intentionally aligning
agents’ cognitive styles with their roles can improve team per-
formance. These experiments demonstrate that KABOOM is a
useful tool for studying the effects of cognitive style on collabo-
rative problem solving.

1 INTRODUCTION
Cognitive style can play an important role in collaborative

problem solving [1], but its effects are not well understood. Cog-
nitive style is defined as an individual’s preferred manner of man-
aging structure as they solve problems, make decisions, and seek
to bring about change. In one of the few studies examining in-
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teractions of cognitive style with team problem-solving perfor-
mance, Hammerschmidt [2] found that aligning team members’
cognitive styles with tasks improved performance. This suggests
that if the effects of cognitive style were better understood, the
formation of engineering teams could be informed by the cog-
nitive style of team members, as well as their domain expertise
and ability. This paper addresses a gap in design research by
studying the effects of cognitive style on collaborative problem
solving using an agent-based model.

Most previous research on collaboration and team perfor-
mance is based on qualitative descriptions of small studies [3],
as large in-vivo studies over long periods of time are expensive.
The results of these small-scale studies are difficult to generalize
and tend to be applicable only in specific contexts [4]. Computa-
tional methods can be used to supplement traditional behavioral
studies, advancing the pace of scientific development and provid-
ing better tools for managers. Specifically, agent-based models
can provide rapid insight into the effects of team composition and
structure on team performance, which enables the comparison of
many different team scenarios [5]. Several recent publications
demonstrate that simulation can be an effective tool for studying
human systems in engineering design [4, 6–9]. Because human
systems are messy and hard to decompose for scientific study,
simulations like these are useful for isolating independent vari-
ables when studying cognition and social interaction [10].

However, translating the results of computational experi-
ments to a real-world context can be challenging, especially
when the simulated problem and environment are abstract. Some
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existing models of engineering teamwork incorporate contextu-
alized, real-world problems [6, 8, eg], while others use more ab-
stract objectives [10, 11, eg]. Abstract problems offer simplicity
and flexibility, which can mean less development time and faster
simulations. An abstract problem can also be modified arbitrarily
because it is not tied to physical systems, so one abstract problem
can have infinite variations (for instance, a parabolic objective
function could have any linear and quadratic coefficients). How-
ever, abstract problems often lack the complex multivariate inter-
actions and constraints of real-world problems. Using an abstract
objective makes it difficult to tie meaning to performance, but the
results of a contextualized problem can be directly compared to
real-world outcomes. Ideally, simulations should closely reflect
real-world problems and scenarios so their results can be com-
pared directly to the performance of human teams. This paper
implements two contextualized problems (a simple beam-design
problem and a multi-objective race car-design problem) in order
to evaluate the performance of simulated teams in an agent-based
model.

Additionally, modeling human systems is difficult because
human problem solvers are diverse, unpredictable, and some-
times irrational. Some problem-solving traits can be captured
by cognitive style, a construct defined by cognitive preferences
for managing structure in problem solving and social behavior
[12]. While some agent-based models have attempted to reflect
certain human qualities such as emotion, social status, and stress
[10, 11, 13, 14], none have created agents with diverse cognitive
styles.

One extensively validated instrument of cognitive style is
the Kirton Adaption-Innovation inventory (KAI) [15]. The KAI
uses 32 items to place individuals on a continuous spectrum of
cognitive preference for managing structure, with two equally-
valued extremes (highly adaptive and highly innovative) [12].
In general, more adaptive individuals prefer more structure in
their problem solving, and seek consensus with other members
of the team. In contrast, more innovative individuals prefer less
structure in their problem solving and are less concerned about
consensus. In practice, a more adaptive person tends to modify
systems and solutions using incremental changes to make im-
provements, while adhering to existing structures and norms. A
more innovative person, on the other hand, tends to make radi-
cal and riskier changes to systems and solutions with less regard
for structures, norms, and the practical quality of the result. It is
important to note that cognitive style is independent of cognitive
level or ability [12, 15], so people of a particular style will not
automatically be better or worse at solving problems. The model
in this paper creates heterogeneous agents with diverse cogni-
tive styles in order to study the effects of cognitive style on team
problem-solving behavior.

In addition to a total score that represents a person’s overall
cognitive style, KAI also identifies three style sub-factors, called
Sufficiency of Originality (SO), Efficiency (E), and Rule/Group

Conformity (RG), which describe specific aspects of that style.
Sufficiency of Originality relates to the paradigm-relatedness and
immediate applicability of solutions that a person offers. More
adaptive people tend to offer fewer solutions (based on their in-
ternal filtering for practicality, not capacity) that preserve and
modify existing structures, and that are easier to integrate into
previous work. More innovative people tend to offer a larger
number of solutions (based on their looser criteria for acceptable
solutions) that stretch or challenge existing structures and norms,
and which may not fit easily into the current way of doing things.
Efficiency relates to an individual’s preferred methodology and
attention to detail in solving problems. More adaptive individu-
als carefully evaluate their solutions to ensure they makes things
better, while more innovative individuals tend to introduce riskier
and less well-defined changes. Rule/Group Conformity relates
to an individual’s tendency to adhere to rules, norms, and struc-
tures, and to seek or resist group cohesion. Adaptive individuals
prefer to leverage existing rules, norms, and constraints, while
innovative individuals tend to ignore or actively violate them. In
a group, adaptive individuals actively seek group cohesion, while
innovative individuals tend to stray from or actively diverge from
a group, which can create discord.

The overarching objective of this work is to use agent-based
modeling to identify how cognitive style affects collaborative
problem solving. To do this, we use the KAI Agent-Based Or-
ganizational Optimization Model (KABOOM), which we devel-
oped as the first computational tool to study the role of cognitive
style in collaborative problem solving. Four specific research
questions motivate the computational experiments in this paper:

1. How do the cognitive styles of team members impact team
performance on different contextualized problems?

2. In a specialized team, what are the optimal cognitive styles
for each sub-team?

3. Can strategically assigning agents to sub-problems based on
their cognitive style improve the team’s performance?

4. How does changing the decomposition of a problem affect
the team performance?

The remainder of this paper summarizes relevant work in
agent-based modeling, describes the KABOOM agent-based
model with cognitive style and two contextualized problems, and
discusses the computational experiments addressing the research
questions noted above.

2 BACKGROUND
An agent-based model is a collection of autonomous agents

that make decisions based on given rules [16]. Agents make
runtime decisions about their actions and collaboration based
on limited knowledge of their environment, limited decision-
making capabilities, and limited ability to connect and share in-
formation with other agents [13, 17]. Agent-based models that
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solve contextualize problems can be constructed by modifying
multi-agent optimization techniques such as simulated anneal-
ing (as in [8]) or a cooperative coevolutionary algorithm (as in
[6]). This paper’s methodology is based on simulated annealing
[18], an optimization technique that gradually transitions from
a stochastic to deterministic downhill search. In order to model
realistic individual and group behavior, the agents should be de-
signed to behave like humans as much as possible (rather than
being designed for ideal optimization performance) [13].

Several agent-based models study specific individual and so-
cial aspects of the problem-solving process. In 2004, Tsvetovat
and Carly [13] implement learning, social network theory, and
social psychology in a multi-agent system to study social and
technological systems. Martinez-Miranda et al. [14] develop
an agent-based model to simulate the social and emotional as-
pects of team problem solving. Their model uses constructs of
emotion, personality, and cognition to inform agent interaction.
Other models focus on the effects of stress and motivation [11]
or transactive learning as a product of communication [10]. Fan
and Yen [19] review several other models that simulate emotion
and sentiment. However, the authors are not aware of any ex-
isting models of teamwork that have heterogeneous agents with
individual cognitive styles.

The model in this paper draws inspiration specifically from
two recent models. First, the Cognitively-Inspired Simulated
Annealing Teams (CISAT) model [8] provides a framework for
studying the effects of problem characteristics on the optimal
team process and team characteristics. CISAT’s organic interac-
tion timing and breadth versus depth solution search are recreated
in KABOOM. The second direct inspiration is the work of Zurita
et al. [6], which presents an agent-based model specifically cre-
ated for a contextualized problem of designing a race car for the
Society of Automotive Engineers (SAE) competition. Zurita et
al. demonstrate that team specialization and problem decompo-
sition can be represented by distributing the design parameters of
a problem among sub-teams in an agent-based model. The cur-
rent paper uses the same strategy for problem decomposition and
also recreates the contextualized race car design problem from
Zurita et al. [6].

In the context of design research, communication often
refers to the exchange of solutions between individuals [10]. The
way in which design teams communicate can be an important
predictor of success [10, 20, 21]. Previous agent-based models
have simulated communication with varying degrees of detail.
In Tsvetovat and Carly [13], the probability that two agents will
interact during a given iteration depends on their degree of sim-
ilarity and social proximity. In contrast, agents created in Singh
et al. [10] have limited ability to connect with other agents based
on the structure of the team. The model in this paper takes a sim-
pler approach to communication, where interaction probability is
a global constant and agents interact with any other agent in their
team without social preferences. This approach allows the sim-

ulation to capture important behaviors such as solution sharing
and group convergence without adding unnecessary complexity
to agent behavior that could increase noise in the results and ob-
scure the effects of cognitive style.

Though communication is critical in teamwork, more does
not mean better. Patrashkova-Volzdoska [21, 22] observes
a trade-off between communication frequency and individual
work: communication can aid performance up to a certain point,
after which increasing communication can decrease team perfor-
mance. Bernstein et al. [23] showed that intermittent (rather than
constant) collaboration can provide the benefits of constant col-
laboration, as well as the benefits of individual work. In some
cases, zero communication yields optimal performance [7, 24].
It is important to note that these results are often highly problem
dependent.

In addition to communication, team composition is critical
for team performance [9]. Composition refers to team size, life-
span (one project or several), location (local or geographically
distributed), structure (flat or hierarchical), and diversity (homo-
geneous or heterogeneous) [10]. A flawed team composition can
result in negative consequences for performance and social in-
teractions [9]. Cognitive style, which we model in this work, is
a critical aspect of team composition, and is used to define the
cognitive diversity (homogeneity or heterogeneity) of the team
[12]. Team composition should consider not only the personal
traits of individuals, but also the alignment of those traits with
the requirements of the problem [25]. Both domain expertise
[26] and cognitive style [12] are important factors in aligning
individual traits with problem requirements, but there is little ev-
idence regarding how cognitive style influence a team’s success.
Martinez-Miranda and Pavón [9] state that although some hu-
man resources departments use tests of personality and cognitive
level,

It could be even more useful for project managers to
apply the results of cognitive and psychological tests to
build virtual teams and simulate their possible behav-
iors in order to analyze what could happen when people
with specific characteristics interact with each other and
with their respective tasks over the entire duration of a
project. [9]

Therefore, this research aims to fill a gap at the intersec-
tion of cognitive style and agent-based modeling by incorporat-
ing cognitive style characteristics into an agent-based model of
engineering teamwork.

3 METHODS
This paper introduces KABOOM (KAI Agent-Based Orga-

nizational Optimization Model), a new agent-based model de-
signed to study the effects of cognitive style on team processes
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and performance. A Python implementation of KABOOM1 is
available under the MIT license 2 KABOOM simulates team
problem solving by executing a modified multi-agent simulated
annealing [18] optimization algorithm. Over the course of a sim-
ulation, a team of agents concurrently explores a design space
to maximize an objective function. The key feature of simulated
annealing that makes it useful for simulating human problem-
solving behavior is that it begins as a stochastic search, but grad-
ually transitions to a downhill search throughout the course of the
simulation. This transition from breadth (exploring solutions) to
depth (refining a solution) reflects actual human problem solv-
ing very well [8, 27, 28]. In KABOOM, there are three main
modifications from a basic simulated annealing algorithm: (1)
heterogeneous agents possess unique cognitive styles that mod-
ify their exploration of the solution space; (2) teams of agents
specialize by decomposing a problem into sub-problems; and (3)
agents communicate to share solutions in pair-wise and team-
wide meetings (see model outline in Fig 1). The implementation
of each of these modifications in KABOOM is described below.
Together, they form a model that simulates the problem-solving
process of a design team in order to investigate how style, com-
munication, and specialization impact performance.

The team is defined as a set of agents that explore the same
solution space and attempt to maximize the same objective func-
tion. Each agent is a software object that contains a current so-
lution, memory of past solutions, and a KAI style composed of
a total score and three sub-scores. Agents also have a current
speed (new solution step size) and temperature (stochastic search
parameter of simulated annealing), which decay geometrically at
each iteration. For each iteration in the simulation, each agent ei-
ther explores a new solution or communicates with another agent
by attempting to share solutions. At a fixed interval (e.g. every 50
iterations), the entire team has a meeting that results in all agents
converging to one solution. The following sections describe the
implementation of each of these behaviors.

3.1 Cognitive Style
In KABOOM, each agent is instantiated with a cognitive

style represented by a total KAI score and three sub-scores (SO,
E, R/G). These attributes modify how the agent explores the so-
lution space. Each style implementation described below is in-
tended to simulate one aspect of how cognitive style manifests
in a human’s approach to problem solving. Cognitive style im-
pacts behavior in varied and complex ways. Rather than trying
to produce a complex, comprehensive, all-encompassing model,
the current work captures only a few important aspects of the
complex reality of a human system.

When an agent explores a new solution, it chooses a direc-
tion of travel randomly and moves a distance D from the current

1https://github.com/THREDgroup/kaboom/releases/tag/v1.1-beta
2https://choosealicense.com/licenses/mit/

solution. It then evaluates the objective function at the new can-
didate solution. The distance D to the new solution is generated
with a chi distribution χ and scaled by the agent’s current speed s
(i.e., D= s ·χ). An agent’s total KAI score determines its starting
speed s0 according to :

s0 = µs +κ ·σs (1)

where µs and σs are the average and standard deviation of starting
speed for all agents, and κ is the standardized total KAI score
(re-scaled to a population mean of zero and standard deviation of
one).

Therefore, while the exact distance to a candidate solution is
stochastic, more adaptive agents generally move in smaller steps,
and more innovative agents generally move in larger steps. All
agents geometrically shrink their step size throughout the simu-
lation, but the rate of decay also depends on style (see our dis-
cussion of Efficiency in Section 3.1.3.

When evaluating a candidate solution, an agent’s perception
of the solution quality is modified by its Sufficiency of Original-
ity (SO) and Rule/Group Conformity (RG) sub-scores. The Ef-
ficiency (E) sub-score modifies the generation of new solutions
rather than perceived solution quality (see Section 3.1.3). The
perceived solution quality fP(~x) is the sum of the true solution
quality f (~x) (given by the objective function) with the SO pref-
erence PSO and RG preference PRG for the candidate solution:

fP(~x) = f (~x)+PSO +PRG (2)

The following two sections describe how the Sufficiency of Orig-
inality preference PSO and Rule/Group Conformity preference
PRG are determined.

3.1.1 Sufficiency of Originality The implementation
of the SO sub-score reflects the preference of adaptors (low SO
score) for paradigm-preserving solutions and the preference of
innovators (high SO score) for paradigm-breaking solutions. The
PSO term measures whether a candidate solution is paradigm-
preserving (moving toward the agent’s previous solutions) or
paradigm-breaking (moving away from the agent’s previous so-
lutions). First, an agent’s memory of a previous solution is rep-
resented as a weighted average of all of the agent’s previous so-
lutions:

~vmem =
N

∑
n=1

(~x−Mn)∗Q(n) (3)

where ~x is the current solution, N is the number of memories
(previous solutions) an agent has, and Mn selects each of the pre-
vious solutions in memory. The memory weights Q(n) follow
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KABOOM Framework
Problem Solving Simulated annealing optimization 

gradually transitions from stochastic 
to downhill search. 

stochastic search downhill search

Cognitive Style Agents’ unique Adaption-Innovation 
styles affect their exploration of the 
design space. 

Communication Agents share solutions with each 
other. Large cognitive style gaps make 
communication less likely to succeed. 

Specialization Teams specialize to solve a problem 
concurrently by assigning decomposed 
parts of the problem to sub-teams.
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FIGURE 1. THE KAI AGENT BASED ORGANIZATIONAL OPTIMIZATION MODEL (KABOOM) IS BASED ON SIMULATED ANNEAL-
ING, WITH THE ADDITION OF COGNITIVE STYLE, COMMUNICATION, AND SPECIALIZATION. FIGURE REPRODUCED FROM [29].

a u-shaped curve to reflect the serial position effect [30], which
states that people remember early memories and recent memo-
ries more easily than intermediate memories.

The paradigm relatedness Ω is a dot product of the vector
from the current solution to the memory position ~vmem and the
current solution to the candidate solution~vn:

Ω = ‖~vmem ·~vn‖ (4)

The PSO term is a product of a global SO scaling constant
WSO, the agent’s standardized SO sub-score SO* (re-scaled to a
population mean of zero and standard deviation of one), and the
paradigm-relatedness Ω:

PSO = Ω ·SO* ·WSO (5)

Thus, agents with more adaptive SO sub-scores (SO∗ < 0)
have a positive preference for solutions that bring them towards
their memory and a negative preference for solutions that lead
them away from previous solutions. More innovative agents
(SO∗ > 0) have the opposite preference, favoring solutions that
lead them away from their previous memories. Figure 3 (A)

demonstrates this effect for individual agents exploring a two-
dimensional solution space defined by a sinusoidal objective
function. The color of the background represents the solution
score for an abstract objective function, from worst (yellow)
to best (blue). Each path connects a series of solutions that
one agent explored in the solution space, with the final solution
marked by a diamond. Note that in Figure 3 (A) the more adap-
tive agent (blue path) explored a set of solutions close to each
other, while the more innovative agent continuously moved away
from previous solutions.

3.1.2 Rule/Group Conformity The implementation
of the Rule/Group Conformity sub-score reflects the tendency of
more adaptive individuals to prefer and leverage structure in per-
sonal and impersonal contexts, and more innovative individuals
to ignore or reject these structures. Here, we focus specifically on
preference for social structures, which highlights the tendency of
more adaptive individuals to seek convergence in a group, while
more innovative individuals tend to diverge from a group.

In KABOOM, the group conformity of a solution C mea-
sures whether a solution brings an agent closer to or further from
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its teammates’ solutions:

C = ‖~vteam ·~vn‖ (6)

where~vteam is the vector from the current solution to the centroid
of all team members’ current solutions, and~vn is the vector from
the current solution to new solution (as before). The PRG term
is a product of a global RG scaling constant WRG, the agent’s
standardized RG sub-score RG* (re-scaled to a population mean
of zero and standard deviation of one), and the group conformity
C:

PRG =C ·RG* ·WRG (7)

This preference leads more adaptive agents (RG∗ < 0) to
be more likely to accept solutions that move them toward the
group’s mean position and less likely to accept divergent solu-
tions; this leads to group convergence. Conversely, more inno-
vative agents (RG∗ > 0) are more likely to accept divergent solu-
tions and reject convergent solutions, which leads to group diver-
gence. Figure 4 shows the effects of the Rule/Group Conformity
style sub-factor on agents exploring a two-dimensional solution
space. As in Figure 3, background color represents solution qual-
ity for an abstract objective with the worst scores in yellow and
best scores in blue. Note that the more adaptive team (blue) con-
verges to a shared solution while the more innovative team (red)
diverges, with each agent ending at very different solutions.

3.1.3 Efficiency Once an agent has evaluated a new so-
lution, it must choose whether to accept the new solution (move
to that position in the solution space) or discard it. If the agent
perceives the candidate solution as better than the current so-
lution (i.e., the perceived quality of the new solution fP(~xn) is
higher than the true quality of the current solution f (~x)), it is al-
ways accepted. Otherwise, the agent stochastically determines
whether to accept the new solution according to the probability
established in simulated annealing:

Paccept = exp
(

f (~xn)− f (~x)
kBT

)
, f (~xn)< f (~x) (8)

The agent’s Efficiency sub-score determines its starting tem-
perature according to

T0 = µT +E∗ ·σT (9)

where E∗ is the standardized Efficiency sub-score (re-scaled
for a mean of zero and a standard deviation of one), and µT and

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

More adaptive
Mid-range
More Innovative

Temperature

Time (iterations)

FIGURE 2. COOLING SCHEDULES FOR AGENTS WITH DIF-
FERENT EFFICIENCY (E) KAI SUB-SCORES

σT are the mean and standard deviation of the starting tempera-
ture of all agents. Therefore, agents with higher (more innova-
tive) E sub-scores apply more stochastic decision making behav-
iors, while agents with lower (more adaptive) E sub-scores are
more concerned with the quality of new solutions.

Additionally, the Efficiency sub-score affects the rate of ge-
ometric decay for temperature and speed during the simulation
by determining the agent’s ratio of start temperature r0 to final
temperature r f according to the equation

r0

r f
=

1
e2−E∗ (10)

This ratio is constrained to the range [10−10,1], and is used for
the decay of both temperature and speed. Figure 2 shows the
temperature over the course of a simulation for an agent with a
more innovative (high E), mid-range (mid-range E), and more
adaptive (low E) Efficiency sub-score.

The result is that more adaptive agents converge to a solution
quickly and spend time refining that solution, while more inno-
vative agents explore broadly and may never converge to a re-
fined solution. Figure 3 (B) demonstrates the effect of Efficiency
style on agents’ exploration of a two-dimensional design space
by drawing agents’ paths through the solution space. Note that
the more adaptive agent (blue) made smaller changes between
subsequent solutions while the more innovative agent (red) took
larger steps.

3.2 Problem Decomposition
A problem of several variables can be decomposed by as-

signing subsets of the variables to different groups of agents,
called sub-teams. Each sub-team owns a set of specialized di-
mensions that are a subset of the entire solution space. The
agents on a sub-team only modify the variables belonging to their
specialized sub-teams. The decomposition of the problem may
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VERGE (MORE ADAPTIVE) OR DIVERGE (MORE INNOVATIVE)
FROM THEIR TEAM IN THE SOLUTION SPACE

be arbitrary or may align with semantically related variables.
Likewise, the assignment of agents to sub-teams may be arbi-
trary or intentional.

3.3 Agent Communication
In KABOOM, agents communicate by sharing their solu-

tions in pairwise interactions and team meetings. Pairwise in-
teractions occur organically at a frequency set by the global
communication rate c, while team meetings occur at fixed in-
tervals. Within each iteration, every agent decides to communi-
cate with probability c or explore individually with probability
1− c. Agents that decide to communicate are paired and at-
tempt to share their solutions with each other. However, a gap
in cognitive style between two agents makes it more difficult to
communicate solutions [12, 31]. The probability P of successful
communication between two agents with a cognitive gap (differ-

ence in KAI score) ∆KAI is

P = 1− (∆KAI−10)/170 (11)

Communication is always successful for a cognitive gap less than
10 points, the just-noticeable-difference for KAI [12], then be-
comes gradually more likely to fail as cognitive gap increases.
If communication is successful, the agents receive each other’s
solutions and decide whether to accept or reject them according
to Eqn. 8. If communication is not successful, the agents receive
no information and do not make progress in that iteration.

Team meetings occur every 50 iterations and result in all
agents on the team converging to one solution. First, each sub-
team finds the best solution of any of its agents. Then the team
forms a composite solution by taking each sub-team’s specialized
dimensions from that sub-team’s best solution. Finally, all agents
accept the team’s composite solution and begin working from it.

3.4 Contextualized Problems
KABOOM can model any problem that can be expressed

using an objective function of a finite number of continuous vari-
ables. In order to contextualize the results of the model in a real-
world context, this paper implements two contextualized prob-
lems: a relatively complicated race car design problem and a
simpler I-beam design problem. The implementation of their ob-
jective functions is described below.

3.4.1 Race Car Design Problem The first contextu-
alized problem is the design of an SAE race car, which was for-
mulated by Zurita et al. [6] to evaluate multi-agent coordination
on a decomposed problem. We use the same problem with minor
modifications in order to evaluate team performance using KA-
BOOM. In this section, we only provide general information on
the implementation of the problem for KABOOM; the reader is
referred to the original publications for the remaining details.

The race car design problem parameterizes the design of a
racing vehicle into 56 variables, which are divided among eleven
sub-systems, such as brakes, engine, and front suspension (see
Figure 5). Agents belong to one of eleven sub-teams, one team
for each sub-system. Therefore, each agent explores the solution
space only in the sub-space of their team’s dimensions (i.e., an
agent on the brakes team only modifies the brakes variables).
In order to allow a variety of styles on each sub-team without
excessive computational costs, each sub-team in the simulation
has 3 agents (33 agents on the entire team). The performance
of the team is evaluated based on a global objective function,
which is composed of eight sub-objectives, each describing an
appropriate metric, such as acceleration, breaking distance, or
turning radius. After standardizing the performance on each sub-
objective (rescaling to a mean of zero and standard deviation of
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FIGURE 5. THE VARIABLES IN THE CAR DESIGN PROBLEM ARE DISTRIBUTED AMONG SPECIALIZED TEAMS. FIGURE ADAPTED
FROM ZURITA ET AL. [6] FIG. 3 AND TAB. 1.

one), the total objective score is calculated as a weighted sum of
the sub-objective scores. This paper uses Weight Scenario 2 of
Zurita’s three weighting schemes ([6] Table 2) for the weighted
sum of sub-objectives to form a scalar objective function. See
Zurita et al. [6] for a full description of the dimensions, sub-
objectives, and constraints of the race car design problem.

In order to maintain a continuous solution space for the KA-
BOOM model, discrete-valued variables are mapped onto a con-
tinuous space by selecting one driving dimension for each dis-
crete variable. When the objective function is evaluated, the
variable is mapped back onto the nearest feasible discrete value.
For example, the choice of material for the race car cabin is a
discrete-valued variable and is chosen from a table that lists den-
sity and modulus of elasticity for several materials. We select
density as the driving variable and represent material density as
a continuous variable in the solution space. When an agent eval-
uates the objective function, it chooses the material with density
nearest to the current continuous value. Besides material choice,
the only discrete-valued variables are related to the engine (driv-
ing dimension is power) and the wheels (driving dimension is
radius).

Additionally, the solution space is normalized to a unit cube,
so that agents can explore each dimension equally. The minimum
and maximum values of each parameter are used to re-scale the
feasible space to the interval [0,1]. Thus, feasible solutions to the
problem are vectors of length 56 with values in [0,1]. This nor-
malized vector is re-scaled into real-world units when evaluating
the objective function (which is implemented in SI units).

3.4.2 Beam Design Problem This section describes
an objective function for designing a wide-flange beam in order
to compare the design of a complex system (the race car) with

l

L

(A) (B)

ho hi t

w

FIGURE 6. DESIGN DIMENSIONS OF BEAM CROSS SECTION
(A) AND BEAM LOADING (B)

a simpler design problem (the beam). The beam design prob-
lem has four design variables related to beam geometry (Fig 6
A) and an objective of minimizing the maximum stress and dis-
placement for a fixed load. The beam is simply supported, with
fixed length and a point load at the center (Fig 6 B). The equa-
tions used here can be found in Gere’s Mechanics of Materials
[32].

The objective function is a weighted sum of maximum stress
and displacement:

f (x) = δ
∗(x) ·103 +σ

∗(x) ·10−6 (12)

where δ ∗(x) is the maximum displacement of the beam

δ
∗(x) =

−Ll3

48EI
(13)

and where L is the center point load, l is the length of the beam,
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E is the modulus of elasticity, and I is the moment of inertia
calculated with

I =
1

12

[
w(h3

i −h3
o)+ t(h3

i )
]

(14)

Because the extreme fibers of the beam are located a distance
ho/2 from the central axis, the maximum stress σ∗ is given by

σ
∗ =

hoLl
8I

(15)

where L is the center point load, l is the length of the beam, and
I is the moment of inertia. In this paper, the load L is 50,000
Newtons (N), the beam length is 5 meters (m), and the modulus
of elasticity is 200 gigapascals (GPa). The starting values for the
design variables (in meters) are hi = 0.23, ho = 0.25, w = 0.1,
and t = .02.

All dimensions are constrained to the range [0.007,1] me-
ters, and the horizontal flange thickness (i.e. (ho−hi)/2) is also
constrained to this minimum thickness. Additionally, the total
area of the cross section is constrained by a maximum value of
0.007 m2. This is equivalent to a mass constraint because of the
prismatic geometry.

4 RESULTS
This section discusses the results of computational experi-

ments that address our four research questions with KABOOM
by testing team performance with respect to different cognitive
style team compositions. The first experiment tests how differ-
ent cognitive styles perform on each problem. Cognitive style is
independent of cognitive level, and no cognitive style is better
than another in general. Still, in some specific problems, indi-
viduals of certain cognitive styles may perform better than oth-
ers. For instance, innovators may perform better than adaptors
on design problems focused on new product development which
require broad exploration (e.g. designing a new children’s toy)
while adaptors may perform better than innovators on improve-
ments of existing designs, which require thorough local explo-
ration (e.g. improving the efficiency of an internal combustion
engine).

The first computational experiment creates homogeneous
teams (i.e., all agents on a team have the same cognitive style)
and tests them on both the beam design and car design prob-
lems. For the beam design problem, this involved an 8-agent
team in a 100-step simulation, specialized into 2 sub-teams of 4
agents each (each sub-team controls two of the four design di-
mensions). Figure 7 (top) shows that changing the shared cogni-
tive (KAI) style of the homogeneous team did not impact perfor-
mance on the beam design problem. The car design problem is

0
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 perforamance quadratic fit

team performance
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±1standard deviation

FIGURE 7. STYLE DID NOT AFFECT PERFORMANCE IN THE
BEAM DESIGN PROBLEM. FOR THE CAR DESIGN PROBLEM,
TEAMS OF MORE INNOVATIVE AGENTS PERFORMED BETTER.

significantly more complicated, with a 33-agent team decompos-
ing the 56-variable problem into 11 sub-problems (11 sub-teams
of 3 agents each), also with a 100-step simulation. For this prob-
lem, the shared cognitive style of the team had drastic effects on
performance, with the more innovative teams outperforming the
more adaptive and mid-range teams (Figure 7, bottom). Each fig-
ure shows a quadratic regression fitted to the results. A quadratic
regression is used because it is the simplest fit that can capture
how performance peaks at a specific cognitive style.

Though there are no human studies on these specific prob-
lems to compare our results to, the results demonstrate that some
cognitive styles may be more or less effective for specific types
of problems. It is of paramount importance to note that this dif-
ferent in performance is problem-dependent. There is no single
cognitive style that is superior to all others across all problems.
Therefore, a deeper understanding of cognitive style and its rela-
tionship to design problems is critical for appropriate managerial
interventions within design teams.

In order to better understand how a team’s cognitive style
composition impacts performance in the race car design prob-
lem, our second experiment tests the sensitivity of each special-
ized sub-team to changes in cognitive style. All remaining ex-
periments utilize the more complicated race car design problem.
For each of the eleven sub-teams, the sub-team’s style is varied
while holding the style of the rest of the remaining sub-teams
constant (all agents outside the sub-team in question have a mid-
range style of 95). Figure 8 plots the results of this experiment.
Quadratic regressions fitted to the results capture the response of
sub-team to changes in cognitive style composition.
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The results in Figure 8 demonstrate that each sub-team re-
sponds differently to changes in its cognitive style composition.
For example, populating the impact attenuator team with more
innovative agents improves overall team performance, while
populating the rear suspension sub-team with more adaptive
agents improves performance, and mid-range agents are the best
style for the engine team. KABOOM does not model any as-
pect of domain expertise, and these results do not suggest that
cognitive style is related to the level of expertise or ability for
designing a certain aspect of the car. Rather, the results suggest a
meaningful difference in the characteristics of the solution space
for different parts of the car problem. For instance, the solution
space explored by agents designing the rear suspension (where
adaptive agents performed best) may be best suited for the incre-
mental, detailed, “adaptive” search approach, while the solution
spaces explored for the rear wing and impact attenuator (where
innovative agents performed best) may be better suited for a more
stochastic, “innovative” problem-solving approach.

Given that the sub-teams of the race car design problem
had a variety of optimal cognitive styles, we can strategically
assign agents to the sub-problems that are best-suited for their
respective styles. The following experiment uses teams with or-
ganic composition, which means they are composed of agents
randomly drawn from a virtual population. The virtual popula-
tion reflects a realistic distribution of cognitive styles based on a
data set of 597 individuals’ KAI scores and sub-scores gathered
in previous research [33]. In the control group teams, agents
from the organic team are randomly assigned to sub-teams with-
out regard for their cognitive style. In the experimental group
of strategic allocation teams, agents are assigned to sub-teams
based on their cognitive style. First, the agents are listed in or-
der of ascending cognitive style, and the sub-teams are listed in
order of ascending cognitive-style preference (accounting for the
strength of the style effect, as well as the best style). This order-
ing is: Rear Suspension, Rear Tires, Brakes, Side Wing, Front
Tire, Engine, Front Suspension, Front Wing, Cabin, Impact At-
tenuator, and Rear Wing. Then, the agents are assigned to the
sub-teams according to the ordered lists (e.g., first three agents
to first sub-team, etc). Figure 9 shows that the strategic teams
outperformed the control group teams significantly (effect size
= 1.12, p < .05).

Teams in both the control and strategic sets are composed
of randomly chosen agents with respect to cognitive style. This
demonstrates that strategically placing the right members of the
team on the right sub-teams could significantly improve perfor-
mance. This result is supported by a human study of team suc-
cess and KAI cognitive diversity by Hammerschmidt [2], which
found that teams had higher levels of success when tasks were
coordinated with team members’ KAI style. In real design teams,
dimensions of cognitive level (e.g., disciplinary knowledge, ex-
perience, intelligence) are important factors in assigning mem-
bers of a team to different parts of a problem. However, all else

being equal, accounting for cognitive style when selecting peo-
ple for different parts of a problem could improve a team’s per-
formance.

As demonstrated in Fig 5, the race car design problem de-
composition follows semantic divisions that make sense in the
real-world application (i.e., wheel variables “belong together”
and cabin variables “belong together”). This leads to an uneven
distribution of the variables across the eleven sub-teams. The
fourth experiment compares this semantic problem decomposi-
tion to a “blind” problem decomposition, where the design vari-
ables are evenly distributed among eleven teams without group-
ing semantically-related variables (i.e., one team may design the
rear wheel radius, cabin thickness, and angle of the front wing).
The experiment held the number of agents (33), number of sub-
teams (11), team composition (homogeneous mid-range KAI
style of 95), and number of iterations (100) constant. The results
in Fig 10 show that teams that used the blind problem decom-
position significantly outperformed teams that used the semantic
problem decomposition based on the car’s systems (effect size =
1.10, p < .05). In a human team, semantic problem decompo-
sition would be critical to success, because problem solving de-
pends on domain expertise and contextual knowledge. In the cur-
rent KABOOM model, agents problem solve with no contextual
or domain knowledge, which leads to the unrealistic boost in per-
formance caused by redistributing the design variables. This sug-
gests that incorporating some aspects of cognitive level (e.g., do-
main knowledge) in KABOOM is an important direction for fu-
ture work. However, it also highlights the importance of equally
distributing the human resources of a team across sub-teams in
order to improve performance.

5 CONCLUSIONS
Cognitive style plays an important role in collaborative prob-

lem solving, but this key variable had not been modeled in pre-
vious simulations of teams solving problems. In this paper, KA-
BOOM provided a simulation framework to study how the cogni-
tive style composition of a team impacts performance on contex-
tualized design problems. Using the model, we addressed four
research questions:

1. How do the cognitive styles of team members impact
team performance on different contextualized prob-
lems? On a simple I-beam design problem, changing the
cognitive style composition of the team did not affect perfor-
mance. For the more complicated race car design problem,
homogeneous teams of more innovative style outperformed
homogeneous teams of adaptive and mid-range style. These
results illustrated that while no cognitive style is superior to
another, a certain style may be advantageous for a specific
design problem.

2. In a team with specialized sub-teams, what are the opti-
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FIGURE 9. STRATEGICALLY ASSIGNING AGENTS OF AN OR-
GANICALLY COMPOSED TEAM TO SUB-PROBLEMS BASED
ON COGNITIVE STYLE IMPROVES PERFORMANCE

mal cognitive styles for each sub-team? Studying the ef-
fects of cognitive style on each separate sub-team of the race
car design problem revealed that each sub-team responded
differently to changes in style composition. Although the
best homogeneous style for the entire team was more inno-
vative, there were sub-teams that benefited from more adap-
tive and mid-range style, as well as innovative styles. The
effects of cognitive style also depend on the characteristics
of sub-problems.

3. Can strategically assigning agents to sub-problems based
on their cognitive style improve the team’s performance?
An experiment demonstrated that the performance of teams
with organic composition (agents drawn randomly from a
population) could be improved significantly by strategically

semantic blind

45000

50000

55000

60000

Objective Function
 Score

Problem Decomposition
40000

FIGURE 10. ASSIGNING VARIABLES OF THE CAR PROBLEM
TO TEAMS RANDOMLY RESULTS IN BETTER PERFORMANCE
THAN USING THE SEMANTIC PROBLEM DECOMPOSITION

assigning agents to sub-teams of the car problem based on
the optimal style for each sub-problem. This suggests that
understanding the cognitive styles of the members of a de-
sign team can be used to boost team performance.

4. How does changing the decomposition of a problem af-
fect the team performance? Counter-intuitively, chang-
ing the decomposition of the car problem from the seman-
tically informed decomposition to a blind, uniform distribu-
tion of variables across sub-teams improved performance.
The computational problem-solvers lack contextual knowl-
edge and domain expertise, so the random assignment of
variables from different parts of the car was not detrimental
to their performance. Future work should incorporate cog-
nitive level into the KABOOM model in order to reflect the
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importance of domain knowledge in collaborative problem
solving.

As with any model, KABOOM does not attempt to fully cap-
ture the complexity of human behavior. Specifically, the model’s
reflection of communication and collaboration are relatively sim-
ple compared to some other models [10, 13, 19, 21–23]. In real
teams people communicate ideas about process, strategy, senti-
ment, and emotion while agents in KABOOM only communicate
their solutions. Another major limitation of this work is the lack
of human subjects research to validate results. Without support
from human-subjects studies, we cannot assume the results of the
model will be valid in real-life scenarios.

Future work should include validation studies with human
subjects, in order to test how the phenomena observed in com-
putational experiments compare to real-world behavior. For in-
stance, a human-subjects study could test whether strategically
choosing team members for sub-tasks based on their cognitive
style (as in Figure 9) improves team performance. In addition,
human subjects studies will help to inform the refinement of the
model. Observations of human problem-solving behavior will
help to tune model parameters and highlight aspects of the model
that should be improved or modified. As the first computational
model of cognitive style in problem solving, KABOOM provides
a flexible framework for computational simulations that be con-
tinuously adapted to more closely reflect the (sometimes strange)
problem-solving behaviors of human beings.
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