
Title: Experimental demonstration of data predictive control for energy optimization and thermal com-

fort in buildings 

 

Authors: Bünning, F., Huber, B., Heer, P., Aboudonia, A. and Lygeros, J. 

 

Please cite as: Bünning, F., Huber, B., Heer, P., Aboudonia, A. and Lygeros, J., 2020. Experimental 

demonstration of data predictive control for energy optimization and thermal comfort in buildings. En-

ergy and Buildings, 211, p.109792. 

 

Accepted article: https://doi.org/10.1016/j.enbuild.2020.109792 

 

Preprint: https://doi.org/10.31224/osf.io/axsjd 

 

 

 

 

https://doi.org/10.1016/j.enbuild.2020.109792
https://doi.org/10.31224/osf.io/axsjd


Experimental demonstration of data predictive control for energy optimization
and thermal comfort in buildings

Felix Bünning1,2,∗, Benjamin Huber1,2,∗, Philipp Heer1, Ahmed Aboudonia2, John Lygeros2

1Urban Energy Systems Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, Switzerland
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Abstract

Model Predictive Control for room temperature control in buildings is an effective approach to energy management
in buildings. However, the development and maintenance of physical models may be a bottleneck for widespread
real life application. Data Predictive Control is an attempt to address this problem by learning the behaviour of
the building from historical data and thus reducing the modelling effort. Here, we present an application of a Data
Predictive Control approach, based on Random Forests with affine functions and convex optimization, to control
the room temperature in a real life apartment. When compared to a conventional hysteresis controller, the applied
approach saves 24.9 % of cooling energy while reducing the integral of comfort constraint violations by 72.0 % in a
six-day experiment.
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1. Introduction

Predictive control has the potential to reduce the en-
ergy consumption for heating and cooling in the build-
ing domain. Model Predictive Control (MPC) has
been demonstrated many times successfully for temper-
ature control in buildings (see for example (Oldewurtel
et al., 2010; Široký et al., 2011; Oldewurtel et al., 2012;
Huang et al., 2015) or the articles reviewed in (Hameed
Shaikh et al., 2014)). However, there is to the best of
the authors’ knowledge, no widespread industrial appli-
cation of MPC in residential buildings. Some authors
((Žáčeková et al., 2014; Sturzenegger et al., 2016; Jain
et al., 2018)) argue that the effort to develop and main-
tain first principle models of buildings might in many
cases be prohibitive for real life deployment of MPC to
building energy management.

The increasing availability of monitoring data in the
building domain gives rise to the possibility of using
data-driven modelling approaches for buildings. Here,
the challenge lies in finding methods that show good
prediction performance for temperatures in buildings
and at the same time allow online real-time optimization
over the control inputs, which usually requires at least

a convex model. Regression trees approximate a func-
tion y = f (x) by splitting x into partitions and approx-
imating y with constant values within these partitions
(more detail in Section 2). In contrast to conventional
Artificial Neural Networks for example, regression trees
in combination with affine models of the control inputs
are convex in these inputs and can therefore be used for
building thermal control.

Jain et al. (2018) use a combination of regression
trees and linear regression for peak power reduction in
buildings to optimally trade-off peak power reduction
against thermal comfort, under the name of Data Pre-
dictive Control (DPC). The regression trees are built
with the help of historical building measurement data
to model the input-output relation of the current state of
the system and future disturbances as inputs to the fu-
ture state of the system as output. The regression tree is
combined with an affine model that relates the control
inputs to the future states of the system. This yields a
model that can be used for receding horizon MPC with
convex optimization in the same way as a state-space
building model. In (Smarra et al., 2018b) the method is
extended by using random forests, which are ensembles
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of regression trees, instead of single regression trees to
reduce the variance in prediction. In (Smarra et al.,
2018a) the approach is further developed by replacing
the affine control input - state relation by a switched
state-space model. This allows the analysis of system
properties such as stability.

All these studies use simulation for validation, where
all disturbances are perfectly known and undesired dis-
turbances and uncertainties can be excluded. There are
a limited amount of studies ((Costanzo et al., 2016;
Macarulla et al., 2017; Ferreira et al., 2012; Finck et al.,
2019)) that use data-driven modelling techniques for
control in the building domain in real life application
case studies. However, to the best of the authors’ knowl-
edge, there exists no real life demonstration of DPC for
room temperature control in buildings to minimize en-
ergy consumption, as shown for MPC in (Oldewurtel
et al., 2010; Široký et al., 2011; Oldewurtel et al., 2012;
Huang et al., 2015), where control inputs are minimized
while keeping room temperatures within comfort con-
straints.

Here, we apply a variation of the DPC approach intro-
duced in (Smarra et al., 2018b) to a real life residential
apartment. The apartment features two identical bed-
rooms, one of which is DPC-controlled and the other
one controlled with a standard hysteresis controller. Our
results in a six-day experiment show that the room con-
trolled with DPC consumes significantly less cooling
energy than the conventionally controlled room, as well
as showing fewer comfort constraint violations.

The remaining article is structured as follows. In Sec-
tion 2, the DPC approach by Smarra et al. (2018b) is
explained and adapted to our setting. In Section 3, the
residential apartment for the experiment is introduced
and the particular DPC controller is specified. In Sec-
tion 4, the performance of the DPC controller is com-
pared to the hysteresis controller in terms of constraint
violations and energy usage. Conclusions and future di-
rections are provided in Section 5.

2. Methodology

2.1. Splitting of historical data

We assume given a historical data set (X,Y) of mea-
surements of a building. Y = {x(k + 1), ..., x(k + N)}
consists of measurements of room temperatures x. X =

{u(k), ..., u(k + N − 1), d(k − δ), ..., d(k + N − 1), x(k −
δ), ..., x(k)} consists of measurements of data that poten-
tially has an influence on Y . These are control inputs
u (e.g. cooling energy), disturbances d (e.g. ambient
temperature and solar radiation forecasts, but also time

of day variables) and autoregressive terms of the room
temperature x. N denotes the prediction horizon for the
predictive controller, δ denotes the number of autore-
gressive terms.

We further split X in two separate sets Xu =

{u(k), ..., u(k+ N−1)}, which includes all measured con-
trol inputs (all variables that can be influenced by the
controller), and Xd = {d(k − δ), ..., d(k + N − 1), x(k −
δ), ..., x(k)}, which includes all measured disturbances
and autoregressive terms of x (all variables that cannot
be influenced by the controller).

2.2. Training of random forests

We train N random forests to approximate the func-
tions Xd → Y j, in which j ∈ 1, ...,N denotes the
columns of Y (and the steps in the prediction horizon).
Random forests are ensembles of regression trees - a
form of decision tree to approximate continuous func-
tions. A decision tree is built by splitting the input data
Xp

d into partitions p, in each of which the output data
Y p

j is approximated with a constant value ȳp
j (which is

the mean of all elements of Y p
j ). The splitting variable

and splitting point is obtained with the help of a greedy
heuristic (see (Smarra et al., 2018b)). A random for-
est of T trees is built by bootstrapping T subsets from
(Xd,Y j) and building a tree based on each subset. The
function evaluation of the forest for one element (row)
xd of Xd is then done by evaluating each tree, giving rise
to T different ȳ j(xd), and taking the average of these,
giving rise to ŷ j(xd). T is independent of N and needs to
be chosen heuristically. For more details on the training
process please refer to the original source (Smarra et al.,
2018b) and to general literature on random forests (e.g
(Louppe, 2014)).

2.3. Fitting of affine functions for control inputs

Each tree has a number of leaves li, each based on
a partition Xp

d of Xd to approximate Y p
j with a constant

value ȳp
j (as discussed before). For each set Xp

d there
exists a corresponding set of measured control inputs Xp

u
that has not been used in the model until here. (Smarra
et al., 2018b) fit an affine model to approximate Y p

j with
Xp

u (to relate the response of the room temperature to
the control inputs) with least squares in each leaf li. For
the prediction of the future temperature of a single room
x(k + j) (which corresponds to y j) in one leaf, this gives

x(k + j) = β ji,0 +

j∑
n=1

β ji,nu(k + n − 1) + e (1)

2



in which β ji,0 and β ji,n denote the fitted coefficients and
e the model error. The temperature is therefore an affine
function of all control inputs from the time instant k,
when the forecast is made, to the forecasted time instant
k+j. As each leaf li is based on a different partition of
Xd, β ji,0 and β ji,n are also different for each leaf.

Preliminary results suggested that the proposed ap-
proach leads to weak prediction performance in the case
of j > 3. This can be explained by the high dimension-
ality of the fitting process for bigger prediction steps in
combination with a limited amount of samples of pairs
(xu, y j) in each leaf li. We therefore model the predicted
temperature in the jth step as

x(k + j) = β ji,0 + β ji,1

j∑
n=1

u(k + n − 1) + e, (2)

in which the dimension of β ji is reduced to 2 for all
j. This approach is less realistic than eq. (1), as u(k)
will have the same effect on x(k + j) as u(k + j − 1)
has, whereas one would expect the effect of earlier time
steps to be weaker. However, preliminary experiments
suggested that the advantage of better model fits out-
weighs the disadvantage of a less realistic model. We
can rewrite eq. (2) as

x(k + j) = β ji[1, u(k), ..., u(k + j − 1)]T + e, (3)

with β ji being a row vector of dimension j + 1.1 In the
case where random forests are used instead of regres-
sion trees, the average of all relevant β ji is taken, giving
rise to β j.

2.4. MPC-like use of DPC model
The learned β j can be used to perform conventional

receding horizon MPC. The corresponding convex opti-
mization scheme follows

minimize
u,ε

N−1∑
j=0

uT
k+ jRuk+ j + λεk+ j+1

subject to xk+ j = β j[1, u(k), ..., u(k + j − 1)]T

xmin − εk+ j ≤ xk+ j ≤ xmax + εk+ j

u ∈ U

ε ≥ 0
j = 1, ...,N

(4)

1The dimensions of β ji and u(k), ..., u(k + j − 1) of course change
if multiple rooms are considered because in that case also x(k + j)
becomes a vector.

Figure 1: NEST building with controlled residential unit UMAR
marked in white c© Zooey Braun, Stuttgart

in which R and λ denote costs for control inputs and
constraint violations, ε is a slack variable for the com-
fort constraint, xmin and xmax denote the comfort con-
straints and U defines the set of allowed control inputs.
The algorithm for the online phase of the DPC con-
troller is shown in 1.

Algorithm 1
1: procedure DPC controller (online)
2: for k in runtime do
3: for j in 1, ..,N do
4: find all leaves li in forest j based on

current state and predicted disturbances
xd(k)

5: construct β j by averaging over all β ji in
all found li

6: solve optimization problem (4)
7: apply u(k) to the system

3. Case study

3.1. General description

The controlled apartment is a residential unit in the
NEST demonstrator building at Empa in Switzerland
(Richner et al., 2018) and is marked in Figure 1. A
schematic of the layout is shown in Figure 2. On the
left and right side, the apartment features two nearly
identical bedrooms that both have a floor area of 17.6
m2 and a large window front that faces east-southeast.
The right room is controlled by the DPC controller pre-
sented in this study, the left room is controlled by a
hysteresis controller. The whole apartment is equipped
with combined heating and cooling ceiling panels that
are operated with water. In the cooling case (present in
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Figure 2: Layout of the controlled building unit

this experiment) the water has a constant supply temper-
ature of 18 ◦C. The amount of transferred heat is con-
trolled by an individual open/closed valve in each room.
The hysteresis-controlled room was occupied during the
experiment, the DPC-controlled room was unoccupied.
(This was switched in the validation experiments in Ap-
pendix A.)

3.2. Controller set-up
The applied DPC algorithm uses as inputs autoregres-

sive terms and the forecast ambient temperature and so-
lar radiation from the Federal Office of Meteorology and
Climatology (MeteoSwiss), the time of the day encoded
in a sinus and cosinus function and autoregressive terms
of the room temperature and neighbouring rooms with
δ = 16.2 We use a forest of T=200 trees with a mini-
mum amount of 200 historical samples in each leaf. The
forest is trained on 10 months of historical measurement
data, sampled in a 10-minute interval. Instead of abso-
lute room temperatures x, we use the approach to model
and predict temperature changes ∆x. This does not fun-
damentally change the algorithm but led to better pre-
diction performance in preliminary experiments. More-
over, we use sample weighting in the historical mea-
surement data set to train the forests in order to adjust
the importance of individual samples based on their lo-
cation in the input space. The prediction horizon is N=6
with a sampling time of one hour, the cost per squared
unit of cooling is R=1 and the cost per unit of com-
fort constraint violation is λ=100. The comfort con-
straints are 22-23 ◦C during the night (8.00 pm to 8.00
am) and 22-25 ◦C during the day (8.00 am to 8.00 pm).3

2This number might seem excessive, however, additional inputs do
not affect the fitting process of regression trees negatively, as unimpor-
tant inputs do not get chosen as splitting/partitioning variables.

3This is done to allow a better assessment of the predictive capabil-
ities of the controller and to simulate a situation where the occupants
are out-of house (e.g. at work) during the day.

Measurements of the autoregressive terms and weather
forecasts are queried via a Python-SQL-client from a
database, the DPC algorithm is implemented in Python
3 using Scikit-learn (Pedregosa et al., 2011), communi-
cation with the actuators in the building is established
via a Python-OPC UA client.

The hysteresis controller works in the following
way: It switches on when the upper DPC constraint
is reached, it switches off when the temperature is 1
◦C below the upper constraint. We do not force the
hysteresis controller to cool down until the lower DPC
constraint as this would result in a much higher en-
ergy consumption for the hysteresis controller and non-
comparable average room temperatures. The connec-
tion to the database and actuators is established the same
way as for the DPC controller.

4. Results and Discussion

Figure 3 shows the results for a six-day experiment
from 2019-06-20 2.00 pm until 2019-06-26 2.00 pm
in the apartment with a cooling demand. The bottom
two graphs show the ambient conditions measured at
the roof-top of the building. It can be seen that ambi-
ent temperatures between 13.7 and 39.5 ◦C and solar
radiations between 0 and 1310 W/m2 (which is unreal-
istic due to the use of a non-calibrated sensor, but irrel-
evant as the used approach is data-driven) are present
during the time of the experiment. The conditions allow
a good estimation of the controller performance as the
experiment covers the range from mild cooling on 06-
22 with a maximum daily temperature of 22.7 ◦C and
heavy cooling (to the cooling system’s limit) at the end
of the experiment with a maximum daily temperature of
39.5 ◦C.

The top graph of Figure 3 shows the trajectory of the
room temperatures (with a quantisation of 0.15 ◦C) for
the DPC-controlled room in blue, and the hysteresis-
controlled room in dashed orange. The DPC comfort
constraints are plotted in grey. First, it should be noted
that the rooms indeed show very similar dynamics. For
example, in the middle of day 06-24 (marked by the sec-
ond grey period in the figure), where cooling is switched
off in both rooms and the constraint jumps to 25 ◦C, the
temperatures follow the same upwards trend. This ob-
servation is confirmed by the validation experiments in
Appendix A.

It can be seen that the DPC controller shows much
less constraint violations than the hysteresis controller.
More specifically, the integral of the constraint viola-
tions is 72.0 % smaller in the DPC case. This is to be
expected as the hysteresis controller has no predictive
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Figure 3: DPC cooling experiment results

capabilities and only starts cooling once it hits a con-
straint. But it also shows that the prediction accuracy of
the DPC-model is accurate enough to start cooling early
during the day in order to not violate the upper comfort
constraint during the night: The temperature trajectory
in the DPC controlled room exactly meets the lowered
temperature constraint at 8.00 pm on all days except 06-
25. On the evening of 06-25 the constraint is not met
because the cooling system operated at it’s maximum
capacity with a maximum ambient temperature of 39.5
◦C on that particular day and an ambient temperature of
still 34.6 ◦C at 8.00 pm (fourth grey period in the fig-
ure). This issue could possibly addressed with a longer
prediction horizon to allow pre-cooling. During night
time, the temperature in the DPC-controlled room stays

close to the upper constraint most of the time. This is
desirable for a predictive controller in the cooling case
because it minimizes the control input.

The second graph of Figure 3 shows the control input
(relative between minimum cooling capacity of 0 and
maximum of -0.6 kWh/h) during the experiment. It can
be seen that the hysteresis controller uses much more
cooling energy than the DPC-controller. This is partly
due to always cooling until the room temperature is one
degree below the upper comfort constraint. However,
the average temperature in the DPC-controlled room is
only 0.1 ◦C above the hysteresis-controlled room, which
is in the range of the quantisation error of the tempera-
ture sensor. This shows that the cooling energy savings
are not due to a higher average room temperature. Over
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the course of the whole experiment, the DPC-controller
saved 24.9 % cooling energy compared to the hysteresis
controlled room, as can be seen in the middle graph that
shows the relative integral of the control input.

Both top graphs show two more areas with grey back-
ground. In the first period between 06-22 and 06-23
the controllers lost connection to the actuators multiple
times, which caused the valves in the cooling system to
open and close multiple times - thus the part load in the
hysteresis controlled room. In the third period on 06-26,
the windows were opened in both rooms for a period of
10 minutes. This automatically switches off cooling and
together with an ambient temperature higher than the
room temperature resulted in a slight increase in room
temperature.

5. Conclusion

Data Predictive Control in buildings constitutes an at-
tempt to lower the effort for model development and
maintenance for predictive thermal building control.
Despite good simulation results there is no practical ex-
perience in real life cases for room temperature control
between comfort constraints and minimization of cool-
ing or heating input with such methods so far. Here, we
apply a DPC approach based on Random Forests with
affine functions and convex optimization to temperature
control in a real life residential apartment and compare
the controller to a conventional hysteresis controller.
The temperature in the room controlled by DPC shows
72.0 % less integrated comfort constraint violations than
in the room controlled with hysteresis-control. More-
over, the DPC controller saves 24.9 % of cooling energy.
The experiment constitutes a promising first real life ap-
plication of the algorithm. A comparison to other con-
trol approaches and the investigation of different pre-
diction horizons and sampling rates as well as experi-
ments regarding heating are part of ongoing and future
research.
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Appendix A. Validation experiments

We have conducted two experiments from 2019-05-
31 0.00 am to 2019-06-06 0.00 am (validation exper-
iment 1) and 2019-06-15 0.00 pm to 2019-06-20 0.00
pm (validation experiment 2) before the experiment de-
scribed in the main body of this article. The results,
shown in Figure A.4 and Figure A.5 respectively, were
not used as the main result for this study because both
DPC and hysteresis controller were not yet operating
totally correct: The DPC controller sometimes saw the
lowered upper constraint at 8.00 pm too late because the
optimization was performed at 1.59 pm instead of 2.00
pm, resulting in increased constraint violations. The
hysteresis controller sometimes started cooling before
hitting the upper constraint.

However, these results are suitable to confirm 1. that
the thermal dynamics of both rooms are indeed very
similar: validation experiment 1 and 2 were performed
with the DPC controller operating in the left room and
the hysteresis controller operating in the right room in
contrast to the main experiment; and 2. that the order
of magnitude of energy savings is realistic and the pre-
sented main result is not a best-case example. In valida-
tion experiment 1 the energy saving amounted to 31.9
% and in validation experiment 2 to 29.7 %, both com-
pared to the respective hysteresis controller. The differ-
ence in average room temperature was less than 0.05 ◦C
in both experiments. The integrated constraint violation
was reduced by 74.8 % and 79.7 % respectively.
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Figure A.4: DPC cooling validation experiment 1
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Figure A.5: DPC cooling validation experiment 2
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