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Abstract. The layered fabrication approach induces directional anisotropy and 
impacts mechanical strength of FDM components significantly. This paper proposes 

generalized machine learning based parameter optimization framework to 
determine optimal build orientation for FDM components. The algorithm determines 
ideal build orientation by maximizing the minimum Factor of Safety (FoS) for the 

component under prescribed loading conditions ensuring its even distribution. An 
Artificial Neural Network (ANN) coupled with Bayesian algorithm has been 
employed to accelerate the optimization process. The algorithm begins with an 
initial sample data collected using brute force approach; uses single layered ANN 
for approximation and optimization is achieved using Bayesian algorithm. A series 
of computational experiments considering five different test components has been 
devised to evaluate the performance and efficacy of the proposed algorithm. These 

experiments demonstrated that the proposed algorithm can determine the 
optimum building orientation effectively with certain limitations. 
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1 INTRODUCTION 

3-D Printing also referred as Rapid Prototyping (RP) or Additive manufacturing (AM) is a 
fundamentally different process from conventional manufacturing techniques. 3-D Printing 
integrates Computer Aided Design (CAD), Materials Science and Computer Numerical Control 
(CNC) to fabricate physical prototypes from virtual models directly by depositing material in the 
form of layers. The process fabricates 3-D parts by deposition of layers in 2-D using three linear 

motions in the Cartesian axes. Initially, 3-D Printing was confined to polymers but it expanded 
subsequently to support an increasing array of material such as metals, ceramics, composites and 

biological materials [10]. Additive manufacturing technique is categorized into six groups as per 
ASTM classification [13]: Material extrusion, Photo polymerization, Material jetting, Sheet 
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lamination, Powder bed fusion and Directed energy deposition. These processes are unique in 
terms of manufacturing science, power source and materials used but operate on the identical 
philosophy i.e. layer based fabrication. The layered fabrication approach has many advantages over 
conventional processes such as simplified tool-path planning and capability to manufacture 

complex parts. Nevertheless, it suffers from drawbacks such as stair-casing (aliasing) effect, 
varying structural properties along different build directions, support structure requirements and 
inability of building around inserts which limits its potential as an alternate to conventional 
manufacturing processes [10].  

The layered nature of the process has major impact on characteristics of the resulting part 
affecting build time, surface quality, amount of support material required, geometrical accuracy, 
overall cost and material strength [11].The effects of build orientation and its optimization have 

been well-researched in the literature. The height of the object for a given build orientation is 
directly proportional to the build time and hence cost of the component [2]. The stair casing effect 
is common due to layered fabrication approach and results into poor surface roughness. It has 
been observed that the stair-casing effect is largely dependent on the component geometry and 
building orientation [5]. The amount of support structure required for building of the component is 
decided based on the choice of building orientation and thereby influences the total build volume, 

build time, post-processing time and overall cost. It has been observed that the thermal distortion 
is affected by the build direction for metal additive manufacturing [19]. The layered fabrication 
approach also induces anisotropy in the final part therefore; structural performance of the 
component is dependent on the choice of build orientation. This intricacy was reported in the past 
literature but the efforts are not made to explore the best building orientation for the maximum 
strength. Ahn et al. [1] characterized anisotropic mechanical properties of ABS parts manufactured 
using FDM and showed that the components are stronger under tensile load if the orientation and 

loads are aligned with the fibers. Umetani and Schmidt [28] addressed structural anisotropy of 
FDM components and showed that the vertical bonds between layers are much weaker than the in-
layer bond for pure bending cases. 

A set of automation techniques were explored by researchers to optimize build orientation that 
meets user needs. Peng et al. [20] presented an algorithm to optimize build orientation for Direct 
Metal Laser Sintering (DMLS) that minimizes the thermal distortion. The work is limited to metal 
additive manufacturing since thermal distortions are not significant in polymer based additive 

manufacturing process. Thompson and Crawford [26] performed set of experiments to generate 
quantitative measures for various aspects of part quality affected by build orientation. A set of 
design guidelines was proposed based on these quantitative results. Byun and Lee [6] presented 
an automated approach to determine optimal build orientation for improved surface quality and 
minimal supports volume. Sood et al. [24] conducted comprehensive study to examine the impact 

of build orientation, layer thickness and layer pattern on compressive strength of the part. This was 

achieved using experimental data and Artificial Neural Network (ANN) model to generate 
processing map for parameter optimization and obtain the maximum compressive strength. Zhou 
et al. [30] adapted the worst-case analysis approach to identify structurally weaker parts from the 
design. A constrained optimization problem was formulated to obtain the worst loading 
configuration with orthotropic material assumptions. Thompson and Crawford [26] introduced an 
algorithm with loading conditions and material properties using Tsai-Wai failure condition to 
determine the safer design configurations for a given build orientation. Ulu et al. [27] introduced 

build orientation optimization algorithm based on maximum-minimum FoS approach under fixed 
loading conditions. A novel methodology was introduced in the work that utilizes Finite Element 
Method (FEM) coupled with surrogate optimization to find the best build orientation. Tam and 
Mueller [25] presented novel approach that synthesizes tool paths along the principal stress lines 
opening up new possibilities for structurally performative fabrication.  

In order to determine build orientation for the maximum part strength, it is important to study 
the mechanical behavior of 3-D printed materials. The mechanical strength of the printed part is 

dependent on multiple factors such as machine, material, process parameters, building direction, 
environmental conditions etc. However, approximations based on the previous studies can reduce 
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number of experiments required for examining material characteristics. Based on the physical 
experiments, Ahn al. [1] concluded that the compressive strength of FDM specimen is 
approximately twice of the tensile strength. Barclift and Williams [4] conducted experiments to 
study and analyze the effect of process parameters on mechanical properties of components 

fabricated using jetting technology. It was concluded that the behavior of the 3-D printed material 
can be considered orthotropic and failure theories such as Tsai-Wu criterion [9] can be used to 
analyze the components. Tsai-Wu criterion is a special case of the generalized Hill Yield criterion 
[12] and it is commonly used for orthotropic materials. These theories are useful to assess the 
design safety where FoS can be considered as a performance indicator of the design. The 
maximum stress theory is considered as a failure criterion and structural robustness of the part has 
been quantified using FoS. 

The evaluation of FoS for each build orientation is practically impossible and robust virtual 
physics based simulation module is necessary. FEM based simulations are frequently employed to 
simulate the part under given loading conditions in design and manufacturing domain. As FEM 
simulations are computationally expensive, approaches resulting into the minimum number of 
simulation trials are necessary. Surrogate modeling is suggested in the literature for engineering 
design optimization but it involves costly function evaluation [8], [18], [21]. Zhang et al. [29] 

proposed machine learning based algorithm for powder spreading speed optimization for powder 
bed fusion process. The study employed ANN to interpolate highly nonlinear results obtained from 
discrete FEM simulations. 

The purpose of this paper is to introduce machine learning based optimization framework for 
parameter optimization of 3-D Printing process. The paper proposes computational framework for 
the build orientation optimization that aims at maximizing resistance to failure under prescribed 
loading conditions. An objective function has been formulated to determine the optimal build 

orientation taking into account maximizing the minimum FoS considering the maximum stress 
failure theory. An orthotropic material model is used in the computational framework to establish 
the compliance matrix. As the objective function is dependent on component geometry and loading 
conditions, its analytical value and gradient cannot be determined. Such problems cannot be 
solved using conventional optimization methods and requires different approaches. This 
optimization problem can be considered as black box and it can be solved analytically or by using 
surrogate approximation. The present work employs hybrid approach i.e. analytical algorithm and 

surrogate approximation algorithm to address this challenge. A single hidden layer ANN is 
employed to simplify computationally expensive black box optimization problem and Bayesian 
optimization algorithm is implemented to determine the minimum of black-box objective function. 
The framework proposed in this work utilizes small number of FEM simulations to accelerate the 
optimization process. The major deliverables from the present work are summarized below;  

1. The conceptual framework based on machine learning based algorithm is presented for 

parameter optimization in 3-D Printing process. 
2. A build orientation optimum algorithm is presented for FDM process that maximizes the 

minimum factor of safety under defined boundary and geometrical constraints. 
3. A hybrid optimization approach using machine learning coupled with stochastic optimization 

algorithm is proposed and implemented. 

Further, the paper is structured as follows; a generalized machine learning based framework is 
proposed for parameter optimization initially. Based on proposed framework, a build orientation 

optimization is developed for maximum resistance to mechanical forces. A set of computational and 
physical experiment consisting of five test cases are devised for validating the algorithm and 
results are presented subsequently. 

2 METHODOLOGY  

This section summarizes generalized machine learning based parameter optimization framework 
proposed in this paper. The framework is inspired from the three-step approach presented by 
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Zhang et al. [29] to determine optimal powder spreading pattern in AM. The proposed algorithm 
aims at determining the optimal building direction for FDM components maximizing the minimum 
FoS under defined boundary and geometrical constraints. Figure 1 shows the framework proposed 
in this paper consisting of four stages: Physical Experimentation, Virtual Simulation, Machine 

learning and Optimization. 
 

 
 

Figure 1: Machine learning based optimization framework. 
 

The first step involves characterization of the FDM printed material with the change of 
parameter of interest (building direction in the present work) and other process parameters 
maintained at constant level. The data obtained from characterization is necessary to calibrate the 

physics based virtual simulation model. This involves validating the virtual simulation results by 
comparing computational results and physical experiments. The recalibration may be necessary if 
results are not comparable. Once calibration is achieved, virtual physics-based model is simulated 
over the entire design space generated using various methods e.g. ANOVA, 2-factorial design, 
brute force, FEM etc. The present study uses a hybrid approach combining brute force and FEM for 

this purpose. The data generated by a series of virtual simulations can be used further to 
approximate physics-based model using linear or non-linear regression techniques, machine 

learning etc. The present work approximates the physics-based model using ANN based machine 
learning algorithm. The final step is to optimize the approximated model-using gradient based or 
stochastic based optimization methods depending on the complexity of approximated model. The 
Bayesian optimization algorithm has been used in the study to determine optimal process 
parameter (building direction in the present work). The proposed framework is generic and it can 
be executed to perform parameter optimization for any AM process and associated parameters. 
The algorithm has been implemented to determine optimal build orientation for maximizing the 

strength of FDM printed components in the present work. Figure 2 summarizes the overall 
computational framework developed in the present work. 

 

 
Figure 2: Flowchart of build orientation optimization algorithm. 
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2.1 Physical Experiments: Material Characterization  

The first step of the framework requires determination of the material behavior in physical 

environment. The given problem statement requires determination of the mechanical properties of 
components printed using FDM. It is well established that the mechanical properties of 3-D printed 
components are dependent on large number of variables such as machine parameters, process 
parameters, material used for printing, and post-process operations. A set of experiments are 
conducted to determine mechanical properties of components in different build orientations 
maintaining other parameters at constant level. As per ASTM D638, nine different build orientations 

are possible however, three principle directions have major impact on the part strength considering 
an in-layer isotropy. Figure 3 shows these three principle directions used for building of the 
components for physical experiments. The orthotropic material model enables properties to be 

determined with a minimal number of tests using well-established techniques such as tensile, 
compressive and shear strength tests. An orthotropic material model requires determination of nine 
parameters experimentally viz. Young’s Modulus, Shear modulus and Poisson’s ratio for the three 
principle directions. Additionally, tensile and compressive yield strengths along with shear strength 

for each principal direction are necessary to compute the FoS.  
 

 
 

Figure 3: Build orientations for physical experiments. 
 

A set of standard tensile test specimens (ASTM D638) are built along three principle building 
directions using ABS (ABSplus P430) as specimen material and material extrusion process based 
FDM printer uPrint (Stratasys Inc.). Three specimens are printed at a 100% infill for each building 
direction to ensure repeatability of the test results. The tensile test is conducted on Floyd UTM 
instrument at an extension rate of 0.5mm/min and constant load of 50N. Table 1 summarizes 
physical properties of 3-D printed components extracted from the stress-strain curve obtained from 
the tensile test. The Young’s modulus and tensile yield strength were obtained using 0.2% strain 

offset method. The corresponding compressive strength is assumed to be double of the tensile 

yield strength [1] and shear strength is assumed to be half of the lowest yield strength according 
to the maximum shear theory [23]. 
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X 31.722 1.360 4.50 0.51 0.11 

Y 26.392 0.975 4.37 0.28 0.39 

Z 19.530 0.930 4.31 0.30 0.31 
 

Table 1: Mechanical properties obtained from stress-strain curve 

2.2 Virtual Simulation: FE Infrastructure 

The second step of the proposed framework is to establish physics-based model for virtual 
simulation of the 3-D printed components. FEM is commonly employed for simulating the effect of 
static and dynamic loading on engineering components. The present work employs ANSYS 
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Parametric Design Language (APDL) [3] to establish a FEM infrastructure for virtual simulations. 
APDL is preferred for parametric simulations as it can be controlled using a script generated by an 
external program e.g. MATLAB or Python. The FEM based virtual model is simulated over entire 
design space generated using brute force sweeping approach. A total of 320 evaluations are 

performed using brute force approach. The number represents uniform grid of 45° increments for 
each design variable i.e. build orientation. Figure 4 represent the complete process of obtaining 
data from FEM model in the form of a process flow chart. In general, FEM simulation is required to 
perform three steps; pre-processing, solver and post-processing. The pre-processing step is 
required to define geometry, material properties, loading conditions and boundary conditions. Once 
pre-processing is accomplished, the user needs to specify the solution steps. Finally, the post-
processing step is required to visualize and record results for further discovery. FEA script 

performing each of these steps is developed using APDL for given geometry, boundary and loading 

conditions. The model is also validated by comparing values of maximum stress and highest stress 
concentration point in FEM along with breaking point in a tensile test. 
 

 
 

 
 

Figure 4: Flowchart of the virtual simulation module 
 

To simulate the effect of build orientation change using FEM, geometric coordinate frame is 
adjusted operating on fixed geometry, mesh and boundary conditions. Since geometric coordinate 
frame is different from material coordinate frame, each FEM simulation will be unique and result in 

a different stress value. A new local (a⊥b⊥c) and global (x⊥y⊥z) coordinate system is defined for 

each build orientation angle for a given geometry and boundary conditions. A new local coordinate 
system is defined using LOCAL command, which contains three variables. The local coordinate 
system is assigned as geometric coordinate system using CSYS command and global coordinate 
system is assigned as material coordinate system using ESYS command. APDL accepts variables 
from another external script instead of changing the main FEM script every time. An input file 
“parameters.inp” containing build orientation angles is generated using MATLAB. 

After completing solver step in APDL, the stress values of each element are being stored in a 

file. This file is subsequently read by MATLAB and stress tensor is evaluated for each element. 
Since computed stress tensor is in geometry coordinate frame, stress transformation is necessary 
to evaluate stresses in the material coordinate system and determining mechanical properties. The 
Stress tensor for each element is transformed using Cauchy’s relation for 3-D stress transformation 
[22]. Cauchy’s relation can be expressed in the primed coordinate frame as [σ′] = a [σ]aT. Here a is 
another transformation matrix that serves to transform the vector components in the original 
coordinate system to those in the primed system. The final axes are visualized as being achieved in 

three steps: Firstly, rotation of original x-y-z axes by Ψ about the z-axis to obtain new frame 

termed as x'-y'-z. Secondly, rotation of the new frame by θ about the x' axis to obtain another 

frame termed as x'-y''-z'. Finally, rotation of this frame by ϕ about y'' axis to obtain the final frame 

x''-y'''-z'. These three transformations correspond to the transformation matrix given using a as 

Equation (2.1) which is used for the transformation from geometry to material coordinate frame. 
 

𝑎 = [
cos (Ψ) sin (Ψ) 0

−sin (Ψ) cos (Ψ) 0
0 0 1

] [

1 0 0
0 cos (θ) sin (θ)
0 −sin (θ) cos (θ)

] [
cos (ϕ) 1 sin (ϕ)

0 1 0
−sin (ϕ) 0 cos (ϕ)

] 
 

(2.1) 
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The structural robustness of component is quantified using FoS criterion as per the maximum 
stress theory. The primary objective of the proposed algorithm is to select a build orientation that 
maximizes FoS for the component. This is achieved by evaluating stress tensor for each element 
which consists of 6 components 𝜎𝑥,𝜎𝑦, 𝜎𝑧, 𝜎𝑥𝑦,𝜎𝑦𝑧,𝜎𝑥𝑧. An approach to determine FoS for a given 

element requires computation of 6 independent values based on maximum stress theory and 
assigning minimum value as an output. The normalized objective function is defined as a function 
of build orientation angles (𝛼, 𝛽, 𝛾) using Equation (2.2).  

 

min 𝑓(𝑥) =  ∑[∑
1

(𝐹(𝑥𝑘𝑖))𝑟

6

𝑘=1

]

𝑛

𝑖=1

 

where, 𝑥 = [𝛼, 𝛽, 𝛾] 
subject to  𝛼, 𝛾 = [ −𝜋, 𝜋] 𝑎𝑛𝑑 𝛽 = [0, 𝜋] 

 
 

(2.2) 

2.3 Machine Learning 

The objective function described using Equation 2.2 is computed using FEM results and stress 

tensor for each orientation considering fixed geometry and boundary conditions. The determination 
of optimum building orientation using conventional methods such as brute force approach is 
computationally expensive due to large number of FEM simulations. Also, the computational effort 
will increase with geometric complexity of the components as large number of element level 
calculations is necessary. Therefore, it is important to minimize the number of function evaluations. 
Such problem is well suited for implementation of machine learning techniques to regress between 

the data obtained using brute force sweeping approach in the previous step. The approximated 
function can be used to determine the minimum of objective function and optimum angles using a 

suitable optimization method. Levenberg Backpropagation algorithm [15] with Bayesian 
regularization ANN is implemented for an unbiased fit over the dataset. The Backpropagation 
algorithm is commonly employed for regression problems in ANN due to its efficiency. The 
Backpropagation with Bayesian regularization ensures optimum weight distribution and does not 
over fit the network [14]. 

 ANNs are derived from biological systems and can be expressed as mathematical models of 
biological neurons in simpler terms. ANN has three categories of layers in the network: input layer, 
hidden layers and output layer. The input layer is a vector of input variables, which are build 
orientation angles (𝛼, 𝛽, 𝛾) in the present work. Similarly, output layer is a vector of output variable 

i.e. objective function. The hidden layers connect the input with output layer and it is responsible 
for regression of the dataset. There can be one or few hidden layers with multiple nodes in the 
network depending on complexity of the problem. A non-linear activation function is used to 

capture complex relationships involved for the problem under consideration. The network is trained 
by minimizing a loss function described using Equation (2.3). Here, 𝑁  is the total number of 

training datasets; 𝑌𝑖 is the actual output vector for 𝑖𝑡ℎ training data; 𝑂𝑖 is the target output vector 

for 𝑖𝑡ℎ training data, 𝜆 is the regularization control parameter and 𝑊 is the weight. 
 

𝐿 =
1

𝑁
∑‖𝑌𝑖 − 𝑂𝑖‖2

𝑁

𝑖=1

+ 𝜆 ‖𝑊‖ 
 

(2.3) 

 

The over-fitting of the data is one of the major challenges during training of ANN. This happens 
when the data is quite complex and higher magnitudes of weights are assigned. The regularization 

term in Equation (2.3) helps in preventing over-fitting of the data by ensuring lower magnitude of 
weights. The weights are initially generated randomly and corresponding output values are 

evaluated. The value of loss function is calculated subsequently and it is used to update weights 
using Equation (2.4). Here, 𝛼 is the learning rate that controls the step size of gradient descent for 

the iteration.  
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𝑊𝑛+1 = 𝑊𝑛 + 𝛼
𝛿𝐿

𝛿𝑊
 (2.4) 

 

The present work uses machine learning toolbox of MATLAB software to develop ANN model 
[17]. The input data is split into two dataset for training (70%) and testing (30%) purposes. A 
network of one hidden layer with variable number of nodes is developed. The number of nodes in a 
hidden layer is selected based on the performance of neural network. As a general thumb rule, 

more number of hidden nodes is required for the complex systems to improve the performance of 
ANN. Table 2 summarizes network parameters used in the development of ANN model. 

 

ANN Parameters  Associated Value 

Number of input data set 320 

Number of hidden layers 1 

Number of nodes in input layer 3 

Number of nodes in hidden layer 150 

Number of nodes in output layer 1 

Activation Function of hidden layer Tansigmoid 

Training function Bayesian regularization 

Learning rate 0.0001 

Regularization control parameter 0.1 
 

Table 2: ANN Parameters 

2.4 Optimization Algorithm 

The development of an analytical expression between input and output of ANN is not possible due 
to non-linear activation function and complex relationship between nodes. Additionally, ANN is 
dependent on FEM results and development of an expression will not be an efficient approach. ANN 
treats the process as black box and similar optimization algorithm is necessary to get the optimum 
output value [7]. As ANN can reduce computational time to few milliseconds, optimization process 
can be accelerated. Bayesian optimization [14] is an efficient way to deal with this problem and it 

is popular for solving global optimization problems with non-convex or black-box functions without 
using the gradient. As the objective function is not known, Bayesian strategy treats it as a random 
function and place prior over it which captures the behavior. The prior will update automatically 
after each iteration and forms posterior distribution over the objective function. The posterior 
distribution can be used to construct an acquisition function that determines the next query point. 
The maximum of the acquisition function is found by resorting to discretization or by auxiliary 

optimization. Bayesian optimization with exponent convergence is implemented in the present work 

for solving the optimization problem [16]. As Bayesian optimization method is used to find the 
maximum of black box function, objective function is modified by adding a negative sign, i.e.𝑓(𝑥) =
 −𝑔(𝑥). Figure 5 shows number of ANN evaluations along with process map and Bayesian algorithm. 

It can be seen from Figure 5(b) that the number of function evaluations are reduced significantly 
using the proposed approach. A visual representation can also be generated in order to evaluate 
the effect of the build orientations on FoS distribution using Figure 5(a). The process map approach 
allows selection of build orientation as per the user needs and desired FoS. However, it is not 
precise and requires human interpretation of the visual representation.  
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Figure 5: ANN evaluations: (a) Process Map (b) Bayesian Optimization 

3 COMPUTATIONAL EXPERIMENTS 

The proposed algorithms are implemented in the form of an integrated computational tool 
developed using MATLAB, APDL, ANN toolbox and Bayesian optimization routine. To examine the 
efficacy of proposed framework, five different cases were conceptualized with varying level of 

complexity of geometry, loading and boundary conditions. Figure 6 shows schematic CAD 
representation of these test cases. The first test case represent ASTM D638 sample subjected to 

tensile load of 50N with fixed supports at bottom edges (Figure 6(a)). The motivation for this test 
case is the ease of fabrication, physical validation and intuitive optimal build orientation. This helps 
in quick benchmarking of the proposed algorithm with relative ease. The second test case shown in 
Figure 6(b) is modified version of the first case but the component complexity is relatively higher. 

The component is subjected to tensile load of 50 N and fixed at the bottom edges. This can also be 
fabricated easily and physically tested on UTM for validation. In the third case, the component 
geometry is ideal as second case but it is subjected to bending loading condition in place of tensile 
pull of the previous case. This test case is conceived to evaluate the effect of the loading conditions 
on the optimum build orientation. Figure 6(c) shows the fourth test case i.e. door handle subjected 
to bending loading condition as commonly employed in the practice. The last test case is a wheel 
hub shown in Figure 6(d) and it is subjected to both radial and bending load as in practice. 

 

 
 

Figure 6: CAD models for test cases :(a) ASTM D638 (b) Modified ASTM D638 (c) Door handle (d) 
Wheel hub. 
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3.1 Algorithm Implementation 

To demonstrate the effectiveness of proposed framework is determining optimal building direction, 

second test case shown in Figure 6(b) is discussed in this section. The optimal build orientations for 
other components are determined computationally using the proposed framework and results are 
discussed in the subsequent subsection. The second test case is chosen in the present study as it is 
easy to fabricate using FDM 3-D printer and subsequently testing on UTM for validation. The first 
step of the algorithm is to determine mechanical properties of the 3-D printed material which are 
identical as derived in Section 2.1 and are summarized in Table 1. The second step is to develop 

FEM architecture for the component. The study uses tetrahedron elements for discretizing the 
component followed by input related to material properties. The boundary and loading conditions 
are defined by fixing the bottom surface and application of 50 N tensile pull at the top. Figure 7 

shows FEM model of the component along with application of boundary conditions and pull load. 
Total 320 FEM simulations were executed for training of the ANN model based on parameters 
outlined in Table 2. Based on these simulations, the optimum orientation is determined using 
Bayesian optimization considering ANN based objective function. The optimum build orientation 

was found to be [-179, 2, 178]. Two identical components corresponding to the second test case 
are fabricated using material extrusion based 3-D printer uPrint, Stratasys Inc. The first variant 
was fabricated as per default build orientation meanwhile the second variant was fabricated as per 
optimal building direction determined using proposed framework. Both these components were 
tested using Floyd UTM instrument at an extension rate of 0.5mm/min and constant load of 50 N. 
The test set up and experimental results in the form of stress-strain curves are shown in Figure 
8(a) and 8(b). The tensile strength showed improvement of 126% with optimal building direction in 

comparison to the initial design configuration. The results are summarized in Table 3. 
 

 
 

Figure 7: FEM infrastructure for test case 2 
 
 

  
 

Figure 8: Algorithm implementation on test case 2: (a) UTM set up (b) Stress-strain curve 
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3.2 Test Cases 

The proposed framework has been extended to other test cases shown in Figure 6 to determine 

optimal build orientation for given loading and boundary conditions. Table 3 summarizes optimal 
building orientation of components determined using proposed framework for given boundary and 
loading conditions. The optimal building direction is shown schematically as well as numerically 
along with FoS in the original and optimum conditions. It can be seen that the build orientation has 
significant effect on mechanical properties of 3-D printed components. The results show significant 
improvement in the FoS when component is built along optimal build direction in each case. The 

results corresponding to the first test case corroborate with intuitive findings i.e. the best 
properties when loading is along build direction. The other test cases i.e. door handle and Wheel 
hub also show improvement in the FoS with the optimum build orientation. It can also be observed 

that the strength of component is changed from unsafe (FoS<1) to safer (FoS>1) conditions under 
given loading and boundary conditions by changing build orientation and without any modification 
of any geometrical attributes. This is one of the major advantages of 3-D printing process, which 
can be explored, with the support of such computational tools. 

 

 
 

Table 3: Summary of computational experiment results 
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The results corresponding to test case 2 considering modified ASTM sample with tensile loading 
conditions result in horizontal build orientation. Meanwhile, the same sample with bending loading 
condition results into completely different build orientation. Based on these results, it can be 
inferred that the loading conditions influence the optimum build orientation significantly and 

proposed framework captures this phenomenon very well. An important point to note here is that 
the other factors associated with 3-D printing process such as surface roughness, support material 
requirement etc. are not considered in the proposed framework. Although the proposed algorithm 
successfully finds ideal build orientation for a given component and loading conditions, there are 
few limitations associated with the proposed method. The mechanical strength is not the sole 
criterion in most cases and it is necessary to consider other factors such as surface roughness or 
support structure requirements. This necessitates formulation of multi-objective optimization 

problem instead of focusing on mechanical strength of components only. FEM consumes 

considerable amount of time in the optimization process limiting its applicability to simpler 
components. The computational time can be improved by developing a simple design guidelines 
based computational tool. A single layer ANN is able to approximate such expensive function but it 
still requires a large training data to achieve prediction accuracy. A deep neural network can be 
implemented to produce accurate ANN model with lesser training data. 

4 CONCLUSIONS 

The present work proposed an integrated approach to determine optimal building direction that 
enhances mechanical strength of 3-D printed components. The first step of the algorithm is to 
determine anisotropic properties of a 3-D printed component by performing strength testing 
experiments on UTM. The material properties derived from the experiments are used subsequently 

in FEM simulations and machine learning based optimization algorithm to determine optimal 
building direction. The proposed methodology has been implemented in the form of an integrated 

computational model that determines optimal building direction for known loading and boundary 
conditions. A set of computational and experimental studies are conducted for sample components 
to determine optimal building direction using proposed algorithm. It has been observed that the 
optimal building direction has significant impact on load withstanding abilities of 3-D printed 
components. 
  
Manoj Malviya, https://orcid.org/0000-0003-0151-6239 

K. A. Desai, https://orcid.org/0000-0001-5103-9480 
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