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Abstract

This technical note discusses the theoretical static buckling load of thin-walled plastic cylinders under axial
and radial loading. While the buckling of thin-walled cylinders is a well-researched topic, a variety of
new design and manufacturing methods, as well as advances in polymer technologies, have brought plastic
structures into prominence in recent years, necessitating a re-examination and exploration of their behavior
under buckling loads. This work provides a background review of the problem, a discussion of the appropriate
buckling equations, an extensive case study to demonstrate the concepts, and a brief review of some previously
developed thin-walled structure reinforcement techniques. The presented work and results are intended to
provide a helpful perspective, background review, and starting place for future research on the buckling
behavior of thin plastic structures.
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1. Introduction

Thin-walled elements such as domes, shells, plates, and membranes are widely used in engineering design,
as they allow the construction of strong but relatively light-weight structures in many applications [1, 2]. The
most common applications are to the design of load-bearing structures, such as buildings subjected to high
winds and earthquakes [3, 4], and aircraft [5, 6], where strength, flexibility, and low mass are vital. Other
applications include boats and ships, piping, pressure vessels, tanks, and machine components. While there
are many advantages to employing thin-walled structures in design, including flexibility and mass reduction,
their use is not without complications and trade-offs. The mass of the parts must typically be balanced
against the strength, resulting in a system that is optimal for both mass and strength, but not for each
individually. For load-bearing thin-walled structures, the impact of buckling is of paramount importance, as
it is often the primary limiting factor for the safe design load. Typically, the buckling load is significantly
lower than the compressive yield strength of the material. Buckling failures can happen very suddenly, with
catastrophic results, so stable design of the structures is very important to achieve [7].

Figure 1 gives some examples of useful thin-walled structures which may be made from plastic (polymer
or polymer-composite) materials, including trusses, machine components, and aircraft parts. Special consid-
eration must be taken when designing structural components made from plastic materials, as they typically
have much lower compressive strength and toughness when compared to metals [8–10]. In spite of this,
plastic materials are sometimes the best choice for a variety of reasons, such as manufacturing cost [11–13],
electrical and thermal resistance [14–17], vibration absorption [18–20], and recycling needs [21–23].

This technical note is structured as a hybrid article-review paper, providing a view of the problem
combined from a variety of sources and a case study completed by the authors. It will be presented in
several sections, beginning with the introduction (Section 1), followed by a discussion of the loading state
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Figure 1: Examples of useful thin walled cylindrical and semi-cylindrical structures including (a) topologically-optimized trusses,
(b) aircraft landing gear components, (c) machine structural components, and (d) aircraft skin panels

and important buckling equations (Section 2), a finite element case study using polycarbonate cylinders
under the loading discussed in Section 2 for several cases (Section 3), a discussion of some previous work to
reinforce thin-walled structures (Section 4), and finally discussion and conclusions about the presented work
(Section 5).

2. Thin Cylinder Buckling

There are two basic modes of compressive loading for typical thin cylinders under which buckling may
occur: Axial (such as column loading) and radial (such as pressure vessel loading) as shown in Figure 2. The
axial loads may be uniformly applied (Figure 2a) or non-uniform (Figure 2b); practical examples of each
are shown, where the wind turbine tower has an approximately uniform load and the traffic sign/light pole
has a highly biased loading. Axial loading may be applied along the length of the cylindrical shell for some
angle φ + θ (Figure 2c), at one point or small area (Figure 2d), or uniformly along the entire surface. The
case where load is applied at an angle is well-represented by a culvert under a road (Figure 2c), while the
single location load case could be seen in a horizontal feed transfer system (Figure 2d) where the middle of
the span experiences the most stress.

Loads could certainly be applied at an angle or in the reverse direction for any of these cases, but this
would tend to reduce the load into components [24] so the shown cases will generally be the most extreme.
When designing structural members, it is often the best choice to select the worst expected case for analysis
when this will not produce a large design cost in terms of weight, production time, or material cost [25, 26].
Assuming no significant material defects, the cylinders are assumed to deform relative to the applied load.
In the case of the axial loading, it is assumed that the load will be applied around the entire rim of the
cylinder, whether this is uniform or not and regardless of the force direction. Note that a realistic structure
may have several of these modes simultaneously and therefore may be under bending or torsion loading as
well; however, this is not considered here as this focus of this work is on understanding and describing the
basic modes of buckling for these cylinders.

For a generic smooth thin-walled cylinder in axial compression, structural collapse will take place at the
point of buckling [27, 28], so the buckling load should be considered the ultimate strength of the structure.
For the present study, the term “thin cylinder” is defined to comprise a wall thickness such that,

20t ≤ D (1)

where t is the wall thickness and D is the internal diameter of the cylinder. According to the NASA Space
Vehicle Design Manual [27, 29], a reasonable buckling equation for a supported cylinder in axial compression
is:

Pcr = kx
π2S

l2
(2)
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Figure 2: (a) uniform axial load (e.g., wind turbine tower), (b) non-uniform axial load (e.g., traffic light and sign pole), (c)
angle-specific uniform radial loading (e.g., drainage culvert), and (d) angle-specific local radial loading (e.g., feed transfer
system).

where Pcr describes the critical load, S describes the wall flexure stiffness per unit width, l describes the
length of the cylinder, and kx is the buckling coefficient. The buckling coefficient kx is defined as,

kx = m2(1 + β2)2 +
12

π4

γ2Z2

m2(1 + β2)2
(3)

while the wall flexure stiffness is,

S =
Et3

12(1 − µ2)
(4)

where β describes the buckling aspect ratio, m is the number of buckle half-waves, γ is the correlation factor,
Z is the curvature parameter, E is the elastic modulus of the material, t is the wall thickness, and µ is
the Poisson ratio. The values of β, m, γ, Z, and t are determined by the exact geometry of the structure;
likewise, the values of E and µ are determined by material choice. In the case of uniform loading, it is
assumed that the single load will cause the buckling. This is not true for the non-uniform loading, as the
structure will buckling at the point of highest loading; this will likely be at a much lower force than for the
uniform loading due to the higher force being applied to a smaller area of the cylinder.

For the axial buckling cases, the deflection of the cylinder wall in this configuration is given by [7, 30, 31]:

w = w1sin
2

(
πξv
2ξ

)
(5)

where w is the deflection of the area under load, w1 is the deflection amplitude, ξv is the variable of angle,
and ξ is the angle of the applied load. In the case of uniform pressure over the entire cylinder, ξ will be 2π
radians and will be

ξ = φ+ θ (6)

for the cases where the force is applied at an angle, both for cylinder-length loads and point loads. There are
several methods for solving for the critical load under such conditions; the potential energy method [7, 30]
best describes the effects relative to an angle of load (i.e. a non-uniform loading pattern). For the case
described, the potential energy Π can be described as [7]:

Π =
EI

2r3

∫ ξ

0

(w + ẅ)2dξ +

∫ π

0

N2

2EF
rdξ −

∫ ξ

0

Pcrwr(w + ẅ)2dξ (7)
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whereN describes the hoop compressive force on the cylinder, Pcr is the external pressure accumulated during
the buckling process, r is the radius of the cylinder in the loaded region, EF is the tensile stiffness of the hoop,
and EI is the flexure stiffness. This equation should be solved relative the given boundary conditions and
angles of force application. Note that the integration of force area would be used to distinguish between the
cylinder-length and point-load cases. Most simple textbook solutions are formulated assuming a uniformly-
applied pressure over the entire surface [0, 2π] of the cylinder and true analytical solutions are difficult to
find using these equations. Typically, finite element models [32–34] are used to find the true buckling loads;
the background and equations are reproduced in this section for completeness and to give the reader a good
basis for understanding the physical mechanisms at play.

3. Nonlinear FEA Case Study

To further explore the theoretical buckling behavior of polymeric thin-walled cylinders, a case study was
completed using finite element analysis (FEA). This study was done in five parts, corresponding to each of
the loading cases shown in Figure 2, with Case (d) completed with two different boundary conditions. For
all cases, a nonlinear buckling analysis was done using Autodesk R© Nastran R© 2019 for the geometry shown
in Figure 3a. A 2 mm quadrilateral shell mesh (Figure 3b) was used to model the 25 mm diameter cylinders,
with two wall thicknesses of 0.5 mm and 1.0 mm. The material used for all cases was acrylonitrile butadiene
styrene (ABS) and the analysis used the built-in Autodesk R© material model (Table 1) at STP conditions.
The material used was assumed to be isotropic (such as what would ideally be observed in molded ABS).

1
0

0
 m

m

25 mm

25 mm

0.5 mm shell

1.0 mm shell

(a) (b)

Figure 3: FEA cases: example contours

Table 1: Autodesk R© non-linear ABS material model properties

Property ABS Units

Elastic modulus 2.24 GPa
Yield stress 20.0 MPa
Yield strain 0.0089 mm/mm

Ultimate strength 29.6 MPa
Poisson’s ratio 0.38

Material density 1050 kg/m3

First, the cylinder (defined as previously described in Figure 3) was pinned at one end (no translation
but rotation was allowed around all axes) and a load of 1 N applied symmetrically to the other. Upon
running the nonlinear buckling analysis, the eigenvalues for the first three modes were collected and used to
determine the critical load for the structure; these modes are shown in Figure 4. The first mode for each
is theoretically the most likely case, as it will fail with a significantly smaller load than the other modes;

Page 4



Rocha Pereira et al. Buckling Load of Thin Plastic Cylinders

however, small material defects and small variations in force angle for a real case or physical experiment
may drive other modes, so it is important to consider several. The full analysis required approximately 30
seconds of time using a Dell R© Inspiron R© desktop computer with an Intel i5-7400 processor (3.0 GHz) and
12 GB of RAM.

In order to determine whether the predicted failure was due to elastic buckling or yielding and then plastic
buckling, the yielding load was calculated using the cross sectional area of the cylinders (Figure 3a) and the
given yield stress of 20 MPa (Table 1). The thinner cylinder was predicted to yield at a force of 801 N ,
while the thicker was calculated to require 1634 N . It was noted that the thin cylinder (wall-to-diameter
ratio of 50, well within the limit set by Equation 1) failed under elastic buckling for all three modes, but the
thicker walled cylinder (wall-to-diameter ratio of 25) yielded before buckling plastically. Table 2 gives the
critical load and failure mode for each of the shown buckling modes.

(a) (b) (c)

(d) (e) (f)

t = 0.5 mm

Mode 1

Critical load = 681.1 N

t = 0.5 mm

Mode 2

Critical load = 732.7 N

t = 0.5 mm

Mode 3

Critical load = 749.6 N

t = 1.0 mm

Mode 1

Critical load = 2470 N

t = 1.0 mm

Mode 2

Critical load = 3014 N

t = 1.0 mm

Mode 3

Critical load = 3070 N

ABS, symmetric loading ABS, symmetric loading ABS, symmetric loading

ABS, symmetric loading ABS, symmetric loading ABS, symmetric loading

Figure 4: FEA models for symmetric axial loading cases. Shown are 0.5 mm wall (a) mode 1, (b) mode 2, (c) mode 3 and
1.0 mm wall (d) mode 1, (e) mode 2, and (f) mode 3

Table 2: Buckling modes, observed critical loads, and failure modes for the symmetric axial loading case

Mode
Critical Load (N) and Failure Mode

0.5 mm Wall Failure 1.0 mm Wall Failure

1 681.1 Elastic buckling 2470 Yield + plastic buckling
2 732.7 Elastic buckling 3014 Yield + plastic buckling
3 749.6 Elastic buckling 3070 Yield + plastic buckling

This analysis was then repeated for the case where the load was asymmetric; all detailed were identical
except all the of the load was applied to only 180◦ of the cylinder edge. Figure 5 and Table 2 show the results
for the first three modes for each of the two wall thicknesses. Analysis time was slower for this case, but
still required under one minute to complete. As in the symmetric case, the thin cylinder buckled elastically
before the the yield point. With an asymmetric load, the first two modes of the thicker cylinder was also
predicted to fail by elastic buckling before the yield point of the material.
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ABS, asymmetric loading ABS, asymmetric loading ABS, asymmetric loading
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Figure 5: FEA models for symmetric axial loading cases. Shown are 0.5 mm wall (a) mode 1, (b) mode 2, (c) mode 3 and
1.0 mm wall (d) mode 1, (e) mode 2, and (f) mode 3

Table 3: Buckling modes, observed critical loads, and failure modes for the asymmetric axial loading case

Mode
Critical Load (N) and Failure Mode

0.5 mm Wall Failure 1.0 mm Wall Failure

1 387.3 Elastic buckling 1525 Elastic buckling
2 394.5 Elastic buckling 1566 Elastic buckling
3 465.4 Elastic buckling 2026 Yield + plastic buckling

After completion of the axial loading cases, three radial loading cases were analyzed. These included
(R1) the loading shown in Figure 2c with θ = φ = 60◦ and applied the full length of the cylinder and (R2
and R3) the loading shown in Figure 2d with the load applied at the center of the cylinder over a 60◦ angle
and δ = 1 mm. In the case of R1, the section defined by θ was pinned, while R2 and R3 used pinned and
fixed constraints, respectively, applied to the ends of the cylinder. The results are shown in Table 4 for all
three cases; analysis was completed identically to that of the axial cases, except that only one mode was
calculated successfully for these loading cases. The buckling modes for each case are shown in Figure 6a and
b (for R1), Figure 7a and b (for R2), and Figure 8a and b (for R3). Each of the analyses required about
three minutes to complete using the same settings and assumptions as the axial loading cases.

After completion of the buckling studies and calculation of the critical loads, a simple linear static analysis
was done on each case to determine if the failure was due to elastic buckling or yielding and then plastic
buckling; it was found that the stress in the material at the critical load was significantly higher than the
yielding point for all cases, so it was found that all the radial loading cases experienced material yielding
before buckling. These results of these analyses, including maximum stress values for each case, can be
seen in Figure 6c and d (R1), Figure 7c and d (R2), and Figure 8c and d (R3). There was some difference
observed between the results of the pinned and fixed cases for the local radial loading, with the fixed ends
having a slightly higher critical load.
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t = 0.5 mm

Mode 1

Critical load = 98.6 N

(a) (b)

(c) (d)

t = 1.0 mm

Mode 1

Critical load = 774.4 N

ABS, 100 mm/60° loading, pinned bottom  BC ABS, 100 mm/60° loading, pinned bottom BC

Figure 6: Buckling modes for the (a) thinner and (b) thicker-walled cylinders under the R1 radial loading case, with simple
linear static analysis completed at the buckling load of the (c) thin and (d) thick cases to determine if the failure was due to
elastic buckling or yielding and then plastic buckling

t = 0.5 mm

Mode 1

Critical load = 229.6 N

(a) (b)

(c) (d)

t = 1.0 mm

Mode 1

Critical load = 1747 N

ABS, 1 mm/60° loading, pinned ends BC ABS, 1 mm/60° loading, pinned ends BC

Figure 7: Buckling modes for the (a) thinner and (b) thicker-walled cylinders under the R2 radial loading case, with simple
linear static analysis completed at the buckling load of the (c) thin and (d) thick cases to determine if the failure was due to
elastic buckling or yielding and then plastic buckling
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t = 0.5 mm

Mode 1

Critical load = 242.6 N

(a) (b)

(c) (d)

t = 1.0 mm

Mode 1

Critical load = 1832 N

ABS, 1 mm/60° loading, fixed ends BC ABS, 1 mm/60° loading, fixed ends BC

Figure 8: Buckling modes for the (a) thinner and (b) thicker-walled cylinders under the R3 radial loading case, with simple
linear static analysis completed at the buckling load of the (c) thin and (d) thick cases to determine if the failure was due to
elastic buckling or yielding and then plastic buckling

Table 4: Buckling modes, observed critical loads, and failure modes for the three radial loading cases

Radial Loading Case
Critical Load (N) and Failure Mode

0.5 mm Wall Failure 1.0 mm Wall Failure

R1 98.6 Yield + plastic buckling 774.4 Yield + plastic buckling
R2 229.6 Yield + plastic buckling 1747 Yield + plastic buckling
R3 242.6 Yield + plastic buckling 1832 Yield + plastic buckling

4. Thin Cylinder Reinforcement

One of the many solutions offered to improve the strength and buckling resistance of thin-walled parts
is to fill them with expanding foam or composite material; if done properly, this can result in a part that is
significantly stronger than an unfilled part, but that does not involve a significant increase in mass. Often,
the structure can be made even lighter, as the addition of foam can allow the reduction of the wall thickness
without sacrificing performance [35]. Foam-filled components are also more vibration-resistant and therefore
often have longer fatigue lives due to improved energy absorbency by the foam [36]. Several studies [37–43]
have explored the production and use of polymer and metal foams for structural applications. In particular,
expanding polyurethane foam has been widely used to strengthen static structural components to address a
variety of interesting problems. Heim et al [44] combining plastic components and foams to reduce the mass
of vehicles, while increasing the safety, stiffness, and crushing resistance. Ashrafi et al [45], Tuwair et al [46],
and Boccaccio et al [6] explored the use of foam to stiffen and strengthen honeycomb panels, particularly for
aerospace applications. Several studies were also performed using polyurethane foam to strengthen various
types of conical and cylindrical tubes, including those made from aluminum [47, 48], brass [49], and steel
[45, 50]. Surprisingly, no previous studies were found that examined the foam filling and strength testing of
structures made from plastics, even though many thin-walled plastic structures are manufactured and used.
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5. Summary, Conclusions, and Future Work

This work explored the buckling behavior of thin-walled polymeric cylinders, first reviewing some liter-
ature to provide motivation for the importance of the problem, then examining several loading cases (with
practical examples) and their basic equations. A case study was performed to further illuminate the behavior
of these structures, demonstrating some interesting behavior. Finally, a brief review was completed to ex-
plore some of the previous work on strengthening thin-walled structures against crushing and buckling. This
paper is meant to provide background and motivation for future work in this area, especially on providing
a good perspective for experimental validation of the behavior. The buckling of thin polymeric material
structures, especially structural members (not films), is a topic that has not been explored extensively in
the literature this far and needs more attention.

The background review and case study from this work provided several interesting conclusions, all of
which will be explored in future work. These include:

• Very little previous work has been done to study the buckling behavior of thin-walled cylindrical
structures made from polymeric and polymer-composite materials, even though these are becoming
more widely used in engineering design.

• The FEA results implied that the definition of thin-walled as being a wall thickness under 1/20 of
the diameter may be too liberal for polymeric materials. This conclusion was driven by the fact that
most of the 1/25 wall thickness produced yielding in the material before buckling, while the thinner
one reliability produced elastic buckling. Perhaps it is appropriate to define thin-walled structures by
their ability to elastically buckle, not by a specific wall thickness. This would be material-dependent
and requires further study.

• The use of a shell model with quadrilateral mesh elements for the FEA was a good choice for these
kinds of thin structures, as all the nonlinear buckling solutions converged reliably and quickly without
a single failure.

• When examining these structures, it should be noted that the axial loading cases had several modes
(at least three) each but the radial loading cases only had a single buckling mode.

• The impact of small material defects and microstructure discontinuities in the polymer material needs
to be explored experimentally, as these may cause elastic buckling even of the yielding cases found
here.

• The impact of anisotropy (especially from 3-D printing) needs to be examined with respect to buckling;
this is a topic very little discussed in the literature, whether for molded or additively built materials
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