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Abstract— The precise control upon each degree of 

freedom of a robotic arm is a great challenge in 

implementing industrial work. To simplify mechatronics 

motion control systems design, this paper proposes 

mathematical modeling, simulation and control of a given 

electric motor in terms of input volt, Vin and output 

motions. The proposed model can be used to select, design, 

test and validate both plant's and motion control design to 

meet desired output performance. It presents a basic 

example of PID control applied to a robotic manipulator arm. 

I. INTRODUCTION 

The term robotics is practically defined as the study, design 
and use of robot systems for manufacturing. Robots are 
generally used to perform unsafe, hazardous, highly repetitive, 
and unpleasant tasks [1]. Most used actuator in mechatronics 
motion control applications is DC motors. Despite a lot of 
resources that propose different selections and design of 
control strategies to control motions in desired fashion most 
control system used are based on convention PID controller 
[2]. 

II. DESCRIPTION OF THE SYSTEM 

A. System Dynamics 

 Most used actuator in mechatronics motion applications is 

DC motor, therefore, motion control can be simplified to DC 

motor motion control. PMDC motor is an example of 

electromechanical system, having both mechanical of electric 

components, a simplified equivalent representation the 

armature controlled PMDC motor's two components is shown 

in Fig.1. 

 

 

 
 Fig.1. Equivalent representation of PMDC motor electromechanical 

component 

 

 
 

mobile robot, and single joint robot arm, shown in Fig.2. 

 
Fig.2 Single joint robot arm. 

 

The motor torque is given by Eq (1). The generated EMF 

voltage, ea, is given by Eq (2). 

 

𝑇𝑚 = 𝐾𝑡𝑖𝑎                    (1) 

𝑒𝑎 = 𝐾𝑏𝜔𝑚 = 𝐾𝑏
𝑑θ𝑚

𝑑𝑡
              (2) 

 

Applying Kirchoff’s law around the electrical loop, 

substituting, result in Eq(3) .Taking Laplace transform and 

rearranging, result in Eq(4): 

 

𝐿𝑎
𝑑𝑖

𝑑𝑡
+ 𝑅𝑎𝑖 = 𝑉 − 𝐾𝑒

𝑑θ𝑚

𝑑𝑡
            (3) 

 

𝐼𝑎(𝑠) =
𝑉(𝑆)−𝐾𝑒𝑆θ𝑚(𝑠)

𝑅𝑎+ 𝐿𝑎𝑆
              (4) 

 
 Performing the energy balance; the sum of the torques must 

equal zero, yields Eq.(5), Taking Laplace transform and 

rearranging, result in Eq(6): 

 

𝐾𝑡 ∗ 𝑖 − 𝑇𝐿𝑜𝑎𝑑 − 𝐽𝑚 (
𝑑2θ

𝑑𝑡2) − 𝑏𝑚 (
𝑑θ

𝑑𝑡
) = 0      (5) 

𝐾𝑡𝐼(𝑠) = (𝐽𝑚𝑠 + 𝑏𝑚)𝑠 θ(s)            (6) 

 

substituting Eq.(4) in Eq.( 6) and rearranging, to have the 

transfer function given by Eq.(7)in terms of the input voltage, 

V(s) and output motor shaft angle θ𝑚. 

 

𝐺𝑚 =
Ө𝑚(𝑠)

𝑉(𝑠)
=

𝐾𝑡

𝑠[(𝑅𝑎 + 𝐿𝑚𝑠)(𝐽𝑎𝑠 + 𝑏𝑚)𝐾𝑏𝐾𝑡]

             (7)  

 

the total equivalent inertia, Jeq and total equivalent damping, 

beq  at the armature of the motor are given by:  
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𝑏𝑒𝑞 =  𝑏𝑚 + 
𝑏𝑙𝑜𝑎𝑑

𝑛2  ,          𝐽𝑒𝑞 =  𝐽𝑚 +  
𝐽𝑙𝑜𝑎𝑑

𝑛2  

 

Substituting Jeq and beq in Eq. (7), the total equivalent 

transfer function, relating input voltage Vin and Arm-load 

output angular position θLoad, is given by Eq. (8). In this 

transfer function, gear ration (n) which is the transfer function 

of gear system is included. 

 

𝐺 =
θ 𝐿𝑜𝑎𝑑(𝑠)

𝑉𝑖𝑛(𝑠)
 

𝐺 =
𝐾𝑡 ∗ 𝑛

𝐿𝑎𝐽𝑒𝑞𝑠3 + (𝑅𝑎𝐽𝑒𝑞 + 𝑏𝑒𝑞𝐿𝑎)𝑠2 + (𝑅𝑎𝑏𝑒𝑞 + 𝐾𝑡𝐾𝑏)𝑠
  (8) 

 

The robot arm system to be designed, has the following 

nominal values; arm mass, M= 8 Kg, arm length, L=0.4 m, 

and viscous damping constant, b = 0.09 N.sec/m. The 

following nominal values for the various parameters of 

eclectic motor used: Vin=12 Volts; Jm=0.02 kg·m²; bm 

=0.03; Kt =0.023 N-m/A; Kb =0.023 V-s/rad; Ra =1 Ohm; 

La=0.23 Henry; TLoad, gear ratio, for simplicity, n=1. 
 

Substituting values of parameters into transfer function 
gives Eq. (9): 

𝐺 =
0.023

0.02913 𝑆3 + 0.1543 𝑆2 + 0.1205 𝑆
                        (9) 

 

Regarding state space specification A, B, C and D matrix 

could be obtain as below Eq. (10): 

 

𝑋 . = [
−5.2969   −4.1366         0

1.0000 0 0
0 1.0000 0

] 𝑋 + [
1
0
0

] 𝑈                (10)  

 

𝑌 = [0 0 0.7896] 𝑋 + [0]𝑈 

 

III. OPEN LOOP SIMULATION 

A. Stability 

 
Root Locus diagram for mentioned open loop system is:  

 
Fig.3. Root locus diagram 

The loot locus is drawn for just open loop transfer function 
with gain K=1. However, if there is a variable gain (K) in the 
system for maintaining stability of the system K would have a 
range of K< 415.  

On the other hand, stability can be considered investigating the 
eigenvalues of A (system state matrix). if the eigenvalues are 
positive, the system will not satisfy the condition of BIBO 
stability, and will therefore become unstable. 

The eigenvalues of matrix A are: 0, -0.9521, -4.3449, therefore 
the output signal magnitude would not exceed a finite amount 
and it is stable.   

 

B.  System Performance Characteristics 

 

Step response of open loop system to Vin= Step= 1V is: 

 

Fig.4. Open loop step respnse 

 

It is obvious that this system with no feedback from output 
will continue to infinity. Using MATLAB, below system 
performance characteristics obtained (table 1).  

Table1. Open loop system characteristics 

Rise Time: NaN 

Settling Time NaN 

Settling Min NaN 

Settling Max NaN 

Overshoot NaN 

Undershoot NaN 

Peak Inf 

Peak Time Inf 

 

The system needs to be controlled with at least a feedback from 
output. Simple potentiometer could turn the feedback in the 
system. Therefore, we need to close the system. 

 

 

 



  

IV. CLOSED LOOP SYSTEM (PART 1) 

Closing the system by adding arm angular position sensor 

(potentiometer) gives closed loop transfer function Eq. (11): 
  

𝑇 =
0.023

0.02913 𝑆3 + 0.1543 𝑆2 + 0.1205 𝑆 + 0.001534
    (11) 

 

A negative closed loop feedback control system with forward 
controller is shown in Fig.5 

 

Fig.5. Negative feedback closed loop system block diagram 

 

For the closed loop system K=12/180= 0.0667 is considered 
for feedback gain. Step response for closed loop system is 
depicted in Fig.6.  

 

Fig.6. Negative feedback closed loop system step response 

 

For the closed loop one, system performance characteristics 
are shown in table 2. 

 

Table 2. Closed loop system characteristics 

Rise Time: 169.82 

Settling Time 303.68 

Settling Min 13.54 

Settling Max 14.99 

Overshoot 0 

Undershoot 0 

Peak 14.99 

Peak Time 565.92 

A. Design Specifications 

Our design goal is to design, model, simulate and analyze a 
control system so that a voltage input in the range of 0 to 12 
volts corresponds linearly of a Robot arm output angle range 
of 0 to 180, that is to move the robot arm to the desired output 
angular position, θL, corresponding to the applied input 
voltage, Vin, with overshoot less than 5%, a settling time less 
than 2 second and zero steady state error. The error signal, e 
is the difference between the actual output robot arm position, 
θL, and desired output robot arm position. For 5% of 
overshoot we have: 

ζ =
−ln (

%𝑂𝑆
100

)

√π2 +  𝑙𝑛2(
%𝑂𝑆
100

)

= 0.69                                          (12)    

and for settling time of 2 seconds we have: 

𝑇𝑠 =
4

ζωn 
= 2                                                                        (13) 

Which yields 

ω𝑛 =  2.899 

For a second order system we have 

𝑆2  +  2ζωns + ω𝑛
2  =  0  ⇒ 

s1,2 =  −ζωn ±  jωn√1 − ζ2 

and the characteristics equation would be  

𝑆2  +  4s +  8.4 =  0                        (14) 

but we do not want to use second order approximation for 
designing controller. Instead we are going to use PID 
command and PID Tuner of MATLAB which are far more 
powerful and precise in comparison to second order 
approximation.  

For using PID command it is better to have an insight about 
the effect of different coefficients Kp, Ki, Kd on the system. 
The effects of each of controller parameters, Kp, Ki, 
and Kd on a closed-loop system are summarized in table 3. 

 

Table 3. Effects of PID controller parameters 

CL 
Response 

Rise 
Time 

Overshoot Settling 
Time 

S-S Error 

Kp Decrease Increase Small 
Change 

Decrease 

Ki Decrease Increase Increase Eliminate 

Kd Small 
Change 

Decrease Decrease No 
change 

 

Therefore, for the mentioned system which has settling time 
more than 300 seconds the most important coefficient would 
be Kd which decrease settling time. On the other hand, using 
Ki would worsen the condition of settling time. In terms of 
steady-state error, it is already zero and does not need any 
action. Similarly, overshoot is already zero and does not need 
to be considered.  



  

We are going to investigate two types of controller on the 
closed loop system in the following. 

 

 B. P Controller 

Using PID tuner MATLAB proposes Kp, Ki and Kd 

coefficients which are used in PID command to draw the step 

response of the controlled system. 

We chose P type of controller in MATLAB, PID tuner and 

obtained following coefficient as first estimation: 

 

Kp= 2.5927 

 
Which yeilds settling time: 114.7 seconds and overshoot: 0% 
that setteling time is still too high and needs more 
modification. Step response for closed loop system with P 
controller is depicted in Fig.7.   

 
Fig.7. Closed loop system with P controller step response 

 
System specifications for the controlled system is shown in 
table 4. 

Table 4. P controlled system characteristics 

Rise Time: 63.70 

Settling Time 114.72 

Settling Min 0.91 

Settling Max 0.9993 

Overshoot 0 

Undershoot 0 

Peak 0.9993 

Peak Time 212.20 

 

 

Trying larger Kp s like 100 and 1000 still does not reach 

desired specification. Then, we need to take into the picture 

other coefficients Ki and Kd. Ki is used for steady state error 

elimination while we do not have any. The main problem for 

the system is high settling time so as mentioned before we 

need to work with Kd to reduce this quantity. In next section 

we focus on PID controller design. 

 

C. PID Controller 

We chose PID type of controller in MATLAB, PID tuner and 

obtained following coefficient as first estimation: 

 

Kp= 11.67 

Ki= 2.19 

Kd= 15.56 

 

Which results Settling time: 64.58, overshoot: 39.56% that is 

not acceptable. Only by putting Ki=0 the results got better as 

setteling time: 26.59 sec, overshoot: 0 and steady state error:0 

like previous time. After some manipulation on Kp and Kd 

coefficients Finally we chose the coeffients below as final 

controller: 

 

Kp= 101 

Ki= 0 

Kd= 94 
 

Step response for closed loop system with PID controller is 
depicted in Fig.8.  

 
Fig.8. Closed loop system with PID controller step response 

 

System specifications for the PID controlled system is listed 
in table 5. 

Table 5. PID controlled system characteristics 

Rise Time: 1.29 

Settling Time 1.98 

Settling Min 13.58 

Settling Max 15.26 

Overshoot 1.74 

Undershoot 0 

Peak 15.26 

Peak Time 2.92 

 

Steady state error is zero as well. Then all designing 

specifications are satisfied with final chosen Kp, Ki and Kd. 

 



  

V. FULL STATE FEEDBACK CONTROL AND LINEAR 

QUADRATIC REGULATOR CONTROL 

A. Pole Placement 

pole placement, is a method employed in feedback control 

system theory to place the closed-loop poles of a plant in pre-

determined locations in the s-plane.[1] Placing poles is 

desirable because the location of the poles corresponds 

directly to the eigenvalues of the system, which control the 

characteristics of the response of the system. The system must 

be considered controllable in order to implement this method. 

This technique is widely used in systems with multiple inputs 

and multiple outputs, as in active suspension systems. 

In order to implement pole placement method all state 

variable must be measurable. Moreover, system must be 

controllable. Using pole placement technique, we could get 

the closed loop poles to the desired location. Not only the 

“dominant poles”, but “all poles” are forced to lie at specific 

desired locations. Our system state space model expressed in 

Eq. (10) is controllable because the rank of its controllability 

matrix is equal to the order of system (n). The scheme of full 

state feedback system is depicted in Fig.9.  

 

 

 
Fig.9. Closed-loop system with full state feedback controller 

 

The control vector U is designed in the following state 

feedback form 

 

𝑈 =  −𝐾𝑋                                                                      (15) 

 

 This leads to the following closed loop system  

 

𝑋 . = (𝐴 − 𝐵𝐾)𝑋 = 𝐴𝐶𝐿𝑋             (16) 

 

where  

 

𝐴𝐶𝐿 ≡ (𝐴 − 𝐵𝐾)                (17) 

 

The gain matrix is designed in such a way that 

 

|𝑆𝐼 − (𝐴 − 𝐵𝐾)| = (𝑠 − 𝑃1)(𝑠 − 𝑃2) … (𝑠 − 𝑃𝑛)          (18) 

 

where 𝑃1, … 𝑃𝑛 are the desired pole locations. 

Solving for K, the gain matrix K is obtained such that the state 

feedback control places the closed-loop poles at the loations 

of desired poles. That means the eigenvalues of A – BK are 

equal to the desired poles. 

According to characteristics equation obtained from desired 

specification design (Eq.14) we have the following dominant 

poles: 

 

P1,2 = -2.0±2.0976i 
 

The third pole is chosen such that its magnitude be more than 

three times of the dominant poles.  Fig.10 shows step response 

of the system after applying pole placement method. 

 
Fig.10. Full State Feedback Control step response 

 

System specifications for the controlled system is listed in 
table 6. 

Table 6. Full state feedback controlled system characteristics 

Rise Time: 0.81 

Settling Time 2.24 

Settling Min 0.90 

Settling Max 1.04 

Overshoot 4.19 

Undershoot 0 

Peak 1.04 

Peak Time 1.73 

 

B. Linear quadratic regulator (LQR) 

 

The theory of optimal control is concerned with operating 

a dynamic system at minimum cost. The case where the 

system dynamics are described by a set of linear differential 

equations and the cost is described by a quadratic function is 

called the LQ problem. One of the main results in the theory 

is that the solution is provided by the linear–quadratic 

regulator (LQR), a feedback controller whose equations are 

given below. The LQR is an important part of the solution to 

the LQG (linear–quadratic–Gaussian) problem 

For a time-continuous system, the state-feedback law  

u = –Kx minimizes the quadratic cost function J(u). 

 

https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Closed-loop_pole
https://en.wikipedia.org/wiki/S-plane
https://en.wikipedia.org/wiki/Full_state_feedback#cite_note-Sontag1998-1
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Controllable
https://en.wikipedia.org/wiki/Optimal_control
https://en.wikipedia.org/wiki/Dynamic_system
https://en.wikipedia.org/wiki/Linear_differential_equation
https://en.wikipedia.org/wiki/Linear_differential_equation
https://en.wikipedia.org/wiki/Quadratic_polynomial
https://en.wikipedia.org/wiki/Functional_(mathematics)
https://en.wikipedia.org/wiki/Linear-quadratic-Gaussian_control


  

𝐽(𝑢) = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0
          (19)  

Subject to  𝑋 . = 𝐴𝑥 + 𝐵𝑢.  

 
The goal is to design an optimal feedback K using the Linear 

Quadratic Regulator (LQR) problem, whose parameters are 

the state matrix A, input matrix B, state weighting matrix Q, 

and input weighting matrix R. Q is a symmetric positive semi-

definite matrix and R is a symmetric positive-definite matrix. 

Matrices Q and R imposes constraints on states and control 

input, respectively.  

 

The state feedback control gain matrix K is obtained as 

 

𝐾 =  𝑅−1𝐵𝑃                  (20) 

 

Where matrix P satisfies the following reduced matrix 

Riccati: 

 

𝐴𝑇𝑃 +  𝑃𝐴 −  𝑃𝐵𝑅−1𝐵𝑃 +  𝑄 =  0       (21) 

 

The weighting matrices are specified such that the closed loop 

system is able to track the reference signal with a control 

signal that does not significant violates the saturated actuator 

limits. The minimum value of J in Eq. (19) is obtained as 

 

𝐽𝑚𝑖𝑛 = 𝑥𝑇(0)𝑃𝑥(0) 
 

For our simulation we assumed Q and R as follows to design 

optimal control.  

 

𝑄 = 104 ∗ 𝐶 ∗ 𝐶𝑇 
 

𝑅 = 10−4 
 

In Fig.11 the step response of the system after applying LQR 

technique is displayed. We manipulated R to obtain 

acceptable system characteristics from the optimization.  

 

 
 

 

 

 

 

System characteristics after implementation of LQR is 

shown in table 7. 

 
Table 7. LQR controlled system characteristics 

Rise Time: 0.29 

Settling Time 2.85 

Settling Min 0.90 

Settling Max 1.07 

Overshoot 7.29 

Undershoot 0 

Peak 1.07 

Peak Time 0.63 

 

VI. CONCLUSION 

Our first approach to control the robotic manipulator arm is to 

derive a mathematical model for the system using physical 

governing equations on system. After obtaining the state 

space model and block diagram for the system, it is illustrated 

that this system is stable. 

Using feedback to make a closed loop system and getting a 

preliminary insight from this system step response we 

designed several controllers to control the robotic arm system 

to meet system requirements. In order to meet the design 

specifications of the response which were 5% overshoot, 

settling time of 2 seconds, and zero steady-state error to step 

input, PD controller, and PID controller were designed using 

root locus and their performance was compared. Next, full 

state feedback control was implemented by assigning desired 

closed-loop poles. Finally, linear quadratic regulator was 

implemented to minimize the performance index. 

Table 8 illustrates the characteristic of desired, open loop and 

all designed controller. System specifications for all type of 

applied controllers are illustrated in table 8. It can be inferred 

that best performance is for PID controller since it satisfies all 

of the desired specification the best and decries settling time 

significantly.  

 Moreover, PP (pole placement) controller satisfies the 

condition though its overshoot is more than PID and introduce 

a trivial amount of steady state error to the system as well. 

Also, LQR controller’s overshoot exceeds the desired amount 

and this is unacceptable. In addition, P controller due to its 

unsatisfactory settling time is not acceptable. 

 
Table 8. Comparison of system characteristics for different controllers 

 OS% 𝑇𝑠 𝑒𝑠𝑠 

Desired system 5 2 0 

Closed loop 0 303.68 0 

P Controller 0 114.73 0 

PID Controller 1.74 1.98 0 

PP  4.19 2.34 1.3x10-15 

LQR 7.3 0.85 1.11x10-16 
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