Identifying Sensitive Components in Infrastructure

Networks via Critical Flows

James Williams, jamesbw @cs.toronto.edu

April 2021

Abstract

This paper introduces a set of component importance measures that are based on
the concept of critical flow. In particular, it shows how flow-based centrality measures
can be used to identify critical components of an infrastructure system. The motivation
of the work is to provide municipalities with a means of reasoning about the impact
of urban interventions. An infrastructure system is represented as a flow network in
which demand nodes are assigned both demand values and criticality ratings. Sensitive
elements in the network are those that carry critical flows, where a flow is deemed
critical to the extent that it satisfies critical demand. A method for computing these
flows is presented, and its utility is demonstrated by comparing the new measures to
existing flow centrality measures. The paper also shows how critical flow measures
may be combined with standard approaches to reliability analysis.



1 Introduction

This paper describes a set of component importance measures (“CIMs") that rank system
components according to their role in the delivery of resources to critical locations. These
measures can be viewed as variants of flow centrality [20] that are customized for flow
networks in which demand nodes are assigned both demand values and criticality ratings.
The paper describes a general method for computing critical flow CIMs, as well as a simple
embodiment that demonstrates the various stages of computation.

The perspective on infrastructure criticality adopted in this work is demand-based,
motivated by an interest in decision support systems (“DSS") [24] for use by municipal
governments (see [22, 11]). As urbanization continues at a rapid pace [53, 47] cities are
experiencing significant increases in population and concomitant increases in demand for
goods and services. The resulting capacity issues are a major source of risk for legacy
infrastructure systems due to the fact that they are typically extremely expensive to alter
(e.g., the Thames Tideway tunnel project [51, 52]).

In addition to population growth, various interventions have the potential to alter patterns
of demand, and therefore to change the distribution of flows within infrastructure systems.
For example, densification entails the construction of high density residential units that
impose heavier demands on legacy infrastructure systems [27]. These changes in demand
patterns can altering existing flow distributions and potentially change the set of components
that are relied upon to deliver resources to critical locations.

In the worst case, changes in demand may impose undue stress on existing infrastructure.
Increases in demand (or reductions in capacity) may leave critical locations such as hospitals
with reduced access to resources. Resource flow to critical locations may also be routed
through less reliable infrastructure components. In some cases, there may be no fallback
routes available in case of component failure.

This paper provides a new technique for identifying critical components of an infras-
tructure system, where a component is deemed critical according to the role it plays in
providing critical locations with resources (i.e., its participation in critical flows). While the
critical infrastructure protection literature contains methods for identifying vulnerabilities
in networks containing critical assets (e.g., [S]), the present method allows criticality ratings
to propagate through a network. It is also highly granular, intended for use in urban decision
support systems operating at a parcel level. Furthermore, by combining critical flow with
standard reliability techniques, one can visualize the portions of an infrastructure system
that: (1) play a disproportionate role in delivering resources to critical locations, and; (2)
lack backup/failsafe routes.



Of course, infrastructures do not exist in isolation. Interdependencies between infras-
tructure systems are ubiquitous, leading to complex failure patterns that are much more
difficult to predict [4]. The resulting ‘systems-of-systems’ [16] are subject to additional
risks that arise from the complex interaction of their component systems, including cas-
cading failures [45]. Nevertheless, in the interests of brevity this paper focuses on a single
infrastructure system at a single moment in time.

The structure of this paper is as follows. Section Two provides background information
on CIMs. Section Three introduces the concept of critical flow. Section Four shows
how critical flow can be used to construct several new CIMs. Section Five provides a
simple method for calculating probabilistic critical flow measures. Section Six provides a
comparison with other centrality measures, as well as a demonstration of how reliability

analysis might be integrated with critical flow modeling.

2 Background and Previous Work

Many research communities have proposed component importance measures (“CIMs")
[3] for infrastructure systems. Examples of CIMs include network efficiency [34], flow
vulnerability [42], and flow capacity rate [38]. Of particular interest are the centrality
measures, which are used to identify the most central components in a network [48, 9, 10,
30, 37]. Arranged in categories (e.g,. [46, 42]), these include:

1. Nearness measures, which calculate a component’s centrality by means of its proxim-
ity to other components (e.g., degree centrality [37], closeness centrality [8], residual

closeness centrality [15], information centrality [29], and evidential centrality [55]).

2. Betweenness measures, which consider components to be central to the extent to
which they stand between other components as intermediaries (e.g., shortest-path
betweenness centrality [20], general-path betweenness centrality [25], load centrality

[23], and random walk betweenness centrality [36]).

3. Dynamical measures, which examine both topology and dynamical processes situated
on the network (e.g., flow centrality [21], traffic load centrality [35], random walk
centrality [39, 36], routing betweenness centrality [17], dynamical influence [28],
efficiency centrality [54], and percolation centrality [44]).



2.1 Flow-based Centrality Measures

Several centrality measures are based on the concept of network flow, of which the most
popular is the classical formulation of flow centrality (“FC") [21]. It can be viewed as a
hybrid that combines: (1) betweenness, and; (2) a representation of network dynamics. In
particular, a node v is considered to be between other nodes u and w to the extent that the
maximum flow between u and w depends on v. FC is defined formally as follows:

Definition 1: Flow Centrality

Consider a flow network with nodes V and links E. For u,v,w € V, let m,, ,,
be the maximum flow between u and w, and let m, ,, (v) be the maximum
flow between u and w that depends on v. Then the flow centrality of a node
v € V is the degree to which the maximum flow between all unordered pairs

of nodes depends on v:

CFm= >0 muw(v) (1)

uFw+v

This measure can be normalized by dividing the flow that passes through v by the total flow
between all other pairs of nodes, yielding the percentage of flow that depends on v:
CF
= @)
Zu#w:ﬁv mu,W
Since the analysis of supply/demand networks focuses primarily on the relation between
source and sink nodes, this paper introduces a narrower formulation of flow centrality (and
of edge-flow centrality [38]). The source-sink flow centrality (“SSFC") of a node v is the
degree to which the maximum flow between all source and demand nodes depends on v:

CSSEry= 3 mya(v) 3)

seS,deD,s#d+v

where my 4 is the maximum flow between s and d, and mg 4(v) is the maximum flow
between s and d that depends on v. This can be normalized by dividing the flow that passes
through v by the total flow between all pairs of source/sink nodes:

cr(v)
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2.2 Flow-based CIMs Applied to Infrastructure

Various research communities have applied centrality measures to the study of infrastructure
systems (see, for example, [33, 56, 13, 31]). Recent work has focused on dynamical CIMs,
including those based on network flows. Comparisons between topological and flow-based
methodologies have appeared in several recent studies (e.g., [58, 41, 42]).

Probabilistic estimates of reliability in a flow network are provided in [26]. A network is
deemed reliable to the extent that demand nodes have at least one path to the source, given
component failures. To determine reliability, an appended spanning tree data structure is
used to identify a set of disjoint spanning trees. For a given failure scenario, each of these
spanning trees 7; is inspected to determine if demand nodes have at least one path to the
source. The results are then aggregated to create a measure of reliability for the scenario.
The network is not a proper flow network with capacities, but the concept of fallback routes
is evident.

A method for ranking vulnerabilities in a directed, capacitated, flow network is presented
in [32]. Damage scenarios are created by disabling one of the edges. A scenario is evaluated
by determining its impact on the supply coverage (supply/demand ratio) at each sink. A
greedy, path-based algorithm finds the geodesic with maximum capacity between a sink
and a source, and reserves the demand from the sink against the capacity of each edge and
vertex of the geodesic. (If capacity constraints are violated, there is a supply problem for the
given sink). Multi-attribute decision theory is used to calculate the disutility of the scenario.
There is no priority order imposed on the nodes, nor is there consideration of fallback routes.

A CIM for a directed, uncapacitated, flow network is provided in [18]. To identify
critical nodes: (1) a synthetic baseline network G is generated, using nodal degree to
identify a unique supply node and to assign demand values; (2) hydraulic simulation is used
to compute flows; (3) a ‘roving supply node’ simulation is performed. In each iteration a
single demand node d is removed from G p, yielding G g — {d}, and hydraulic simulation is
used again. After iterating through all demand nodes, a new supply node is chosen and the

process is repeated until all combinations have been covered. The impact of each scenario

Jis \/(Alj)2 +(A2j)% + -+ (A,)?, where A;; is the difference in flow for node i between
Gp and G — {i}. Unlike the present paper, the supply nodes are not fixed, and no priority
is imposed on demand nodes.

A hierarchical approach to evaluating the robustness of capacitated flow networks is
described in [19]. A network is represented as a multi-level flow model in which each
demand node is assigned a priority level. Reliability evaluation is carried out through a

Monte Carlo approach [57] in which a system configuration is created by sampling the link



capacities from their probability distributions. For each configuration, a greedy, surplus-
based algorithm pushes flow through the network, satisfying higher priority nodes first. The
results from numerous such configurations are used to estimate the probability distribution of
the amount of flow delivered to each demand node at equilibrium. The network is robust to
the extent that sufficient levels of flow reach the demand nodes despite capacity degradation
of the links. However, assigning flow based on node priority is markedly different from the
method proposed in the present work.

Flow-based vulnerability measures for a capacitated and directed network are developed
in [38]. The measures are used to identify a set of list of network edges that can be hardened
against damage from geographically-situated disruptions; Performance of the network is
measured by computing an all-pairs average network flow ¢(x) by means of a MINIMUM
COST NETWORK FLOW ALGORITHM [2]. Several edge importance measures are considered,
including: (1) all-pairs max-flow edge count, the total number of times a given edge is
utilized in all s — ¢ pairs max-flow problems, and; (2) edge flow centrality: sum of flow
on the edge for all possible s — ¢ pair max-flow problems, normalized by the sum of all-
pairs max-flows. No priority order is imposed on nodes, but the measures are important
precursors for the work described in the present paper.

Finally, a variant of current-flow betweenness centrality [36] was applied to to urban
networks in [1]. Since the computational cost of this type of centrality measure can be quite
high, an approximation method is used to allow for its use on high density urban datasets.
The authors use the new method to study pedestrian flow on a dataset of 186 nodes that is
drawn from a real-world street network in Spain. Priority order on nodes is not supported,
but the method is a useful comparator as it is designed for analyzing urban infrastructure at
district scale.

While this is not an exhaustive list of previous work on flow-based CIMs, it is rep-
resentative of basic techniques and guiding assumptions. Although various authors have
proposed means of identifying critical components using flow-based techniques, only one
[19] permits network components to be labeled with criticality values of the sort commonly
used in critical infrastructure protection (e.g., [5]). In that work, the algorithm for generating
the flow solution ensures that higher priority nodes are satisfied first. In contrast, the present
work does not make any such assumption, allowing a variety of techniques (e.g., hydraulic

simulation) to be used in determining flow solutions and the resulting centrality values.



3 Critical Flows

This paper describes a means of modeling the impact of changes in demand, supply, or
capacity on the distribution of flows within a system. Of particular interest are critical
Sflows—flows that deliver resources to critical locations such as hospitals. Components are
deemed critical to the extent that they participate in critical flows.

For example, changes in demand can result in significant changes to the distribution of
flows. Part A of Figure 1 shows a capacitated network in which demand node d; has been
deemed to be critical. Part B shows a maximum flow solution for the network; the flow
to d; is balanced between the paths (S, n1, d;) and (S, ny, d1), with each path carrying 7.5
units of flow. Furthermore, the flow to all demand nodes is approximately balanced, and the
internal edge (n1, ny) is not used.

A slight change to the network drastically alters the distribution of critical flows. Part C
of Figure 1 shows a modified network in which the demand at d3 has been increased to 22.
Part D shows the resulting change in critical flow patterns: the majority of flow to critical
location d; is now routed through the upper path (S, n;, d). This can result in increased risk

in cases where components in the upper path are unreliable or scheduled for maintenance.

3.1 Representing Criticality

The method presented in this work requires a modeler to assign criticality ratings to assets.
There are at least three options for modeling asset criticality: (1) a binary representation,
in which an asset is either critical or not; (2) a categorical representation, in which an
asset’s criticality is selected from a finite set (e.g., {{low, med, high}), and; (3) a continuous
representation, in which an asset’s criticality is a real number.

After the modeler has labeled assets with criticality ratings, the rest of the system’s
components are evaluated. Each component is ranked according to its role in delivering
resources to critical assets. There are several possible ranking methods for a component:
(1) absolute critical flow, the amount of critical flow that passes through it; (2) percentage
critical flow, the percentage of its flow that is critical; (3) location count, the number of
critical locations that receive flow from it, and; (4) weighted expected critical flow, the

expected amount of resource that it supplies to demand nodes, weighted by their criticality.
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Fig. 1. A capacitated network (A) and a maximum flow solution (B) showing critical flows.
Demand node d; is deemed a critical location. Capacities and flow values are given as X /Y
where X is the capacity and Y is the flow value, and demands are indicated as d = x. (C)
shows the same network as (A), but node ds has greatly increased demand. (D) shows how
the upper path now carries the bulk of critical flow to d;.



4 Component Importance Measures based on Critical Flows

The concept of critical flow may be used to define numerous CIMs.

4.1 Ciritical Flow Centrality

The most intuitive critical flow CIM is obtained by modifying the classical notion of flow
centrality [20]. A node is deemed central to the extent that it is involved in the flow of

resources to critical locations. Examples of such measures include:

1. (Binary) Critical Flow Centrality: let Do C V = {dy,d,,...,d;} be the set of
demand nodes in G that are deemed critical. and let S = {s{,2,...,s p} be the set
of source nodes in G. Let mg 4 be the maximum flow between s € S and d € Dc.
(In the case where there is a single source, this is the same as the flow entering d).
Furthermore, givennode v € V- D, let mg 4(v) be the maximum flow between s and
d that depends on v. Then the (binary) critical flow centrality of anodev € V — D,
is the degree to which the maximum flow between critical demand nodes and source

nodes depends on v:

CFm = > mealv) )

seS,deDc

2. Weighted Critical Flow Centrality: let the set of demand nodes in the network be
D ={d,d,,...,dny}, and consider function ¢, : D — R* that maps a demand node
d € D to a criticality value c¢,(d). Then the weighted critical flow centrality of a

node v € V is:

VL= Y e dmya(v) (©)

seS,deD

Both of these CIMs may be normalized by the total critical flow on the network.

4.2 Probabilistic Critical Flow Measures

The measures introduced above are based on maximum flows. One can relax this assumption.
Consider demand nodes D = {di, d», . ..,dn}, and criticality function ¢, : D — R*. Let
D be a family of functions §; : D — R*, each of which assigns a demand 6§(d) € R* for
each demand node d € D. Finally, let an assignment A be a concrete choice of function ¢;
from D, and let f4(d) be the flow received by d € D under A.



The flow in network G given assignment A is the aggregate of all flows reaching the

demand nodes:

FA(G) = ) fa(d) @

deD
The critical flow in network G given assignment A is the set of flows reaching the

demand nodes, weighted by criticality rating c,:

FS(G) = ) fa(d)er(d) ®)

deD

Let fa(vi,d;) be the flow that reaches d; € D from/through node v; € V under
assignment A. The main quantity of interest is the expected amount of flow from v; that

reaches d:

E[fa(vi,dj)] ©

This leads to the following definition (stated for vertices):

Definition 2: Vertex CFC

The (probabilistic) critical flow centrality (“CFC") of a vertex v € V is:

CPrw) = Y er(ELfa(v,d)] (10)

deD

The CFC of vertex v is the sum of all expected amounts of flow being delivered via
v to the demand nodes, weighted by their criticality. The CFC may be normalized by an
appropriate expression, such as the total flow F4(G) or the total flow weighted by criticality
Fg (G):
CPr () _ Baep ¢r (E[fa(v.d)]
F$(G) ~ Yaep ¢r(d) fa(d)

Variations on these formulas are easy to construct. First, identical definitions can be

C/PCF (V) —

an

formulated for edges. Second, one can concoct unweighted versions in order to accommodate
the boolean representation of criticality. Third, additional factors may be incorporated (e.g.,
reliability estimates for components, as discussed in Section 6.2). Lastly, these definitions

are compatible with the use of utility functions, although that topic is not discussed in this

paper.

10



5 Computing the Critical Flow Measures

The previous section provided definitions of new CIMs, but no guidance on how they are to
be computed. This section presents a general framework for doing so, as well as a simple
instantiation that computes the (probabilistic) critical flow centrality (“CFC").

5.1 A Method for Critical Flow Analysis

The framework for computing critical flow CIMS involves four elements:
1. arepresentation of an infrastructure system as a flow network;
2. input data (i.e., demand values, criticality ratings, capacity constraints);
3. a means of calculating flows, and;

4. a means of determining the probability that a given network component (node, link)

carries flow to a given demand node.

Since these elements can be supplied in different ways, there are many possible instantiations

ranging from simple to highly complex. This paper presents a simple version for clarity.

5.2 Network Representation

An infrastructure system is represented as a weighted, capacitated, flow network G = (V, E)
where V is a set of nodes, and £ C V X V is a set of links. Each node v € V has world
coordinate w(v) = (vy,vy,v;) € R3. Each link e = (vi,v;) € E has a capacity c(e) € N
and a flow f(e) € N. Bi-directional relationships, cycles, and self-loops are all permitted.
The network G contains both source (supply) and sink (demand) nodes. The set of source
nodesis S = {s1,s2,...,5,} € V,andthe setof demand nodesis D = {di,d>,...d,,} € V.
All other nodes are called transmission nodes. A flow on G is a real-valued function

f + E — Ron G’s links that obeys three flow properties:
1. Capacity Constraints: for all e = (v;,v;) € E, we have f(e) < c(e).
2. Skew Symmetry: for all e = (v;,v;) € E, we have f((v;,v;)) = =f((v;,vi)).
3. Flow Conservation: for all nodes v, € V — (D U S), we have Y, oy f((v;,v)) =0.

The value of a flow is defined as the flow exiting the source nodes: |f| = >, <y f(s,V).
While a network with multiple source and sink nodes may be reduced to a network with a

single sink and source, (see [14]), the explicit representation is used throughout this paper.
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5.3 Demand Distributions and Criticality

The basic network flow model is augmented with additional metadata. First, a demand
function 6 : D — N maps a demand node d € D to a demand §(d). Second, a supply
constraint function f; : S — N assigns each source node s € S a maximum flow ¢ (s).
Third, a criticality function ¢, : D — [0, 1] maps d € D to a criticality rating cr(d)
between 0 and 1.

An assignment to a network involves assigning supply constraints to all source nodes
and criticality/demand values to all demand nodes. These values may be provided by

simulation (e.g., stochastic processes) or via external data.

5.4 Calculating Network Flow

For a given assignment to the network, a network flow must be computed. While binary
and categorical representations of criticality can be accommodated using a multi-commodity
network flow algorithm [2], the continuous representation of criticality requires the use of
alternative techniques, including: (1) general network flow algorithms, or; (2) domain-
specific simulation techniques (e.g., hydraulic simulation [40]).

The most intuitive way to create a flow on an network is to utilize an algorithm for
the MAXIMUM FLOW PROBLEM [2]. A major drawback to this approach is that popular
maxflow algorithms do not yield network flows that are balanced across competing paths.
(Algorithms that allow for disjunctive constraints exist, as in [43], but they have some
drawbacks). Domain-specific methods are preferable in cases where a realistic flow must

be obtained. For simplicity, this paper uses the the Edmonds-Karp algorithm [see [14]].

5.5 Calculating Critical Flow from Flow Patterns

Once a flow solution has been obtained for assignment A, the CIM can be computed. In
the case of the CFC measure, one must compute E[ fa(c;,d;)] (Equation 9), the expected
amount of flow passing through component ¢; that ends up at demand node d;. For a model
that uses empirical data, a sampling approach is required. The demonstration method in
this paper represents an infrastructure system at a single point in time using integer-valued
demands, so that Equation 9 is equivalent to the probability that a unit of flow passing
through ¢; ends up at d;, multiplied by the total amount of flow passing through c;:

E[fa(ci,dj)] = P(djlc;i) fa(ci)

12



The required probabilities can be computed in several ways. The most intuitive approach
is to reduce the problem to Markov chain computation [49, 50]. Another feasible solution
is to estimate probabilities from the flow network using a Time Forward Random Walk [7].
In contrast, the present instantiation uses a graph search approach to directly compute the
probability for each node v (or link e) that a unit of resource passing through v (or e) lands
in a given demand node d. Figure 2 shows how this is performed for a demand node
corresponding to a lot/parcel.

Fig. 2. Calculation of expected amount of flow delivered from source (green) to a demand
node (black). Nodes/links that do not supply resources to the demand node are not shown.

The flow solution is transformed into a secondary transition graph G’ that represents
the flow in terms of transition probabilities. Every node in G’ contains a list of outgoing
links, each of which is labeled with the probability that a unit of flow is sent down that link.
(If a link in the flow network G has a flow of 0, it does not appear in G’). The edges in G’
are unidirectional.

Demand nodes d € D in the original flow network G are referred to as absorbing nodes
in G’. Associated with every non-absorbing node v; € G’ (and every link ¢; € G’) is a
map data structure v;.map (or e;.map) that stores the entire set of demand nodes reachable
from v; (or e;). Each entry in this map contains an identifier of a demand node d;, together
with the probability P(d;|c;) that a unit of flow will reach d; from the node/link c; to which
the map belongs. Metrics can be computed by examining the contents of the map and the

13



attributes of the relevant absorbing/demand nodes.

The method for computing conditional probabilities is shown in Algorithm 1. It
proceeds by exploring secondary graph G’ in reverse, tracing out paths from each absorbing
node d € D to a source. For each d, a search of the graph is performed by following
incoming edges e = (src, dst, probability), recording the probability of arriving at d at

each subsequent component.

Function ComputeProbabilities(G’)
Data: G’, a graph with components (V, E) and absorbing nodes D C V.

foreach d € D do
ReverseSearch(G’, d)
end
Function ReverseSearch(G’, d)
Data: G’, as above.
Data: d, an absorbing node.
Var excess|] // array of numbers € [0,1] of size |V|
Var stack
excess[d.ID] =1
stack.push(d)

while stack not empty do
Var curNode = stack.pop()

Var amt = excess[curNode.ID] // amount of probability to push

foreach incoming edge curEdge of curNode do
curEdge.map.IncrementOrAddProbability(d.ID, amt)
excess[curEdge.src.ID] = amt * curEdge.probability
stack.push(curEdge.src)

end

curNode.map.IncrementOrAddProbability(d.ID, amt)

excess[curNode.ID] =0

end
Algorithm 1: A Deterministic Algorithm for Computing Flow Probabilities.

A lookup table containing probability values for each node is maintained in a helper
variable excess, indexed by node ID. The IncrementOrAddProbability() function updates
the estimate of P(d|c) stored in the map of component ¢. The lookup table and variable
amt are used to avoid problems with overlapping paths.

Once the relevant probabilities have been determined, the CFC of a component ¢; (edge

or node) is computed as:

CP(ey=" ). P(djleie (di) fales) (12)

djec;.map
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where d; is a demand node, P(d|c;) is the probability that flow passing through c; reaches
d;, fa(c;) is the flow passing through c¢; under assignment A, and ¢, (d;) is the criticality
of d;. The measure may be normalized by the maximum CFC value for the network. For

vertices, this gives:

2d;evi.map P(dilvi)e, (di) fa(vi)
max, cy (CPCF (v))

CPr(vi) = (13)
Figure 3 shows the four stages of computation. A model consists of a planar region
containing blocks (light purple). Each block may contain a building (dark purple) or a set of
lots (light green) representing houses. A water distribution network provides buildings and
lots with water drawn from a reservoir. The basic topology of the street and water network
is taken from downtown Toronto, while demand values for buildings and lots are sourced
from empirical studies [6]. The modeler assigns criticality values to buildings manually.
The basic network model is shown in the upper left, along with demands for each
lot/building (black font). The upper right diagram shows a flow solution computed on the
basic network, while the lower left shows the induced probability graph arising from this
flow. (Network edges with zero flow are elided from the probability graph). Finally, the
lower right diagram shows the critical flow metrics, ranging from green (low criticality) to

red (high criticality). Criticality ratings for buildings are in white font.

5.6 Computational Requirements

Algorithm 1 is quadratic in space and time. In the worst case, the map at each node/link
stores |D| entries, one for each demand node in the network, leading to O ((|V|+|E|)|D]) in
storage space. As a variant of depth first search, the time required to compute probabilities
for each demand node is O(|V| + |E|), so the total time required for all demand nodes is
again O((|V| + |E|)|D|). For infrastructure networks, |V| = |E| and |D| £ %|V|, yielding
time and space complexity bounds of O(|V|?). For the model used in this paper, the maps
at nodes/links contain an average of 5 entries each, pushing the storage requirements closer
to O(|V]) (see Figure 4).

The running time of the entire method is dominated by the O(|V||E]?) =~ (|V|?)
Edmonds-Karp algorithm that is used to generate flows. If a push-relabel algorithm is
used, the running time can be reduced to O(|V|2\/E) N 0(|V|2\/M). In contrast, be-
tweenness centrality [20] can be computed in O (|V|?) using the Floyd-Warshall algorithm
or O(|V|*1log |V| + |V||E]) = O(]V|?log|V|) time using Johnson’s or Brandes’ algorithm
(see [14])).

15
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Fig. 3. Four steps in critical flow computation. Upper left: network topology with demands.
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Fig. 4. Distribution of sizes for the map data structures in the model shown in Figure 3.
Almost all of the nodes/links have a map with less than 6 entries.

Note that Algorithm 1 does not work for a transition graph G’ that contains cycles.
The Edmonds-Karp algorithm does not create cycles, but this is not necessarily the case for
domain-specific methods. For flow networks with cycles, alternative techniques must be
used.

5.7 Sampling Variants

This paper presents a ‘one shot’ scenario in which a single set of integer-valued demand
values is used. E[fa(ci,d;)], the expected amount of flow from component ¢; to demand
node d;, is computed with the use of a conditional probability P(d;|c;). If empirical data is
available, or if demand values are sampled from probability distributions, the basic method
must be adapted to support sampling. This is accomplished easily with a modification that
iterates over input data sets and computes E[fa(c;,d;)] as a sample mean of conditional
probabilities.

17



6 Evaluation

The utility of the critical flow method presented in this paper is demonstrated in two ways:
(1) comparison with alternative flow centrality measures, and; (2) integration with two

common forms of reliability analysis.

6.1 Comparison with Flow Centrality Measures

The FC, SSFC, and CFC measures were computed for a small model that was patterned
after high density neighbourhoods in Toronto, Canada. Figure 5 shows four views of this
basic model. The upper left view shows the model and the demands at each building and lot.
The flow resulting from this configuration is shown in the upper right, where black network
edges indicate that no flow is present. In the lower left, the SSFC centrality measure has
been computed for each edge and vertex. The lower right shows the FC centrality measure.

The FC measure places emphasis on the central nodes in the graph, leaving the sole edge
emanating from the source (i.e., the most critical) relatively dark. In contrast, the SSFC is
highly correlated with the flow, as shown in Figure 6. The fact that both the SSFC and the
maximum flow have occasional black edges is an artifact of the Edmonds-Karp algorithm.

Figure 7(A) shows the critical flow for the same model and demand/criticality configu-
ration. Criticality levels for buildings are displayed in white font; lot criticality is negligible
and elided. The critical flow comes from the hospital (1), school (0.6) and public buildings
(0.2) down the right of the network. Figure 7(B) arises from a single modification: the
demand on one of the non-critical buildings is raised from 150 to 2000. This forces a
redistribution of flows on the network due to capacity constraints on the right hand path. As
a result, critical flow is more evenly balanced across all paths from the source.

The SSFC and FC measures are unable to capture the flow redistribution involved in
Figure 7. To a large extent this is a result of SSFC and FC being based on sums of maximum
flows between subsets of V (i.e., pairs in the case of FC, sources and sinks in the case of
SSFC). Since the underlying graph is only changing slightly between scenario (A) and (B) of
Figure 7, the SSFC and FC measures change only slightly. In contrast, the CFC is computed
on a per-flow basis, where the flow in question is the result of competition between demand
nodes for supply. The CFC is therefore a measure of not only the network’s topology, but

also the load induced by an assignment of supply, demand, and capacity values.
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6.2 Edge Reliability

The critical flow measures introduced in this paper may be combined with reliability esti-
mation procedures (e.g., edge reliability [56]). As a simple example, a reliability function
r: E — [0, 1] can be used to assign edges ¢ € E a reliability rating r(e). Edges with high
criticality and low reliability can be identified by using the Reliable Critical Flow (“RCF")
CIM:

C’RCE () = C'PCF (e)r(e) (14)

Since both the normalized CFC and reliability (¢) lie in the interval [0, 1], the same is
true for C’RCF (¢). Reliability values can be obtained through a variety of means, including
surveys, inspections, or inferences from the physical characteristics (e.g., age) of the relevant
components.

Diagram A of Figure 8 shows reliability values for the model in Figure 3. Diagram
B is a plot of edge reliability versus CFC. The majority of the edges have negligible CFC
(e.g., those edges that feed individual lots). The solitary edge with a criticality of 1.0 is the
edge from the reservoir that carries flow for the entire model. Of particular interest are those
edges that have lower reliability ratings and moderate criticality.

While edge reliability can be combined with FC, SSFC or other centrality measures,
the use of the CFC provides a snapshot of the actual critical load on the network under a
given assignment. Combining the FC measure with edge reliability, for instance, allows
components to be ranked according to their role in facilitating maximum flows between all
pairs of vertices, weighted by reliability. While this might be useful for social networks in
which information flows arbitrarily, it does not match the typical load patterns on source/sink

networks.

6.3 Component Failure Analysis

Critical flow measures also support a common form of reliability analysis in which compo-
nents are failed iteratively in order to ascertain the impact on the global performance of the
network (e.g., [18]). The total amount of critical flow (i.e., the flow delivered to demand
nodes, weighted by criticality) can be used as a performance measure. Each edge/node can
be failed iteratively in a ‘leave one out’ analysis, and the impact on total critical flow can be
recorded. This type of analysis can be used to identify components that lack fallback routes.

Figure 9 shows the result of using this approach on the edges of the network in Figure
5. The vast majority of edges carry little critical flow, and therefore have insignificant failure

loss. More interesting are the edges on the upper left, with moderate CFC and no failure
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loss. These are edges for which there are backup routes available (e.g., the edges in the
residential blocks). The edge in the upper right is the edge incident on the lone source node,

the failure of which is catastrophic.

7 Conclusion

This paper introduced a set of component importance measures (“CIMs") based on the con-
cept of critical flow. The motivation for the work was to provide urban planners and other
stakeholders with a means of visualizing the impact of capacity-related changes on infras-
tructure systems. Various internal and external events (e.g., zoning decisions, population
growth, maintenance, component degradation) can affect the distribution of flows within
the system. In extreme cases, these events may interfere with the delivery of resources to
critical locations such as hospitals.

The CIMs presented in this work represent an infrastructure system as a flow network in
which the demand nodes are augmented with criticality ratings. Components in the system

are deemed critical to the extent that they facilitate the delivery of resources to critical
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nodes. The paper showed how to use the critical flow centrality (“CFC") measure to rank
components. After criticality values were assigned to the demand nodes, a probabilistic
algorithm was used to propagate criticality ratings through the entire network. Although the
algorithm used in the paper was discrete, a wide variety of techniques can be accommodated
(e.g., simulation).

The CFC measure was compared against two versions of flow centrality (“FC") on a
small, but realistic, model. The CFC was able to identify shifts in flow distribution that
arise from changes in both demand and network topology. In contrast, FC aggregates
maximal flows generated between pairs of vertices, resulting in a measure that largely tracks
the topology of the network. The CFC is specific to a particular flow solution—that is, it
represents the system under a particular load. When paired with reliability methods, it
allows a modeler to identify critical nodes that lack fallback routes.

The methods in this paper were designed to aid municipalities in reasoning about
the consequences of interventions. For instance, they could be used in GIS software in
order to help urban planners consider the impacts of zoning decisions (e.g., densification).
Maintenance engineers could also use them when developing schedules for the repair of
infrastructure components, since: (1) highly critical components should be serviced more
frequently, and; (2) repairing one set of components can shift critical flow across the
network, potentially introducing new risks. Finally, components that lack fallback routes
require particular attention.

The approach shown in this paper is only a simple instantiation of a general method,
providing a basic means of generating flows and computing probabilities. Future work
should investigate the use of domain-specific methods, as well as approaches for computing
probabilities that work with cyclic transition graphs. Perhaps the most urgent need is to
apply critical flow measures to a system that evolves over time.

There are many additional avenues for future research. First, performance measures
could be introduced to yield a metric that enables comparison and optimization. Second,
transmission vertices could be given capacity constraints, and transmission nodes/edges
could be augmented to act simultaneously as supply or demand nodes (e.g., edges could be
given a small loss to model component degradation). Third, network clustering algorithms
(see [12]) could be introduced to reduce the number of demand nodes. Lastly, one could

extend the method to identify groups of critical components (e.g., critical paths or clusters).
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Data Availability Statement

Some data, models, or code generated or used during the study are available from the

corresponding author by request: (1) ESRI CityEngine lot/parcel geometry and network

topology in XML format; (2) Python scripts to extract lot/parcel geometry and network

topology from CityEngine; (3) CityEngine scene file for the sample city used in the paper,

and; (4) C++ source code for the probability propagation algorithm.
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