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Abstract 

We derive an analytical expression to predict the effective properties of a particulate-

reinforced piezoelectric composite with interfacial imperfections using a micromechanics-

based mean–field approach. We correctly derive the analytical formula of the modified 

Eshelby tensor, the modified concentration tensor, and the effective property equations based 

on the modified Mori–Tanaka method in the presence of interfacial imperfections. Our results 

are validated against finite element analyses (FEA) for the entire range of interfacial damage 

levels, from a perfect to a completely disconnected and insulated interface. For the facile 

evaluation of the nontrivial tensorial equations, we adopt the Mandel notation to perform 

tensor operations with 9 9 symmetric matrix operations. We apply the method to predict 

the effective properties of a representative piezoelectric composite consisting of PVDF and 

SiC reinforcements. 
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1. Introduction 

Piezoelectricity refers to the electric charge accumulation in response to an applied 

mechanical loading, or, conversely, the mechanical strain generated from an applied electrical 

field (Cady, 1964). Such a characteristic has been extensively exploited in many important 

engineering applications such as high power generation (Lee et al., 2014; Yang et al., 2009), 

lightweight transducers (Guerin et al., 2019; Stamatellou and Kalfas, 2018), precision 

positioning stages of various microscopes (Li et al., 2019; Wang et al., 2019), vibration 

cancellation modules (Lin and Liu, 2006; Tan et al., 2019), and artificial skin of wearable 

devices (Chorsi et al., 2019; Yuan et al., 2019). Piezoelectricity occurs in a limited set of 

materials such as crystals with no inversion symmetry (Jella et al., 2019) and polymer 

materials with high dipolar moment (Ramadan et al., 2014). For example, one of the widely 

used piezoelectric polymers, polyvinylidene fluoride (PVDF), has five different crystalline 

phases: 𝛼, 𝛽, 𝛾, δ, and 𝜀. However, the 𝛼 and 𝜀 phases have zero net dipole moment owing 

to their antiparallel chain structure, and thus, the 𝛽 phase, which has the highest net dipole 

moment, has been primarily used (Ramadan et al., 2014). Owing to the limited numbers of 

piezoelectric materials, it often becomes difficult to obtain a piezoelectric material that 

simultaneously satisfies the multiple requirements of a given application. For example, the 

pure PVDF polymer has a small elastic stiffness (~3 GPa), which limits its applicability (Pei 

and Zeng, 2011). 

Hence, various piezoelectric composites have been fabricated such as the lead 

zirconate titanate (PZT)–polymer composite (Almusallam et al., 2015; Venkatragavaraj et al., 

2001) for an enhanced dielectric and hydrostatic piezoelectric coefficient and polyvinylidene 

difluoridein (PVDF)–SiC composite (Zhang et al., 2015; Zhou et al., 2015) for improved 

dielectric permittivity and elastic stiffness. Further, physical reinforcements as well as voids 



are known to improve some properties, i.e., the hydrostatic piezoelectric figure of merit 

increases with porosity (Zhang et al., 2017). Therefore, for the efficient design of a 

piezoelectric composite, it is essential to predict the effective properties of the reinforced 

piezoelectric composites in terms of its size, shape, and volume fraction of reinforcements.  

The Mori–Tanaka method, a micromechanics-based mean–field homogenization 

approaches, has been used to predict various effective physical properties of a reinforced 

composite, such as the elastic constant (Benveniste, 1987; Lee et al., 2019a; Lee and Ryu, 

2018), thermal conductivity (Lee et al., 2018; Quang et al., 2011), dielectric constant 

(Giordano and Palla, 2008), and thermoelectric (Jung et al., 2018) and piezoelectric 

properties (Odegard, 2004; Wang et al., 2014a; Wang et al., 2014c). The Mori–Tanaka 

method was originally developed to predict the effective elastic properties of particulate-

reinforced composite by using the Eshelby tensor for a composite involving multiple 

inhomogeneities with the mean–field approximation (Benveniste, 1987). The method has also 

been extended to predict other physical properties based on the mathematical analogy with 

steady-state governing equations (Ryu et al., 2019). Dunn and Taya were the first to adapt the 

Mori–Tanaka approach to model the piezoelectric composite by assuming a perfect interface 

between the reinforcement and the matrix (Dunn and Taya, 1993a, c). However, a realistic 

piezoelectric composite interface may exhibit imperfections such as the displacement jump 

(Zhao et al., 2012) or the electric compliance (Kim et al., 2011). Such interfacial 

imperfections can significantly affect the effective piezoelectric properties of a 

nanocomposite with nanoscale reinforcements that has a significantly higher interfacial area 

compared to a composite involving macroscale reinforcements with an identical volume 

fraction. 

To consider these interfacial imperfections, previous studies attempted to extend the 



Mori–Tanaka method by deriving the modified Eshelby tensor and the modified 

concentration tensor in the presence of interfacial imperfections (Wang et al., 2014a; Wang et 

al., 2014b; Wang et al., 2014c). However, as shown in the later part of this article, we find 

that the analytical expressions do not match with the FEA because the modified Eshelby 

tensor was derived by violating the Fubini–Tonelli theorem (Folland, 2013), and the modified 

concentration tensor was derived without considering the additional displacement jump and 

the discontinuity in electric potential. 

Here, we correctly derive analytical expressions of the modified Eshelby tensor and 

the modified concentration tensor of a piezoelectric material that are applicable to a material 

with arbitrary symmetry, and use them to predict the effective properties of piezoelectric 

composites. For the facile evaluation of the nontrivial tensor equations, we adopt the Mandel 

notation (Lee et al., 2019b), rather than the Voigt notation, to perform tensor operations with 

9 9 symmetric matrix operations. The analytical results are validated against the FEA 

results. We applied our results to predict the effective elastic modulus, piezoelectric constant, 

dielectric constant, and figure of merit map of the PVDF-SiC composite.  

The rest of this paper is organized as follows. First, in Section 2, we define the 

piezoelectric modulus and derive the modified Eshelby tensor for the piezoelectric composite 

in the presence of interfacial imperfections. We also show that the Mori–Tanaka method is 

not applicable for non-spherical inclusions, comprising elliptical inclusions with an aspect 

ratio other than 1, because of the non-uniform interior strain and electric field. In Section 3, 

we derive the modified concentration tensor in terms of the piezoelectric moduli of matrix 

and reinforcement, the degree of interfacial imperfection, and the Eshelby tensor. In Section 4, 

�e derive the expression for the effective piezoelectric modulus and obtain the effective 

dielectric constant, effective elastic modulus, effective piezoelectric coefficient, and effective 



figure of merit for a representative piezoelectric composite consisting of PVDF and SiC. We 

present the concluding remarks in Section 5.  

 

2. Modified Eshelby tensor for piezoelectric properties 

2.1 Constitutive equation and governing equation for piezoelectric material 

We choose the elastic strain 𝜀  and electric field 𝐸  as two independent input 

variables and relate them with the output variables, mechanical stress 𝜎  and electric 

displacement 𝐷 . The constitutive and governing equations of the piezoelectric material are 

expressed as Eq. (1) and Eq. (2), respectively, 

𝜎 𝐶 𝜀 𝑒 𝐸  

𝐷 𝑒 𝜀 𝜅 𝐸  
(1)

𝜎 , 0 

𝐷 , 0 
(2)

where 𝐶 , 𝑒 , and 𝜅  are the elastic constant, piezoelectric constant, and dielectric 

constant, respectively. The repeated index is a dummy index, which implies the summation 

over all values, 1 to 3. Eq. (1) can be shortened by adopting the notation suggested by Barnett 

and Lothe (Barnett and Lothe, 1975).  

𝛴 𝐿 𝑍  (3)

By adapting the notation, one can construct a constitutive equation having a similar form with 

linear elastostatics (Hooke’s law) or heat conduction (Fourier’s law). The repeated capital 

subscripts are summed over 1–4 and 𝐿  is a piezoelectric moduli tensor which can be 

constructed by  



𝐿

⎩
⎨

⎧
𝐶 𝐽, 𝑀 1,2,3
𝑒 𝐽 1,2,3, 𝑀 4
𝑒 𝐽 4, 𝑀 1,2,3

𝜅 𝐽, 𝑀 4

 (4)

𝑍  is the extended strain obtained from the extended displacement 𝑈 , which is written as 

𝑍
𝑑𝑈
𝜕𝑥

, 𝑈
𝑢 𝑀 1,2,3
𝜙 𝑀 4  (5)

where 𝑢  and 𝜙  are the displacement and potential field, respectively. Similarly, the 

extended stress 𝛴  is expressed as  

Σ
𝜎 𝐽 1,2,3
𝐷 𝐽 4

. (6)

Based on the notation, one can express the governing equation for the Green’s 

function of a piezoelectric material as 

𝐿
𝜕 𝐺 𝒙 𝒚

𝜕𝑥 𝜕𝑥
𝛿 𝛿 𝒙 𝒚 0. (7)

which is mathematically analogous with the steady-state governing equations of other 

physical phenomena such as elastostatics (Lee et al., 2019b), heat conduction (Lee et al., 

2018; Quang et al., 2011), and thermoelectricity (Jung et al., 2018). Following previous 

studies (Dunn and Taya, 1993a), the Green’s function of a piezoelectric material is expressed 

as  

𝐺 𝒙 𝒚
1

8𝜋|𝒙 𝒚|
𝐾 𝛿 𝒛 ∙

𝒙 𝒚
|𝒙 𝒚|

𝑑𝑆 𝒛
|𝒛|

 (8)

where 𝐾  is the inverse of  

𝐾 𝑧 𝑧 𝐿  (9)

For elasticity and the heat conduction problem, the Green’s functions have been derived in 

closed form even for an anisotropic material (Lee et al., 2018; Mura, 1982). However, it is 



difficult to derive the closed form of the Green’s function of a piezoelectric material owing to 

the mathematical complexity arising from the coupling (piezoelectric) constant (Huang and 

Yu, 1994). 

 

2.2 Eshelby’s single inclusion problem in the absence of interfacial imperfection 

The single inclusion problem of a piezoelectric material can be explained by the 

following four steps (Fig. 1). When the inclusion with a nonzero extended eigenstrain 𝑍∗  

is released after its insertion into the matrix having a same size hole, the inclusion deforms 

less than the (extended) eigenstrain owing to the interaction with the matrix. Based on the 

mathematical analogy between elasticity and piezoelectricity, one can realize that the 

constrained extended strain field within the inclusion is uniform when the shape of the 

inclusion is ellipsoid. Therefore, the constrained (extended) displacement and strain field are 

expressed as 

𝑈 𝐺 𝒙 𝒚 𝛴∗ 𝑛 𝑑𝒚 𝐺 𝒙 𝒚 𝐿 𝑍∗ 𝑛 𝑑𝒚 

𝑍 𝑆 𝑍∗ , 𝑆 𝑃 𝑑𝒚 𝐿  
(10)

where 𝑃

⎩
⎪
⎨

⎪
⎧1

2
𝜕 𝐺

𝜕𝑥 𝜕𝑦
𝜕 𝐺

𝜕𝑥 𝜕𝑦
𝑀 1,2,3

𝜕 𝐺
𝜕𝑥 𝜕𝑦

𝑀 4

 

where 𝜕Ω is the surface of the inclusion and 𝑆  is Eshelby tensor of the piezoelectric 

material. As suggested by Dunn and Taya (Dunn and Taya, 1993a, c), the Eshelby tensor of a 

piezoelectric ellipsoid having semi-axes as 𝑎 , 𝑎 , and 𝑎  can be expressed in alternative 

form as  



𝑆

⎩
⎪
⎨

⎪
⎧ 1

8𝜋
𝐿 𝛷 𝒛 𝛷 𝒛 𝑑𝜃𝑑𝜉 𝑀 1,2,3

1
4𝜋

𝐿 𝛷 𝒛 𝑑𝜃𝑑𝜉 𝑀 4
 (11)

where 𝛷 𝒛 𝑧 𝑧 𝐾 𝒛  and 𝑧 1 𝜉 cos 𝜃 𝑎 , 𝑧 1 𝜉 sin 𝜃 𝑎 , 𝑧

𝜉 𝑎⁄ . As for the Green’s function, it is also difficult to obtain the closed-form expression 

because of the piezoelectric coupling constants (Huang and Yu, 1994; Mikata, 2001).  

 

2.3 Imperfect interface modelled by linear spring model 

Eq. (10) assumes perfect bonding at the interface without displacement or electric 

potential discontinuity. We adopt the linear spring model to account for the interfacial damage 

for mechanical response for mathematical simplicity, and consider a dielectric layer at the 

interface to model the interfacial damage for electrical response (Fig. 2). For a piezoelectric 

material, the constitutive equation at the damaged interface is expressed as  

Δ𝑇 ΔΣ 𝑛 Σ 𝜕Ω Σ 𝜕Ω 𝑛 0 

Δ𝑈 𝑈 𝜕Ω 𝑈 𝜕Ω 𝛬 Σ 𝑛  

(12)

where  𝜕Ω  and 𝜕Ω  denote the interface surface on the matrix and inclusion side, 

respectively (Fig. 2). Λ  represents the extended interface spring compliance expressed as 

𝛬
𝛼𝛿 𝛽 𝛼 𝑛 𝑛 𝐽 1,2,3, 𝑀 1,2,3

𝛾 𝐽 𝑀 4
0 others

. (13)

𝛼, 𝛽 represent the tangential and normal direction spring compliance, respectively, and 𝛾 is 

the electric compliance coefficient. 𝛼, 𝛽 are equivalent to the small-deformation-regime 

compliances of the cohesive zone models that are widely adapted in various FEA studies 

(Bouhala et al., 2013; Fan and Tadmor, 2019; Springer et al., 2019). Thus, 𝛼, 𝛽 are always 



positive. 𝛾 represents the effect of a dielectric layer at the interface and is mathematically 

analogous with Kapitza’s resistance in a heat conduction problem (Lee et al., 2018; Quang et 

al., 2011). As expressed in Eq. (12), large interfacial damage results in large displacement 

(potential) jump across the interface and zero interfacial damage implies perfect bonding.  

The extended strain field within the single inclusion having the interfacial 

imperfection can be expressed as follows: 

𝑍 𝒙 𝑆 𝑍∗ Δ𝑈 𝐿 𝑃 𝑛 𝑑𝒚

𝑆 𝑍∗ Λ Σ 𝑛 𝐿 𝑃 𝑛 𝑑𝒚 

𝑆 𝑍∗ Λ 𝐿 𝑍 𝑍∗ 𝑛 𝐿 𝑃 𝑛 𝑑𝒚 

(14)

In general, the constrained strain field within an ellipsoidal inclusion is non-uniform when the 

interfacial compliances are finite (Appendix A). Thus, it is difficult to express the strain field 

in the closed form because Eq. (14) is an implicit equation involving 𝒁 in both the left and 

right sides. Previous studies (Wang et al., 2014a; Wang et al., 2014b; Wang et al., 2014c) 

have calculated the volume averaged modified Eshelby tensor to consider a non-uniform field, 

as expressed in Eq. (15). 

�̅�
1
Ω

𝑍 𝒙 𝑑𝒙 

𝑆 𝑍∗ 1
Ω

Λ 𝐿 𝑍 𝑍∗ 𝑛 𝐿 𝑃 𝑛 𝑑𝒚 𝑑𝒙 

(15)

The volume averaged modified Eshelby tensor was simplified after changing the order of 

surface integral and volume integral. A similar simplification has also been used for elasticity 

(Barai and Weng, 2011; Qu, 1993; Yanase and Ju, 2012) and heat conduction problems 



(Bonfoh et al., 2017). However, according to the Fubini–Tonelli theorem, it is not legitimate 

to change the order of two integrals because the Green’s function contains a singularity 

within the integral domain (Folland, 2013). We present a representative example of the 

violation of the Fubini–Tonelli theorem by considering a simple 2D integral problem in 

Appendix B.  

In this study, we derive the modified Eshelby tensor without any approximation. In 

previous papers on elasticity (Lee et al., 2019b; Zhong and Meguid, 1997), it has been proved 

that the strain field within the spherical inclusion is uniform when 𝛼 𝛽, and for the heat 

conduction problem it is known that under finite Kapitza’s resistance the intensity field 

(gradient of temperature) is uniform when the shape of the inclusion is spherical (Lee et al., 

2018; Quang et al., 2011). Therefore, using a mathematical analogy (Ryu et al., 2019), we can 

deduce that the extended strain field within the piezoelectric inclusion is also uniform when 

the shape of the inclusion is spherical and 𝛼 𝛽 (Appendix A). 

For the spherical inclusion problem with interfacial compliance 𝛼 𝛽, Eq. (14) is 

simplified as follows:  

𝑍 𝒙 𝑆 𝑍∗ Λ 𝐿 𝐿 𝑃 𝑛 𝑛 𝑑𝒚 𝑍 𝑍∗  

𝑆 𝑍∗ 𝛤 𝑍 𝑍∗  

(16)

where  

𝛤 ≡ Λ 𝐿 𝐿 𝑃 𝑛 𝑛 𝑑𝒚 (17)

By using 𝑛 𝑦 /𝑎 and applying the divergence theorem on 𝛤 , Eq. (17) is further 

simplified as 



𝛤 Λ 𝐿 𝐿 𝑃 𝑛 𝒚 𝑛 𝒚 𝑑𝒚

Λ 𝐿 𝐿 𝑃
𝛿
𝑎

𝑑𝒚 𝐸
𝜕𝑃

𝜕𝑦
𝑦
𝑎

𝑑𝒚  

Λ 𝐿
1
𝑎

𝐿 𝑃 𝑑𝒚 𝐸
𝜕𝑃

𝜕𝑦
𝑦 𝑑𝒚  

(18)

where 𝑎 is the radius of the inclusion. Noting that the first integral term on the right hand 

side is the definition of the Eshelby tensor shown in Eq. (10), one can write the Eq. (18) as 

follows: 

𝛤 Λ 𝐸
1
𝑎

𝐸 𝑃 𝑑𝒚 𝐸
𝜕𝑃

𝜕𝑦
𝑦 𝑑𝒚  

Λ 𝐸
1
𝑎

𝑆 𝐸
𝜕𝑃

𝜕𝑦
𝑦 𝑑𝒚  

(19)

To further simplify Eq. (19), we consider the following equation which is obtained by 

multiplying 𝑦  after differentiating Eq. (7) with respect to 𝑦 . 

𝐿
𝜕 𝐺 𝒙 𝒚

𝜕𝑦 𝜕𝑦 𝜕𝑦
𝑦

𝜕
𝜕𝑦

𝛿 𝛿 𝒙 𝒚 𝑦 0 (20)

Applying the divergence theorem after integrating Eq. (20) for the inclusion volume, we 

obtain  

𝐿
𝜕 𝐺 𝒙 𝒚

𝜕𝑦 𝜕𝑦 𝜕𝑦
𝑦 𝑑𝒚

𝜕
𝜕𝑦

𝛿 𝛿 𝒙 𝒚 𝑦 𝑑𝒚

𝛿 𝛿 𝒙 𝒚
𝜕𝑦
𝜕𝑦

𝑑𝒚 

𝛿 𝛿 . 

(21)

Therefore,  



𝐿
𝜕𝑃

𝜕𝑦
𝑦 𝑑𝒚

1
2

𝛿 𝛿 𝛿 𝛿 𝑀 1,2,3

𝛿 𝛿 𝑀 4
 (22)

After putting Eq. (22) into Eq. (19), we can express 𝛤  as  

𝛤 Λ 𝐿
1
𝑎

𝐼 𝑆 . 

(23)

where 𝐼
1
2

𝛿 𝛿 𝛿 𝛿 𝑀 1,2,3

𝛿 𝛿 𝑀 4
 

When 𝛼 𝛽, the extended interfacial compliance Λ  is simplified as Eq. (24), and thus, 

Eq. (23) can be rewritten as Eq. (25) 

Λ
𝛼𝛿 𝐽 𝑃 1,2,3
𝛾𝛿 𝐽 𝑃 4  (24)

𝛤 𝜔 𝛿 𝐿
1
𝑎

𝐼 𝑆

       
𝜔
𝑎

𝐼 𝑆 𝐿  
(25)

where 𝜔
𝛼 𝐽 1,2,3
𝛾 𝐽 4  

Eq. (25) is mathematically analogous with 𝜞 in other physical phenomena such as elasticity 

(Lee et al., 2019a; Lee et al., 2019b; Othmani et al., 2011), heat conduction (Lee et al., 2018; 

Quang et al., 2011), and thermoelectricity (Jung et al., 2018). Combining Eq. (16) and (25), 

we can predict the modified Eshelby tensor as  

𝒁 𝑺 : 𝒁∗ 

𝑺 𝑰 𝜞 : 𝑺 𝜞 , 
(26)

where : denotes a double contraction which implies 𝑺 : 𝒁∗ 𝑆 𝑍∗ . 

 



2.4 Mandel notation  

To evaluate Eq. (26), the inverse and double contraction of 4 3 4 3 or 3

4 4 3 tensors is required. Most papers concerning the micromechanics study of a 

piezoelectric material have adopted the Voigt notation to carry out the tensor operations 

(Martinez-Ayuso et al., 2017; Odegard, 2004; Wang et al., 2014c). Here, we adopt the Mandel 

notation because it is impossible to correctly calculate the modified Eshelby tensor with the 

Voigt notation. When the Voigt notation is adopted, the extended stress and strain vector 

expressed in Eq. (27) and the coefficient multiplied on components in the transformed 9 9 

matrix depend on the type of the tensor.  

〈𝚺〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜎11

𝜎22

𝜎33
𝜎23

𝜎31

𝜎12

𝐷1

𝐷2

𝐷3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 〈𝒁〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜀11

𝜀22

𝜀33

2𝜀23

2𝜀31

2𝜀12

𝐸1

𝐸2

𝐸3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (27)

For example, the transformed piezoelectric tensor 〈𝑳〉 , Eshelby tensor 〈𝑺〉 , and 

inverse of piezoelectric tensor 〈𝑴〉 〈𝑳 𝟏〉  are expressed as 

〈𝑳〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐿1111 𝐿1122 𝐿1133

𝐿2211 𝐿2222 𝐿2233

𝐿3311 𝐿3322 𝐿3333

𝐿1123 𝐿1131 𝐿1112

𝐿2223 𝐿2231 𝐿2212

𝐿3323 𝐿3331 𝐿3312

𝐿1141 𝐿1142 𝐿1143

𝐿2241 𝐿2242 𝐿2243

𝐿3341 𝐿3342 𝐿3343

𝐿2311 𝐿2322 𝐿2333

𝐿3111 𝐿3122 𝐿3133

𝐿1211 𝐿1222 𝐿1233

𝐿2323 𝐿2331 𝐿2312

𝐿3123 𝐿3131 𝐿3112

𝐿1223 𝐿1231 𝐿1212

𝐿2341 𝐿2342 𝐿2343

𝐿3141 𝐿3142 𝐿3143

𝐿1241 𝐿1242 𝐿1243

𝐿1411 𝐿1422 𝐿1433

𝐿2411 𝐿2422 𝐿2433

𝐿3411 𝐿3422 𝐿3433

𝐿1423 𝐿1431 𝐿1412

𝐿2423 𝐿2431 𝐿2412

𝐿3423 𝐿3431 𝐿3412

𝐿1441 𝐿1442 𝐿1443

𝐿2441 𝐿2442 𝐿2443

𝐿3441 𝐿3442 𝐿3443⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (28)



〈𝑺〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑆1111 𝑆1122 𝑆1133

𝑆2211 𝑆2222 𝑆2233

𝑆3311 𝑆3322 𝑆3333

𝑆1123 𝑆1131 𝑆1112

𝑆2223 𝑆2231 𝑆2212

𝑆3323 𝑆3331 𝑆3312

𝑆1141 𝑆1142 𝑆1143

𝑆2241 𝑆2242 𝑆2243

𝑆3341 𝑆3342 𝑆3343

2𝑆2311 2𝑆2322 2𝑆2333

2𝑆3111 2𝑆3122 2𝑆3133

2𝑆1211 2𝑆1222 2𝑆1233

2𝑆2323 2𝑆2331 2𝑆2312

2𝑆3123 2𝑆3131 2𝑆3112

2𝑆1223 2𝑆1231 2𝑆1212

2𝑆2341 2𝑆2342 2𝑆2343

2𝑆3141 2𝑆3142 2𝑆3143

2𝑆1241 2𝑆1242 2𝑆1243

𝑆4111 𝑆4122 𝑆4133

𝑆4211 𝑆4222 𝑆4233

𝑆4311 𝑆4322 𝑆4333

𝑆4123 𝑆4131 𝑆4112

𝑆4223 𝑆4231 𝑆4212

𝑆4323 𝑆4331 𝑆4312

𝑆4141 𝑆4142 𝑆4143

𝑆4241 𝑆4242 𝑆4243

𝑆4341 𝑆4342 𝑆4343 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

〈𝑴〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑀 𝑀 𝑀
𝑀 𝑀 𝑀
𝑀 𝑀 𝑀

2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀

𝑀 𝑀 𝑀
𝑀 𝑀 𝑀
𝑀 𝑀 𝑀

2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀

4𝑀 4𝑀 4𝑀
4𝑀 4𝑀 4𝑀
4𝑀 4𝑀 4𝑀

2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀

𝑀 𝑀 𝑀
𝑀 𝑀 𝑀
𝑀 𝑀 𝑀

2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀

𝑀 𝑀 𝑀
𝑀 𝑀 𝑀
𝑀 𝑀 𝑀 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

If the Mandel notation is used, the extended stress and strain vector is written as 

〈𝚺〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜎11

𝜎22

𝜎33

√2𝜎23

√2𝜎31

√2𝜎12

𝐷1

𝐷2

𝐷3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 〈𝒁〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜀11

𝜀22

𝜀33

√2𝜀23

√2𝜀31

√2𝜀12

𝐸1

𝐸2

𝐸3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (29)

and 〈𝑳〉 , 〈𝑺〉 , 〈𝑴〉  is expressed as  

〈𝑳〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐿 𝐿 𝐿

𝐿 𝐿 𝐿
𝐿 𝐿 𝐿

√2𝐿 √2𝐿 √2𝐿

√2𝐿 √2𝐿 √2𝐿

√2𝐿 √2𝐿 √2𝐿

𝐿 𝐿 𝐿
𝐿 𝐿 𝐿
𝐿 𝐿 𝐿

√2𝐿 √2𝐿 √2𝐿

√2𝐿 √2𝐿 √2𝐿

√2𝐿 √2𝐿 √2𝐿

2𝐿 2𝐿 2𝐿
2𝐿 2𝐿 2𝐿
2𝐿 2𝐿 2𝐿

√2𝐿 √2𝐿 √2𝐿

√2𝐿 √2𝐿 √2𝐿

√2𝐿 √2𝐿 √2𝐿

𝐿 𝐿 𝐿
𝐿 𝐿 𝐿
𝐿 𝐿 𝐿

√2𝐿 √2𝐿 √2𝐿

√2𝐿 √2𝐿 √2𝐿

√2𝐿 √2𝐿 √2𝐿

𝐿 𝐿 𝐿
𝐿 𝐿 𝐿
𝐿 𝐿 𝐿 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (30)



〈𝑺〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑆 𝑆 𝑆

𝑆 𝑆 𝑆
𝑆 𝑆 𝑆

√2𝑆 √2𝑆 √2𝑆

√2𝑆 √2𝑆 √2𝑆

√2𝑆 √2𝑆 √2𝑆

𝑆 𝑆 𝑆
𝑆 𝑆 𝑆
𝑆 𝑆 𝑆

√2𝑆 √2𝑆 √2𝑆

√2𝑆 √2𝑆 √2𝑆

√2𝑆 √2𝑆 √2𝑆

2𝑆 2𝑆 2𝑆
2𝑆 2𝑆 2𝑆
2𝑆 2𝑆 2𝑆

√2𝑆 √2𝑆 √2𝑆

√2𝑆 √2𝑆 √2𝑆

√2𝑆 √2𝑆 √2𝑆

𝑆 𝑆 𝑆
𝑆 𝑆 𝑆
𝑆 𝑆 𝑆

√2𝑆 √2𝑆 √2𝑆

√2𝑆 √2𝑆 √2𝑆

√2𝑆 √2𝑆 √2𝑆

𝑆 𝑆 𝑆
𝑆 𝑆 𝑆
𝑆 𝑆 𝑆 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

〈𝑴〉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑀 𝑀 𝑀

𝑀 𝑀 𝑀
𝑀 𝑀 𝑀

√2𝑀 √2𝑀 √2𝑀

√2𝑀 √2𝑀 √2𝑀

√2𝑀 √2𝑀 √2𝑀

𝑀 𝑀 𝑀
𝑀 𝑀 𝑀
𝑀 𝑀 𝑀

√2𝑀 √2𝑀 √2𝑀

√2𝑀 √2𝑀 √2𝑀

√2𝑀 √2𝑀 √2𝑀

2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀
2𝑀 2𝑀 2𝑀

√2𝑀 √2𝑀 √2𝑀

√2𝑀 √2𝑀 √2𝑀

√2𝑀 √2𝑀 √2𝑀

𝑀 𝑀 𝑀
𝑀 𝑀 𝑀
𝑀 𝑀 𝑀

√2𝑀 √2𝑀 √2𝑀

√2𝑀 √2𝑀 √2𝑀

√2𝑀 √2𝑀 √2𝑀

𝑀 𝑀 𝑀
𝑀 𝑀 𝑀
𝑀 𝑀 𝑀 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

As shown in Eq. (30), all the transformed matrices have identical coefficients, √2 or 2, 

regardless of the tensor type. Using the Mandel notation, one can evaluate Eq. (26) by 

carrying out 9 9 matrix calculations. Thus, the modified Eshelby tensor can be obtained as 

〈𝑺 〉 〈𝑰〉 〈𝜞〉 〈𝑺〉 〈𝜞〉  (31)

It is notable that the Eq. (31) can not be obtained by using the Voigt notation. For 

example, let 𝑸 𝑺: 𝑳 𝑄 𝑆 𝐿 , then 𝑄  is expressed as follows: 

𝑄 𝑆 𝐿 𝑆 𝐿 𝑆 𝐿 2𝑆 𝐿 2𝑆 𝐿

2𝑆 𝐿 𝑆 𝐿 𝑆 𝐿 𝑆 𝐿  
(32)

Eq. (32) is rewritten by using the Voigt and Mandel notation and Eq. (34) satisfies 

〈𝑸〉 2𝑄 〈𝑺〉 〈𝑳〉  whereas Eq. (33) does not satisfy 𝑄

𝑘〈𝑺〉 〈𝑳〉 , where 𝑘 is constant. 



𝑄
1
2

〈𝑺〉 〈𝑳〉
1
2

〈𝑺〉 〈𝑳〉
1
2

〈𝑺〉 〈𝑳〉

〈𝑺〉 〈𝑳〉 〈𝑺〉 〈𝑳〉 〈𝑺〉 〈𝑳〉

1
2

〈𝑳〉 〈𝑺〉
1
2

〈𝑳〉 〈𝑺〉
1
2

〈𝑳〉 〈𝑺〉  

(33)

𝑄
1
2

〈𝑺〉 〈𝑳〉
1
2

〈𝑺〉 〈𝑳〉
1
2

〈𝑺〉 〈𝑳〉

1
2

〈𝑺〉 〈𝑳〉
1
2

〈𝑺〉 〈𝑳〉

1
2

〈𝑺〉 〈𝑳〉
1
2

〈𝑳〉 〈𝑺〉

1
2

〈𝑳〉 〈𝑺〉
1
2

〈𝑳〉 〈𝑺〉  

1
2

〈𝑺〉 〈𝑳〉  

(34)

We calculate the modified Eshelby tensor for PZT-5A with the material constants 

listed in Table 1. When conventional units are used, (the unit of the elastic constants is GPa = 

109 Pa and that of the piezoelectric constants is C/m2), numerical errors are likely to 

accumulate during the matrix inverse operation due to the significant difference in the order 

of magnitudes between the two constants. To avoid the numerical error, we set the unit of 

charge as nC = 10-9 C (Ryu et al., 2019).  

 

2.5 Numerical validation 

To validate the modified Eshelby tensor results, we carry out a series of FEA 

simulations using COMSOL (Comsol, 2015). We use a single inclusion with diameter of 2 

mm and a matrix in cubic shape with edge length of 20 mm (the edge length is ten times 

longer than the diameter of the inclusion to reduce the effect of the finite size as seen as Fig. 



3). We use approximately 400,000 and 8,000 3D linear tetrahedron elements to construct the 

mesh inside the matrix and inclusion, respectively. The unit eigenstrain is assigned on the 

inclusion under the fixed outer surfaces of the matrix, and we then predict the Eshelby tensor 

using the constrained strain and electric field.  

We predict the modified Eshelby tensor for a wide range of interfacial ranges and 

compare the result with FEA calculations as depicted in Fig. 4. Fig. 4(a)–(c) shows the 

modified Eshelby tensor when only elastic interfacial damage is considered 𝛼 𝛽 0, 𝛾

0 . As 𝛼 goes to infinite, the traction converges to zero, so the inclusion deforms by 

eigenstrain 𝒁 𝒁∗ , which implies that 𝑆 1, 𝑆 𝑆 0. Further, when the 

electric interfacial damage increases in the absence of an elastic interfacial damage, 𝑆  

decreases and converges to a finite value at an infinite electric interfacial damage (Fig. 4(d)). 

Even in the infinite electric interfacial damage limit, the strain field around the inclusion is 

finite because there is no elastic interfacial damage. Hence, the finite electric field within the 

inclusion is induced by the piezoelectric effect, i.e., it is due to the charge accumulated at the 

matrix side of the interface. With the increase in the elastic interfacial damage (the α

1.21 case in Fig. 4(d)), the electric field within the inclusion reduces because of the 

reduction in the strain field around the inclusion. We note that, in the limit of the infinite 

interfacial damage for both (i.e., 𝛼 𝛽 → ∞, 𝛾 → ∞), all diagonal components converge to 

1 and the off-diagonal terms go to zero because of the complete mechanical and electric 

decoupling between the inclusion and the matrix. The result can be evidently explained with 

Eq. (31). When the interfacial damage increases, 𝜞  goes to infinite and 〈𝑺 〉  

converges to the 9 9 identity matrix.   



3. Modified strain concentration tensor 

3.1 Single inhomogeneity problem 

When the extended strain 𝒁  is applied to the infinite matrix 𝑳  having single 

inhomogeneity 𝑳 , the extended strain field within the inhomogeneity 𝒁  can be 

obtained by using the superposition principle. When the interfacial damage is absent, the 

problem is decomposed into two homogeneous problems (Dunn and Taya, 1993a, c). The first 

problem is the homogeneous material 𝑳  under the applied extended strain 𝒁 , and its 

solution is given as a uniform strain field, equal to the applied extended strain, over the entire 

region. The second problem is the single inclusion problem having an equivalent eigenstrain 

expressed as 

𝒁 𝑳 𝑳 : 𝑺 𝑳 : 𝑳 𝑳 : 𝒁 . (35)

After superposing the solutions, the extended strain field within the inhomogeneity is 

obtained as follows: 

𝒁 𝒁𝑰 𝒁𝑰𝑰 𝒁𝟎 𝑺: 𝒁𝑬𝒒

𝑰 𝑺: 𝑳 : 𝑳 𝑳 : 𝒁  
(36)

In the presence of the interfacial damage, an additional interfacial contribution due to 

the extended displacement should be inserted as the 3rd contribution (Fig. 5), 

𝒁𝑰𝑰𝑰 𝜞: 𝒁𝟏 𝒁𝑬𝒒 . (37)

We note that the previous studies obtained the modified strain concentration tensor, simply by 

replacing the Eshelby tensor in Eq. (36) with the modified Eshelby tensor, which results in a 

mismatching boundary condition at the interface (Wang et al., 2014a; Wang et al., 2014c). We 

have pointed out and corrected similar errors in the micromechanics studies on elasticity (Lee 

et al., 2019a; Lee et al., 2019b) and heat conduction (Lee et al., 2018). Finally, the extended 



strain field within the single inhomogeneity is expressed as 

𝒁 𝒁𝑰 𝒁𝑰𝑰 𝒁𝑰𝑰𝑰 𝒁𝟎 𝑺: 𝒁𝑬𝒒 𝜞: 𝒁𝟏 𝒁𝑬𝒒

𝑰 𝑺: 𝑳𝟎
𝟏: 𝑳𝟏 𝑳𝟎 𝜞: 𝑳𝟎

𝟏: 𝑳𝟏 : 𝒁  

𝑨 : 𝒁𝟎 

(38)

In the limit of zero interfacial damage, Eq. (38) converges to the strain concentration tensor 

for perfect interface in Eq. (36). 

 

3.2 Numerical validation 

To validate Eq. (38), we compare the theoretical predictions with the FEA results by 

considering a composite having SiC reinforcement and PVDF matrix. The material properties 

of each phase are listed in Table 1, and the mesh configuration is the same as that the single 

inclusion problem (Fig. 3). The Mandel notation is used to carry out tensor operations. As 

shown in Fig. 6, our predictions match well with the FEA results for a wide range of 

interfacial damages. For a comparison, we also plot the modified concentration tensor 

obtained by replacing the Eshelby tensor in Eq. (36) with the modified Eshelby tensor in Eq. 

(26), which deviates significantly from the correct value in the entire range of interfacial 

damages. 

In the absence of electric interfacial imperfection (γ 0), 𝐴 , which refers to 

the ratio between the 33 strain components inside the inhomogeneity and the far field 33 

strains, converges to zero in the very large interfacial elastic compliance limit (α → ∞) as 

shown in Fig. 6(a), because more strain energy is stored at the interfacial spring with 

increasing interfacial compliance. The same behavior occurs for other 𝐴  components 

concerning the relation between elastic strains (i.e. 𝑖, 𝑗, 𝑘, 𝑙 3). Besides, 𝐴  (the ratio 



between the interior electric field along the 3rd axis and the applied 33 strains at the far field) 

remains finite in the limit of infinite interfacial compliance α → ∞ (with γ 0) as 

depicted in Fig. 6(b). Because the strain field distribution in the piezoelectric PVDF matrix 

does not converge to zero but becomes identical to the strain field of a matrix having a 

spherical cavity, the finite surface charge accumulated at the piezoelectric matrix side of the 

interface produces a uniform electric field inside the SiC reinforcement, even in the α → ∞ 

limit. When the interfacial electric imperfection γ  is present, 𝐴  reduces and eventually 

approaches to zero in the γ → ∞  limit. The same trend is observed for the all components 

of the interior electric field regardless of applied loading type (mechanical strain or electric 

field), i.e., 𝐴  decreases monotonically with increasing γ  and converges to zero as 

γ → ∞ (Fig. 6(b)–(d)).   



4. Effective properties of piezoelectric composite 

4.1 The Mori–Tanaka method and FEA condition 

Based on the Mori-Tanaka method, we predict the effective modulus of the SiC 

particle reinforced PVDF composite with corrected modified Eshelby tensor and strain 

concentration tensor. The effective piezoelectric moduli tensor (Wang et al., 2014a; Wang et 

al., 2014c) of the composite having spring-type interfacial damage is expressed as 

𝑳𝐄𝐟𝐟 𝑐 𝑳𝟎 𝑐 𝑳𝟏: 𝑨𝑴 : 𝑐 𝑰 𝑐 𝑨𝑴 𝑐 𝑹: 𝑳𝟏: 𝑨𝑴 𝟏 (39)

where 𝑐  and 𝑐  denote the volume fraction of the matrix and particle, respectively so 𝑐

𝑐 1. 𝑹 represents the intensity of the interfacial damage, which is expressed as  

𝑅
𝜔
𝑎

𝐼 , 〈𝑹〉
1
𝑎

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝛼
𝛼

𝛼
𝛼

𝛼
𝛼

𝛾
𝛾

𝛾⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (40)

Using the effective modulus, we can predict the extended strain/stress field within each phase. 

The applied extended strain 𝒁  and stress 𝚺  for a composite can be written in terms of 

the volume averaged extended strain 𝒁𝒊 and stress field 𝚺𝒊 within each phase as  

𝒁 𝑐 𝒁𝟎 𝑐 𝒁𝟏 𝑐 𝑹: 𝑳𝟏: 𝒁𝟏

𝚺 𝑐 𝚺𝟎 𝑐 𝚺𝟏 
(41)

We can rewrite the stress equation in Eq. (41) as 

𝑳𝐞𝐟𝐟𝒁 𝑐 𝑳𝟎: 𝒁𝟎 𝑐 𝑳𝟏: 𝒁𝟏. (42)

Hence, the strain and stress field within each phase are expressed as Eq. (43) and (44), 

respectively. 



𝒁𝟎
1
𝑐

𝑳𝟎 𝑳𝟏: 𝑰 𝑹: 𝑳𝟏
𝟏 𝟏: 𝑳𝐞𝐟𝐟 𝑳𝟏: 𝑰 𝑹: 𝑳𝟏

𝟏  

𝒁𝟏
1
𝑐

𝑳𝟏 𝑳𝟎: 𝑰 𝑹: 𝑳𝟏
𝟏 𝟏: 𝑳𝐞𝐟𝐟 𝑳𝟎  

(43)

𝚺𝟎
1
𝑐

𝑴𝟎 𝑴𝟏 𝑹 𝟏: 𝑴𝐞𝐟𝐟 𝑴𝟏 𝑹  

𝚺𝟏
1
𝑐

𝑴𝟏 𝑴𝟎 𝑹 𝟏: 𝑴𝐞𝐟𝐟 𝑴𝟎  

(44)

For the validation of the theoretical predictions, we calculate the effective modulus of 

the particle reinforced representative volume element (RVE) using FEA. We construct RVEs 

having about 20 particles and calculate the average effective modulus of 10 independent 

RVEs with a different particle distribution to obtain a statistically meaningful value (Fig. 7). 

To obtain the effective piezoelectric modulus, we calculate the ratio between the volume 

averaged stress/electric displacement field and the applied unit strain/electric field. 

4.2 Effective properties of composite having one type of interfacial damages  

First, we show the effect of elastic interfacial damage on the effective modulus, 

dielectric constant, and piezoelectric constant of SiC-PVDF composites with two different 

volume fractions in Fig. 8. The effective modulus predicted with our modified Eshelby tensor 

and strain concentration tensor matches well with the FEA results up to 10% volume fraction, 

showing a relative error less than 2% (Fig. 8(a)). In the small interfacial damage regime, the 

elastic stiffness of a composite with high volume fraction is higher than that of a composite 

having low volume fraction because the composite is stiffened with additional SiC particles. 

However, as the interfacial damage increases, the stiffness of a composite with higher SiC 

volume fraction decreases compared with that of a composite with lower SiC volume fraction, 

because SiC effectively serves as a soft inhomogeneity when the load transfer between the 

SiC particle and the PVDF matrix is excessively weakened. As the elastic interfacial damage 



approaches infinity, the predicted modulus converges to the porous matrix result (whereas the 

prediction from the previous study converges to zero) (Fig. 8(f)). The effective piezoelectric 

constant 𝑒  also decreases as the elastic interfacial damage increases whereas the 

effective dielectric constant was not significantly affected by the elastic interfacial damage 

(Fig. 8(b) and (c)). To understand the origin of decrease in the effective piezoelectric constant, 

we plot the volume averaged strain of each phase in Fig. 8(d). The volume averaged strain 

within both matrix and particles decrease with the increase in the interfacial damage, because 

the interfacial spring extends more with increasing spring compliance, which leads to reduced 

charge induction from the piezoelectric matrix (Fig. 8(e)). In the infinitely large elastic 

interfacial damage without electric interfacial damage, the composite has higher effective 

piezoelectric constant than that of the porous material because the SiC particle is also 

polarized owing to the finite interior electric field (Fig. 8(g)).  

Second, we present the effective properties of the composite in the presence of the 

electric interface damage (Fig. 9). For a small electric interfacial damage, the effective 

dielectric constant κ  increases with the SiC volume fraction because the dielectric 

constant of SiC is larger than that of the PVDF matrix. At a large electric interfacial damage, 

a composite with higher volume fraction of SiC particles has lower effective dielectric 

constant because the SiC particles are not polarized effectively. When the electric interfacial 

damage approaches infinity, the effective dielectric constant decreases below the dielectric 

constant of the porous matrix (Fig. 9(a) and (f)). This is because while the infinite electric 

interfacial electric damage indicates zero electric field within the SiC particle, the porous 

material with vacuum or air voids can have a finite electric field within the void. 

This is different from the elasticity or heat conduction problems reported in the 

previous studies (Lee et al., 2019a; Lee et al., 2018) where the effective property of a 



composite in the infinite interfacial damage limit is equal to the effective property of a porous 

matrix. At infinite interfacial damage, the Mori–Tanaka method with the interface spring 

model converges to the results obtained with the material properties of a particle set to be 

zero. In elasticity and heat conduction, the elastic stiffness and thermal conductivity of the 

void (vacuum) are zero, so the two results (porous and infinite interfacial damage) become 

identical. However, when addressing the dielectric response, given that the vacuum void has 

unit relative permittivity (i.e., 𝜅 𝛿 ), the effective dielectric constant at infinite electric 

interfacial damage is lower than that of a porous material.  

The effective stiffness is almost constant regardless of the electric interfacial damage 

and the effective piezoelectric constant 𝑒  decreases as the interfacial electric damage 

increases (Fig. 9(b) and (c)). When the electric field is applied to the composite, the electric 

field within the matrix decreases with the interfacial electric compliance 𝛾 (See Fig. 9(d) 

and (e)). Therefore, less mechanical strain is induced from the piezoelectric matrix, which 

implies a decreased 𝑒 , and owing to the mechanically “tie” condition at the interface(i.e. 

𝛼 0), the 𝑒  at infinitely large 𝛾 is larger than the lower limit (Fig. 9(g)).   

4.3 Effective properties of composite having two types of interfacial damages.  

We also predict the effective properties of the composite having both types of 

interfacial damages. Fig. 10 shows that the effective stiffness mostly depends on the elastic 

interfacial damage, and it decreases with an increase in elastic interfacial damage, as 

expected. Our prediction had the maximum error of 0.78% compared with the FEA results. 

Similarly, the effective dielectric constant is affected mostly by the electric interfacial damage. 

However, the effective 𝑒  depends on both interfacial damages because it considers the 

coupling between mechanical and electrical responses. As the two interfacial damages 

simultaneously approach infinity, the effective piezoelectric and dielectric constants become 



lower than the porous results, whereas the effective stiffness converges to almost the same 

modulus as that with a porous material (Fig. 10(d)–(f)). Here, we use the normalized 

interfacial damage parameter α 𝛼𝐶 /𝑎, 𝛾 𝛾𝜅 /𝑎 ; thus, the small size of the 

particle results in a large normalized interfacial damage. Hence, the effective properties 

depend on the size of SiC particles at fixed 𝛼 and 𝛾 (Appendix C). 

Then, we obtain the figure of merit in 33 directions 𝐹𝑂𝑀  by predicting the 

effective 𝑑  and 𝜅  in the strain-charge form constitutive equation, 

𝜺 𝑪 : 𝝈 𝒅 ∙ 𝑬 

𝑫 𝒅: 𝝈 𝜿𝝈 ∙ 𝑬. 
(45)

We predict the effective 𝑑  in terms of both electric and elastic interfacial damage (Fig. 

11). The effective 𝑑  decreases with an increase in the electrical damage, whereas it 

increases as the elastic interfacial damage increases. As expressed in Eq. (37), when an 

external stress is applied, the stress field within the matrix increases with the elastic 

interfacial damage because the average stress field within the particles approaches zero (Fig. 

11(b)). Using the 𝜅  shown in Fig. 11, we predict the effective 𝐹𝑂𝑀  by using Eq. (42). 

𝐹𝑂𝑀
𝑑

𝜅
 (46)

As shown in Fig. 11, the effective 𝐹𝑂𝑀  increases with both interfacial damages. At a large 

interfacial damage, 𝐹𝑂𝑀  is even higher than that of the pure matrix. This is similar to the 

porous material results studied by other researchers (Dunn and Taya, 1993b; Zhang et al., 

2017). For a porous material, the effective 𝐹𝑂𝑀  increases with porosity because 𝜅  

decreases more rapidly than 𝑑  with respect to the porosity. Similar to a porous 

material, a composite with a piezoelectric matrix and elastic particles has high 𝐹𝑂𝑀  when 

the interfacial damage is large.  



5. Conclusion 

We predict the effective material properties of a piezoelectric composite, considering 

the elastic and electric interfacial damage. We derive the modified Eshelby tensor after 

correcting the equations used in previous studies and validate it by comparison with the FEA 

results for a wide range of two interfacial damages. We also correctly predict the modified 

extended strain concentration tensor by decomposing the single inhomogeneity problem into 

three independent homogeneous problems. Using the modified Eshelby tensor and extended 

strain concentration tensor, we predict the effective properties of the reinforced composite, 

and note that our model agrees well with the FEA results up to a 10% volume fraction. The 

effective moduli are well bounded between two limit cases, perfect bonding and porous 

results, except the effective dielectric constant. We suggest a 2D map of effective properties 

with respect to the two interfacial damage parameters.  
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Appendix A. Non-uniform strain field within the inclusion. 

The extended strain field within the inclusion in non-uniform when the elastic 

interfacial spring compliance in normal and tangential direction are different. As shown in 

Fig. A1, the strain field of spherical inclusion is non-uniform whereas the strain field when 

𝛼 𝛽 is uniform. For ellipsoidal case, the strain field is nonuniform even if the spring 

compliances are same.   



Appendix B. Violation of Fubini-Tonelli theorem 

In this section, we explain the violation of Fubini-Tonelli theorem by suggesting a 

simple double integral problem. When the integral function has singularity within the integral 

domain, the order of integral can not be exchanged. For example, for the function 

𝑥 𝑦
𝑥 𝑦

𝜕
𝜕𝑥𝜕𝑦

arctan 𝑦/𝑥 , (B.1)

the results of two integrals which has different integral order are different, as shown in 

Eq.(B.2) 

𝑥 𝑦
𝑥 𝑦

𝑑𝑦 𝑑𝑥
𝜋
4

 

𝑥 𝑦
𝑥 𝑦

𝑑𝑥 𝑑𝑦
𝜋
4

 

(B.2)

  



Appendix C. Effect of particle size on effective properties 

In the main text, we investigate the effect of interfacial damage on the effective 

properties using normalized interfacial damage, 𝛼 𝛼𝐶 /𝑎, 𝛾 𝛾𝜅 /𝑎, where 𝑎 is 

radius of the particle in the composite. If we predict the effective properties using interfacial 

damage, not normalized parameter, the effective properties decrease with the size of the 

particle (See Fig. C1). As the size of the particle decreases at a fixed volume fraction, the 

total interface area increases, which results in large interfacial damage, so the effective 

properties decrease.  



Table 1 Material constants of the considered materials. The constants are obtained from the 

previous studies (Odegard, 2004; Wang et al., 2014c). 

Property PZT-5A PVDF SiC 

𝐶  (GPa) 121 3.8 483.7 

𝐶  (GPa) 75.4 1.9 99.1 

𝐶  (GPa) 75.2 1.0 99.1 

𝐶  (GPa) 121 3.2 483.7 

𝐶  (GPa) 75.2 0.9 99.1 

𝐶  (GPa) 111 1.2 483.7 

𝐶  (GPa) 21.1 0.7 192.3 

𝐶  (GPa) 21.1 0.9 192.3 

𝐶  (GPa) 2.28 0.9 192.3 

𝑒  (C/m2) 12.3 0.0 0.0 

𝑒  (C/m2) -5.4 0.024 0.0 

𝑒  (C/m2) -5.4 0.001 0.0 

𝑒  (C/m2) 15.8 -0.027 0.0 

𝜅 /𝜅   916 7.4 10.0 

𝜅 /𝜅   916 9.3 10.0 

𝜅 /𝜅   830 7.6 10.0 

𝜅 8.854187817 10  C2/Nm2  



Figures and captions 

 

Fig. 1. Schematic of the single inclusion problem   



 

Fig. 2. (a) Schematic of the interface spring model. The right figure shows the deformed state 

having a finite (extended) displacement jump across the interface. Schematic representation 

of (b) displacement and (c) potential field of the single inclusion problem having interfacial 

damage.  



 

Fig. 3. Mesh configuration of the single inclusion/inhomogeneity problem.  



 

Fig. 4. (a) 𝑆 , (b) 𝑆 , and (c) 𝑆  as a function of the normalized elastic interfacial 

damage. (d) 𝑆  with respect to normalized electric interfacial damage. We normalized the 

interfacial damage by 𝛼 𝐶 𝛼/𝑎, 𝛾 𝜅 𝛾/𝑎. We also present the results obtained 

from equations used in the previous study (Wang et al., 2014c).   



 

Fig. 5. Schematic of the single inhomogeneity problem having interface spring. 



 

Fig. 6. (a) 𝐴 , (b) 𝐴 , and (c) 𝐴  as a function of the normalized elastic interfacial 

damage. (d) 𝐴  with respect to the normalized electric interfacial damage. We normalized 

the interfacial damage by 𝛼 𝐶 𝛼/𝑎 , 𝛾 𝜅 𝛾/𝑎  where 𝐶  and 𝜅  are the 

elastic stiffness and dielectric constant of the matrix, respectively. We also present the results 

obtained from equations used in the previous study (Wang et al., 2014c).  



 

Fig. 7. Mesh configuration of the independent RVEs at two volume fractions. 



 

Fig. 8. (a) Effective elastic stiffness, (b) piezoelectric constant, and (c) dielectric constant of 

SiC–PVDF composite with respect to the normalized elastic interfacial damage. (d) Volume 

averaged strain 𝜀̅  within each phase under the applied strain 𝜀̅ . (e) FEA results of 

𝜀  field under the applied 𝜀  for two interfacial damages (small elastic interfacial damage 

of 0.038, large elastic interfacial damage of 3.8). (f) Effective stiffness and (g) 𝑒  with 

respect to the SiC particle volume fraction changing the elastic interfacial damage.  



 

Fig. 9. (a) Effective dielectric constant, (b) piezoelectric constant, and (c) elastic stiffness of 

the SiC–PVDF composite with respect to the normalized electric interfacial damage. (d) 

Volume averaged electric field 𝐸  within each phase under the applied electric field 𝐸 . 

(e) FEA results of the 𝐸  field under the applied 𝐸  for two interfacial damages (small 

electric interfacial damage of 0.0074, large electric interfacial damage of 0.2059). (f) 

Effective stiffness and (g) 𝑒  with respect to the SiC particle volume fraction changing 

the electric interfacial damage. The upper and lower dashed lines represent the perfect 

bonding and porous results 𝜅 /𝜅 1 , respectively.  



 

Fig. 10. (a) Effective stiffness, (b) piezoelectric constant, and (c) dielectric constant for two 

interfacial damages under fixed volume fraction of 5%. (d) Effective stiffness, (e) 

piezoelectric constant, and (f) dielectric constant when the two normalized interfacial 

damages are the same 𝛼 𝛾 .   



 

Fig. 11. (a) Normalized effective 𝐹𝑂𝑀  of the composite, where the 𝐹𝑂𝑀  is the 

𝐹𝑂𝑀  of the pure matrix (PVDF). (b) Volume averaged stress field within each phase under 

the applied stress. (c) Effective 𝑑  and (d) 𝜅 , /κ  for two interfacial damages. The 

volume fraction is 5%.  



 

Fig. A1. (a) Strain field within the inclusion (PZT-5A) for different shape and interfacial 

damage parameters. Non-uniform strain field within (b) sphere and (c) spheroid with aspect 

ratio of 2. The minor axis is used for the normalized interfacial damage.   



 

Fig. C1. Effective (a) elastic stiffness and (c) dielectric constant of the SiC–PVDF composite 

with respect to the size of the particle at fixed interfacial damages. The volume fraction of the 

particle is 5%.  
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