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Abstract

We derive an analytical expression to predict the effective properties of a particulate-
reinforced piezoelectric composite with interfacial imperfections using a micromechanics-
based mean—field approach. We correctly derive the analytical formula of the modified
Eshelby tensor, the modified concentration tensor, and the effective property equations based
on the modified Mori—Tanaka method in the presence of interfacial imperfections. Our results
are validated against finite element analyses (FEA) for the entire range of interfacial damage
levels, from a perfect to a completely disconnected and insulated interface. For the facile
evaluation of the nontrivial tensorial equations, we adopt the Mandel notation to perform
tensor operations with 9 X 9 symmetric matrix operations. We apply the method to predict
the effective properties of a representative piezoelectric composite consisting of PVDF and

SiC reinforcements.
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1. Introduction

Piezoelectricity refers to the electric charge accumulation in response to an applied
mechanical loading, or, conversely, the mechanical strain generated from an applied electrical
field (Cady, 1964). Such a characteristic has been extensively exploited in many important
engineering applications such as high power generation (Lee et al., 2014; Yang et al., 2009),
lightweight transducers (Guerin et al., 2019; Stamatellou and Kalfas, 2018), precision
positioning stages of various microscopes (Li et al., 2019; Wang et al., 2019), vibration
cancellation modules (Lin and Liu, 2006; Tan et al., 2019), and artificial skin of wearable
devices (Chorsi et al., 2019; Yuan et al., 2019). Piezoelectricity occurs in a limited set of
materials such as crystals with no inversion symmetry (Jella et al., 2019) and polymer
materials with high dipolar moment (Ramadan et al., 2014). For example, one of the widely
used piezoelectric polymers, polyvinylidene fluoride (PVDF), has five different crystalline
phases: «a,f,7,6, and €. However, the @ and & phases have zero net dipole moment owing
to their antiparallel chain structure, and thus, the S phase, which has the highest net dipole
moment, has been primarily used (Ramadan et al., 2014). Owing to the limited numbers of
piezoelectric materials, it often becomes difficult to obtain a piezoelectric material that
simultaneously satisfies the multiple requirements of a given application. For example, the
pure PVDF polymer has a small elastic stiffness (~3 GPa), which limits its applicability (Pei

and Zeng, 2011).

Hence, various piezoelectric composites have been fabricated such as the lead
zirconate titanate (PZT)—polymer composite (Almusallam et al., 2015; Venkatragavaraj et al.,
2001) for an enhanced dielectric and hydrostatic piezoelectric coefficient and polyvinylidene
difluoridein (PVDF)-SiC composite (Zhang et al., 2015; Zhou et al., 2015) for improved

dielectric permittivity and elastic stiffness. Further, physical reinforcements as well as voids



are known to improve some properties, i.e., the hydrostatic piezoelectric figure of merit
increases with porosity (Zhang et al., 2017). Therefore, for the efficient design of a
piezoelectric composite, it is essential to predict the effective properties of the reinforced

piezoelectric composites in terms of its size, shape, and volume fraction of reinforcements.

The Mori—Tanaka method, a micromechanics-based mean—field homogenization
approaches, has been used to predict various effective physical properties of a reinforced
composite, such as the elastic constant (Benveniste, 1987; Lee et al., 2019a; Lee and Ryu,
2018), thermal conductivity (Lee et al., 2018; Quang et al., 2011), dielectric constant
(Giordano and Palla, 2008), and thermoelectric (Jung et al., 2018) and piezoelectric
properties (Odegard, 2004; Wang et al., 2014a; Wang et al., 2014c). The Mori—Tanaka
method was originally developed to predict the effective elastic properties of particulate-
reinforced composite by using the Eshelby tensor for a composite involving multiple
inhomogeneities with the mean—field approximation (Benveniste, 1987). The method has also
been extended to predict other physical properties based on the mathematical analogy with
steady-state governing equations (Ryu et al., 2019). Dunn and Taya were the first to adapt the
Mori-Tanaka approach to model the piezoelectric composite by assuming a perfect interface
between the reinforcement and the matrix (Dunn and Taya, 1993a, ¢). However, a realistic
piezoelectric composite interface may exhibit imperfections such as the displacement jump
(Zhao et al., 2012) or the electric compliance (Kim et al., 2011). Such interfacial
imperfections can significantly affect the effective piezoelectric properties of a
nanocomposite with nanoscale reinforcements that has a significantly higher interfacial area
compared to a composite involving macroscale reinforcements with an identical volume

fraction.

To consider these interfacial imperfections, previous studies attempted to extend the



Mori-Tanaka method by deriving the modified Eshelby tensor and the modified
concentration tensor in the presence of interfacial imperfections (Wang et al., 2014a; Wang et
al., 2014b; Wang et al., 2014c). However, as shown in the later part of this article, we find
that the analytical expressions do not match with the FEA because the modified Eshelby
tensor was derived by violating the Fubini—Tonelli theorem (Folland, 2013), and the modified
concentration tensor was derived without considering the additional displacement jump and

the discontinuity in electric potential.

Here, we correctly derive analytical expressions of the modified Eshelby tensor and
the modified concentration tensor of a piezoelectric material that are applicable to a material
with arbitrary symmetry, and use them to predict the effective properties of piezoelectric
composites. For the facile evaluation of the nontrivial tensor equations, we adopt the Mandel
notation (Lee et al., 2019b), rather than the Voigt notation, to perform tensor operations with
9 X 9 symmetric matrix operations. The analytical results are validated against the FEA
results. We applied our results to predict the effective elastic modulus, piezoelectric constant,

dielectric constant, and figure of merit map of the PVDF-SiC composite.

The rest of this paper is organized as follows. First, in Section 2, we define the
piezoelectric modulus and derive the modified Eshelby tensor for the piezoelectric composite
in the presence of interfacial imperfections. We also show that the Mori—Tanaka method is
not applicable for non-spherical inclusions, comprising elliptical inclusions with an aspect
ratio other than 1, because of the non-uniform interior strain and electric field. In Section 3,
we derive the modified concentration tensor in terms of the piezoelectric moduli of matrix
and reinforcement, the degree of interfacial imperfection, and the Eshelby tensor. In Section 4,
®¢ derive the expression for the effective piezoelectric modulus and obtain the effective

dielectric constant, effective elastic modulus, effective piezoelectric coefficient, and effective



figure of merit for a representative piezoelectric composite consisting of PVDF and SiC. We

present the concluding remarks in Section 5.

2. Modified Eshelby tensor for piezoelectric properties
2.1 Constitutive equation and governing equation for piezoelectric material
We choose the elastic strain (¢ j) and electric field (E;) as two independent input

variables and relate them with the output variables, mechanical stress (ai j) and electric

displacement(D;). The constitutive and governing equations of the piezoelectric material are

expressed as Eq. (1) and Eq. (2), respectively,

Ojj = Cijmngmn + enij(_En)

(1)
D; = eimnEmn — Kin(_En)
0iji =0
2
Di; =0

where Cijmn, €nij, and k;, are the elastic constant, piezoelectric constant, and dielectric
constant, respectively. The repeated index is a dummy index, which implies the summation
over all values, 1 to 3. Eq. (1) can be shortened by adopting the notation suggested by Barnett

and Lothe (Barnett and Lothe, 1975).

Zi] = Li]MnZMn (3)
By adapting the notation, one can construct a constitutive equation having a similar form with
linear elastostatics (Hooke’s law) or heat conduction (Fourier’s law). The repeated capital
subscripts are summed over 1-4 and L;;u, is a piezoelectric moduli tensor which can be

constructed by



Cijmn ],M = 1,2,3
L _ { em-j ] =1,23,M =4
iJMn

4
J=4M=123 @)

imn
\—k, S M=4

Zyn 1s the extended strain obtained from the extended displacement U,,, which is written as

dUy uy M=123
ZMn_axn' M_{d) M =4 (5)
where u,, and ¢ are the displacement and potential field, respectively. Similarly, the

extended stress X;; is expressed as

o, J=1273
% —{ < . (6)

Db, J=4
Based on the notation, one can express the governing equation for the Green’s

function of a piezoelectric material as

' 0%Gru(x—y)
UKL 9x;0x,

+6ud(x—y) =0. (7)

which is mathematically analogous with the steady-state governing equations of other
physical phenomena such as elastostatics (Lee et al., 2019b), heat conduction (Lee et al.,
2018; Quang et al., 2011), and thermoelectricity (Jung et al., 2018). Following previous
studies (Dunn and Taya, 1993a), the Green’s function of a piezoelectric material is expressed

as

_ 1 _ N
G =) =g | Ko (z (= y|)) as(2) ®)

where Ky is the inverse of
Kxm = 2iZnLikmn 9)

For elasticity and the heat conduction problem, the Green’s functions have been derived in

closed form even for an anisotropic material (Lee et al., 2018; Mura, 1982). However, it is



difficult to derive the closed form of the Green’s function of a piezoelectric material owing to
the mathematical complexity arising from the coupling (piezoelectric) constant (Huang and

Yu, 1994).

2.2 Eshelby’s single inclusion problem in the absence of interfacial imperfection

The single inclusion problem of a piezoelectric material can be explained by the
following four steps (Fig. 1). When the inclusion with a nonzero extended eigenstrain(Zy;)
is released after its insertion into the matrix having a same size hole, the inclusion deforms
less than the (extended) eigenstrain owing to the interaction with the matrix. Based on the
mathematical analogy between elasticity and piezoelectricity, one can realize that the
constrained extended strain field within the inclusion is uniform when the shape of the
inclusion is ellipsoid. Therefore, the constrained (extended) displacement and strain field are

expressed as
Uy = f GM](x - }’)Z;]nqd}’ = f GM](x - y)Lq]AbZanqdy
E10) G10)

Zyn = SunavZap, Sunab = f PMn]qdy Lgjap
Q

(10)
1/0%G 902G
= el ) M=123
2\0x,0y, 0xy0y,
where  Pypjq = 92¢
4/ M =4
0x,0Y,

where 0 is the surface of the inclusion and Sy, 4, is Eshelby tensor of the piezoelectric
material. As suggested by Dunn and Taya (Dunn and Taya, 1993a, c), the Eshelby tensor of a
piezoelectric ellipsoid having semi-axes as a;,a,, and az can be expressed in alternative

form as



f 1 1 21
%Li]Ab J‘—1-f0 [¢M}in(z) + ‘pn]iM(Z)]deds% M =1,2,3
MnAb = 1 1 .21 (11)
ELi]Ab.f f [¢M]in(z)]d9df3 M =4
-1Jo

where @y, (2) = 2;2,Ky7(2) and z; =\/1—¢&5cosb/a,,z, =/1—¢&5sinb/a,,z; =
¢3/as. As for the Green’s function, it is also difficult to obtain the closed-form expression

because of the piezoelectric coupling constants (Huang and Yu, 1994; Mikata, 2001).

2.3 Imperfect interface modelled by linear spring model

Eq. (10) assumes perfect bonding at the interface without displacement or electric
potential discontinuity. We adopt the linear spring model to account for the interfacial damage
for mechanical response for mathematical simplicity, and consider a dielectric layer at the
interface to model the interfacial damage for electrical response (Fig. 2). For a piezoelectric
material, the constitutive equation at the damaged interface is expressed as

AT) = Asyn; = (34/(09%) - 2,(007) ) n; = 0
(12)
AU, = U,(00%) = U;(0Q7) = AjyZiyny
where Q% and 90~ denote the interface surface on the matrix and inclusion side,

respectively (Fig. 2). Ajy represents the extended interface spring compliance expressed as

a5]M + (ﬁ - Ol)n]nM ] = 1,2,3,M = 1,2,3
Ay = -y J=M=4 . (13)
0 others

a, [ represent the tangential and normal direction spring compliance, respectively, and y is
the electric compliance coefficient. a, 8 are equivalent to the small-deformation-regime
compliances of the cohesive zone models that are widely adapted in various FEA studies

(Bouhala et al., 2013; Fan and Tadmor, 2019; Springer et al., 2019). Thus, «, are always



positive. y represents the effect of a dielectric layer at the interface and is mathematically
analogous with Kapitza’s resistance in a heat conduction problem (Lee et al., 2018; Quang et
al., 2011). As expressed in Eq. (12), large interfacial damage results in large displacement

(potential) jump across the interface and zero interfacial damage implies perfect bonding.

The extended strain field within the single inclusion having the interfacial

imperfection can be expressed as follows:
Zyn(X) = SynrsZgs +.f AU Ly Pynginidy
G0}

= SunrsZRs +.f AjpEopngLijkiPynkinidy (14)
aQ

= SunrsZrs + j AjpLgprs(Zrs — Zrs)NgLijki Pyunkinidy
20

In general, the constrained strain field within an ellipsoidal inclusion is non-uniform when the
interfacial compliances are finite (Appendix A). Thus, it is difficult to express the strain field
in the closed form because Eq. (14) is an implicit equation involving Z in both the left and
right sides. Previous studies (Wang et al., 2014a; Wang et al., 2014b; Wang et al., 2014c¢)
have calculated the volume averaged modified Eshelby tensor to consider a non-uniform field,

as expressed in Eq. (15).

_ 1
Zyn = ﬁf Zyn(x) dx
Q
(15)
* 1 *
= SmnrsZgrs T+ 5_]- f AjpLgprs(Zrs — Zrs)NgLijki Punkimidy | dx
a lJaa

The volume averaged modified Eshelby tensor was simplified after changing the order of
surface integral and volume integral. A similar simplification has also been used for elasticity

(Barai and Weng, 2011; Qu, 1993; Yanase and Ju, 2012) and heat conduction problems



(Bonfoh et al., 2017). However, according to the Fubini—Tonelli theorem, it is not legitimate
to change the order of two integrals because the Green’s function contains a singularity
within the integral domain (Folland, 2013). We present a representative example of the
violation of the Fubini—Tonelli theorem by considering a simple 2D integral problem in

Appendix B.

In this study, we derive the modified Eshelby tensor without any approximation. In
previous papers on elasticity (Lee et al., 2019b; Zhong and Meguid, 1997), it has been proved
that the strain field within the spherical inclusion is uniform when a = f, and for the heat
conduction problem it is known that under finite Kapitza’s resistance the intensity field
(gradient of temperature) is uniform when the shape of the inclusion is spherical (Lee et al.,
2018; Quang et al., 2011). Therefore, using a mathematical analogy (Ryu et al., 2019), we can
deduce that the extended strain field within the piezoelectric inclusion is also uniform when

the shape of the inclusion is spherical and @ = f (Appendix A).

For the spherical inclusion problem with interfacial compliance a = 8, Eq. (14) is

simplified as follows:

Zyn(x) = SynrsZrs + A]PLqPRsLi]Klf Pyniiningdy (Zgs — Zgs) (16)
20

= SMnRsZEs - rMnRs(ZRs - Z;;S)

where

Tvngrs = —f AjpLgprsLijkiPunkiningdy (17)
2Q

By using n, = y,/a and applying the divergence theorem on Iyugs, Eq. (17) is further

simplified as



Ivnrs = _f A]PLqPRsLi]KlPMnKlni(y)nq(y)dy
a0

dapP
MnKl y_qdyl (18)

Y
= —AjpLgprs lL Li]KlPMnKl#qdy‘i‘j;] Ei]Kla—yi a

_ 1 aPMnKl
= —AjpLgprs — LigjqPunxidy + Eijki a—quy
ala Q Vi

L
where a is the radius of the inclusion. Noting that the first integral term on the right hand
side is the definition of the Eshelby tensor shown in Eq. (10), one can write the Eq. (18) as

follows:

_ 1 aPMnKl
Ivngs = _A]PEqPRsE EikjqPunkidy + Ei]Kla—y_quy
|/ Q Q i

(19)

1f 0Prnk
= _A]PEqPRsa _SMn]q +L Ei]Kla—J::yqul

To further simplify Eq. (19), we consider the following equation which is obtained by

multiplying y, after differentiating Eq. (7) with respect to y,.

93 Gym(x —y)
0y, 0y;0y,

d
: - = 20
gra o + 5, (SmdGx =)y =0 (20)

Applying the divergence theorem after integrating Eq. (20) for the inclusion volume, we

obtain

63GKM(x -y) d
—[Q HK 0y, 0y;0y, Ya®y Q 0)’n( ™ Y )yq Y

= —fﬂ (51M6(x—y))%dy el

n
= 6]1\/1671(]'

Therefore,



P ! 8imOna + Oind M =123
0 Vi —8;6ng M =4
After putting Eq. (22) into Eq. (19), we can express [pnrs aS
1
Iyngrs = A]PLqPRs E (IMn]q - SMn]q)-
(23)

1
E(sjm(an + 6n0mg) M =123
6]M6nq M=4

Whel‘e IMn]q ==

When a = 8, the extended interfacial compliance A;p is simplified as Eq. (24), and thus,

Eq. (23) can be rewritten as Eq. (25)

ad; =P=1,23
]P:{ ip ]_ - (24)
—]/6]1; J=P=4
4
J 1
Ivngrs = w 6]PLqPRsa(IMn]q - SMn]q)
J=1
N (25)
)
= Z 7 (IMn]q - SMn]q)Lq]RS
J=1
=123
here w! = { @ ] e
W —y J=4

Eq. (25) 1s mathematically analogous with I' in other physical phenomena such as elasticity
(Lee et al., 2019a; Lee et al., 2019b; Othmani et al., 2011), heat conduction (Lee et al., 2018;
Quang et al., 2011), and thermoelectricity (Jung et al., 2018). Combining Eq. (16) and (25),

we can predict the modified Eshelby tensor as

Z=S".7
(26)
SM=U+I)1(S+0I),

where : denotes a double contraction which implies S™:Z* = S} . 7.



2.4 Mandel notation

To evaluate Eq. (26), the inverse and double contraction of 4 X 3 X4 X 3 or 3 X
4 X 4 x 3 tensors is required. Most papers concerning the micromechanics study of a
piezoelectric material have adopted the Voigt notation to carry out the tensor operations
(Martinez-Ayuso et al., 2017; Odegard, 2004; Wang et al., 2014c). Here, we adopt the Mandel
notation because it is impossible to correctly calculate the modified Eshelby tensor with the
Voigt notation. When the Voigt notation is adopted, the extended stress and strain vector
expressed in Eq. (27) and the coefficient multiplied on components in the transformed 9 X 9

matrix depend on the type of the tensor.

0111 €11 7
0y €22

033 €33

023 2853

(2>Voigt =|03|, (Z)Voigt = |2¢&4 (27)

012 281,
D, —-E,
D, -E,
| D, | | —F, ]

For example, the transformed piezoelectric tensor (L)V°'8', Eshelby tensor (S)V°&t, and

inverse of piezoelectric tensor (M)V0i8t = (L=1)V0igt are expressed as

L1111 L2z Liass Liizz List Lie Liisn Lo Lyaas)
Lyov1 Lozaz  Lazzz Lozaz Lozar Logiz Lozan  Laoaz Logas
Lasi1 Lzzpo Lazss Laszps Lassr Laziz  Lazar  Lazaz  Lasas
. Lysi1 Lazso Lazss Lozaz Lassi Loziz Lozar Lozao Losas
(L)Vmgt = L3111 Lzizz Lzizz L3tz Lzizn Lziiz Lziar Lziaz Laias (28)
L1 Lizaz Lizzz Lizoz Lizar Liziz Lizar Lizaz Ligas
Lisi1 Liazz Liszs Liaoz Liazr Lisiz Liasn Lisar Lisa
Lysi1 Loszo Loazzs  Loaos Laazi Loarz Lossn Losso Losss

-L34—11 L34—22 L3433 L3423 L3431 L3412 L34—41 L34—42 L344—3-



<S)Voigt —

<M>Voigt —

S Suz

52211 52222

53311 53322
282311 252322
2853111 283122
2851211 281222
Sa11 Smn
Sazt1 Saon

L Syz11 Saz2e
M1111 M1122
M3z11 Myaa
Ms311  Mssz,
2My311  2My3y;
2M3117  2M3q3;
2Mi217  2My33,
M14—11 M14—22
Mjs11 Maso

L M3z411 Mzyz

51133
52233

53333
287333

283133
251233

54133
54233
54333

M1133

M2233

M3333
2M2333

21VI3133

21‘/[1233
M14-33
M24—33
M34-33

S1123
Sp223
S3323
287323
253123
251323

54123
54223
54323

21‘/[1123
21\/12223
2M3323
4'1\/12323
4'1\/13123
4‘1\41223
21‘/11423
21\424-23
21\434-23

51131
52231

S3331
282331

283131
251231

54131
54231
54-331

2M1131
2M2231
2M3331
4'1\/12331
4'1\/13131
4'1\41231
21‘/[1431
21\424-31
21\434-31

51112
52212

S3312
287312

283112
251212

54—112
54212
54—312

2M1112
21\/12212
2M3315
4'1\/12312
4'1\/13112
4'1\41212
21‘/[1412
21\424-12
21\434-12

51141 51142

52241 52242
5334—2

282342
283142

S3341
28231

253141

251247
Sa142

251241
Sam

54241 54242

54—341 5434-2

M114—1

M224-1

M3341
21\/12341

2M3 141
21‘/[1241
M14-4—1
M2441
M34—4—1

M1142

M224-2

M3342
2M2342

2M3 142
21‘/[1242
M14-4-2
M2442
M34—4—2

S1143
Sy243
S3343
253343
253143
251243
Sa143
S4243

5434—3 -

M1143
M2243

M334—3
2M2343

2M3 143

21‘/[1243
M14-4-3
M24—4—3
M34-4-3

If the Mandel notation is used, the extended stress and strain vector is written as

<Z>Mandel —

011 7

<Z>Mandel —

and <L)Mandel’ (S)Mandel’ <M)Mandel is expressed as

(L)Mandel —

L1111 L1122
L2211 L2222
L3311 L3322
\/EL2311 \/EL2322
\/EL3111 ﬁLSlZZ
‘/EL1211 ﬁLlZZZ
L14—11 L1422
L2411 L24—22
L34-11 L34—22

L1133
L2233
L3333

\/EL2333
\/EL3133
V2Lyy33

L1433
L2433
L3433

\/§L1123
\/ELZZZS
\/§L3323

2L2323
2L3123
2L1223

\/EL1423

\/EL24—23
\/EL34-23

V2L1131
\/EL2231
\/§L3331

2LZ331

2L313,

2141231
V2L1431
‘/EL2431
\/EL34-31

‘/§L1112
\/EL2212
V2L3312

2L2312
2L3112
2L1212

\/EL1412
\/EL24-12
\/EL3412

\/5323
‘/5531

€11 7
€22
€33

_E'1

_EZ

_E3 B
L114—1 L1142
L2241 L224—Z
L3341 L334-2

L1143
L2243
L3343

\/EL2341 \/EL2342 \/EL2343
\/EL3141 \/EL3142 \/EL3143

\/EL1241 \/EL1242 \/EL1243
L144—1 L1442 L14-43
L2441 L244-2 L2443
L344-1 L344—2 L34-43

(29)

(30)



S1111 S1122 S1133 \/551123 \/751131 \/551112 S1141  S1142 S1143

S2211 S2222 S2233 \/552223 \/552231 \/552212 S2241 S2242  S2243

S3311 S3322 S3333 V283303 V283331 V283312 S3341 S3342  S3343
\/752311 \/252322 \/752333 2857303 285331 255312 \/752341 \/252342 \/752343
(SyMandel — \/553111 \/553122 \/553133 283123 283131 253112 \/553141 \/553142 \/553143
V2S00 V281220 V2Si233 251223 251231 251212 V2S00 V281242 V21243

\/554123 \/254131 \/754-112

54111 54122 54133 54141 54142 54143

Sa211 Sazzz Saz3sz \/554223 \/554231 \/554212 Sa241  Sazaz  Sazaz
Saz11 Sazzz S43s3 V284323 V284331 V2Su312 Sa341 Sazaz Sizaz
Mi111 Miszz Migss \/EM1123 ﬁMll?»l ﬁMlllZ Mija1 Mizaz  Migas
Mjz11 Mazzs Moz ﬁMzzza \/§M2231 \/EMzm Mjza1 Moy Mooz
M3311 Mszpp  Msssz V2ZM3325 V2Msz3q V2Mssps M3341 Mszap Mszaz

\/EM2311 ﬁMzazz ‘/§M2333 2My353  2My331 2My3g, \/EM2341 \/EM2342 ﬁM2343

(M)Mandel — \/§M3111 \/§M3122 \/§M3133 2M3133 2M3131 2M3qq; \/§M3141 \/EM3142 \/§M3143 8

V2Myz1;  V2Myy,, \/EM1233 2Mizzs 2Mizz1 2Mizre V2Myz41 V2Mizsy V2Myp43
Mig1: Migzz Miagss \/EM1423 ﬁMH?»l \/ZMHIZ Migss Migaz Migas
Mjs11 Magzy Mayss \/§M2423 \/§M2431 ﬁMzuz Mjsar Magar Maggs
M3a11 Msap2 Mszasz V2ZMs3sps V2Msyzq V2Msyes M3a41 Ms4az Mssaz

As shown in Eq. (30), all the transformed matrices have identical coefficients, V2 or 2,
regardless of the tensor type. Using the Mandel notation, one can evaluate Eq. (26) by

carrying out 9 X 9 matrix calculations. Thus, the modified Eshelby tensor can be obtained as

(SM>Mandel — (<I>Mandel + <r>Mandel)_1(<S)Mandel + <r)Mande1) (31)
It is notable that the Eq. (31) can not be obtained by using the Voigt notation. For

example, let Q = S:L (QMnRS = SMn]qu]RS), then Q,3,3 is expressed as follows:

Q2323 = S2311L1123 + S2322L2223 + S2333L3323 + 25232302323 + 28233113123
(32)
+ 25;312L1223 + S2341L1423 + S2342L2423 + S2343L3423

Eq. (32) is rewritten by using the Voigt and Mandel notation and Eq. (34) satisfies

(Q)ﬂ’[fndel:ZQZgB =(S)24,?ndel(L),l\é[fndel whereas Eq. (33) does not satisfy Qy353 =

k(S)Z;igt(L)XZigt, where k is constant.



Q2323— (S)V01gt(L>V01gt+ (S)V01gt(L>V01gt+ <S)V01gt(L>V01gt
+ <S)V01gt(L>V01gt + <S)V01gt(L>V01gt + <S)V01gt(L>V01gt (33)

<L)V01gt(S>V01gt <L)V01gt(S>V01gt <L)V01gt(S>V01gt
1 Mandel Mandel 1 Mandel Mandel 1 Mandel Mandel
Q2323 = > (S)ar L)z + > (S)az " “UL)24 + > (S)az " (L)34

1 1
+ E <S)‘1;/I4ande1<L)‘1¥[4andel + E <S)245andel(L)l§44andel

1 <L)Mandel<s)l;/[4andel (34)

+ = <S)Mande1<L)6 Mandel + = >

1 1
+ E (L>£\}/[83nde1(s)g/[4andel + E <L)2/Igandel<s)g/£}andel
1
— (S)R/[I?ndel(l,)%fndel

We calculate the modified Eshelby tensor for PZT-5A with the material constants
listed in Table 1. When conventional units are used, (the unit of the elastic constants is GPa =
10° Pa and that of the piezoelectric constants is C/m?), numerical errors are likely to
accumulate during the matrix inverse operation due to the significant difference in the order
of magnitudes between the two constants. To avoid the numerical error, we set the unit of

charge as nC = 10° C (Ryu et al., 2019).

2.5 Numerical validation

To validate the modified Eshelby tensor results, we carry out a series of FEA
simulations using COMSOL (Comsol, 2015). We use a single inclusion with diameter of 2
mm and a matrix in cubic shape with edge length of 20 mm (the edge length is ten times

longer than the diameter of the inclusion to reduce the effect of the finite size as seen as Fig.



3). We use approximately 400,000 and 8,000 3D linear tetrahedron elements to construct the
mesh inside the matrix and inclusion, respectively. The unit eigenstrain is assigned on the
inclusion under the fixed outer surfaces of the matrix, and we then predict the Eshelby tensor

using the constrained strain and electric field.

We predict the modified Eshelby tensor for a wide range of interfacial ranges and
compare the result with FEA calculations as depicted in Fig. 4. Fig. 4(a)—(c) shows the
modified Eshelby tensor when only elastic interfacial damage is considered (@ = # 0,y =
0). As a goes to infinite, the traction converges to zero, so the inclusion deforms by
eigenstrain (Z = Z*), which implies that SM,, = 1,5,, = SM,, = 0. Further, when the
electric interfacial damage increases in the absence of an elastic interfacial damage, Si%;;
decreases and converges to a finite value at an infinite electric interfacial damage (Fig. 4(d)).
Even in the infinite electric interfacial damage limit, the strain field around the inclusion is
finite because there is no elastic interfacial damage. Hence, the finite electric field within the
inclusion is induced by the piezoelectric effect, i.e., it is due to the charge accumulated at the
matrix side of the interface. With the increase in the elastic interfacial damage (the oy =
1.21 case in Fig. 4(d)), the electric field within the inclusion reduces because of the
reduction in the strain field around the inclusion. We note that, in the limit of the infinite
interfacial damage for both (i.e., @ = f = 00, ¥y — ), all diagonal components converge to
1 and the off-diagonal terms go to zero because of the complete mechanical and electric
decoupling between the inclusion and the matrix. The result can be evidently explained with
SM)Mandel

Eq. (31). When the interfacial damage increases, I' goes to infinite and (

converges to the 9 X 9 identity matrix.



3. Modified strain concentration tensor
3.1 Single inhomogeneity problem

When the extended strain (Z°) is applied to the infinite matrix (L,) having single
inhomogeneity (L,), the extended strain field within the inhomogeneity (Z;) can be
obtained by using the superposition principle. When the interfacial damage is absent, the
problem is decomposed into two homogeneous problems (Dunn and Taya, 1993a, c¢). The first
problem is the homogeneous material (L,) under the applied extended strain (Z°), and its
solution is given as a uniform strain field, equal to the applied extended strain, over the entire
region. The second problem is the single inclusion problem having an equivalent eigenstrain

expressed as

ZEq == _[(Ll _Lo):S+L0]_1:(L1 _Lo):ZO. (35)
After superposing the solutions, the extended strain field within the inhomogeneity is

obtained as follows:

Z,=2'+27"=7° + 5. ZF4
(36)
=[I+S:Lyt:(L; — Ly 1:2°

In the presence of the interfacial damage, an additional interfacial contribution due to

the extended displacement should be inserted as the 3™ contribution (Fig. 5),

ZM = —r:.(z, — ZF9), (37)
We note that the previous studies obtained the modified strain concentration tensor, simply by
replacing the Eshelby tensor in Eq. (36) with the modified Eshelby tensor, which results in a
mismatching boundary condition at the interface (Wang et al., 2014a; Wang et al., 2014c). We
have pointed out and corrected similar errors in the micromechanics studies on elasticity (Lee

et al., 2019a; Lee et al., 2019b) and heat conduction (Lee et al., 2018). Finally, the extended



strain field within the single inhomogeneity is expressed as

Z,=72'"+7Z"+ 72" =2+ §: 29 - T: (Z; - Z"9)
=(I+S8: Lg% (Ly—Lo) + I Lyt Ly): Z° (38)
=AM. Z°
In the limit of zero interfacial damage, Eq. (38) converges to the strain concentration tensor

for perfect interface in Eq. (36).

3.2 Numerical validation

To validate Eq. (38), we compare the theoretical predictions with the FEA results by
considering a composite having SiC reinforcement and PVDF matrix. The material properties
of each phase are listed in Table 1, and the mesh configuration is the same as that the single
inclusion problem (Fig. 3). The Mandel notation is used to carry out tensor operations. As
shown in Fig. 6, our predictions match well with the FEA results for a wide range of
interfacial damages. For a comparison, we also plot the modified concentration tensor
obtained by replacing the Eshelby tensor in Eq. (36) with the modified Eshelby tensor in Eq.
(26), which deviates significantly from the correct value in the entire range of interfacial

damages.

In the absence of electric interfacial imperfection (y, = 0), A%533, which refers to
the ratio between the 33 strain components inside the inhomogeneity and the far field 33
strains, converges to zero in the very large interfacial elastic compliance limit (a; = o) as
shown in Fig. 6(a), because more strain energy is stored at the interfacial spring with

increasing interfacial compliance. The same behavior occurs for other A%kl components

concerning the relation between elastic strains (i.e. i,j, k,[ < 3). Besides, A}535 (the ratio



between the interior electric field along the 3™ axis and the applied 33 strains at the far field)
remains finite in the limit of infinite interfacial compliance ay, = oo (with y, = 0) as
depicted in Fig. 6(b). Because the strain field distribution in the piezoelectric PVDF matrix
does not converge to zero but becomes identical to the strain field of a matrix having a
spherical cavity, the finite surface charge accumulated at the piezoelectric matrix side of the
interface produces a uniform electric field inside the SiC reinforcement, even in the ay —
limit. When the interfacial electric imperfection y, is present, A%%;; reduces and eventually
approaches to zero in the y, = oo limit. The same trend is observed for the all components
of the interior electric field regardless of applied loading type (mechanical strain or electric

field), i.e., A{fjm decreases monotonically with increasing y, and converges to zero as

Yo = o (Fig. 6(b)~(d)).



4. Effective properties of piezoelectric composite
4.1 The Mori-Tanaka method and FEA condition

Based on the Mori-Tanaka method, we predict the effective modulus of the SiC
particle reinforced PVDF composite with corrected modified Eshelby tensor and strain
concentration tensor. The effective piezoelectric moduli tensor (Wang et al., 2014a; Wang et

al., 2014c¢) of the composite having spring-type interfacial damage is expressed as

LE = (coLg + ¢y Ly: AM): (coI + ¢;AM + ¢y R: Ly: AM)™1 (39)
where ¢y and c; denote the volume fraction of the matrix and particle, respectively so ¢ +

¢, = 1. R represents the intensity of the interfacial damage, which is expressed as

J a

1
Rynjq =~ Iunjq) (RyMandel = 2 a (40)

Using the effective modulus, we can predict the extended strain/stress field within each phase.
The applied extended strain (Z) and stress (Z) for a composite can be written in terms of

the volume averaged extended strain Z; and stress field X; within each phase as

Z = COZO + Clzl + ClR:Ll:ZI

(41)
E S COEO + Clzl
We can rewrite the stress equation in Eq. (41) as
L*"Z = cyLy:Zy + c,Ly: Z;4. (42)

Hence, the strain and stress field within each phase are expressed as Eq. (43) and (44),

respectively.



_ 1
Zo=—(Lo— Ly +R:L)™) (L = Li: U + R: L))
0
(43)
_ 1
Zi=— (i~ Lo +R: L) DL (Lo - Ly)
1

— 1
Zo=—Mo—M; - R)™: (M*f — M, — R)
0
(44)
— 1
Ii=— (My — My + R)™L: (M°ff — M,)
1
For the validation of the theoretical predictions, we calculate the effective modulus of
the particle reinforced representative volume element (RVE) using FEA. We construct RVEs
having about 20 particles and calculate the average effective modulus of 10 independent
RVEs with a different particle distribution to obtain a statistically meaningful value (Fig. 7).
To obtain the effective piezoelectric modulus, we calculate the ratio between the volume

averaged stress/electric displacement field and the applied unit strain/electric field.
4.2 Effective properties of composite having one type of interfacial damages

First, we show the effect of elastic interfacial damage on the effective modulus,
dielectric constant, and piezoelectric constant of SiC-PVDF composites with two different
volume fractions in Fig. 8. The effective modulus predicted with our modified Eshelby tensor
and strain concentration tensor matches well with the FEA results up to 10% volume fraction,
showing a relative error less than 2% (Fig. 8(a)). In the small interfacial damage regime, the
elastic stiffness of a composite with high volume fraction is higher than that of a composite
having low volume fraction because the composite is stiffened with additional SiC particles.
However, as the interfacial damage increases, the stiffness of a composite with higher SiC
volume fraction decreases compared with that of a composite with lower SiC volume fraction,
because SiC effectively serves as a soft inhomogeneity when the load transfer between the

SiC particle and the PVDF matrix is excessively weakened. As the elastic interfacial damage



approaches infinity, the predicted modulus converges to the porous matrix result (whereas the
prediction from the previous study converges to zero) (Fig. 8(f)). The effective piezoelectric
constant (—e333) also decreases as the elastic interfacial damage increases whereas the
effective dielectric constant was not significantly affected by the elastic interfacial damage
(Fig. 8(b) and (c)). To understand the origin of decrease in the effective piezoelectric constant,
we plot the volume averaged strain of each phase in Fig. 8(d). The volume averaged strain
within both matrix and particles decrease with the increase in the interfacial damage, because
the interfacial spring extends more with increasing spring compliance, which leads to reduced
charge induction from the piezoelectric matrix (Fig. 8(e)). In the infinitely large elastic
interfacial damage without electric interfacial damage, the composite has higher effective
piezoelectric constant than that of the porous material because the SiC particle is also

polarized owing to the finite interior electric field (Fig. 8(g)).

Second, we present the effective properties of the composite in the presence of the
electric interface damage (Fig. 9). For a small electric interfacial damage, the effective
dielectric constant k33 increases with the SiC volume fraction because the dielectric
constant of SiC is larger than that of the PVDF matrix. At a large electric interfacial damage,
a composite with higher volume fraction of SiC particles has lower effective dielectric
constant because the SiC particles are not polarized effectively. When the electric interfacial
damage approaches infinity, the effective dielectric constant decreases below the dielectric
constant of the porous matrix (Fig. 9(a) and (f)). This is because while the infinite electric
interfacial electric damage indicates zero electric field within the SiC particle, the porous

material with vacuum or air voids can have a finite electric field within the void.

This is different from the elasticity or heat conduction problems reported in the

previous studies (Lee et al., 2019a; Lee et al., 2018) where the effective property of a



composite in the infinite interfacial damage limit is equal to the effective property of a porous
matrix. At infinite interfacial damage, the Mori—Tanaka method with the interface spring
model converges to the results obtained with the material properties of a particle set to be
zero. In elasticity and heat conduction, the elastic stiffness and thermal conductivity of the
void (vacuum) are zero, so the two results (porous and infinite interfacial damage) become
identical. However, when addressing the dielectric response, given that the vacuum void has

unit relative permittivity (i.e., k;; = &;5), the effective dielectric constant at infinite electric

interfacial damage is lower than that of a porous material.

The effective stiffness is almost constant regardless of the electric interfacial damage
and the effective piezoelectric constant (—e333) decreases as the interfacial electric damage
increases (Fig. 9(b) and (c)). When the electric field is applied to the composite, the electric
field within the matrix decreases with the interfacial electric compliance y (See Fig. 9(d)
and (e)). Therefore, less mechanical strain is induced from the piezoelectric matrix, which
implies a decreased —e333, and owing to the mechanically “tie” condition at the interface(i.e.

a = 0), the —e333 at infinitely large y is larger than the lower limit (Fig. 9(g)).
4.3 Effective properties of composite having two types of interfacial damages.

We also predict the effective properties of the composite having both types of
interfacial damages. Fig. 10 shows that the effective stiffness mostly depends on the elastic
interfacial damage, and it decreases with an increase in elastic interfacial damage, as
expected. Our prediction had the maximum error of 0.78% compared with the FEA results.
Similarly, the effective dielectric constant is affected mostly by the electric interfacial damage.
However, the effective —e333 depends on both interfacial damages because it considers the
coupling between mechanical and electrical responses. As the two interfacial damages

simultaneously approach infinity, the effective piezoelectric and dielectric constants become



lower than the porous results, whereas the effective stiffness converges to almost the same
modulus as that with a porous material (Fig. 10(d)—(f)). Here, we use the normalized
interfacial damage parameter (og = aC11/a, Yo = YkYi/a); thus, the small size of the
particle results in a large normalized interfacial damage. Hence, the effective properties

depend on the size of SiC particles at fixed ¢ and y (Appendix C).

Then, we obtain the figure of merit in 33 directions (FOM;3) by predicting the

effective dz33 and k93 in the strain-charge form constitutive equation,

e=Cto+d"-E
(45)
D=d:o+k°E.
We predict the effective —d333 in terms of both electric and elastic interfacial damage (Fig.
11). The effective —d333 decreases with an increase in the electrical damage, whereas it
increases as the elastic interfacial damage increases. As expressed in Eq. (37), when an
external stress is applied, the stress field within the matrix increases with the elastic

interfacial damage because the average stress field within the particles approaches zero (Fig.

11(b)). Using the kJ; shown in Fig. 11, we predict the effective FOM35; by using Eq. (42).

_ (d333)?
K33

FOM;;4 (46)

As shown in Fig. 11, the effective FOM;3 increases with both interfacial damages. At a large
interfacial damage, FOM,;5 is even higher than that of the pure matrix. This is similar to the
porous material results studied by other researchers (Dunn and Taya, 1993b; Zhang et al.,
2017). For a porous material, the effective FOM33 increases with porosity because k3,
decreases more rapidly than (d333)? with respect to the porosity. Similar to a porous
material, a composite with a piezoelectric matrix and elastic particles has high FOM3; when

the interfacial damage is large.



5. Conclusion

We predict the effective material properties of a piezoelectric composite, considering
the elastic and electric interfacial damage. We derive the modified Eshelby tensor after
correcting the equations used in previous studies and validate it by comparison with the FEA
results for a wide range of two interfacial damages. We also correctly predict the modified
extended strain concentration tensor by decomposing the single inhomogeneity problem into
three independent homogeneous problems. Using the modified Eshelby tensor and extended
strain concentration tensor, we predict the effective properties of the reinforced composite,
and note that our model agrees well with the FEA results up to a 10% volume fraction. The
effective moduli are well bounded between two limit cases, perfect bonding and porous
results, except the effective dielectric constant. We suggest a 2D map of effective properties

with respect to the two interfacial damage parameters.
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Appendix A. Non-uniform strain field within the inclusion.

The extended strain field within the inclusion in non-uniform when the elastic
interfacial spring compliance in normal and tangential direction are different. As shown in
Fig. A1, the strain field of spherical inclusion is non-uniform whereas the strain field when
a = [ is uniform. For ellipsoidal case, the strain field is nonuniform even if the spring

compliances are same.



Appendix B. Violation of Fubini-Tonelli theorem

In this section, we explain the violation of Fubini-Tonelli theorem by suggesting a
simple double integral problem. When the integral function has singularity within the integral

domain, the order of integral can not be exchanged. For example, for the function

xZ_yZ 2

(x? + y?)? - dxdy

arctan(y/x), (B.1)

the results of two integrals which has different integral order are different, as shown in

Eq.(B.2)

f(f (52;;2)2 >d"=‘%

J-1 1 x2 — y? Y o
o \Jo (x% +y?2)? x y_4

(B.2)



Appendix C. Effect of particle size on effective properties

In the main text, we investigate the effect of interfacial damage on the effective
properties using normalized interfacial damage, ay, = aCX11/a, Yo = yk?,/a, where a is
radius of the particle in the composite. If we predict the effective properties using interfacial
damage, not normalized parameter, the effective properties decrease with the size of the
particle (See Fig. C1). As the size of the particle decreases at a fixed volume fraction, the
total interface area increases, which results in large interfacial damage, so the effective

properties decrease.



Table 1 Material constants of the considered materials. The constants are obtained from the

previous studies (Odegard, 2004; Wang et al., 2014c¢).

Property PZT-5A PVDF SiC
Ci111 (GPa) 121 3.8 483.7
Ci122 (GPa) 75.4 1.9 99.1
Ci133 (GPa) 75.2 1.0 99.1
Cy22, (GPa) 121 3.2 483.7
Cy233 (GPa) 75.2 0.9 99.1
C3333 (GPa) 111 1.2 483.7
C,3,3 (GPa) 21.1 0.7 192.3
C3131 (GPa) 21.1 0.9 192.3
Ci212 (GPa) 2.28 0.9 192.3
e131 (C/m?) 12.3 0.0 0.0
e311 (C/m?) -54 0.024 0.0
€32, (C/m?) -5.4 0.001 0.0
€333 (C/m?) 15.8 -0.027 0.0
K1/Kog 916 7.4 10.0
Ko /Ko 916 93 10.0
K3 /Ky 830 7.6 10.0

Ko = 8.854187817 X 10712 C*Nm?
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Fig. 3. Mesh configuration of the single inclusion/inhomogeneity problem.
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interfacial damages under fixed volume fraction of 5%. (d) Effective stiffness, (e)
piezoelectric constant, and (f) dielectric constant when the two normalized interfacial

damages are the same (ay = y,).
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Fig. 11. (a) Normalized effective FOM;; of the composite, where the FOMY; is the

FOM35 of the pure matrix (PVDF). (b) Volume averaged stress field within each phase under

the applied stress. (c) Effective —d335 and (d) x;’éEff/KO for two interfacial damages. The

volume fraction is 5%.
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