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Abstract10

Hospital systems play a critical role in treating injuries and preventing additional deaths11

during disaster emergency response. Natural disasters hinder the ability of hospital systems to12

operate at full capacity. Therefore, it is important for cities to develop policies and standards13

that enable hospitals’ continuous operations to provide patients with timely treatment and en-14

sure urban resilience. Here, we present a methodology to evaluate emergency response based15

on a probabilistic model that assesses the loss of hospital functions and quantifies multiseverity16

injuries as a result of earthquake damage. The proposed methodology is able to design effective17

plans for patient transferal and allocation of medical resources using an optimization formu-18

lation. This methodology is applied to Lima, Peru, subjected to a disaster scenario based on19

the M 8.0 earthquake that occurred there in 1940. Our results show that the spatial distribu-20

tion of health service demands mismatches the post-earthquake capacities of hospitals, leaving21

large zones on the periphery of Lima significantly underserved. This study demonstrates how22

emergency plans that leverage hospital-system coordination can address this demand-capacity23

mismatch, enabling effective patient transfers, ambulance usage, and deployment of emergency24

medical teams.25

Hospital systems are at the core of disaster resilience because they must provide timely critical26

healthcare services to communities during and after an emergency response.1 Because cities are27

becoming larger and more densely populated, natural disasters are impacting public health on a28

larger scale. A database including the most 21,000 devastating disasters worldwide since 190029

indicates that 50% of disasters with the largest number of injuries occurred only during the last 2030

years.2 Natural disasters such as earthquakes, landslides, floods, typhoons put heavy demands on31

hospital systems because these disasters can cause thousands or even tens of thousands of injuries32

in a short timespan (Figure 1). At the same time, natural disasters cause massive disruptions to33

hospital systems by damaging their supporting infrastructure. For example, the M 7.6 1999 Turkey34
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earthquake caused around 50,000 injuries in Izmit and disrupted 10 major hospitals, which required35

relocation of most patients from these hospitals.336

Because hospital systems are so critical, the World Health Organization (WHO) and Pan-37

American Health Organization (PAHO) urge countries to institute policies to strengthen hospi-38

tal capacities and enhance coordination in the hospital system to make efficient use of resources39

at national and regional levels during emergency response.4,5 To effectively develop measures40

for capacity-enhancing prioritization and resource sharing and allocation, national and regional41

governments require information based on robust methodologies that can characterize hospitals’42

emergency response as an interconnected system on a large urban scale.43

However, most previous studies have primarily focused on modeling emergency response only at44

single-hospital scale as opposed to characterizing the response of hospital systems on a large urban45

scale. Some of these studies relied on disaster analytics to evaluate post-disaster functionality of the46

supporting infrastructure in the individual hospitals.6–9 Other studies used emergency medicine47

modeling tools, such as discrete event simulation (DES) and flow models, to characterize emergency48

response and evaluate post-disaster resource allocation but also at a single-hospital scale.10–13 Lack49

of methods and high-resolution disaster risk data have hindered the extension of single-hospital50

scale analyses to system-level analyses on an urban scale. As a result, regional emergency response51

policies have not effectively addressed capacity-enhancing prioritization and resource sharing and52

allocation in hospital systems, especially in large and complex urban centers.53

Here, we present findings from a methodology that characterizes the disaster emergency response54

of hospital systems on a large urban scale. Our integrative methodology combines models of55

multiseverity earthquake casualty estimation14,15 and post-earthquake hospital functionality with a56

proposed network flow model for hospital systems. We focus on seismic hazard because earthquakes57

are the natural disasters that have caused the largest number of injuries in most countries (Figure 1).58

The methodology is applied to Lima, Peru, based on a M 8.0 earthquake and includes an evaluation59

of effective emergency plans for allocation of hospital resources and patient transfers. We selected60

Lima because it has a high seismic risk and it has recently built a unique dataset containing high-61

resolution hospital vulnerability. We use citywide data on the seismic vulnerability of more than62

1.5 M buildings in Lima to estimate casualties and data including the seismic vulnerability of 4163

public hospital campuses (composed of +700 buildings) and their respective operating rooms and64

ambulance resources.9,16,17
65

We propose a metric based on patient waiting times and effective use of ambulance patient66

transfers as a performance measure for developing emergency response plans. Our focus is on67

high-severity injuries that require surgical procedures. We evaluate the spatial distributions of68

high-severity injuries in the city at a higher spatial resolution (i.e., 1kmx1km) than other widely69

used methods.18 Then, we compare the spatial distribution of casualties with the distribution of70

functional operating rooms in the hospital system, identifying the zones more likely to be under-71

served during the emergency response. Combining the network flow model with an optimization72

formulation, we assess the performance of four alternative emergency response plans to treat the73

patients in the city.74

The first and second emergency plans are baseline strategies with limited levels of coordination.75

In both strategies, hospitals without available operating resources will use their own ambulances to76

transfer patients, but in the first strategy, patients will only be sent to the closest working hospital,77

whereas in the second strategy, patients will be sent to the hospital with the largest number of78

functional operating rooms.79
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The third and fourth emergency plans are strategies with higher levels of coordination that use80

the optimization formulation on the system performance metric. In both strategies, all hospitals81

will share ambulance resources across the system to transfer patients according to post-earthquake82

needs, but in the third strategy, the system only uses the residual operating room capacities in83

the hospitals, whereas in the fourth strategy, emergency medical teams (EMTs) supply the system84

with additional mobile operating rooms in key locations in the city. Through the Action Plan for85

Humanitarian Assistance, the WHO and PAHO require countries to elaborate policies for deploying86

ETMs to assist people affected by emergencies and disasters,19,20 thus, this study aims to directly87

inform policies for EMT deployment in countries with high seismic risk.88

We analyze the behavior and performance of these four plans during the emergency response and89

discuss their implications in terms of patient treatment times, ambulance usage, and patient trans-90

fers. We utilize traffic data to show the most important roads for patient transfers from localized91

zones with lower hospital capacity to zones with higher capacity in the city. This research repre-92

sents a first-cut assessment on the effectiveness of emergency response policies to inform city-scale93

decision-making that leads to more effective treatment of patients during an emergency response94

to a major earthquake.95

Figure 1: Per-country distribution of disasters with the highest number of injuries since 1900. The sizes of
the circles indicate the relative number of injuries and the colors indicate the natural disaster type. Since
1900, 117 countries that experienced at least one natural disaster with more than 100 injuries. Earthquakes
were the natural disaster with largest injury tolls in 45 of these countries, followed by storms in 38 of these
countries. Earthquake events can cause large number of injuries suddenly. For example, the 2008 Great
Sichuan earthquake injured more than 368k people in only two minutes. Data from EM-DAT.2

1 Results96

We applied our methodology to Lima, a large city with a population close to 10 million people,21
97

where previous large earthquakes have caused large numbers of casualties.22,23 Because the last98
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large earthquake in the region occurred more than 40 years ago, studies indicate that the city is99

currently exposed to high hazard of large-magnitude earthquakes.24,25 Using our proposed method-100

ology, we characterize the emergency response and evaluate response plans to effectively to treat101

patients in Lima after an earthquake scenario of large magnitude occurring in the near future. This102

earthquake scenario was simulated according to the seismotectonics of the 1940 M 8.0 earthquake,103

which occurred in close proximity to Lima.26 Figure 2 shows the estimated rupture area of the 1940104

earthquake and its proximity to the city. Our methodology estimates the impact of this disaster105

scenario on the demands on healthcare by quantifying earthquake casualties and on the capacity106

of healthcare by quantifying the post-earthquake reduction in functionality in the hospital system.107

The results of applying our methodology are discussed here and the details of the methodology108

formulation, workflow and required data are described in the Methods section.109

Figure 2: Earthquake scenario representing the M 8.0 1940 earthquake in Lima. The earthquake occurred
in the subduction fault in the coast of Lima and caused widespread damage to the city.22,27 The estimated
area of fault rupture is shown in red. The edge dimensions were estimated with empirical formulas.28 The
fault plane dips 15◦, where the edge underneath the coast is deeper than the edge under the ocean. The
median peak ground acceleration (PGA) is also estimated with empirical formulas.29 The shaking attenuates
for regions further away from the rupture in the fault plane. Lima city and its districts are delimited by the
black shapes.

1.1 Earthquake Casualties110

We found that on average close to 4.7k people will require surgical procedures in operating rooms111

after the M 8.0 earthquake. This estimate results from applying a probabilistic model that utilizes112

high-resolution building seismic vulnerability data, population distribution and soil conditions to113
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evaluate multiseverity earthquake casualties caused by widespread building damage14,15 (see Meth-114

ods). Earthquake injuries can have different severity degrees, ranging from small bruises to more115

serious spinal cord injuries.30–34 The 4.7k patients requiring surgical procedures will have high116

severity injuries such us compound bone fractures, punctured organs or crush syndrome with open117

wounds, thus they require timely interventions for stabilization and treatment.118

Our results are designed for a nighttime scenario, when most people are inside residential build-119

ings, because residential infrastructure is particularly vulnerable in Lima. Predominantly the city’s120

periphery has vulnerable residential infrastructure as a result of poor construction practices and121

lack of seismic code enforcement.35,36 Figure 3a shows the spatial distribution of the average num-122

ber of patients that will require the surgical procedures. A comparison with the spatial distribution123

of nighttime population density in Lima (Figure 9) indicates that most of these patients are located124

in high-density zones. However, the ratio between the number of injured people and the total num-125

ber of people follows a different pattern (Figure 3b). The spatial distribution of this ratio reflects126

the uneven distribution of ground shaking intensities and seismic vulnerabilities of buildings in the127

city. It shows that people living closer to the coastline and in the city’s peripheral zones have128

higher earthquake injury risk as a result of higher ground shaking (Figure 2) and more vulnerable129

buildings, respectively.130

(a) (b)

Figure 3: Casualty scenario for M 8.0 earthquake occurring at nighttime in Lima. (a) Spatial distribution
in km2 of earthquake injuries requiring surgical procedures after the M 8.0 seismic event. (b) Spatial
distribution of earthquake injury ratios, i.e., number of injuries as a percentage of the population per km2.
The intervals in the two plots represent quintiles (5-quantile) on the spatial data.
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1.2 Post-earthquake Hospital Capacity131

We found that on average only 93 of 182 total hospital operating rooms (51%) will be functional after132

the M 8.0 earthquake. This estimate results from performing a probabilistic earthquake simulation133

on a high-resolution dataset (see Methods). The dataset includes the structural vulnerabilities of134

+700 buildings belonging to 41 healthcare campuses,16 the operating room resources, and “Hospital135

Safety Index” (HSI) of each campus. HSI is a metric created by WHO to measure post-disaster136

functionality potential due to multiple factors such as backup water, power, medical resources and137

hospital accessibility.37 This unique dataset in combination with the earthquake simulation enables138

us to capture the residual hospital functionality on a large urban scale.139

Figure 5a shows the spatial distribution of both the operating rooms in the dataset and the140

average predictions of operating rooms after the earthquake. Both spatial distributions are heavily141

uneven across the city. In the dataset, 95 operating rooms (52%) are concentrated in only four142

centric districts, Lima, Breña, La Victoria and Jesús Maŕıa, whose summed areas represent less143

than 2% than the total area of the city. The earthquake slightly worsens such a resource central-144

ization due to the non-uniform spatial distribution of earthquake shaking and the variations in the145

vulnerabilities of hospitals’ buildings according to their construction age and standards or struc-146

tural types (Figure 11). As a result, we estimate that these four districts will have 55 functional147

operating rooms, 59% of the total functional operating rooms, in the emergency response.148

Additionally, addressing the centralization issue can become even more critical because the149

number of injuries needing surgical procedures and the functional operating rooms are negatively150

correlated. Our findings show a strong correlation (-0.49) between the simulations of earthquake151

injuries and functional operating rooms across the system in the city (Figure 4). Such a large152

correlation indicates that an earthquake that injures a larger amount of people will likely be very153

destructive; thus, that scenario will also cause a heavier disruption to the hospital system.154

1.3 Demand-capacity Mismatch of Health Services155

We analyzed patient arrivals to the hospitals and found that patient distribution significantly156

mismatches the distribution of residual hospital resources after the earthquake. We assumed that157

search and rescue (SAR) teams, relatives, friends and neighbors will initially transport patients158

to the triage areas in the closest hospitals as it occurred after previous earthquakes.38 Figure 5b159

shows the distribution of the total arrivals of the patients who will need surgical procedures in each160

hospital. In contrast to the distribution of functional operating rooms, injuries are mainly located161

in the periphery. Only 596 patients would arrive at the hospitals in the four centric districts162

highlighted in Figure 5b. Those patients represent only 13% of the total demand for surgical163

procedures. However, as described earlier, these four districts will concentrate 59% of the functional164

operating rooms available.165

Such a mismatch in the distribution of demands and capacities creates localized health service166

imbalances leading to long patient waiting times, with particularly severe effects in the periphery.167

Emergency plans can play a key role in addressing this mismatch and improve the treatment168

effectiveness in the city if they either mobilize patients from lower-capacity zones to higher-capacity169

zones or supply lower-capacity zones with additional resources. We tested four emergency plans.170

Two of them are baseline strategies that only require limited coordination in the system, whereas171

the other two are strategies that require higher coordination at the system level. To evaluate their172

performance during the emergency response, we used a system metric based on city-wide patient173
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Figure 4: 1,000 simulations of number of casualties needing surgical procedures in operating rooms (ORs)
and number of functional operating rooms after the earthquake for the M 8.0 earthquake. The simulations
result from probabilistic earthquake modeling (see Methods) and capture uncertainty in ground shaking,
building damage, injury occurrence and hospital functionality. The linear trend indicates a negative corre-
lation between the functional ORs and the number of injuries in the simulations.

waiting times and effective use of ambulance resources (see Methods). Waiting times are a key174

metric to establish necessary patient stabilization procedures until there is an available operating175

room in the queue, and the use of ambulances is a complementary measure to ensure that patient176

transfers occur effectively. Combining simulations on post-earthquake demand-capacity with data177

including the available ambulances at each campus and regular traffic conditions in Lima from178

Google Maps API, we conducted a probabilistic evaluation of the system metric performance for179

the four emergency plans.180

1.4 Baseline Strategies with Limited Coordination181

In the first strategy, hospitals send patients to the closest hospital with functional operating rooms182

only if all their operating rooms are non-functional after the earthquake. In this strategy, hospitals183

use their own ambulance resources to transfer their patients. This strategy only requires limited184

coordination between pairs of hospitals located relatively close to each other, representing an emer-185

gency response where the system becomes a set of islands composed of districts or neighborhoods186

that treat injuries independently of each other. With this strategy, our mean estimates indicate187

that the average waiting time will be 30 days to receive treatment in operating rooms (Figure188

6). In some worst-case scenarios, this metric could even increase up to 76 days, as indicated by189

the 90th-percentile of this distribution. The 1988 Armenia39 and the 1991 Costa Rica38 earth-190
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(a) (b)

Figure 5: Distribution of operating rooms in Lima. The circle size represents the relative number of
operating rooms. (a) Current number of operating rooms in hospital locations16 and mean estimates of
functional operating rooms after the M 8.0 earthquake. (b) Mean estimates of total arrivals of patients who
will need surgical procedures after the earthquake.

quakes showed that delayed surgical treatment can worsen the patients’ health to life-threatening191

conditions, for example, those who need resuscitative surgery, e.g., intra-abdominal hemorrhage192

or emergency amputation. Thus, such long waiting times in Lima can result in many additional193

deaths.194

For the first strategy, Figure 7a shows the mean estimates of the spatial distribution of treated195

patients at each hospital and the patient transfers between hospital pairs. Though this strategy can196

offload demands in critical zones, it does not effectively mobilize patients from the lower-capacity197

zones to higher-capacity zones. Hospitals with more functional operating rooms treat a similar198

number of patients as hospitals with fewer operating rooms. Hospitals in the four centric districts199

highlighted previously only treat 1.3k patients, which represents 28% of the demand for operating200

rooms, despite having 59% of the total capacity. Additionally, because hospitals do not share201

ambulance resources, we find that ambulances are the bottleneck of the system in the periphery.202

Hospitals with limited ambulances have to transfer large numbers of patients to offload the high203

demand for operating rooms. Thus, if they do not have sufficient ambulance resources, their patients204

will lose the opportunity to be treated more promptly in other less crowded hospitals.205

In the second strategy, hospitals send patients to the hospital with the largest number of func-206

tional operating rooms. In this strategy, hospitals send patients only if all their operating rooms are207

non-functional and use their own ambulance resources. With this strategy, the mean and the 90th208
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Figure 6: Distribution of city-wide average waiting time for treatment after the earthquake according
to four emergency response plans, highlighting mean (µ) and 90th-percentile values (P90%). The time is
measured from when the patient is injured by the earthquake until he or she is treated in an operating
room. Strategies 1 and 2 are baselines with limited coordination (LC) capacities, whereas strategies 3 and
4 introduce higher coordination (HC) capacities across the whole system level for resource allocation and
patient transfers. The ambulance usage and the treatment spatial distribution are show in Figure 7 for each
plan.

percentile estimates of city-wide waiting time are 22 and 41 days, respectively, outperforming the209

first baseline strategy, but not significantly (Figure 6). With this strategy, the system mostly relies210

on the largest two hospitals, located in the highlighted centric districts, to meet the demands of211

surgical procedures. Figure 7b shows the corresponding distributions of treated patients and trans-212

fers. The two largest hospitals treat 2.8k patients, 60% of the total demand, though their functional213

operating rooms only constitute 44% of the total. Because multiple hospitals with non-functional214

operating rooms send patients to the same large hospitals under this strategy, their operating rooms215

overflow. Moreover, such an strategy leads to heavy use of roads from the periphery to the city216

center. For example, our mean estimates indicate that 231 patients would have to be transported217

from the southernmost hospital alone to the largest hospital, nearly twice as many as the maximum218

number of transfers between any hospital pair in the first baseline strategy.219

1.5 Strategy 3: Sharing Ambulances220

In the third strategy for effective emergency response, hospitals transfer patients across the system221

(see Methods). In addition, they share their ambulance resources across the system. This strategy222

represents an emergency plan that requires high coordination at the system level. During the223

emergency response following the next big earthquake in Lima, emergency managers could deploy224

this policy as soon as they collect information on the actual status of the operating rooms in225

hospitals and the actual distributions of injuries, which often takes a few days after the disaster226

depending on its magnitude.40–43 Using this strategy, the mean and 90-th percentile estimates of227

city-wide waiting time are 10 and 19 days, respectively, significantly outperforming the first and228

second strategies by factors of 3 and 2.2 in the mean estimates, respectively (Figure 6). Because229
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(a) (b)

(c) (d)

Figure 7: Spatial distribution of patient treatment and transfers. These values represent the average
transfers and treated people according to the uncertain distribution of earthquake casualties and residual
capacities in the hospital system. (a) Strategy 1: hospitals with unavailable operating rooms can transfer
patients to the closest working hospital. (b) Strategy 2: hospitals with unavailable operating rooms can
transfer patients to the largest working hospital. (c) Strategy 3: ambulances are shared in the hospital
system. (d) Strategy 4: EMTs deploy 15 additional mobile operating rooms during the emergency response.
The figure only shows roads between hospital pairs that transferred at least 5 patients.
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an optimization formulation is used at the system level under this policy, patient transfers are230

effective at transporting patients from lower-capacity zones to higher-capacity zones, leading to a231

more effective use of the functional operating rooms across the city.232

The distribution of treated patients matches the distribution of the residual operating room233

capacity in the system (Figure 7c). 2.6k people are treated in the hospitals in the four highlighted234

centric districts, which represents 56% of the total patients in the city and closely approaches the235

residual capacities in this zone, 59% of the total functional operating rooms. Unlike the second236

strategy, this strategy does not overload the capacities in the two largest hospitals by sending237

most patients to them, instead it distributes patients across the system according to the residual238

capacities of each hospital. Additionally, unlike with the first strategy, ambulance capacities do239

not bottleneck the system with this policy. Because hospitals share all ambulances in the system,240

the ambulances will work where they are most needed, from the periphery to the city center. An241

emergency plan that implements such a strategy will lead to a more balanced use of ambulances242

through the city and thus it offloads critical roads. With this strategy, close to 90 patients would243

have to be transported from the southernmost hospital to the largest hospital, less than half the244

number with the second baseline strategy.245

1.6 Strategy 4: Deployment of Additional Operating Rooms by EMTs246

In the fourth policy for effective emergency response, EMTs will deploy 15 additional mobile operat-247

ing rooms to alleviate high demand-capacity gaps across the system (see Methods). We assume that248

the additional operating rooms will be functioning three days after the earthquake. This strategy249

deploys the operating rooms in close proximity to existing hospitals to leverage their triage ar-250

eas and additional resources such as personnel, power generators or backup water. As with the251

third strategy, hospitals are also able to share ambulance capacities across the city. Because an252

optimization formulation is also used, the additional operating rooms are effectively deployed in253

locations and quantities that are critical to improve the performance of the emergency response.254

Using this policy, the mean and 90-th percentile estimates of city-wide waiting times are 8 and 15255

days, respectively (Figure 6). As expected, these estimates outperform the response with the first256

policy due to the additional operating rooms in the system.257

Our analysis strategically locates the additional operating rooms in the periphery, mainly in the258

southernmost and northernmost zones (Figure 7d). By deploying field hospitals in the periphery,259

more patients can be treated there, offloading the hospitals in the center. With this policy, 2.3k260

people, representing 48% of the total patients, are treated in the four previously highlighted centric261

districts, 16% fewer patients than with the first policy. As a result, fewer patients have to be262

transported from the periphery to the city center, offloading critical roads even more. In this263

case, the southernmost hospital will only have to transfer 76 patients to the largest hospital, a 17%264

reduction than with the first policy. If the EMTs deploy more field hospitals using this methodology,265

then treatment times will be further reduced, the periphery will be better supplied with needed266

resources, and the usage of ambulances and critical roads will be further offloaded in the city.267

2 Discussion268

We present a methodology for characterizing the emergency response of hospital systems after269

earthquakes and designing policies to treat patients effectively. Our methodology establishes the270
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groundwork for assessing the value of hospital system coordination through a metric that measures271

the performance of high-coordination emergency policies in terms of waiting times and effective use272

of hospital resources. Because our methodology considers hospitals in a large urban center behave273

as a system, emergency managers and resilience officers can apply our methodology to a whole274

large city and evaluate optimal patient transfer strategies between hospitals, effectively allocate275

ambulances in the system, and guide the deployment of field hospitals.276

We found that a M 8.0 earthquake in Lima will cause a spatial distribution of casualties that277

does not match the post-earthquake capacities of the hospital system (Figure 5). The zones with278

higher post-earthquake capacity are located in the city center, in clear contrast with the zones279

with higher post-earthquake demands of health services. Large numbers of patients are located in280

the periphery, where, unlike the city center, deficient construction practices have rapidly increased281

the seismic vulnerabilities of the housing infrastructure.44 The neighborhoods in the periphery282

tend to be populated by families with less income and wealth, so the disparities in disaster risk283

overlap with the economic disparities.45 This overlap will exacerbate the critical conditions in284

the periphery because these families will have less resources to obtain treatment and medicine285

from private hospitals, relying mostly on public hospitals. During an emergency response, this286

uneven vulnerability profile in the housing sector exacerbates the resource centralization problem287

of hospitals in the city, thus leaving the neighborhoods in the periphery predominately underserved288

during an emergency response. Because in many cities, neighborhoods in peripheral zones have289

precarious access to health services46 and high concentration of seismic vulnerabilities,47 these290

observations in Lima can be extrapolated to multiple urban centers in Latin America and even in291

developed countries.292

Emergency planners who aim to treat patients in the city effectively must address these dis-293

parities by either transporting patients from lower-capacity to higher-capacity zones or supplying294

the lower-capacity zones with additional resources to meet demands of health services. Though295

emergency managers can elaborate multiple reasonable strategies to implement such emergency re-296

sponse measures, our findings shows that strategies based on deeper coordination between hospitals297

prove to be significantly more effective than the ones with less ability to coordinate (Figure 6).298

Turning to the two baseline strategies with reduced coordination, both of them have similar low299

performance even though the system behavior differs fundamentally. Because in the first strategy300

hospitals transfer patients to the next closest working hospital only when they do not have available301

operating rooms, ambulance capacities are the bottleneck in some hospitals, whereas they are not302

even used in other ones. Additionally, the first strategy distributes the number of people treated303

at each hospital roughly evenly (Figure 7a). Such a treatment distribution results in hospitals304

with fewer resources treating similar patient numbers as hospitals with more resources, making the305

system inefficient and increasing waiting times.306

The second strategy is also a baseline that enables hospitals to transfer patients only to the307

hospital with the largest number of functional operating rooms in the city. Contrary to the first308

strategy, the second one distributes the number of treated patients highly unevenly (Figure 7b).309

Because multiple hospitals often end up transferring patients to the two largest hospitals in the310

city, these two hospitals largely overflow their capacities. In addition, the second strategy requires311

heavy use of ambulance resources to transfer patients from the periphery to the city center, where312

these two largest hospitals are located.313

In contrast, the third and fourth strategies that have deeper coordination significantly improve314

the emergency response performance because under these policies, hospitals share resources and315
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leverage strategic system-level information. Because ambulances are shared across the system,316

they do not bottleneck the system as in first baseline strategy and start to be effectively used in317

critical zones. Patients are also strategically transferred across the entire hospital system, leading318

the spatial distribution of treated people matches the post-earthquake capacities of the hospital319

system (Figure 7c). As a result, the citywide-average waiting times to treat patients decrease320

quite significantly compared to the previous baseline strategies that only allowed reduced pairwise321

coordination by factors larger than 2 (Figure 6).322

In practice, emergency managers will need a few days after the next large earthquake to collect323

necessary system-level information including both casualties and the residual functionality.40–43
324

However, they can use the trends shown in Figure 7c to establish more informed policies for prag-325

matic implementation. Emergency planners should use this type of assessment to create earthquake326

preparedness plans. These plans may include implementing reliable communication lines between327

hospitals more likely to transfer large number of patients. Additionally, preparedness plans may328

include a usage prioritization of critical emergency corridors that are more likely to be heavily used329

by ambulances or an identification of alternative roads in case these corridors have known seismic330

vulnerabilities.331

Another advantage of policies with deeper coordination the strategic deployment of EMTs and332

their additional mobile operating rooms. Besides decreasing waiting times, EMTs that supply oper-333

ating rooms to the most underserved zones also achieve a more efficient use of ambulances because334

fewer transfers are needed. EMTs might find it practical to locate these additional operating rooms335

at the city center, where equipment mobilization is easier and availability of doctors and nurses336

is higher. However, such a plan may lessen the ability of the hospital system to treat patients337

because more patients would have to be transferred from the periphery to the center, overloading338

the roads and potentially overflowing ambulance capacities. Thus, robust earthquake preparedness339

plans should be developed based on a thorough understanding of the uneven distribution of capac-340

ity and demand of health services in an earthquake aftermath. Effective plans will capitalize on341

the methodology and information provided here to better prepare cities facing high significant risk342

from future large earthquakes.343
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3 Methods354

3.1 Network Flow Model and Optimization Formulation355

We model the post-earthquake hospital treatment process as a minimum cost time-varying net-356

work flow (MCTVNF) problem.48,49 In our MCTVNF formulation, a directed graph G = (N,E)357

represents the hospital system, where n = |N | is the number of graph nodes, and e = |E| is the358

number of graph edges. We use a discrete time model with a finite time horizon tf with time-steps359

dt, thus the time t ∈ T : {0, dt, 2dt, . . . , tf}. At each time t, each hospital has two nodes: one360

triage node where patients are received into the hospitals, and one discharge node where patients361

go after they complete their treatment. Each graph node is associated to an index i and a time362

t, where hospitals’ triage areas have indexes i ∈ Γ : {1, 2, . . . , nh}, and the discharge areas have363

indexes i ∈ Λ : {nh + 1, nh + 2, . . . , 2nh}, where nh is the number of hospitals in the system. To364

define a one-to-one correspondence within the indices of a hospital, if its triage index is i ∈ Γ, then365

its discharge index is i + nh ∈ Λ. Figure 8 shows an example of a network representation at time366

t for a system with three hospitals, where the triage nodes are in red and the discharge nodes in367

blue. In this model, the decision variables are both the flows through the edges and the patient368

queues in thee triage nodes. These variables will track how many patients will stay in triage, be369

treated or be transferred to other hospitals.370
4 Dynamic Flipped

b1(t)

b2(t) b3(t)

b4(t)

b5(t) b6(t)

x1,2(t)

x2,1(t)

x2,3(t)

x3,2(t)

x3,1(t)

x3,1(t)

x1,4(t)

x2,5(t)

x3,6(t)

3

Figure 8: System model with three hospitals at time t as a directed graph. The system model used for the
application to Lima has 41 hospitals, i.e., 41 triage and 41 discharge nodes.

Each graph node is associated to a time-variant demand-supply variable bi(t). In triage nodes,371

bi(t) represents the number of people arriving to hospital, thus they are analyzed as source nodes372

with nonnegative flows: bi(t) >= 0,∀i ∈ Γ. In the discharge nodes, bi(t) represent the number373

of patients who finish their treatment and exit the hospital at time t, thus they are analyzed as374

sink nodes with nonpositive flows: bi(t) <= 0,∀i ∈ Λ. We assume that patients who finish the375

treatment process and exit the hospital do not to return to the hospital system during the time376

horizon tf .377

Each graph edge is associated to a flow of patients xi,j(t) that leaves node i at time t to go to378
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node j. In this formulation, edges fully connect the triage nodes to allow hospitals to redistribute379

their patient loads to potentially any other hospital within the system according to their available380

ambulances. Additionally, each triage node is connected to its respective discharge node to represent381

the patient treatment process within a hospital. Figure 8 shows the edges and respective flows382

between triage nodes from different hospitals and between triage and discharge nodes within same383

hospitals for the system with three hospitals. At each time t, the flow xi,j(t) has a maximum bound384

ui,j(t) and a travel time τi,j(t). In this discrete formulation, it is considered that the flow xi,j(t)385

leaves the node i at time t and reaches the node j at time t+ τi,j(t).386

For the edges connecting triage areas, ui,j(t) represents the maximum number of patients who387

can be transported from triage i to triage j in a different hospital according to the available388

transportation resources (e.g., ambulances available in the hospital), and τi,j(t) is the transportation389

time of the patients from triage i to triage j. For the application to Lima, ui,j(t) and τi,j(t) in390

these edges were defined according to the ambulance capacities in each hospital and the travel times391

from pre-earthquake traffic conditions, respectively. When vulnerability data for the transportation392

system in Lima is available, our model will be able to leverage existing risk models for transportation393

systems50,51 to adjust travel times to post-earthquake traffic conditions.394

For the edges connecting triage nodes i with their respective discharge nodes j = i+nh, ui,i+nh
(t)395

represents the maximum number of patients who can be treated according to the available medical396

resources for the type and severity of the patients’ injuries, and τi,i+nh
(t) is the treatment time. For397

the application to Lima, ui,j(t) and τi,j(t) in these edges were defined according to the functional398

operating rooms in each hospital and average treatment times in operating rooms in previous399

earthquakes.52
400

Additionally, we define yi(t) as a storage variable at each triage node to represent the patients401

who wait in the hospital queue to either be treated within the hospital or be transported to another402

hospital with more available resources.403

3.1.1 Optimization of Performance Metric404

We evaluate both waiting times and effective use of ambulances as the system performance metric,405

thus the metric includes two objective functions. The first objective function C1(X) measures406

waiting time across the city as the average time that a patient would take since the earthquake407

until completing treatment in the operating room.408

C1(X) =

∑
t∈T

∑
i∈Γ,

j=i+nh

{t+ τi,j} × xi,j(t)× dt∑
t∈T

∑
i∈Γ bi(t)

(1)

X represents a vector containing all the decision variables of flow xi,j(t) in edges and the storage409

yi(t) in the triage nodes. The numerator of C1(X) represents the total number of patients passing410

through the operating rooms (from each triage node i ∈ Γ to the corresponding discharge node411

j = i+nh ∈ Λ) multiplied by their respective times to complete treatment, whereas the denominator412

is the total number of patients arriving to the triage areas. The time horizon tf is carefully chosen413

to have enough modeling time to treat the patients. However, in few simulations with significant414

number of patients and not many functional operating rooms, a couple of terms are added to the415

numerator, one with the remainder patients in the triage areas, tf ×
∑

i∈Γ yi(tf )× dt, and another416

with the remainder patients in the ambulances, tf ×
∑

i∈Γ xi,i+nh
(tf ) × dt, in order to properly417

incorporate the unmet demands at the end of the simulation into C1(X).418
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The second objective function measures ambulance usage as the total number of patients trans-419

ported in ambulances. The objective function C2(X) is normalized by the total number of patients420

analogously to C1(X).421

C2(X) =

∑
t∈T

∑
i∈Γ

∑
j∈Γ xi,j(t)× dt∑

t∈T
∑

i∈Γ bi(t)
(2)

We define a system cost C(X) as a weighted sum of C1(X) and C2(X) to find a Pareto-optimal422

solution.423

C(X) = α1 × C1(X) + α2 × C2(X) (3)

After assessing multiple α1 and α2 values, we minimized C(X) using values of 0.90 and 0.1,424

respectively. Smaller α2 values resulted in inefficient ambulance usage with small reductions in425

waiting times, requiring some patients to be transferred multiple times in ambulances before being426

treated. Larger α2 significantly increased waiting times, thus these α2 values do not appropriately427

represent that the priority in the formulation is to minimize waiting times over to use ambulances428

with efficiency. We find the best set of decisions X̂, vector that contains the values of flow variables429

xi,j(t) and storage variables yi(t) which minimize C(X).430

X̂ = argminxi,j(t);yi(t) C(X) (4)

The decision variables are subject to the constraints in Equations 5, 6, 7, and 8. Equation 5431

represents patient flow conservation, which guarantees that all the patients coming into the hospital432

system stay within the system until they leave through the discharge nodes.433

xi,i+nh
+
∑
j∈Γ

xi,j(t)−
∑
j∈Γ

xj,i(t− τi,j(t)) + yi(t+ dt)− yi(t) = b(i), ∀i ∈ Γ, t ∈ T (5)

Equations 6 and 7 represent flow capacity constraints. Equation 6 ensures that the people in434

the operating rooms do not exceed the unitary capacities ui,i+nh
, where ui,i+nh

is estimated as the435

number of functional operating rooms in the hospital i over the number of surgeries per day. We436

assumed that each surgery takes 4 hours, and that hospitals will be functional 24 hours during the437

emergency response using multiple personnel shifts. Such treatment rate equals the rates in foreign438

field hospitals after the 2004 Indonesia earthquake/tsunami.52
439

0 ≤ xi,i+nh
(t)

ui,i+nh

≤ 1, ∀i ∈ Γ, t ∈ T (6)

Equation 7 ensures that the patient transfers do not exceed the total unitary transportation440

capacities in a hospital, where ui,j is the unitary capacity if all ambulances of a hospital were only441

transferring patients from triage i to j. ui,j equals the number of ambulances in the hospital times442

the number of patients transported per ambulance trip over the number of round trips that the an443

ambulance can make from triage node i to j. We retrieved travel time information from Google444

Maps API to estimate the round trip numbers and assumed that each ambulance trip can take up445

to two patients.446

0 ≤
∑
j∈Γ

xi,j(t)

ui,j
≤ 1, ∀i ∈ Γ, t ∈ T (7)
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Equation 8 ensures that the number of patients waiting in the hospitals’ triage queues are447

properly represented by a non-negative number.448

0 ≤ yi(t), ∀i ∈ Γ, t ∈ T (8)

Equations 6, 7 and 8 introduce a model relaxation. Whereas the number of patients who449

are treated, transported or waiting in the queue can only be non-negative integers, the formulation450

expands the variables’ domain to include real numbers. This relaxation ensures that the formulation451

is tractable. Thus, because the cost and the constraint functions are linear combinations of the452

decision variables, we solve this minimization as a linear programming problem using the simplex453

algorithm in GLPK of the cvxopt implementation in Python.53,54
454

3.1.2 Model Adaptation for Baseline Strategies 1 and 2455

Both baseline strategies have limited coordination capacity and only allow each hospital to transfer456

patients to only one single hospital with functional operating rooms instead of multiple ones. Thus,457

to represent these strategies, the model ignores multiple transfer edges in the flow model, reducing458

the elements of the edge set E. In the first baseline strategy, only the edges going from hospitals459

without functional operating rooms to the closest hospitals are activated. In the second baseline460

strategy, only the edges going from hospitals without functional operating rooms to the hospital461

with the are largest number of functional operating rooms are activated.462

Because the model is solved multiple times according to the number of patients and functional463

operating rooms in the earthquake simulation, then the edge connectivity varies from simulation to464

simulation. With strategies 1 and 2, the number of edges in the model is significantly reduced, thus465

we modeled larger time horizons. We selected a time horizon Tf of 100 days, which is sufficiently466

long period to treat treat all earthquake patients in most simulations, and a time step dt of 1 day.467

3.1.3 Model Adaptation for Strategy 3: Sharing Ambulances468

Strategy 3 does not need to disconnect edges in the model. Yet, it modifies the transportation469

edges’ capacity constraints to enable hospitals to share ambulance resources. Thus, the constraint470

in Equation 7 is relaxed as follows.471

0 ≤
∑
i∈Γ

ai
∑
j∈Γ

xi,j(t)

pi,j
≤

∑
i∈Γ

ai, ∀t ∈ T (9)

Equation 9 ensures that unitary transportation capacities are not exceeded at a system level at472

each time step, where ai represents the number of ambulances of hospital i. All the other constraints473

remain the same. Because modeling this policy requires higher edge connectivity than the baseline474

strategies and thus has more computational demands, the time horizon tf was reduced to 40 days.475

It was verified that such a variation did not affect the optimization because less modeling time was476

needed as a result of shorter optimal waiting times with the strategies 3 and 4 (Figure 6). The477

time step dt was kept equal to 1 day.478
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3.1.4 Model Adaptation for Strategy 4: Deployment of Additional Operating Rooms479

by EMTs480

Strategy 4 requires an additional modification to the constraint on the operating room capacity in481

Equation 6. This strategy allows EMTS to increase hospital capacities by introducing additional482

mobile operating rooms in close proximity to them as follows.483

0 ≤ xi,j(t)− qi
ui

≤ 1, ∀i ∈ Γ, j = i+ nh ∈ Λ, t ∈ T − {0, dt, . . . , ts} (10)

Equation 10 ensures that hospitals can increase their unitary operation room capacities by qi484

after the time ts at which the operating rooms in the field hospitals are deployed in the city. In485

addition the sum of the additional resources distributed across the system cannot exceed the total486

capacity Q supplied by all the field hospitals in the region as follows.487

0 ≤
∑
i∈Γ

qi ≤ Q (11)

All the other constraints remain the same. These modifications barely change the optimization488

complexity. Thus, we kept the time horizon equal to 40 days and the time step equal to 1 day.489

3.2 Earthquake Casualty Modeling490

We utilize an earthquake multiseverity casualty model previously developed by the authors15 to491

evaluate the spatial distribution of injuries requiring surgical treatment after the M 8.0 earthquake.492

The model is probabilistic and uses ground shaking estimates to propagate the earthquake inten-493

sity to building damage according to the building seismic vulnerability55 and the site-specific soil494

conditions in Lima.56 Next, the model uses information on building occupancy to provide proba-495

bilistic estimates of the spatial distribution of injuries and fatalities in the city. The validity of the496

model results was verified14 by comparing the casualties and fatality levels in the city to empirical497

formulas18 and with fatality-to-collapse building data from the 2005 Pakistan earthquake.57
498

The model categorizes injuries into three severities. The second- and third-degree severity re-499

quire specialized medical attention and hospitalization, however, unlike the second degree, the third500

one requires immediate rescue and treatment to avoid death.58–60 We considered that 100% of the501

patients with third-degree injuries, for example, having punctured organs or crush syndrome with502

exposed wounds, plus 10% of patients with second-degree injuries, for example, having compound503

bone fractures, will require surgical treatment in operating rooms. We considered that patients504

arrive to the closest hospital during a period of 4 days after the earthquake in accordance to the505

evidence from previous earthquakes.39,61 Thus, in the flow model the demand-supply variable bi(t)506

is larger than 0 in the triage nodes during the first four days after the earthquake. We considered507

that patients wait in triage zones to until an operating room is available in the hospital or until508

they are transferred to other hospitals.509

3.3 Seismic Analysis for hospital functionality510

We utilize earthquake simulation to model the functionality of operating rooms during the emer-511

gency response.62 Hospitals are complex infrastructure, whose post-earthquake functionality de-512

pends on multiple components: structural damage; damage in mechanical, electrical components513
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and medical equipment; utility failure; shortage of medical supplies (i.e., oxygen, blood), and short-514

age of medical personnel.7,8, 13,63 Hospitals with slight structural damage can lose partial or total515

functionality as a result of damage and loss of the other components of hospitals.64
516

To capture these effects, we analyzed that the structural vulnerability55 of the +700 buildings517

belonging to the 41 healthcare campuses in the city according to the earthquake shaking intensity518

and the soil conditions on site. Then, we used a Bernoulli distribution to model loss of function-519

ality that can occur due to failure of components different to the hospitals’ structure according520

the “Hospital Safety Index” (HSI). HSI is based on a qualitative evaluation of multiple hospital521

components including buildings’ nonstructural elements such as equipment and backup medical522

resources, and technical and organization capacities in the hospitals’ personnel.37 HSI has three523

categories: “A”, “B” and “C”, ranging from the best to the lowest performance. We used a different524

Bernoulli distribution for each HSI category. We considered that operating rooms in buildings with525

no structural damage have 1, 0.75, and 0.5 of functionality probability for categories “A”, “B” and526

“C”, respectively, whereas that in buildings with slight structural damage, operating rooms have527

0.6, 0.45, and 0.3 of functionality probability. Operating rooms in buildings with larger damage528

levels were considered completely nonfunctional.529

The 41 campuses in the dataset are part of the public healthcare system led by the Peruvian530

Health Ministry (MINSA) and the Social Security (Essalud). Even though there is a growing private531

healthcare system, most of the health care services are provided by the public system in Lima.65
532

Physicians who work full time in the public healthcare system often work part-time in the private533

system,66 thus, in an emergency, they would aim to provide services in the public system rather534

than in the private one. We consider that studying the response of the public sector represents a535

robust starting point to characterize the earthquake emergency response of the hospital system in536

Lima.537

We supplemented the hospitals’ building information with the number of ambulance in each538

hospitals. Because, a few hospitals have no ambulances, we considered that during the emergency539

response the local government or private institutions will supply one ambulance to each of these540

hospitals so that each hospital is able to mobilize patients.541

3.4 Earthquake Shaking542

We studied the tectonics of the M 8.0 1940 earthquake and located the rupture area in the region543

delimited by the earthquake aftershock zone.26 We defined the rupture dimensions along the fault544

strike and dip directions using an empirical function based on subduction zone earthquake data.28
545

Next, we evaluated the ground shaking in a grid of 1kmx1km using site-specific lognormal dis-546

triutions. We evaluated three ground shaking intensity measures, Peak ground acceleration, PGA,547

spectral acceleration at 0.3s, Sa(0.3), and spectral acceleration at 1s, Sa(1.0s). We selected these548

intensity measures to better capture the response of multiple typologies of buildings in the inven-549

tory according to their predominant period of vibration. The log-mean and log-standard-deviation550

values of the intensity measures were extracted from empirical formulas that relate magnitude, site551

distance, and soil conditions to the ground shaking.29 We included within-67 and between-68event552

correlations in the intensity measures. The between-event correlations introduce spatial correlations553

to the ground shaking.554
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3.5 Data Availability555

All the data to reproduce the findings of the paper can be found at https://purl.stanford.edu/556

dp530wq8437.557

3.6 Code Availability558

All the computer code to reproduce the findings of the paper can also be found at https://purl.559

stanford.edu/dp530wq8437.560

20



4 Supplementary Information561

Lima is a fast-growing megacity with a population close to 10 million people.21 Though the center562

of the city is denser, the peripheral areas of the city have become heavily populated over the last563

few decades. Currently, close to three million people live in peripheral zones in slums,69 where564

families are low-income, who often start constructing their homes with precarious materials, e.g.,565

wooden shacks, and then upgrade them to confined-masonry buildings over timespans ranging from566

a few years to decades.70 Figure 9 shows how heavily populated the peripheries are. The popula-567

tion distribution in this plot represents the average number of people over 24 hours in grids of 1568

km2. Population density is dynamic, but often people spend most time at their residential build-569

ings, mainly during nighttime. Thus, we considered that this average distribution is a reasonable570

representation of nighttime population densities.571

Figure 9: Spatial distribution of population density in Lima per km2. Data obtained from LandScan.71

The intervals in the two plots represent quintiles on the spatial data.

The seismic analysis included the assessment of the the number of fatalities and injured people572

with three types of severities caused by an M 8.0 earthquake occurring at nighttime in Lima, when573

people are often within their houses. As observed in previous earthquakes, the model considers574

that most casualties are caused by earthquake damage to buildings in the city. Our mean estimates575

indicate that the M 8.0 earthquake will cause 60.3k people with injuries of severity 1, 18.9k of576

severity 2, 2.8k of severity 3, and 5.6k immediate fatalities. People with injuries of severity 1 will577

require basic medical aid and no hospitalization. People with injuries of severity 2 will require578

hospital treatment, but the injuries are not life-threatening in the short term, and people with579

severity 3 will require immediate hospitalization otherwise injuries become life-threatening.14,60
580
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Figures 10a and 10b show the mean spatial distributions of injured people with severity 2 and 3 in581

the city. Because in the model, casualties are result of building damage, the spatial distribution of582

patients with severity 2 and 3 are heavily cross-correlated and particularly concentrated in areas583

with large number of buildings that collapse.584

(a) (b)

Figure 10: Spatial distribution of patients with a) injuries of severity 2 and b) injuries with severity 3. The
intervals in the two plots represent quintiles on the spatial data.

The seismic analysis also included the assessment of the ability of hospitals to function after the585

earthquake. Figure 11 shows the mean functionality ratio of operating rooms in the 41 healthcare586

campuses that were analyzed. The ratio represents how likely are operating rooms to function587

after the M 8.0 earthquake considering their structural vulnerabilities, their “HSI” score, and their588

proneness to experience large shaking intensities as a result of the proximity to the earthquake fault589

or the soil conditions. Though the absolute number of functional operating rooms was higher at590

the center of the city, the spatial patterns of of functionality ratios did show a strong prevalence591

of high ratios in particular zones of the city. Instead of geographical location, construction year592

was a better indicator of the hospitals’ ability to function, as most newer hospitals showed higher593

functionality ratios.594
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Figure 11: Spatial distribution post-earthquake functionality ratio. Newer hospitals, some of the located
in the city center, tend to perform better than the older ones. Few hospitals that did not have operating
room capacities under normal conditions were assigned 0% functionality ratio.
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55 Mabé Villar-Vega, Vitor Silva, Helen Crowley, Catalina Yepes, Nicola Tarque, Ana Beatriz749

Acevedo, Mat́ıas A. Hube, D. Gustavo Coronel, and Hernán Santa Maŕıa. Development of750
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