

Biosynthesis of Molybdenum Disulfide Nanoparticles Using The Metal-Reducing Bacterium Shewanella Oneidensis MR-1

> Dr. James Dylan Rees Supervisor: Prof. Shayla Sawyer

Department of Electrical, Computer and Systems Engineering

61st Electronic Materials Conference, University of Michigan, Ann Arbor

June 27th, 2019

The Jefferson Project at Lake George

Introduction

What does it mean for electronics to be "green"?

Introduction

Shewanella Oneidensis MR-1: A Versatile "Nano-Engineer"

Dissimilatory Metal Reduction: "Breathing with Metal"

Bacterial nanowires [1]

Biomineralization [2]

- > Shewanella is a facultative anaerobe (can exist in an aerobic or anaerobic state)
- > Uses organic materials (lactate, pyruvate) as electron donors
- > Can use a variety of metal and sulfur ions as electron acceptors
- Through its metabolic process (dissimilatory metal reduction), Shewanella precipitates metal and metal sulfide nanoparticles

Anatomy of a *Shewanella* Bacterial Nanowire

Cytochromes (conductive proteins)

Heme Groups Within Cytochromes Positioned to Allow Long-Range Electron Hopping

- Bacteria obtain electrons by oxidizing electron donor materials
- Electrons are used to power cell metabolic processes
- Electrons are deposited onto electron acceptors via several mechanisms [3]

Electrons Are Received by Substrate

Cytochromes on Outer Cell Membrane And Inside Nanowires

Applications in Renewable Energy & Sensing

ensselaer

Source: NREL

Substrate

Energy-Efficient Fabrication

Conventional Nanomaterial Synthesis [4]

Rensselaer

Bacteria are highly responsive to environmental variables during cultivation (pH [7], electron donor/acceptor cultivation [8], temperature [9], voltage [10] and even light [11]) - giving us options for cultivation controll

Minimizing Waste Products: Bioremediation & Re-Use

TRENDS in Biotechnology

[12] Y. V. Nancharaiah and P. N. Lens, "Selenium biomineralization for biotechnological applications," Trends Biotechnol., vol. 33, no. 6, pp. 323–330, Jun. 2015.

ntroduction

Molybdenum Disulfide Synthesis with Shewanella

- Bulk form has an indirect band gap similar to silicon [13]
- Monolayer form has direct band gap & photoresponsivity [13]
- Surface functionalizability [14]
- > Commonly produced using H_2S at high temperatures [15]
- Limited prior studies of potential MoS₂ biomineralization studies using bacteria

Molybdenum Disulfide Synthesis with Shewanella

Group A	10mM NaS ₂ O ₃ , Inoculated	
Group B	20mM NaS ₂ O ₃ , Inoculated	
Group C	10mM NaS ₂ O ₃ , Sterile	
Group D	20mM NaS ₂ O ₃ , Sterile	

- Shewanella was cultivated in a chemically-defined liquid growth medium containing lactate as an electron donor and thiosulfate as an electron acceptor
- Bottles consisted of four groups (left)
- Incubated at 30°C for 2 days, then added 0.5mL of MoO₃ powder
- Harvested and characterized materials generated after 14 days

Results

Group A	10mM NaS ₂ O ₃ , Inoculated	>
Group B	20mM NaS ₂ O ₃ , Inoculated	
Group C	10mM NaS ₂ O ₃ , Sterile	
Group D	20mM NaS ₂ O ₃ , Sterile	

After two weeks, the inoculated bottles had turned orange-brown and contained black biofilms.

The final pH of the bottles was measured at 6.8 (within tolerable range for *Shewanella*)

- Liquid was placed in cuvettes and analyzed using a UV-Vis spectrophotometer
- > Absorption curve agrees with prior published results for MoS_2 nanoflakes [16]
- Absorption was stronger in bottles with higher thiosulfate concentration, pointing to thiosulfate reduction as a key component of precipitation

- SEM revealed that the inoculated sample contained biofilms rich in bacterial nanowires
- EDS revealed that biofilms contained 3-5% Mo/S (the peaks of Mo and S overlap). The Mo and S signature in the sterile batch was minimal.

Liquid from both inoculated and sterile bottles was dried in a 100°C furnace and analyzed using XRD
Solution did not visibly separate with separation, so salts remained in dry powder, creating a more peak-dense diffractogram

Results

Spectrum of inoculated bottle (blue) exhibited a peak at 13.2 degrees that was not visible in the sterile batch (red) or molybdenum trioxide powder (yellow)

> This peak is consistent with the (002) peak for rhombohedral molybdenum disulfide [16]

- Spectrum of inoculated bottle (blue) exhibited a peaks at 32.5 and 33.2 degrees consistent with the MoS2 rhombohedral (101) peak and hexagonal (100) peak, respectively [16][17]
- > The sterile batch and MoO3 reference sample did not exhibit the same peaks
- ➤ The peak located between 31 and 32 degrees matched to NaCl reference peaks

- Black biofilm from inoculated Mo bottle was harvested and air-dried on a microscope slide
- Sample was then analyzed using a Raman spectrometer and a 514nm laser
- \succ Series of 10 laser pulses was used with an 100s exposure time on each pulse

> Raman peaks at 374 cm⁻¹ and 400 cm⁻¹ agree with MoS_2 reference peaks [18]

Raman spectrum of liquid medium from same bottle contained no visible peaks

Results

TEM analysis of the inoculated Mo batches revealed nanoparticles (both individual crystals and aggregates) with a size of approximately 50-200nm

Imagined & diffraction analysis of the individual particles & aggregated revealed crystallinity

D-spacing analysis performed using an aluminum standard found that spacings were consistent with hexagonal molybdenum disulfide [19]

21

D-spacing analysis performed using an aluminum standard found that spacings were consistent with hexagonal molybdenum disulfide [19]

Conclusions & Future Work

Conclusions

- We have successfully synthesized MoS₂ nanoparticles at room temperature using *Shewanella* (this is the first known instance of doing so)
- The proposed mechanism is a combination of H₂S formation and dissimilatory reduction of Mo(VI) to Mo(IV) at the surface of the Shewanella biofilms
- MoS₂ nanoparticles tend to be a few hundred nanometers in size, can be single crystals or polycrystalline, and may contain several different crystal structures

Future Work

- Improving control over nanomaterial growth and composition via control of cultivation conditions (see below)
- > Continuous (bioreactor) cultivation due to variability of batch culture
- > Further isolation & purification of bio-nanomaterials
- Deposition of nanomaterials onto conductive substrates & characterization of photocurrent behavior
- > Investigation of new potential materials amenable to biosynthesis

Thank You!

References

[1] Y. A. Gorby, "Microbial Nanowires and Extracellular Electron Transfer in Hydrothermal Vent Communities," J. Craig Venter Institute, La Jolla, CA, 2011.

[2] Y. A. Gorby, S. Yanina, J. S. Mclean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, and J. K. Fredrickson, "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms," *Proceedings of the National Academy of Sciences*, vol. 103, no. 30, pp. 11358–11363, 2006.

[3] M. Y. El-Naggar and S. E. Finkel, "Live Wires," *The Scientist Magazine*, May-2013. [Online]. Available: https://www.the-scientist.com/?articles.view/articleNo/35299/title/Live-Wires/.

[4] C.N.R.Rao, A.Müller, A.K.Cheetham, *The chemistry of nanomaterials: synthesis, properties and applications*. Weiheim, Germany: John Wiley & Sons, 2006.

[5] A. Yamagishi, M. Tanaka, J. J. M. Lenders, J. Thiesbrummel, N. A. J. M. Sommerdijk, T. Matsunaga, and A. Arakaki, "Control of magnetite nanocrystal morphology in magnetotactic bacteria by regulation of mms7 gene expression," *Scientific Reports*, vol. 6, no. 1, Jul. 2016.

[6] C. Rameteke, T. Chakrabarti and R. Pandey, "Biological Entities in Stabilization of Nanomaterials." AZOnano.com. https://www.azonano.com/article.aspx?ArticleID=2546 (Accessed Feb. 27, 2019)

[7] Y. Yuan et al., "Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells," Bioresour. Technol., vol. 102, no. 13, pp. 6887–6891, Jul. 2011.

[8] Y. A. Gorby et al., "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms," Proc. Natl. Acad. Sci. U.S.A., vol. 103, no. 30, pp. 11358–11363, Jun. 2006.

[9] A. Larrosa-Guerrero et al., "Effect of temperature on the performance of microbial fuel cells," Fuel, vol. 89, no. 12, pp. 3985–3994, Dec. 2010.

[10] H. Friman et al., "Effect of external voltage on Pseudomonas putida F1 in a bio electrochemical cell using toluene as sole carbon and energy source," Microbiology, vol. 158, pp. 414–423, Jul. 2011.

[11] B. C. Huang et al., "Mechanism study of photo-induced gold nanoparticles formation by Shewanella oneidensis MR-1," *Scientific Reports*, vol. 9, no. 1, May 2019.

[12] Y. V. Nancharaiah and P. N. Lens, "Selenium biomineralization for biotechnological applications," Trends Biotechnol., vol. 33, no. 6, pp. 323–330, Jun. 2015.

[13] Z. He and W. Que, "Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction," Appl. Mater. Today, vol. 3, pp. 23–56, Jun. 2016.

[14] JD. Sarkar et al., "MoS 2 field-effect transistor for next-generation label-free biosensors," ACS Nano, vol. 8, no. 4, pp. 3992–4003, Mar. 2014.

[15] J. Park et al., "Comparison of hydrogen sulfide gas and sulfur powder for synthesis of molybdenum disulfide nanosheets," Curr. Appl. Phys., vol. 16, no. 7, pp. 691–695, Jul. 2016.

[16] R. K. Mishra, M. Krishnaih, S. Y. Kim, A. K. Kushwaha, and S. H. Jin, "Binder-free, scalable hierarchical MoS2 as electrode materials in symmetric supercapacitors for energy harvesting applications," *Materials Letters*, vol. 236, pp. 167–170, Feb. 2019.

[17] H. Bai, Z. Zhang, Y. Guo, and W. Jia, "Biological Synthesis of Size-Controlled Cadmium Sulfide Nanoparticles Using Immobilized Rhodobacter sphaeroides," *Nanoscale Research Letters*, vol. 4, no. 7, pp. 717–723, Mar. 2009.

[18] "Molybdenum disulfide MoS₂" *Nitronix Nanotechnology Corporation.* http://www.nitronix.com/mos2-2/ (accessed Mar. 26, 2019)

[19] R. E. Bell and R. E. Herfert, "Preparation and Characterization of a New Crystalline Form of Molybdenum Disulfide," *Journal of the American Chemical Society*, vol. 79, no. 13, pp. 3351–3354, Jul. 1957.

Extra Slides

Prior Results: Biosynthesized Nanofibers

Add short blurb about what is going on

Prior Results: "Living Electronics"

On this slide, mention three things briefly:

- 1.) the measurements on the nanowires themselves, which show that they have voltage-dependent conductivity
- 2.) The way that they produce current and interface with solid substrates
- 3.) The potential applications for this microbial sensors for materials

Cultivation Experiment (detailed)

Group A	10mM NaS ₂ O ₃ , Inoculated
Group B	20mM NaS ₂ O ₃ , Inoculated
Group C	10mM NaS ₂ O ₃ , Sterile
Group D	20mM NaS ₂ O ₃ , Sterile

- Shewanella was cultivated in a chemically-defined liquid growth medium containing buffer salts, vitamins, minerals, amino acids, lactate as an electron donor and thiosulfate as an electron acceptor
- Four different groups were used in varying combinations of inoculation and thiosulfate
- Incubated at 30C with agitation and checked after 14 days
- After incubation, 0.2mL of a sterile preparation of 75% deionized water and 25% suspended MoO₃ (by volume) was added to each bottle
- No initial changes were visible in the bottles after addition of MoO₃

Background (EIS)

- At left: Diagram from <u>a paper by Patolsky et.</u> <u>al. (1999)</u>
- "The precipitate accumulates on the electrode support by the nonelectrochemical biocatalyzed process. Therefore, the insulating layer is anticipated to become thicker as time proceeds. Curves b-e of Figure 2A show the Faradaic impedance spectra of the HRP-monolayer electrode in the presence of H2O2, 5mM, at different time intervals. The semicircle diameters of the impedance plots increase as the time intervals for precipitation are longer, Figure 2B."
- "It is evident that upon the accumulation of the insoluble product on the electrode surface, the interfacial electron transfer is retarded and the capacitance is decreased"