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Abstract

Keystone formatting [1] for spotlight synthetic aperture radar is an alternative to the popular polar format and reduces
the computational burden of resampling the polar data to a rectangular grid before inverse Fourier transformation by a
fast Fourier transform—the polar format algorithm. After a brief review of relevant geometry and signals including linear
frequency modulation and stepped sines, it is shown how to convert a polar-format radar into a keystone-format radar.
Reconstructions from simulated data in both formats are shown and the differing kinds of image aliasing are examined.

1 Introduction

SPOTLIGHT synthetic aperture radar is a microwave remote
sensing scheme in which a radar on a stand-off moving

platform emits structured pulses and collects the reflected
energy as the antenna dwells on a spot on the ground as
shown in Figure 1. Under some broad assumptions dis-
cussed below, an image of the reflectivity of the illuminated
ground patch is formed by processing the reflected energy,
the main step of the processing being inverse Fourier trans-
formation.

It is common to assume that the emitted waves are planar
over the ground patch and that the the variation in propa-
gation attenuation over the ground patch is negligible. Both
approximations tend to truth as the distance between the
radar and the ground patch is large while the ground patch
is small. Methods exist to compensate for nonplanar waves
[2] and other methods exist to remove both approximations
[3, 4, 5, 6].

Linear frequency modulation (LFM) is commonly used
for the transmitted signal and a rough sketch of the signal
processing of the received signals is, for each reflected pulse,
to perform a mixing operation with a modified version of the
transmitted signal [7] or a similar operation by matched fil-
tering or de-chirping, treating these sampled discrete data as
points particularly arrayed in the two-dimensional Fourier
transform plane of the ground patch (“formatting”), and sub-
sequently performing an inverse two-dimensional Fourier
transform.

The most popular Fourier formatting is polar formatting.
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Figure 1: Collection geometry for spotlight synthetic aperture radar
showing moving platform and ground patch to be imaged.

A less common format is keystone or trapezoidal formatting
[1] which carries a significant advantage over polar format-
ting. Figure 2 shows these two formats schematically.

The purpose of this paper is to describe these two forms
of Fourier formatting of spotlight SAR data, describe how to
convert a polar-format radar into a keystone-format radar,
and to study the differences in particular with respect to
aliasing. In this service, two kinds of waveforms that ap-
proximate the LFM will be discussed and one used to create
image reconstructions of a single small scatterer at the ori-
gin of the ground patch from both polar and keystone data,
and then to describe in detail how image aliasing caused
by sampling in the Fourier plane differs between the two
formats. This knowledge can inform system design aspects
that aim to tolerate or reduce the effects of aliasing.

2 Geometry and Waveforms

Many kinds of waveforms are used in radar including spot-
light SAR. LFM is a popular SAR waveform because it has
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Figure 2: Sampling schemes of the Fourier transform of the ground
patch g

(
x, y

)
by (a) polar formatting and (b) keystone formatting.

many nice properties including, after demodulation, the
mapping of range to frequency. A detailed analysis of LFM in
spotlight SAR is offered in [7] wherein discrete polar samples
of the Fourier plane appear. Other waveforms are suitable
and stepped frequency or stepped sine signals [8, 9] will be
considered herein for simplicity and clarity of exposition
since they, too, provide discrete Fourier plane samples. Sim-
ilar principles apply to other waveforms with perhaps some
modifications in post-processing [10].

Define the ground patch as a complex-valued microwave
reflectivity function on an x-y coordinate system, g

(
x, y

)=
g (x). Ordinarily the support is assumed to be limited to a
circle of a specified radius by the antenna pattern but that
will have no bearing here. Let there be another coordinate
system, the x ′-y ′ system, sharing the same origin as the x-
y system but rotated counterclockwise by an angle θ and
with the radar at a distant point on the negative x ′ axis. In
the rotated system the ground patch is g ′ (x ′, y ′)′ = g ′ (x′

)′
where the ′ notation relates to rotated systems, axis variables,
and functions defined thereon. Let the transmitter emit a
harmonic signal of radian frequency ω, e jωt . Under the
plane wave assumption and with a unit scatterer at xs , this
creates a reflected, backward-traveling field in the vicinity of
the radar

r
(
x, y, t

)= e j [ωt+k·(x−2xs )] (1)

after removing the bulk delay between receiver and (0,0)
and normalizing the propagation attenuation to one. Here,
|k| = k and k = (

kx ,ky
)= (k cosθ,k sinθ) is the propagation

vector with wavenumber k = ω/c and c the speed of light.
The receiving antenna acts to sample the field at a single
point, generating the spatial phasor (remove e jωt ) receiver
signal

r ′
x

(
x ′)= e j(kx ′−2k·xs ). (2)

(Reference [10] contains a full development from first prin-
ciples of these basic results and others mentioned herein.)
An important concept is that a harmonic illumination of
the ground patch with transmitter signal e jωt samples its
Fourier transform G (k) at G

(
2kx̂′

)
where x̂′ = (cosθ, sinθ)

is a unit vector in the direction of the x ′ and kx axes. The
plane can be sampled at arbitrary points by adjusting the
angular position θ of the radar and the sinusoid frequencyω.
Spotlight SAR functions to place many such samples of G (k)

over a limited region of the k plane and then to find an esti-
mate of the bandlimited ground patch by Fourier inversion,
either by the so-called direct Fourier inversion also known
as the polar format algorithm (PFA) [2] or by backprojection
[11, 10]. For example, backprojecting (2) reconstructs the
phasor version of field (1); performing such backprojections
from all θ and all ω reconstructs a Dirac impulse at xs . How-
ever, the usually preferred Fourier inversion method, the
polar format algorithm, proceeds by interpolating the po-
lar formatted data to a rectangular sampling grid and then
inverting by using a fast Fourier transform (FFT). It is the
ability to use an FFT that offers a computational advantage
over backprojection that makes this preferable, although
some architectures [11, 12] and algorithms [13] can reduce
that advantage. Even so, the two-dimensional interpola-
tion required by the polar format algorithm represents an
additional computational stage, usually proceeding by two
one-dimensional steps where the first step resamples the
polar data along lines of constant θ, resulting in a format
similar to Figure 2(b). The second one-dimensional inter-
polation is along lines parallel to the ky axis in Figure 2(b)
yielding the desired rectangular sampling grid.

A family of discrete-frequency, or stepped, sines, can pro-
duce the same constellation of polar samples in the Fourier
plane as samples of demodulated LFM signals from discrete
values of θ, even though some details differ which are not
important here; inverting the constellation in either case is
the same, however.

The process of generating keystone formatted data di-
rectly will be described shortly. It potentially somewhat
increases the transmitter burden of synthesizing the trans-
mitted signals which is the tradeoff for reducing the interpo-
lation burden later. An additional advantage of generating
keystone-formatted data directly is that the simpler interpo-
lation stage should generate less error in the image.

There are two kinds of stepped sine waveforms. The
first is sequentially stepped sines whereby a single pulse
is divided into sub-pulses each of which is a sine segment
with a frequency different than all the others. Let f =ω/2π
be the cyclical temporal frequency and l = k/2π = (

lx , ly
)

the cyclical spatial propagation vector. Cyclic and radian
quantities will be used as convenient, with similar nota-
tional accoutrements, without prejudice. With uniform
amplitude, a waveform in which each sub-pulse has a
higher frequency than the preceding sub-pulse, where the
beginning frequency is fb = f0, the ending frequency is
fe > fb , the number of frequencies and sub-pulses is N ,
∆ f = (

fe − fb
)

/(N −1), and the sub-pulse length is Tp , is,
along with its Fourier transform,

s (t ) =
N−1∑
n=0

rect

(
t −nTp

Tp

)
e j 2π( fb+n∆ f )(t−nTp )

S
(

f
)= Tp

N−1∑
n=0

sinc
[(

f − fb −n∆ f
)

Tp
]

e− j 2π f Tp

where rect(x) is unity for |x| ≤ 1/2 and zero otherwise and
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sinc(x) = sin(πx)/πx. (A variation allows gaps between the
sub-pulses.) Another kind of stepped-sine waveform is the
stacked sine version whereby sines of all the discrete fre-
quencies are transmitted simultaneously. With the pulse
length Tp , the time- and frequency-domain signals are be

s (t ) = rect

(
t

Tp

)N−1∑
n=0

e j 2π( fb+n∆ f )t

= rect

(
t

Tp

)
sin

(
Nπ∆ f t

)
sin

(
π∆ f t

) e j 2π( fb+∆ f (N−1)/2)t

(3)

S
(

f
)= Tp

N−1∑
n=0

sinc
[(

f − fb −n∆ f
)

Tp
]

.

The structure of the sequential and stacked sines differs in
that the sequential sines, in both time and frequency do-
mains, contain an extra phase term. In the frequency do-
main this term can cause vigorous interference between sinc
lobes if ∆ f is too small or if Tp is too small; otherwise, the
oscillations are partially limited by the sinc sidelobes and
are further reduced in effect due to partial cancellation from
phase terms of neighboring sinc sidelobes. For the stacked
time-domain signal, if Tp is long enough, the various sines
build nicely into the Dirichlet function sin(Nπx)/sin(πx)
[14]. Either version will convey the salient points of this pa-
per; since the stacked version is less complicated and easier
to interpret it will be preferred here. The sines will be consid-
ered to be long enough to avoid significant lobing effects and
ground patch edge effects. It is not the purpose of this paper
to discuss differences in transmitter and receiver design or
signal-to-noise ratio for the two types of stepped sines.

3 Polar-to-Keystone Format Mapping

Keystone formatting can be obtained by conceptually start-
ing with a polar format. As seen in Figure 2, polar-format
points in the plane are reduced in the lx -direction by cosθ
relative to a point representing a wave propagating in the
θ = 0 direction; thus, if a new frequency f ′ = f /cosθ and
consequently l′ = l/cosθ are used, then the new sampling
point is (l , l tanθ) so that the first coordinate is constant for
all θ. (Assume |θ| <π/2.) When this adjustment is made to
all relevant points in the 2D frequency domain, the keystone
format is established. It is not necessary to retain the same
set of angles when converting a polar plan to a keystone
plan.

LFM waveforms for keystone format are readily obtained
by adjusting the beginning frequency, ending frequency, and
chirp rate [1]. Consider a prototype LFM signal, also suitable
for θ = 0,

s (t ) = e jπαt 2

between tb and te , tb < te , and zero elsewhere. The instan-
taneous frequency fi (t ) = dφ/2πd t =αt , fi (tb) = fb =αtb ,
fi (te ) = fe = αte , and α = (

fe − fb
)

/(te − tb). Adapting this
signal to the keystone format, the parameters become func-
tions of θ: f ′

b (θ) = fb/cosθ, f ′
e (θ) = fe /cosθ, and α′ (θ) =

(
f ′

e (θ)− f ′
b (θ)

)
/(te − tb), the latter assuming that tb and te

are the same as the prototype. The frequency domain signal
is shifted to the right and stretched1. The intention is that
the prototype corresponds to θ = 0 so that fb = f ′

b (0) etc.
The same rule as derived in the previous paragraph can

be applied to any signal s (t ) with frequency support be-
tween fb and fe —move the beginning point to f ′

b and stretch
the spectrum by a factor of β =(

fe − fb
)

/
(

f ′
e − f ′

b

)
, that is,

S′ ( f
)= S

(
β

(
f − f ′

b + fb
))

.
By now the adaptation to keystone format for a stepped

sine signal should be obvious. For a collection of fre-
quencies used for polar format at a particular angle
θ, F = {

fn = f0 +n∆ f , n ∈ 0,1, . . . N −1, f0 = fb , fN−1 = fe
}
,

define a new collection for keystone format as F′ ={
f ′

n = fn/cosθ, n ∈ 0,1, . . . N −1, f ′
0 = f ′

b , f ′
N−1 = f ′

e

}
.

4 Polar and Keystone Format Aliasing

To demonstrate the keystone waveform principle, several
plane waves composed from stacked sines were summed
over the simulated ground patch in the manner of Section §2
in the discussion of (1) and (2), mimicking the coherent sum-
mation that is normally done in the receiver. This method
avoids all interpolation artifacts which is desirable since the
present interest is not in interpolation studies but in alias-
ing artifacts specific to the format style. This was done for
both polar and keystone formats using F and F′ respectively.
The ground patch is a square region ranging over ±50 spatial
units on each side with the origin in the middle. There was
no 1D interpolation in the backprojection because the back-
projected functions are known exactly at all points. (This
luxury is not available in an actual radar.) The summed field
was computed over a 256×256 grid overlaid on the ground
patch. There was no rect(·) applied to the signals so the only
windowing in effect is due to the ground patch limits. The
scatterer position is in the middle, xs = (0,0). Angle θ ranged
from −30◦ to +30◦ from 120 angles. Temporal frequencies
ranged from fb = 2 to fe = 6; with c = 10, spatial frequen-
cies for polar and prototype keystone signals ranged from
lxb = 0.2 to lxe = 0.6. The number of stepped sine frequen-
cies N = 26 so that ∆lx = 0.016. These are not typical radar
parameters but they were chosen for expository purposes.
The results are shown in Figure 3 where parts (b) and (d)
are the frequency domain versions of parts (a) and (c) re-
spectively, computed by a 2D DFT merely to confirm that
the constituent plane waves are in fact from the expected
formats.

(Each plane wave is represented as a near-impulse in the
frequency plane. However, since they are not distributed
uniformly, each impulse must be weighted according to how
much area it represents. The Jacobian for polar format →
rectangular format is of course frequency radius ρ; the Ja-
cobian for keystone format → polar format is cosθ, and so

1Alternatively, the sample rate of the received baseband signal can be
adjusted pulse-to-pulse [1, Section 3.4].
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(a) (b)

(c) (d)

Figure 3: Impulse reconstructions and discrete Fourier transforms
collected over a restricted range of look angles and signal band-
width. (a) Impulse response from polar format data showing alias-
ing; (b) Discrete Fourier transform of (a); (c) Impulse response
from keystone format data showing aliasing; (d) Discrete Fourier
transform of (c).

the composite Jacobian needed here for correct weighting is
ρ cosθ. The reason the mostly non-black parts of Figure 3(b)
and (d) are relatively uniform is because each pixel of the
image contains several impulses, thus computing a kind of
graphical total which is nearly constant across pixels.)

Salient features of Figure 3 are sharp, well-defined central
spikes for both polar and keystone impulse responses along
with lower-level circular-arc ridges appearing in the polar
spatial plot and aliased spikes in the keystone spatial plot—
these artifacts were left in purposefully and will be discussed
shortly.

4.1 Keystone Discussion

The keystone reconstruction shows several interesting fea-
tures. If the same set of angles is used for both polar and
keystone Fourier data, the area covered in the latter case is
somewhat greater which likely would cause somewhat in-
creased resolution. But for the same reason, the keystone
format might result in under-sampling in the region of larger
lx and ly due to sample points being farther apart. Taking
this idea into the realm of DFT inversion to yield the im-
age, the same phenomenon might cause wrap-around in
the ly -direction of the DFT that wasn’t present in the polar
version.

The keystone display of Figure 3(d) shows a periodic dis-

crete structure in the lx direction that is not present in the
corresponding polar frequency plot of Figure 3(b), imply-
ing a periodic discrete structure in the image along the x
axis which indeed appears in Figure 3(c). The lx -period is
∆lx = 0.016 and thus the x-period is 1/2∆lx = 31.25 which
is the spacing between spikes in Figure 3(c). (The 2 derives
from two-way propagation and carries over from e.g. (1) or
(2).) This implies a sample-rate maximum in ∆lx to avoid
image aliasing in keystone-formatted data. Interpret G (l) as
a series of impulsive δ-ridges parallel to the ly axis and apply
the projection-slice theorem. A ly -projection of G (l),

Ḡ0 (lx ) =
∫ ∞

−∞
G

(
lx , ly

)
dly =

N−1∑
n=0

δ (lx − lxb −n∆lx )

the inverse Fourier transform of which is

ḡ0 (x) =
N−1∑
n=0

∫ ∞

−∞
δ (lx − lxb −n∆lx )e j 4πlx x dlx

=
N−1∑
n=0

e j 4πx(lxb+n∆lx )

= sin(2πN ∆lx x)

sin(2π∆lx x)
e j 4π(lxb+∆lx (N−1)/2)x

(4)

where the factor 2 has been attached to spatial variable x for
round-trip travel. (The projection-slice theorem employs
the direct Fourier transform; thus, ḡ0 (x) expressed above is
reversed in x compared to a central slice of g (x).) When a
spatial impulse response like Figure 3(c) is made but with
plane waves extending in θ over 0◦ to 360◦ and a central
slice is made at zero degrees and compared to (4), they are
essentially identical. The periodicity is not a result of DFT
processing but is the periodicity of the transmitted signal.
The aliased spikes of Figure 3(c) will disappear if a rect

(
t/Tp

)
window is placed on the transmitted signal (3) such that
cTp < 50, the distance to the edge of the ground patch, or if
∆lx is decreased enough, to 0.01 in this case.

4.2 Polar Discussion

The circular-arc ridges in the polar image Figure 3(a) are
the same distance from the origin as the spurious spikes
in Figure 3(c). The real and imaginary parts of this image
exhibit classic caustic formation but the fine details get lost
in the magnitude plot of Figure 3(a). If the θ coverage is ex-
tended over 0◦ to 360◦, the partial-angle ridges of Figure 3(a)
develop into a full circle of ridges at the same radius.

The ridges of a full-circle simulation can be predicted
with a bit of analysis. 2D Fourier transforms of circularly-
symmetric functions such as a full-circle summation of
plane waves of various frequencies mentioned immediately
above reduce to a 1D transform of the radial variable in
both domains, the Hankel transform [15]. Let the radial spa-
tial variable be r and the radial frequency variable be ρ. A
continuous-in-θ impulsive ring of radius a in the frequency
domain is δ

(
ρ−a

)
. The frequencies F are used so that there
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are several δ-rings summed to make the symmetrical fre-
quency domain field

H
(
ρ
)= N−1∑

n=0
δ

(
ρ− lxb −n∆lx

)
The Hankel transform of δ

(
ρ−a

)
is 2πa J0 (2πar ) so the spa-

tial symmetric field for this collection of impulse rings is

h (r ) = 2π
N−1∑
n=0

(lxb +n∆lx ) J0 (4π (lxb +n∆lx )r ) .

As before, an excellent match is seen between h (r ) and a
central image slice taken through a summation computed
from 720 plane waves comprised of N spatial frequency com-
ponents at lxb +n∆lx , lxb = 0.2 and lxe = 0.6.

In the polar spatial field there is an apparently infinite
series of ring-shaped ridges at multiples of 1/2∆lx as seen
both in simulations and predicted by h (r ); the amplitude
of each succeeding ridge is a little less than the previous
one. Likewise, the spurious spikes in the keystone spatial
function continue indefinitely along the x axis at multiples
of 1/2∆lx .

5 Version History

• October 18, 2019. First published.
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